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Using a result of Longo and Xu, we show that the anomaly arising from a cyclic permu-
tation orbifold of order 3 of a holomorphic conformal net A with central charge ¢ = 8k
depends on the “gravitational anomaly” k (mod 3). In particular, the conjecture that
holomorphic permutation orbifolds are non-anomalous and therefore a stronger conjec-
ture of Miiger about braided crossed Sp-categories arising from permutation orbifolds
of completely rational conformal nets are wrong. More generally, we show that cyclic
permutations of order n are non-anomalous if and only if 3 { n or 24|c. We also show
that all cyclic permutation gaugings of Rep(.A) arise from conformal nets.
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1. Orbifolds and anomalies

Conformal nets axiomatize chiral conformal field theory in the framwork of alge-
braic quantum field theory using von Neumann algebras. There is a notion of a
completely rational conformal net [14, Corollary 37 & 38] whose representation cat-
egory Rep(.A) is a modular tensor category. Let A be a holomorphic conformal
net, i.e. a completely rational conformal net with trivial representation category
Rep(A) = Hilb. Here we denote by Hilb the trivial unitary modular tensor category
of finite-dimensional Hilbert spaces. Let G < Aut(A) be a finite group of auto-
morphisms of the net A, see [22, Definition 3.1] and [17, Definition 2.3]. Then it
is well-known [17, Corollary 4.7 and below], see also [14, Section 7], [18, 3.6 Corol-
lary], [1, Remark 3.6], [2, Section 6.1], that there is a unique class [w] € H3(G,T),
such that the category of G-twisted representations of A denoted by G- Rep’ (A)
is tensor equivalent to the category Hilbg: of G-graded finite-dimensional Hilbert
spaces with associator given by w. More precisely, for every g € G there is an
irreducible g-twisted representation f, localized in I, which is unique up to conju-
gation by a unitary. Then g — [84] € Out(A(I)) is a G-kernel and it follows that
BgBn = Adug pfBgn for unitaries (ugn)gneq and that w: G x G x G — T defined
by w(g,h,k)-1 = ugyhugh’ku;ikﬁg(uh’k)_l is a cocycle. The class [w] is called the
anomaly of G and we say that G acts non-anomalously if w is a coboundary. Fur-
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thermore, the orbifold or fized point net A has a representation category Rep(A%)
which is braided equivalent to the Drinfel’d center Z(G,w) = Z(Hilbg).

We denote by S, the symmetric group on {1,...,n}. Let A be a holomorphic
net and G < S,, then G acts by permutation on A®". It seems to be widely
believed that this action should be non-anomalous. But Johnson-Freyd argued that
this conjecture is false [10, Example 2.1.1] and we give a counter-example in the
framework of conformal nets where the permutation action picks up what can be
thought of a gravitational anomaly?® k = ¢/8 (mod 3) € Zs, where c is the central
charge of A.

This note is an extension of an unpublished note (consisting essentially of Section
2) circulated in 2017. The results were announced April 15th, 2018 at the AMS
Sectional Meeting at Vanderbilt University, Nashville, TN. Shortly after that, a
more general result appeared in a preprint by Evans and Gannon [7, Theorem 2].
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2. Cyclic permutations of order 3
2.1. Twisted doubles of Zs.

Recall that a unitary fusion category is called pointed if all simple objects are
invertible. Pointed unitary fusion categories with Zs-fusion rules are classified by
H3(Z3,T) = {|w;] : i € Z/3Z} = Zs. Their Drinfel’d centers Z(Zs,w;) := Z(Hilbg/)
are pointed. Indeed, it can be easily checked that they are braided equivalent to
the pointed unitary modular tensor categories C(Gy, q;), respectively, where (G, ¢;)
are the metric groups given in Table 1 and C(G, q) is the braided fusion category
associated to (G, q), see Appendix A, in particular Proposition A.1.

Table 1. Twisted doubles of Z3

[ ‘ Gi ‘ q;: Gi — Q/Z

0 | Z3z xZ3 | qo(z,y) =zy/3 (mod 1)
1 Zg q1(z) = 422/9 (mod 1)
2 Zg q2(x) = 822/9 (mod 1)

acf. [21, Section 1.4] for how this name might be justified, namely he asks that our k equals 0
(mod 3) in order for the chiral CFT to be dual to quantum gravity.
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2.2. The anomaly

By a conformal net we mean a diffeomorphism covariant net on the circle, see
e.g. [13, Section 2.1. A-G]. Let A be a holomorphic conformal net. Since A is dif-
feomorphism covariant we can assign a central charge ¢ > 0. It is conjectured that
if A is holomorphic, then ¢ = 0 (mod 8) and it is a theorem that ¢ = 0 (mod 4)
by [12, Lemma 9.7 (2)]. We will from now on assume that the central charge ¢
of A fulfills ¢ € 8N. If A is holomorphic, then any tensor power A®" is holomor-
phic [14, Corollary 32]. Let o € S,, be a permutation. Then there is an element
o € Aut(A®™) given by

TI®Ty R ® Ty > To(1) @ To(a) @+ @ To(n) (2.1)
see e.g. [22, Section 6].

Proposition 2.1. Let A be a diffeomorphism covariant holomorphic net with ¢ =
8k, and let Z3 = (1) < Aut(A®3) be the group generated by the cyclic permutation
7 = (123). Then the anomaly of (T) is way, i.e. (T)-Rep(A®3) is tensor equivalent
to Hilbz>* and Rep((A®%)(™) is braided equivalent to Z(Z3z,way).

Proof. It is enough to show that C := Rep((A®?){") is braided equivalent to
C(G2k, qa1)- But this follows from [15, Theorem 6.3e] which gives that the spins in
Rep((A®%){")) coming from twisted sectors o are h; = i/3 + 8k/9 for i = 0,1,2
and then ¢([a;]) = h; (mod 1) by the spin-statistic theorem [9, 3.13 Theorem]. This
readily identifies C to be braided equivalent with C(Gax, gak)- O

Example 2.1. Let Ag, be the conformal net associated with the even lattice Eg [4,
Section 3]. Then <T>*R€D(A%S) is tensor equivalent to Hilb;? with [ws] a generator
of H3(Zs,T). Thus Rep((A%S)T) is braided equivalent to Z(Zs,ws).

Example 2.2. Let A be a holomorphic net with central charge ¢ = 8k. Let
S5 < Aut(A®3) be the group of all permutations. Since H3(S3,T)) = H3(Z3,T) ®
H3(Zs,T), where the isomorphism comes from restriction, it follows that S3 is
anomalous unless kK = 0 (mod 3). In particular, Rep((.A%S)SS') is braided equivalent
to Z(S3,0) for some [@] € H3(S3,T) of order 3.

In particular, the conjecture by Miiger [20, Appendix 5, Conjecture 6.3] that
states that for every completely rational conformal net A the category of S,,-twisted
representations S,— Rep(A®™) up to tensor equivalence depends only on the mod-
ular tensor category Rep(A) is wrong.

3. Cyclic holomorphic orbifolds

The argument can be generalized to arbitrary cyclic permutations and we get the
following result.
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Proposition 3.1. Let A be a holomorphic net with central charge ¢ = 8k for some
k € N. Let o be a cyclic permutation of order n on A®™. Then the action of
(a) 2 Zy, on A®™ is non-anomalous if and only if 3tn or 24 | c.

3.1. Cyclic homolorphic twisted orbifolds

We have the following application of Proposition 3.1.

If A is holomorphic and G < Aut(A) non-anomalous we can form the so-called
twisted orbifold A/¢ as described in [2, Definition 6.1 and below] by lifting the
G-kernel given by G—-Rep(A) to a homorphism G — Aut(A(I)) or in other words
by choosing a trivilization.

In our concrete case, this can be easier described. Namely, Rep((A®™){®)) is
braided equivalent to C(Z,, x A gst) with the quadratic form gs (g, x) = x(g), such
that the Lagrangian subgroup Z, x {xo} gives A®™. We have a second Lagrangian
subgroup {0} x 7., which gives a new holomorphic net A®"/{®) which is the twisted
orbifold net A®™/{®) of A®™ with respect to (a). Thus we have:

Proposition 3.2. Let A be a holomorphic net with central charge ¢ € 8N. Let o be
a cyclic permutation of order n on A®™. If 34 n or 24 | ¢, we have a holomorphic
net given by the twisted orbifold A®™/{)

Example 3.1. (Ag, ® Ag,)/ (™) is isomorphic to ADTs'

3.2. Determining the anomalies

We now proceed to prove Proposition 3.1. Let A be a holomorphic net and let 7,
be the cyclic permutation

T1IRT2RQ QI > TaRQAT3R - QX7 . (3.1)

Then 7, yields an inner symmetry 7, € Aut(A®"), see e.g. [22, Section 6].
For G < Aut(A) and g € G we denote by Rep(AY), the category of representa-
tions coming from restrictions of g—Rep(A).

Lemma 3.1. Let A be a holomorphic net with central charge ¢ = 8k for some
keN.

(1) For 3 { n the spectrum of ho with o € Rep((A®")(™)) is {0,1,... 2=1}
(mod 1).

(2) For n = 3m the spectrum of he with a € Rep((A®™)(™?), s {0, 1.1}
(mod 1) if and only if c=0 (mod 24).

(3) For k = +£1 = ¢ (mod 3) there is an o € Rep((A®™) ) with hy = — &
(mod 1).

Proof. Let n =3¢+ 1. Then using [15, Theorem 6.3¢] we have

i n?P—1 i+ k{(30£2)
2 = 2
i n+ 24n ¢ n (3.2)
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thus we have (1). Now let n = 3¢, then

i n?-1 i 902 -1
=M (mod 1) k=3m
= 3(m—i)%1 _ (34)
Thus we have (2) and since 31 3(m — i) =1 we get (3). |

Proposition 3.3. Let A be a holomorphic net. If 31 n then (1,)-Rep(A) is tensor
equivalent to Hilbz .

Proof. Since there is a 7,-twisted representation 8 with hg = 0 (mod 1) from
Lemma A.1 it follows that Rep((A®™)(™)) is braided equivalent to C(Zy, X Zy,, ) and
because the Lagrangian subgroup lives in the zero graded part we have (7;,)—Rep(.A)
is tensor equivalent to Hilbz, again by Lemma A.1. O

Proposition 3.4. Let A be a holomorphic net of central charge ¢ = 8k and n = 3m
for some m,k € N.

(1) Rep((A®™)(™)) is braided equivalent to C(Zoy, @ L, qz) with

+2?  y?
q+(z,y) = om. + m (3.5)
for k= +1 (mod 3).
(2) Rep((A®™)(™)) is braided equivalent to C(Zsm @ Zsm,q) for k=0 (mod 3).
(3) (mn)—Rep(A) is tensor equivalent to Hilbz* with [wy] = —km[wo] for a generator
[wo] of H*(Z,,Q/Z) = Z,,.

In Figure 1, we demonstrate the twisted fusion rules depending on k in an
example.

Proof. (2) is proved as before. We note that the cocycle has order three, since 73,
equals 7, on (A®3)®* since A®? has central central charge ¢ = 24k. So there are only
two choices for the cocycle which are distinguished by the values of h, see Appendix
A, which proves (1) and (3). |

Corollary 3.1. Let A be a holomorphic net. The action of (1) = Z,, on A®" is
non-anomalous if and only if 3tn or 24| c.

In particular, we have proven Proposition 3.1, since any cyclic permutation in
A®™ is conjugate to T, ® id.
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4. All gaugings for cyclic permutation orbifolds

C®" which has a cat-

Given a unitary modular tensor category C we can consider
egorical action of any subgroup G < S,. Recently, T. Gannon and C. Jones have
shown [8, Theorem 1.1, Corollary 1.2] that certain obstructions vanish and that
therefore such a symmetry can always be gauged, i.e. there is a G-crossed braided
extension C 1 G D C®" which is compatible with the categorical action. The equiv-
ariantization (C1G)% is a new unitary modular tensor category, which corresponds
to gauging. If C = Rep(.A) for a rational conformal net, then G—Rep(A®") (where
G acts by permutations) is a G-crossed braided extension and Rep((A®™)%) is a
special gauging.

Using cyclic orbifolds of rational (not necessarily holomorphic) nets, we show
that if a unitary modular tensor category C is realized by conformal nets, then all
Zn-permutation gaugings of C are realized.

Proposition 4.1. Consider the unitary modular tensor category C = Rep(A) for
a rational conformal net A.
Then any unitary Zn-crossed braided extension CZ, of C2" where Z,, acts by

cyclic permutations on C*™ is realized as Z,,~Rep(B) for some conformal net B and
Z,, — Aut(B).

In particular, any gauging of the cyclic permutation on C®"

is realized by a
conformal net B .

Proof. There are n distinguished extensions C 1 Z,, see [5, Lemma 2.3]. One is
realized by the cyclic permutation orbifold Z, — {(7,) < Aut(A®). Let [w] €
H?(Zy,,T) = Zy,. Since Z(Hilb7 ) is pointed, by (2, Theorem 3.6] there is a confor-
mal net associated with a lattice Ay, realizing Z(Z,,w). Then there is a Z,-simple
current extension B,, D Ay, and Z,, — Aut(B,), such that Z,~ Rep(B.,) = Hilby, .

Finally, A(Z,)-Rep(A®" @ B,,) with A(Z,,) C Zy, X Z,, the diagonal subgroup
gives all Z,-crossed braided extensions by varying the class [w] using [2, Proposition
3.4]. |

We note that the reconstruction program asks if for any unitary modular tensor
category C there is a conformal net realizing it. In this perspective, the H3(Z,,,T)
freedom in gauging of cyclic permutations does not give any obstructions.

Appendix A. Lagrangian extensions

A premetric group (4, q) consists of a finite abelian group A which we see as an
additive group and a quadratic form ¢: A — Q/Z, i.e. g(na) = n?q(a) for all a € A
and n € Z and 9dq(a,b) = q(a+b) —g(a) —q(b) is a bicharacter. A metric group is a
premetric group (4, ¢) with d¢ non-degenerate. A morphism 7: (A1, q1) — (42, ¢2)
is a homorphism 7: A7 — Ay with ¢ = g2 0 7.

The following is well-known, see eg. [11, page 47-48] and [6, Theorem 8.4.9].
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Fig. 1. Zg @ Zg and Za7 ® Zg fusion rules for Rep((A®?){79)) for central charge ¢ = 0 (mod 24)
and ¢ = 8 (mod 24), respectively. The gravitational anomaly exp 2= Ql"k with k = 0, 1, respectively,
twists the torus.

Proposition A.1. Given a metric group (4, q) there is an up to braided equivalence
unique unitary modular tensor category denoted by C(A,q) such that the braiding
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cx, . x, = ¢q(9) - 1x,0x, and thus the twist Ox, = exp(2mig(a)) for all a € A.

Conversely, given a pointed unitary modular tensor category C, the finite set
A =Trr(C) is an abelian group under the tensor product and the braiding ¢ defines
a quadratic form q(9) - 1x,0x, = cx,.x, for every g = [X,] € G. Then C is braided
equivalent to C(A, q).

We define H3(A, T)ap, = ker(y)*), where ¢*: H3(G, T) — Hom(A3G, T) is given
by

[ ()] (z,9,2) = [] wlo(@),0(y),o(2))"). (A1)
wES3
The Drinfel’d center Z(A,w) = Z(Hilb%) is pointed if and only if [w] € H3(A, T)ap
[16, Corollary 3.6], see also [19, Proposition 4.1].

Let B be an abelian group. A Lagrangian extension of B is a triple (A4,q,1)
consisting of a metric group (A, q) with |A] = | B|? and a monomorphism ¢: (B,0) —
(A, q) of premetric groups. The isomorphism classes of Lagrangian extensions of
B form an abelian group Lex(B) via the multiplication (A1, q1,¢1) B (As, g2, 2),
see [3, Section 3.3] for details. Given a Lagrangian extension (A, ¢,:) of B we obtain
a Lagrangian algebra L = L(B) in C(4,q) and C(A,q)r, = C(A,q)p is naturally
isomorphic to Hilb% for some [w] € H3(B,T)a, and the map (4, ¢q,t) — [w] gives
an isomorphism LeX(B) — H3(B,T)ap of abelian groups.

Example A.1. Let A be an abelian group and A = Hom(A, Q/Z) the dual group.
Then (A x A, gst,t) is an Lagrangian extension of A, where gy (a,x) = x(a) and
t: A— A® A is the canonical inclusion. Note that the isomorphism class of (A x

/1, Gst, ) is the unit under B and thus correspond to the trivial cohomology class in
H3(A,T).

Lemma A.1. Let (G,q,t) be a Lagrangian extension of Z,, and consider the map
p: G — G/Zy 27y If there is a © € G with p(x) a generator and q(x) = 0, then
(G,q) = (Zn X Ln,qst) and C(G, q),(z,) is tensor equivalent to Hilbg, .

Proof. We claim that the order ord(z) of  is n. One the one hand, it is a multiple
of n. On the other hand, g(mz) = 0 (mod 1) and thus L' = (z) is a isotropic
subspace of (G, q) and thus ord(z) < n. Then x(n) = g¢(z + ¢(n)) = ¢z + ¢t(n)) —
q(z) — q(t(n)) = d(t(n), ) defines a character x: Z, — Q/Z and (x) = Z, because
q is non-degenerate. Finally, ¢«(m) 4+ nz — (m,ny) gives an isomorphism of metric
groups (G, q) — (Z, X Zn,qst). |

Example A.2. Let n = 3m and consider the following Lagrangian extension of
Z3m = {x;} with x;: Zgm — Q/Z with x;(z) = £-. We define Lagrangian exten-
sions (A4, q+,t+) and (Ao, qo, to)

x2 y2
Ay = Zom ® Ly, (]:l:(l',y) =+—F E (AQ)

AO = Z?)m 3] Z?)m q0<X7x) = X(ZL’) (AS)
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with ¢o the canonical embedding t: Z3 — Zs3 & Zs = Ag. Then j=9m—-3,1)is
a simple current of order 3m and we have the short exact sequence

L+ X1>]

{0} — Zam =0 Ay = Zoy, ® Ly — (Zom @ L)/ (§) — {0}, (A.4)

We have the relations (A, qx,t4)B(As, gr, 1) = (A5, g5, t5) and (A4, g4, 04 ) B
(A_,q_,1_) = (Ao, qo,t0) which gives a subgroup of Lex(Zs,,) isomorphic to Zs.
Let [wy] be the cohomology class associated with (A4, gy ), then [wy] = £mlw] €
([w]) = H3(Z3m, T). This are the cocycle arising in Proposition 3.4.
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