KOONTZ ET AL.: POPULATION DIVISIONS IN THE PRIMULA CUSICKIANA SPECIES COMPLEX Pronounced Genetic Separation Among Varieties of the Primula cusickiana Species Complex, a Great Basin Endemic Austin Koontz, 1,4 William D. Pearse, 2 and Paul Wolf 3 ¹Department of Biology, Utah State University, Logan, Utah, 84322, USA; austin.koontz@usu.edu ²Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Rd., Ascot, Berkshire SL5 7PY, UK ³Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, 35899, USA ⁴Author for correspondence

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Abstract—Distinguishing between unique species and populations with strong genetic structure is a common challenge in population genetics, especially in fragmented habitats where allopatric speciation may be widespread and distinct groups may be morphologically similar. Such is often the case with species complexes across sky island environments. In these scenarios, biogeography may help to explain the relations between species complex members, and RADseq methods are commonly used to compare closely related species across thousands of genetic loci. Here we use RADseq to clarify the relations between geographically distinct but morphologically similar varieties of the *Primula cusickiana* species complex, and to contextualize past findings of strong genetic structure among populations within varieties. Our genomic analyses demonstrate pronounced separation between isolated populations of this Great Basin endemic, indicating that the current varietal classification of complex members is inaccurate and emphasizing their conservation importance. We discuss how these results correspond to recent biogeographical models used to describe the distribution of other sky island taxa in western North America. Our findings also fit into a wider trend observed for alpine *Primula* species complexes, and we consider how heterostylous breeding systems may be contributing to frequent diversification via allopatric speciation in this genus. **Keywords**— allopatry, biogeography, cryptic speciation, Great Basin, heterostyly, populations, *Primula*, RADseq, sky island

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

A canonical driver of biological diversification is allopatry, whereby geographic barriers lead to population isolation and, eventually, speciation. Sky islands are places where sharp changes in elevation lead to pronounced ecological differences over relatively short distances, providing the types of barriers required for allopatric speciation to take place. Historically, climatic fluctuations have determined the presence and distribution of sky island environments for mountain ranges across the world, and this in turn is reflected by the genetic patterns seen in montane species today (Hewitt 2000). However, in this biogeographic context, distinguishing between closely related species and genetically structured populations may prove challenging (Huang 2020), especially if similar niches across mountain ranges maintain phenotypic similarities (e.g. Yang et al. 2019). Additionally, in the short-term, genetic patterns will be influenced by particular aspects of a species' biology, such as dispersal and breeding systems, which may facilitate or hinder reproductive isolation between genetically distinct entities. Here, we examine the genomic relations between the sky island populations of members of the Primula cusickiana species complex, a group of plants endemic to the Great Basin region of the western United States. The *P. cusickiana* species complex is a group of herbaceous, perennial plants that fall within the Parryi section of *Primula*. The morphological differences between the four complex varieties—maguirei, cusickiana, nevadensis, and domensis (see Fig. 1)—are subtle: maguirei (Williams 1936) and cusickiana (Gray 1888) are entirely glabrous, and distinguished from one another by relative calyx length, while in *nevadensis* (Holmgren 1967) and domensis (Kass and Welsh 1985), plants are pubescent and have slightly different corolla tube lengths (Holmgren and Kelso 2001; Holmgren et al. 2005). Despite

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

these subtle differences, varieties *cusickiana*, *nevadensis*, and *maguirei* were originally classified as separate species, based on ecological traits and distinct geographic ranges. The discovery and publication of *P. domensis* in 1985, along with the continued collection of the other varieties, began to cast doubt on the species distinction for each complex member. A 2001 review determined that the morphological differences were insufficient for species classification, and subsumed each species to the level of variety (Holmgren and Kelso 2001). At the time of this shift, no genetic data was available to justify classification at the variety level. However, a 1997 analysis of variety *maguirei* used allozyme marker genes to uncover a significant degree of genetic structure between the relatively proximate (~10 km) populations (Wolf and Sinclair 1997) within this one taxon. A later analysis of the same populations using amplified fragment length polymorphism (AFLP) loci confirmed this finding, and found similar levels of polymorphism between the upper and lower canyon groups, suggesting this genetic structure is not the result of a past bottleneck event (Bjerregaard and Wolf 2004). A further analysis of AFLP and chloroplast DNA from the *Primula* section Parryi showed *maguirei* and the other *P*. cusickiana complex members as being monophyletic, but relationships within the complex were incongruent, with only weak support of a clade containing nevadensis and domensis being sister to a clade made up of maguirei and cusickiana (Kelso et al. 2009). To better resolve the relationships between varieties, the authors suggested an analysis utilizing more populations from across the range of this species complex. Restriction-site associated sequencing (RADseq) technologies available today, with their ability to generate reads over many sequence regions of closely related individuals, are well-suited

to provide the data required for such an analysis.

conservation implications for this rare endemic plant.

In addition to clarifying the genetic relations between geographically distinct varieties, a more detailed analysis of the *P. cusickiana* species complex can meaningfully contribute to ongoing conservation efforts. Variety maguirei was listed as Threatened in 1985, due to its unique habitat in Logan Canyon and threats of habitat loss due to development (Fish and Wildlife Service 1985). Given the strong genetic structure between *maguirei*'s populations, either population may be more closely related to populations of a different complex variety than the neighboring Logan Canyon population—a finding which would have significant implications for the protection of this variety. More broadly, an understanding of the genomic relations at the species complex level will determine whether the varietal classification properly reflects the extent of genomic divergence of each complex member, and thus the extent of unique evolutionary history. This understanding can direct management of the narrow-range endemics included in this species complex—such as maguirei, but also nevadensis and domensis—and also inform the identification of potential evolutionary significant units (Coates et al. 2018). We sought to clarify the relatedness of *P. cusickiana* complex members by using a RADseq approach to genotype all four varieties located at distinct populations scattered throughout the Great Basin. In addition to contextualizing the genetic structure between the upper and lower Logan Canyon *maguirei* populations, this analysis provides insights into the biogeographic history of this species complex, and could have important

114

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

MATERIALS AND METHODS

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

Sampling—All *P. cusickiana* species complex samples were gathered in the field, along with samples of *P. parryi* (Gray 1888), which was used as an outgroup in genetic analyses. Populations and their respective flowering times were determined using herbarium specimens, and collection sites were selected to maximize the geographic distribution of each variety. At each population location, an individual plant was removed as completely as possible as a voucher specimen. For DNA samples, two leaves from each of ten plants were removed and placed in labeled paper envelopes, which were stored on silica crystals to keep samples dry. Vouchers were deposited at the Intermountain Herbarium (UTC); P. cusickiana var. nevadensis voucher specimens collected from Mt. Washington were additionally deposited at the Great Basin National Park herbarium. Because past research has shown variable relations between P. capillaris (Holmgren and Holmgren 1974) and the P. cusickiana species complex (Kelso et al. 2009), we also tried to collect *P. capillaris* in the field. However, we were unable to locate any P. capillaris individuals in the Ruby Mountains: at one location suggested by past herbaria data, a population of *P. parryi* was found instead. To compensate, two *P.* capillaris samples were sourced from herbaria (see Appendix I). Leaf tissue from 89 samples—87 silica-dried field collections representing all samples sites, and two herbarium specimens of *P. capillaris*—were placed into QIGAEN Collection Microtubes (catalog number 19560) and sent to University of Wisconsin-Madison Biotechnology Center, for DNA extraction, library prep, and DNA sequencing (described below). Seven replicate samples were also included to

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

assess the quality of sequencing results, and were distributed across all four P. cusickiana varieties, as well as P. parryi. **DNA Extraction**—DNA was extracted using the QIAGEN Dneasy mericon 96 QIAcube HT Kit. DNA was quantified using the Quant-iT™ PicoGreenR[®] dsDNA kit (Life Technologies, Grand Island, New York). Library Prep and Sequencing—Libraries were prepared following Elshire et al. 2011. ApekI (New England Biolabs, Ipswich, Massachusetts) was used to digest 100 ng of DNA. Following digestion, Illumina adapter barcodes were ligated onto DNA fragments using T4 ligase (New England Biolabs, Ipswich, Massachusetts). Size selection was run on a PippinHT (Sage Science, Inc., Beverly, Massachusetts) to subset samples down to 300—450 bp fragments, after which samples were purified using a SPRI bead cleanup. To generate quantities required for sequencing, adapter-ligated samples were pooled and then amplified, and a post-amplification SPRI bead cleanup step was run to remove adapter dimers. Final library qualities were assessed using the Agilent 2100 Bioanalyzer and High Sensitivity Chip (Agilent Technologies, Inc., Santa Clara, California), and concentrations were determined using the Qubit[©] dsDNA HS Assay Kit (Life Technologies, Grand Island, New York). Libraries were sequenced on an Illumina NovaSeq 6000 2x150. Data Processing—Raw FASTQ data files were demultiplexed and processed using steps 1—7 of the *ipyrad* software, version 0.9.31 (Eaton and Overcast 2020). Single nucleotide polymorphisms (SNPs) recognized by *ipyrad* were used as the basis for variation between individuals for downstream analyses, and libraries were assembled de novo. All ipyrad and STRUCTURE parameter files, as well as R scripts used for analysis

and data visualization, can be found on GitHub (github.com/akoontz11/Primula/) and in the Supplementary Materials (SupplementalMaterials1.zip). Raw, demultiplexed sequencing data can be accessed on the NCBI Sequence Read Archive (SRA; accession number PRJNA705310).

COMPLEX-WIDE GENOMIC SURVEY — For our complex-wide genomic survey, we ran *ipyrad* twice: we used the results from our initial run to confirm sequencing consistency for replicate samples, and to identify samples with low coverage. For both runs, demultiplexed sequences were paired and merged, and low quality bases, adapters, and primers were filtered prior to SNP calling. Default values were used for the *ipyrad* parameters in these steps, as well as for the clustering threshold (clust_threshold; 0.85) and minimum sequencing depth (mindepth_statistical; 6) parameters.

For our initial run, we specified a minimum number of samples per locus (min_samples_locus) parameter of 10, in order to obtain loci shared between two to three sample locations for any variety. Using the results from this run, we used the Python script vcf2Jaccard.py to compare samples with replicates by calculating the mean Jaccard similarity coefficients between all samples. We found that all replicates matched highly with their corresponding samples (Fig. S1).

After merging replicates and removing low coverage (generally, less than 30 loci in the final assembly) samples from the dataset, 82 of our 87 original samples remained for our complex-wide analysis. We reran *ipyrad* (steps 1-7) using these 82 samples to select for loci specific to this subset. We used a min_samples_locus parameter of 32 for this second run, to match the ratio of minimum samples per

locus used in our initial run; *ipyrad* default values were used otherwise. Because very low numbers of loci were retrieved for both herbarium specimens of *P. capillaris* (possibly due to the age of these specimens), we were unable to include *capillaris* in downstream clustering analyses.

Variety Specific Clustering—In addition to our complex-wide survey, we were interested in exploring population structure within variety *maguirei* which could not be resolved using genetic loci shared across all species complex members. To do so, we ran *ipyrad* on just the 18 *maguirei* samples used in our complex-wide survey. Because five samples from each of the upper Logan canyon sampling sites were included in our *ipyrad* assembly, we specified a min_samples_locus parameter of 5; *ipyrad* default parameter values were used otherwise.

Population Analyses

STRUCTURE—To visualize relations between complex members across their geographic range, and to determine the number of identifiable genetic clusters within the complex, we used the program STRUCTURE version 2.3 (Pritchard et al. 2000). STRUCTURE uses Bayesian clustering analysis to probabilistically assign individuals to one or more of K source populations, where the loci within each population are assumed to be in Hardy-Weinberg proportions and linkage equilibrium. For all STRUCTURE runs, we used a burnin length of 50,000, and 100,000 MCMC reps after burnin. For our complex-wide survey, we ran STRUCTURE for K values of 2—16, with 50 replicates per K value. For our *maguirei*-only analyses, we ran STRUCTURE for K values of 2—6, with 50 replicates per K value. We used the CLUMPAK server (Kopelman et al. 2015) to summarize results across

replicates for each K value, and to build STRUCTURE plots.

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

For all of our STRUCTURE analyses, we ran the Evanno et al. (2005) method (which identifies the greatest ΔK value) and the method described in the STRUCTURE manual (Pritchard et al. 2000, which identifies the K value with the greatest likelihood) to determine an "optimal" K value. Given the difficulties in inferring an unambiguous number of genetic clusters from any given set of populations (Novembre 2016; Pritchard et al. 2000), we also examined STRUCTURE outputs within a range of K values, to determine which value of source populations best illustrated divisions within the species complex. DISCRIMINANT ANALYSIS OF PRINCIPAL COMPONENTS—In addition to STRUCTURE, we analyzed the results of our complex-wide survey using Discriminant Analysis of Principal Components (DAPC; Jombart et al. 2010) in the package *adegenet* in R version 3.6.3 (R Core Team, 2020). DAPC is a statistical technique designed to accommodate the size of genomic data sets and capable of differentiating within-group variation from between-group variation. SNP data is first transformed using a principal components analysis (PCA), and then k-means clustering is run to generate models and likelihoods corresponding to each number of population clusters. The best-fitting model, and so the best-supported number of populations, is assessed using the models' Bayesian Information Criterion (BIC) scores. We chose to utilize DAPC in addition to STRUCTURE to visualize population clusters in a PCA format, and to determine whether the supported number of populations was congruent between methods, indicating a more robust determination of the number of species contained within the complex (Carstens et al. 2013).

 F_{ST} ESTIMATES—Because we wanted to measure the extent of genetic variance within the groups analyzed, we used the VCFtools software (Danecek et al. 2011) to generate weighted F_{ST} estimates (Weir and Cockerham 1984). We generated an F_{ST} estimate for our complex-wide analysis (across all populations of all *P. cusickiana* varieties) as well as for the samples included in our variety *maguirei*-only analysis.

236 Results

231

232

233

234

235

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

Complex-Wide Genomic Survey—We retrieved, on average, 2.04 x 10⁶ reads per sample, and our complex-wide *ipyrad* run identified 1,277 loci that were used in our subsequent STRUCTURE analysis. Using the Evanno et al. (2005) method yielded an optimal K value of K = 5; using the method described in the STRUCTURE manual (Pritchard et al. 2000) identified the K value with the greatest likelihood as K = 14. Based on our visualization of the STRUCTURE results for values ranging from K = 2 - 16 (Figs. S2 - S4), we determined K = 7 to be the most biologically relevant K value (Fig. 2). At this level of source populations, varieties domensis and maguirei are clearly delineated, variety nevadensis shows distinctions between its two populations, and variety *cusickiana* is split into three groups composed of populations from the Snake River Plain in Idaho (SRP), Nevada (Jarbidge), and Oregon (Owyhee). Since higher K values emphasize the divisions seen at this level, and further subdivide isolated populations of varieties cusickiana and nevadensis, K = 7 is a conservative estimate which reflects the strong divisions within this complex while allowing for further distinctions between unique populations to be made in light of more evidence in the future.

Our DAPC analysis revealed that the greatest supported number of clusters

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

(i.e. the value with the lowest BIC score) was eleven (data not shown)—a value incongruent with our STRUCTURE results, suggesting that boundaries within this complex are elaborate. However, at this level of genetic clusters, several groups were quite small (consisting of only one or two samples), and groupings were incoherent within the spatial distribution of populations. To provide a clearer comparison to our STRUCTURE results, and to examine relations strictly within the species complex, we removed *P. parryi* outgroup samples from our dataset (because these were separate from all species complex samples in preliminary analyses) and ran our DAPC with a specification of six clusters (Fig. 3). At this level of clustering, the population of *nevadensis* in the Snake Range of Great Basin National Park (GRBA) is shown as a unique cluster, while the *nevadensis* population further south in the Grant Range groups with the *cusickiana* population sampled from Oregon (Owyhee). Variety *domensis* is a unique cluster which groups closely to both of these. Thus, while neither our STRUCTURE analysis nor our DAPC point to an unambiguous number of "true" genetic clusters, both suggest that the current varietal classification is inexact. The extreme level of divergence between the sky island populations in this species complex is reflected not only in our clustering analyses, but also in our relatively large F_{ST} estimate across all complex populations, which was 0.72. Figure 4 illustrates proportions of sample membership to clusters based on our STRUCTURE analysis at K=7 for all populations in their geographic context across the Great Basin. Variety Specific Clustering—In our complex-wide analysis, all maguirei samples grouped as a single cluster, distinct from all other populations of all other varieties,

grouped as a single cluster, distinct from an other populations of an other varieties,

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

indicating that neither Logan Canyon population is more closely related to any populations of another variety. Even at values of K = 16, the upper and lower Logan Canyon populations of *maguirei* were not resolved from one another. However, reducing our sample set to only *maguirei* samples allowed us to retain loci informative to this variety but unshared with other complex member populations. Our maguirei-only ipyrad run generated an assembly with 68,492 loci, indicating a large number of loci specific to *maguirei* and not shared with the wider species complex. To speed up processing times, we ran STRUCTURE on a 17,988 loci subset of maquirei-specific markers. Using the CLUMPAK server, we found optimal K values of K = 4 (using the Evanno method) and K = 3 (using the likelihood method described in the STRUCTURE manual). Figure 5 shows the STRUCTURE plot at K = 3, which resolves similar groupings of maguirei populations supported in Bjerregaard and Wolf (2004), and the distinctions between upper and lower canyon populations. We also estimated an F_{ST} value of 0.33 among these three populations, which is comparable to previous estimates in Bjerregaard and Wolf (2004). Discussion Analysis of RADseq data from *Primula cusickiana* complex members demonstrates that the disjunct geographical distribution of populations across the Great Basin is reflected by pronounced genomic divergences. While the results of our clustering analyses coincide with the current varietal classifications, there are notable exceptions. Distinctions between isolated populations within varieties, as well as similarities between neighboring populations of different varieties, can be observed in our

STRUCTURE plots for low K values (i.e. ranging from 2—6; see FIGS. S2-S4). For

instance, we found Mt. Washington *nevadensis* populations to be admixed, with segments coming from *domensis* to the east and (to a lesser extent) Grant Range *nevadensis* populations to the south. This is in accordance with analysis of AFLP and chloroplast DNA from the *Primula* section Parryi, which found these two varieties to be extremely close (Kelso et al. 2009).

Our results also suggest a more nuanced understanding of variety *cusickiana*. Populations of this variety are split into distinct genomic clusters in our analysis, with Jarbidge (Nevada) and Owyhee (Oregon) populations appearing unique from each other and the remaining Snake River Plain (SRP) populations in Idaho. That these distinctions are seen in both our STRUCTURE and DAPC analyses imply the robustness of this result. Given the relatively wide distribution of this variety (growing in moist soils at lower elevations than other complex members), our findings of genomic divergence between its populations is noteworthy, and support past evidence of phenotypic differences in different portions of its range. For instance, past morphological research of Idaho *cusickiana* populations has suggested dividing this taxa into three unique species (Mansfield 1993), with Owyhee populations being classified as *P. wilcoxiana*.

The separation between populations within variety *cusickiana*, as well as our support of past findings of significant genetic distances between the proximate populations of variety *maguirei*, underscore our discovery of profound genomic divergences between all members of this species complex, despite their distribution over a relatively small geographic area. This trend is reflected not only in our clustering analyses, but also in our weighted F_{ST} estimate of 0.72 across complex populations—a high value compared to similar estimates for other plant taxa (for instance, the mean F_{ST}

for plant taxa in a meta-analysis by Leinonen et al. 2008 was calculated to be 0.24). Our results therefore support the historical designation of species for these complex members, rather than variety. Below, we consider how two phenomena—biogeographical trends in the Great Basin, and reproductive traits specific to *Primula*—may contribute to the significant divergence of these populations into distinct genomic groups.

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

Great Basin Sky Island Biogeography—Members of the *P. cusickiana* complex are found at relatively high elevations throughout the Great Basin. Many of these are sky island locations associated with strong ecological shifts as habitat transitions from lower sagebrush steppe to cooler, more forested regions dominated by pinyon and juniper. Now separated by arid basins due to climatic warming in the Holocene, these sky islands are understood to be the fragmented remnants of a continuous region of cool, moist habitat which once extended across the Great Basin (Thompson and Mead 1982). This has led to their characterization as refugia for various taxa—particularly mammals (Brown 1971; Badgley et al. 2014), but also butterflies (Boggs and Murphy 1997) and plants (Harper et al. 1978; Nowak et al. 1994; Charlet 2007). Additionally, in conjunction with climatic niche preferences, complex varieties maguirei, domensis, and nevadensis are found on the cliffs and crevices of exclusively limestone substrates. While it's unclear whether these habitats are tied to mineral or pH constraints, or simply reflect preferences for moisture-retentive substrates, edaphic heterogeneity is known to contribute to plant speciation and biodiversity, both globally (Hulshof and Spasojevic 2020) and within the Great Basin (e.g. de Queiroz et al. 2012). Therefore, allopatry across relatively similar climatic and edaphic niches seems to contribute to the genomic

divergences in *P. cusickiana*'s populations—a trend observed in other sections of Primulaceae, as well (Boucher et al. 2016).

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

However, it has also been noted that many species distribution patterns among Great Basin mountaintops do not follow a strictly island biogeographical model (Lawlor 1998), in that neither island surface area nor proximity to "mainland" source populations (typically identified as the western Sierra Nevadas or eastern Rocky Mountains) is predictive of species abundance (Fleishman et al. 2001). And in some taxa, there is evidence for regular, modern dispersal between Great Basin ranges (Floyd et al. 2005). An alternative scenario is that this complex has followed what has been described as an "expanding-contracting archipelago" (ECA) model, in response to Quaternary glacial cycles (DeChaine and Martin 2005a). The ECA model has been used to describe the divergence between Rocky Mountain sky island plant taxa (Dechaine and Martin 2005b; Hodel et al. 2021), and provides a framework for explaining the genetic structure observed between isolated montane populations on a broad spatial scale. In this model, populations are assumed to become fragmented as they contract up-slope during warmer interglacials; during glacial periods, populations expand down-slope as moist, cool habitat becomes widespread, leading to hybrid zones and possible admixture. Given the degree of fragmentation between *P. cusickiana*'s populations in today's climate (which resembles past interglacial periods), and the admixture between the relatively proximate populations of varieties domensis and nevadensis revealed in our analysis, this model offers a viable explanation for the trends observed in this species complex. In addition to these biogeographic patterns, the evolution of *P. cusickiana*'s

disjunct populations is simultaneously influenced on a finer spatial scale by aspects particular to this species' biology.

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

Speciation and Heterostyly in Primula—Recent research has shown several different alpine *Primula* species complexes to contain previously undescribed cryptic species, in China (Huang et al. 2019; Ren et al. 2020) and in Europe (Schorr et al. 2013; Theodoridis et al. 2019). Our findings on the *P. cusickiana* species complex resonate with these trends, and raise the question of what unique traits *Primula* possesses which might cause such frequent diversification via allopatric speciation. The authors of a study examining the *P. merrilliana* species complex in China (He et al. 2021) argue that heterostyly—a widespread breeding system in angiosperms to promote outcrossing—may be a driving force leading to speciation. In heterostyly, "pin" and "thrum" floral morphologies prevent self-fertilization via insect pollination (Darwin 1897), and are associated with a sporophyticincompatibility system which follows a Mendelian pattern of inheritance (Li et al. 2016). In *P. merrilliana*, the efficacy and prevalence of heterostyly and selfincompatibility varies across populations, which has possibly led to the divergence between distylous and homostylous populations and, ultimately, speciation. While the presence of heterostyly has been observed in *nevadensis* (Holmgren 1967) and in populations of cusickiana and domensis (pers. obs.), the extent of distyly in a population has only been well documented in *maguirei*, who's upper and lower canyon populations have a pin:thrum morphology ratio of about 1:1 (Davidson et al. 2014). This implies that in scenarios of legitimate xenogamy, in

which morphs of one type only mate with morphs of the opposite type, only half of

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

the total population is available as a potential mate for any distylous individual. While this reduction in effective population size would seem to increase the strength of genetic drift, and possibly the fixation of deleterious alleles, these negative effects are potentially counterbalanced by the genetic advantages of outcrossing. This net benefit of heterostyly is supported by findings in de Vos et al. (2014), in which phylogenetic techniques were used to demonstrate that the presence of heterostyly in *Primula* leads to greater diversification via decreased extinction, in the long-term, compared to non-heterostylous clades of Primulaceae. Simultaneously, the loss of heterostyly and subsequent self-compatibility may lead to rapid speciation in the short-term. Observation of distylous morph ratios in other P. cusickiana varieties and populations, and changes in these ratios between proximate populations, would help to determine if these dynamics are driving the divergences we see at the species complex level. *Conclusion*—The results of our genomic survey of *Primula cusickiana* fit into a wider trend demonstrating abundant allopatric speciation despite little niche divergence in other alpine *Primula* species complexes. Our findings support the

divergence in other alpine *Primula* species complexes. Our findings support the historical classification of each of these complex members as unique species, rather than the varietal classification taken in Holmgren and Kelso (2001). Furthermore, these results warrant a more detailed understanding of the isolated and genetically unique populations in this complex (such as *cusickiana* populations in Nevada and Oregon), and of the admixture observed in the populations of variety *nevadensis*. Similarly, updated morphological comparisons between varieties, as well as observations into the levels of heterostyly in disjunct populations, would offer a

clearer understanding of the mechanisms of speciation occurring within this complex. Finally, the endemic species with narrow niches included in this study, such as *P. cusickiana* var. *maguirei*, but also *nevadensis*, *domensis*, and the sister species *P. capillaris*, warrant concern of extinction, and more work needs to be done to better understand the breeding limitations faced by each of these taxa and what can be done to ensure their survival in an increasingly arid Great Basin.

ACKNOWLEDGMENTS

his research was supported by funds provided by the Margaret Williams
Research Grant offered by the Native Nevada Plant Society, the Lawrence Piette
Graduate Scholarship offered by the USU College of Science, the Dr. Ivan J. Palmblad
Graduate Research Award offered by the USU Department of Biology, and the
Graduate Research Award offered by the USU Ecology Center. WDP and the Pearse
Lab are funded by NSF EF-1802605, NSF ABI-1759965, and UKRI-NERC
NE/V009710/1.

The authors would like to thank Dr. Carol Rowe for her help with the genetic analyses, her Python script used to calculate Jaccard similarities from SNP data, and her Python script for creating the map. Thanks also to Dr. Barbara Ertter and especially Dr. Don Mansfield at the College of Idaho, for their assistance in collecting variety cusickiana. Trish Winn and Jennifer Lewihnsohn in the United States Forest Service provided the collection permit for variety maguirei from the Uinta-Wasatch-Cache National Forest; Todd Stefanic and Gretchen Baker with the National Park Service coordinated collection from Craters of the Moon National Monument and Great Basin National Park, respectively. Michael Piep, Elizabeth Makings, and Jerry Tiehm allowed

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

for *Primula* specimens to be sampled from the Intermountain Herbarium, Arizona State Vascular Plant Herbarium, and University of Nevada, Reno Herbarium, respectively. Thanks also to Kris Valles at the Intermountain Herbarium. Dr. Leila Shultz assisted with identification of the Owyhee cusickiana population. The authors would also like to thank Jean Howerton, Buddy Smith, and Noel and Pat Holmgren. Finally, all collections were made on the ancestral lands of the Western Shoshone, Eastern Shoshone, Shoshone Bannock, Southern Paiute, Goshute, and Nez Perce Native American tribes. **AUTHOR CONTRIBUTIONS** AK determined sample locations, performed the majority of sample collection, and ran genetic analyses. WDP contributed to study design and assisted with genetic analyses and manuscript writing. PW guided study design and assisted with genetic analyses, sample collection, and manuscript writing. LITERATURE CITED Badgley, C., Smiley, T. M., & Finarelli, J. A. (2014). Great Basin mammal diversity in relation to landscape history. Journal of Mammalogy, 95(6), 1090–1106. Bjerregaard, L., & Wolf, P. G. (2008). Strong genetic differentiation among neighboring populations of a locally endemic primrose. Western North American Naturalist, *68*(1), 66–75. Boggs, C. L., & Murphy, D. D. (1997). Community composition in mountain ecosystems: climatic determinants of montane butterfly distributions. Global *Ecology and Biogeography Letters*, 6(1), 39–48.

460 Boucher, F. C., Zimmermann, N. E., & Conti, E. (2016). Allopatric speciation with little 461 niche divergence is common among alpine Primulaceae. Journal of 462 Biogeography, 43(3), 591–602. 463 Brown, J. H. (1971). Mammals on mountaintops: nonequilibrium insular biogeography. 464 *The American Naturalist*, 105(945), 467–478. 465 Carstens, B. C., Pelletier, T. A., Reid, N. M., & Satler, J. D. (2013). How to fail at species 466 delimitation. Molecular Ecology, 22(17), 4369–4383. 467 Charlet, D. A. (2007). Distribution patterns of Great Basin conifers: Implications of 468 extinction and immigration. Aliso: A Journal of Systematic and Floristic Botany, 469 *24*(1), 31–61. 470 Coates, D. J., Byrne, M., & Moritz, C. (2018). Genetic diversity and conservation units: 471 Dealing with the species-population continuum in the age of genomics. Frontiers 472 in Ecology and Evolution, 6, 165. 473 Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., 474 Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., Durbin, R., 475 & 1000 Genomes Project Analysis Group. (2011). The variant call format and 476 VCFtools. *Bioinformatics*, 27(15), 2156–2158. 477 Darwin, C. (1877). The Different Forms of Flowers on Plants of the Same Species. John 478 Murray, London. 479 Davidson, J. B., Durham, S. L., & Wolf, P. G. (2014). Breeding system of the threatened 480 endemic Primula cusickiana var. maguirei (Primulaceae). Plant Species Biology, 481 *29*(3).

482

483 de Queiroz, T. F., Baughman, C., Baughman, O., Gara, M., & Williams, N. (2012). 484 Species distribution modeling for conservation of rare, edaphic endemic plants in 485 White River Valley, Nevada, Natural Areas Journal, 32(2), 149–158. 486 de Vos, J. M., Hughes, C. E., Schneeweiss, G. M., Moore, B. R., & Conti, E. (2014). 487 Heterostyly accelerates diversification via reduced extinction in primroses. 488 *Proceedings of the Royal Society B*, 281(1784). 489 DeChaine, E. G., & Martin, A. P. (2005a). Historical biogeography of two alpine 490 butterflies in the Rocky Mountains: broad-scale concordance and local-scale 491 discordance. Journal of Biogeography, 32(11), 1943–1956. 492 Dechaine, E. G., & Martin, A. P. (2005b). Marked genetic divergence among sky island 493 populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. 494 American Journal of Botany, 92(3), 477–486. 495 Eaton, D. A. R., & Overcast, I. (2020). ipyrad: interactive assembly and analysis of 496 RADseq datasets. Bioinformatics, 36(8), 2592–2594. 497 Elshire, R. J., Glaubitz, J. C., Sun, Q., Pol, J. A., Kawamoto, K., Buckler, E. S., & 498 Sharon, E. (2011). A robust, simple genotyping-by-sequencing (GBS) approach 499 for high diversity species. *PloS One*, 6(e19379). 500 Fish and Wildlife Service, Department of the Interior. (1985). Endangered and 501 Threatened Wildlife and Plants; Final Rule to Determine Primula Maguirei 502 (Maguire Primrose) To Be a Threatened Species (Vol. 50, pp. 49–52). 503 Fleishman, E., Austin, G. T., & Murphy, D. D. (2001). Biogeography of Great Basin 504 butterflies: revisiting patterns, paradigms, and climate change scenarios. 505 *Biological Journal of the Linnean Society*, 74(4), 501–515.

506 Floyd, C. H., Van Vuren, D. H., & May, B. (2005). Marmots on great basin 507 mountaintops: using genetics to test a biogeographic paradigm. Ecology, 86(8), 508 2145-2153. 509 Gray, A. (1888). Synoptical Flora of North America. Ivison, Blakeman, Taylor & Co. 510 Harper, K. T., Freeman, C. D., Ostler, K. W., & Klikoff, L. G. (1978). The flora of Great 511 Basin mountain ranges: diversity sources and dispersal ecology. *Great Basin* 512 *Naturalist Memoirs*, 2, 81–103. 513 He, X., Cao, J.-J., Zhang, W., Li, Y.-Q., Zhang, C., Li, X.-H., Xia, G.-H., & Shao, J.-W. 514 (2021). Integrative taxonomy of herbaceous plants with narrow fragmented 515 distributions: a case study on Primula merrilliana species complex. Journal of 516 Systematics and Evolution 517 Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in 518 divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247-519 276. 520 Hodel, R. G. J., Massatti, R., Bishop, S. G. D., & Knowles, L. L. (2021). Testing which 521 axes of species differentiation underlie covariance of phylogeographic similarity 522 among montane sedge species. Evolution 523 Holmgren, N. H. (1967). A new species of primrose from Nevada. *Madroño*, 19(1), 27– 524 29. 525 Holmgren, N. H., & Holmgren, A. H. (1974). Three new species from the Great Basin. 526 Brittonia, 26(3), 309–315. 527 Holmgren, N. H., Holmgren, P. K., & Cronquist, A. (2005). *Intermountain flora*: 528 vascular plants of the Intermountain West, USA. Volume two, Part B: Subclass

529 Dilleniidae. New York Botanical Garden. 530 Holmgren, N. H., & Kelso, S. (2001). Primula cusickiana (Primulaceae) and its varieties. 531 Brittonia, 53(1), 154–156. 532 Huang, J. (2020). Is population subdivision different from speciation? From 533 phylogeography to species delimitation. Ecology and Evolution, 36, 303. 534 Huang, Y.-F., Dong, L.-N., & Xu, W.-B. (2019). Lysimachia fanii, a new species of 535 Primulaceae from limestone area of Guangxi, China. *PhytoKeys*, 130, 75–84. 536 Hulshof, C. M., & Spasojevic, M. J. (2020). The edaphic control of plant diversity. 537 Global Ecology and Biogeography, 29(10), 1634–1650. 538 Jombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal 539 components: a new method for the analysis of genetically structured populations. 540 BMC Genetics, 11, 94. 541 Kass, R., & Welsh, S. (1985). New Species of *Primula* (Primulaceae) from Utah. *The* 542 *Great Basin Naturalist*, 45(3), 548–550. 543 Kelso, S., Beardsley, P. M., & Weitemier, K. (2009). Phylogeny and Biogeography of 544 Primula sect. Parryi (Primulaceae). International Journal of Plant Sciences, 545 *170*(1), 93–106. 546 Lawlor, T. E. (1998). Biogeography of Great Basin mammals: paradigm lost? *Journal of* 547 Mammalogy, 79(4), 1111–1130. 548 Leinonen, T., O'Hara, R. B., Cano, J. M., & Merilä, J. (2008). Comparative studies of 549 quantitative trait and neutral marker divergence: a meta-analysis. *Journal of* 550 Evolutionary Biology, 21(1), 1–17. 551 Li, J., Cocker, J. M., Wright, J., Webster, M. A., McMullan, M., Dyer, S., Swarbreck, D., 552 Caccamo, M., van Oosterhout, C., & Gilmartin, P. M. (2016). Genetic 553 architecture and evolution of the S locus supergene in Primula vulgaris. Nature 554 Plants, 2(12), 16188. 555 Mansfield, D. (1993). The status of "Primula wilcoxiana" and the Primula cusickiana 556 complex in Southwestern Idaho. Bureau of Land Management, U.S. Department 557 of the Interior. 558 Novembre, J. (2016). Pritchard, Stephens, and Donnelly on Population Structure. 559 Genetics, 204(2), 391–393. 560 Nowak, C. L., Nowak, R. S., Tausch, R. J., & Wigand, P. E. (1994). Tree and shrub 561 dynamics in northwestern Great Basin woodland and shrub steppe during the 562 Late-Pleistocene and Holocene. American Journal of Botany, 81(3), 265–277. 563 Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure 564 using multilocus genotype data. Genetics. 565 R Core Team (2020). R: A language and environment for statistical computing. 566 R Foundation for Statistical Computing, Vienna, Austria. 567 Ren, G., Mateo, R. G., Conti, E., & Salamin, N. (2020). Population genetic structure and 568 demographic history of *Primula fasciculata* in Southwest China. Frontiers in 569 *Plant Science*, 11, 986. 570 Schorr, G., Pearman, P. B., Guisan, A., & Kadereit, J. W. (2013). Combining 571 palaeodistribution modelling and phylogeographical approaches for identifying 572 glacial refugia in alpine Primula. Journal of Biogeography, 40(10), 1947–1960. 573 Theodoridis, S., Nogués Bravo, D., & Conti, E. (2019). The role of cryptic diversity and 574 its environmental correlates in global conservation status assessments: Insights

575 from the threatened bird's \(\text{eye} \) eye primrose (\(Primula \) farinosa \(\text{L.} \)). \(Diversity \) and 576 Distributions, 25, 1457–1471. 577 Thompson, R. S., & Mead, J. I. (1982), Late Ouaternary environments and biogeography 578 in the Great Basin. Quaternary Research, 17(1), 39–55. 579 Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the analysis of 580 population structure. Evolution, 38(6), 1358–1370. 581 Williams, L. O. (1936). Revision of the Western Primulas. The American Midland 582 *Naturalist*, 17(4), 741–748. 583 Wolf, P. G., & Sinclair, R. B. (1997). Highly differentiated populations of the narrow 584 endemic plant Maguire Primrose (Primula maguirei). Conservation Biology, 585 11(2), 375–381. 586 Yang, L., Kong, H., Huang, J.-P., & Kang, M. (2019). Different species or genetically 587 divergent populations? Integrative species delimitation of the *Primulina* 588 hochiensis complex from isolated karst habitats. Molecular Phylogenetics and 589 Evolution, 132, 219–231. 590 591 APPENDIX 1. Voucher specimens. Order of data is as follows: Species, Voucher, 592 Herbarium. Institutional barcodes or accession numbers are included as 593 parenthetical values following the voucher, when available. 594 **Ingroup:** *Primula cusickiana* var. *cusickiana*, 25330978, Intermountain 595 Herbarium; *Primula cusickiana* var. *cusickiana*, 25330990, Intermountain 596 Herbarium; *Primula cusickiana* var. *cusickiana*, 25331045, Intermountain 597 Herbarium; *Primula cusickiana* var. *cusickiana*, 25331062, Intermountain

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Herbarium: *Primula cusickiana* var. *cusickiana*, 25331021. Intermountain Herbarium; *Primula cusickiana* var. *cusickiana*, 25331015, Intermountain Herbarium; *Primula cusickiana* var. *cusickiana*, 25331018, Intermountain Herbarium; Primula cusickiana var. cusickiana, 25331034, Intermountain Herbarium; *Primula cusickiana* var. *cusickiana*, 25331004, Intermountain Herbarium; *Primula cusickiana* var. *cusickiana*, 25330994, Intermountain Herbarium; *Primula cusickiana* var. *cusickiana*, 25330991, Intermountain Herbarium; Primula cusickiana var. maquirei, 25331026, Intermountain Herbarium; Primula cusickiana var. maguirei, 25331039, Intermountain Herbarium; Primula cusickiana var, maquirei, 25331041. Intermountain Herbarium: Primula cusickiana var. *nevadensis*, 25331101, Intermountain Herbarium; *Primula cusickiana* var. nevadensis, 25331106, Intermountain Herbarium; Primula cusickiana var. nevadensis, 25331092, Intermountain Herbarium; Primula cusickiana var. domensis, 25331066, Intermountain Herbarium; Primula cusickiana var. domensis, 25331070, Intermountain Herbarium; Primula cusickiana var. domensis, 25331077, Intermountain Herbarium; Primula cusickiana var. domensis, 25331083. Intermountain Herbarium; Outgroups: Primula capillaris, 770850 (ASU0020421), Arizona State University Vascular Plant Herbarium; *Primula capillaris*, 3025822 (UTC00138833), Intermountain Herbarium; Primula parryi, 25331110, Intermountain Herbarium; *Primula parryi*, 25331112, Intermountain Herbarium Fig. 1. Four members of the *Primula cusickiana* species complex: (A) maguirei,

622

623

624

625

626

627

628

629

630

631

632

633

634

635

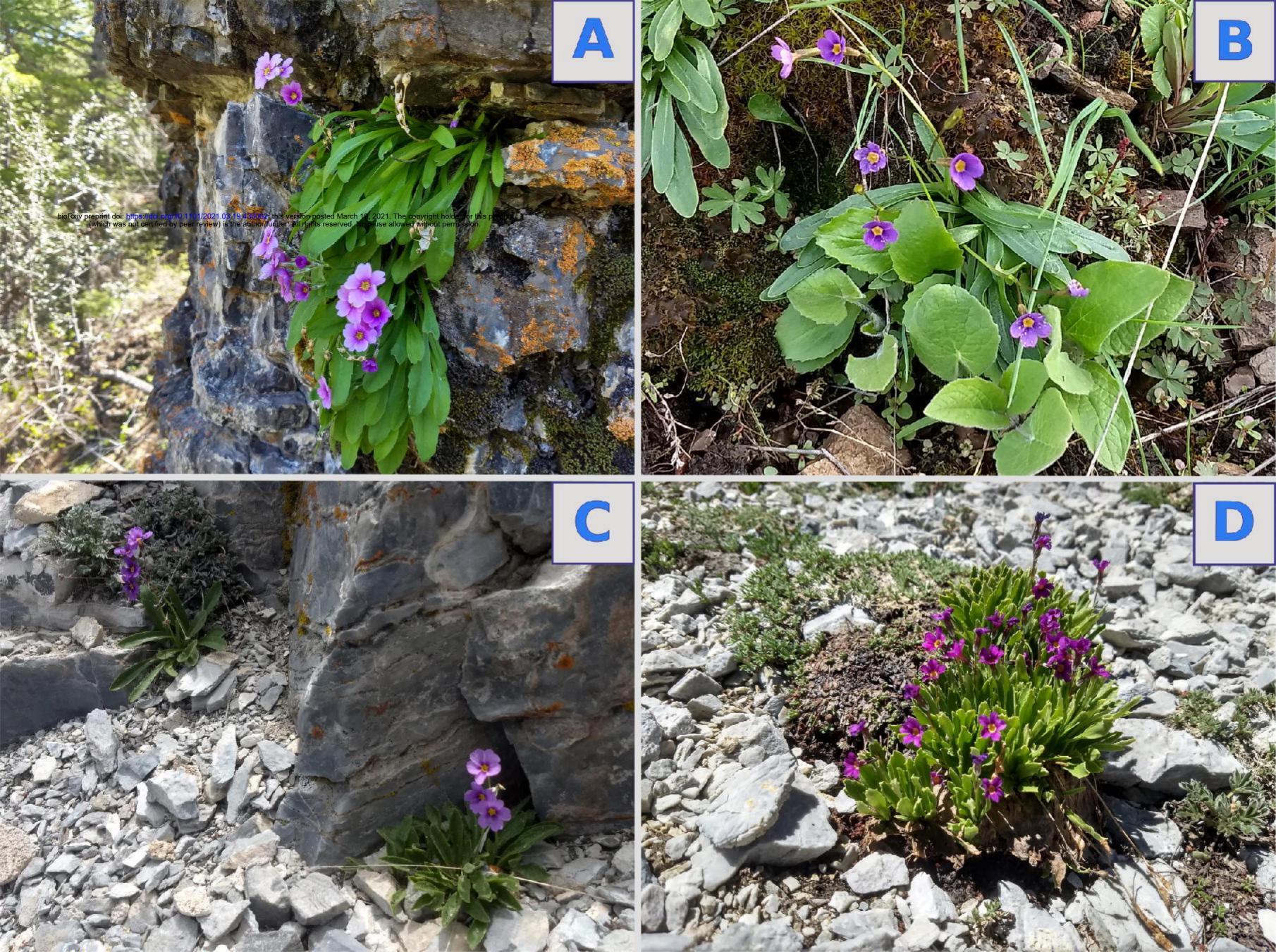
636

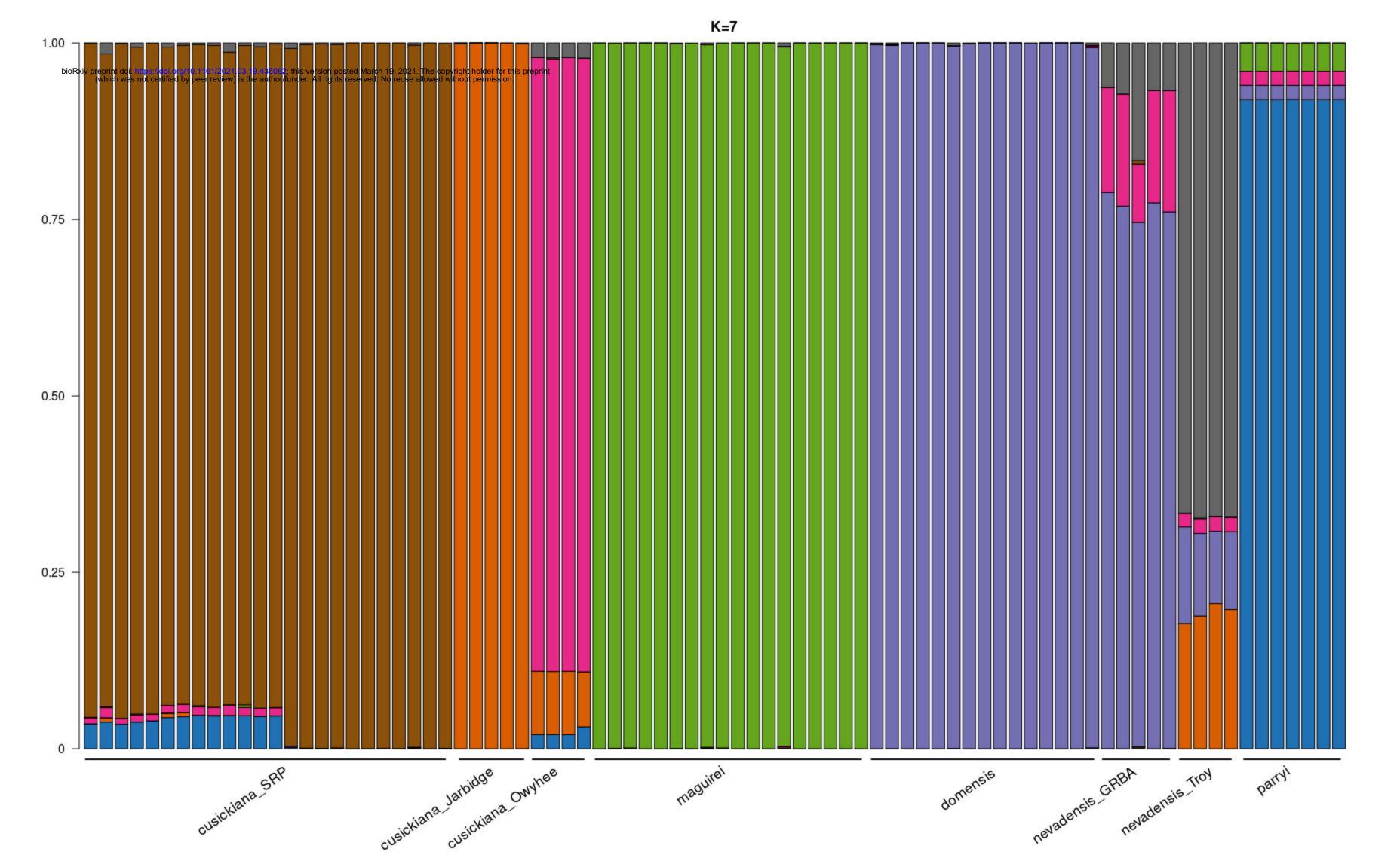
637

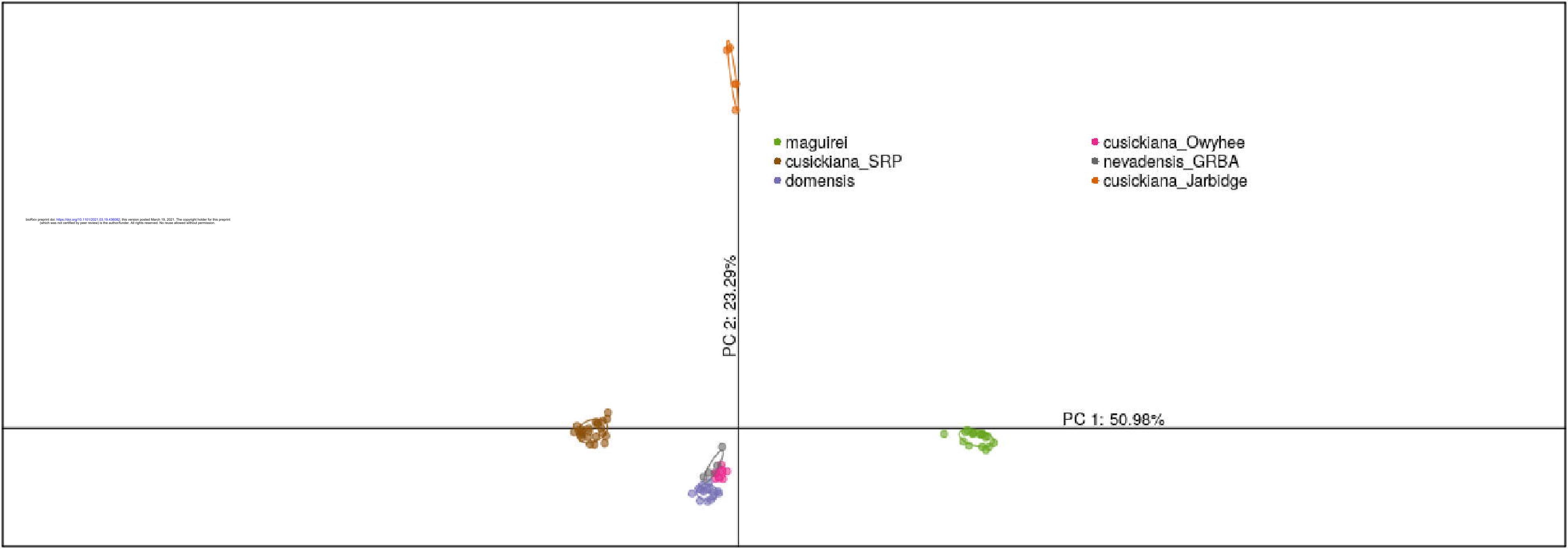
638

639

640


641


642


643

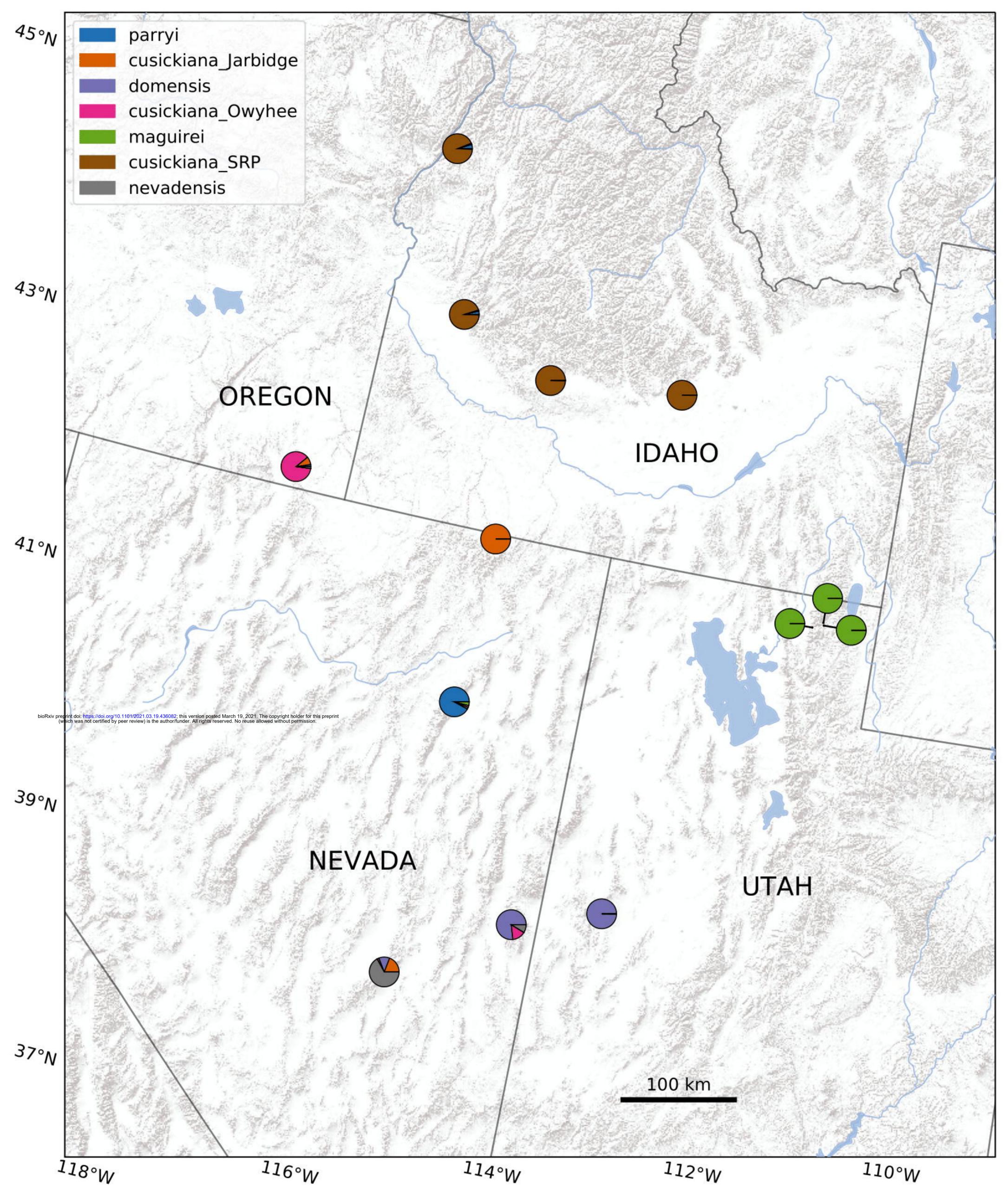
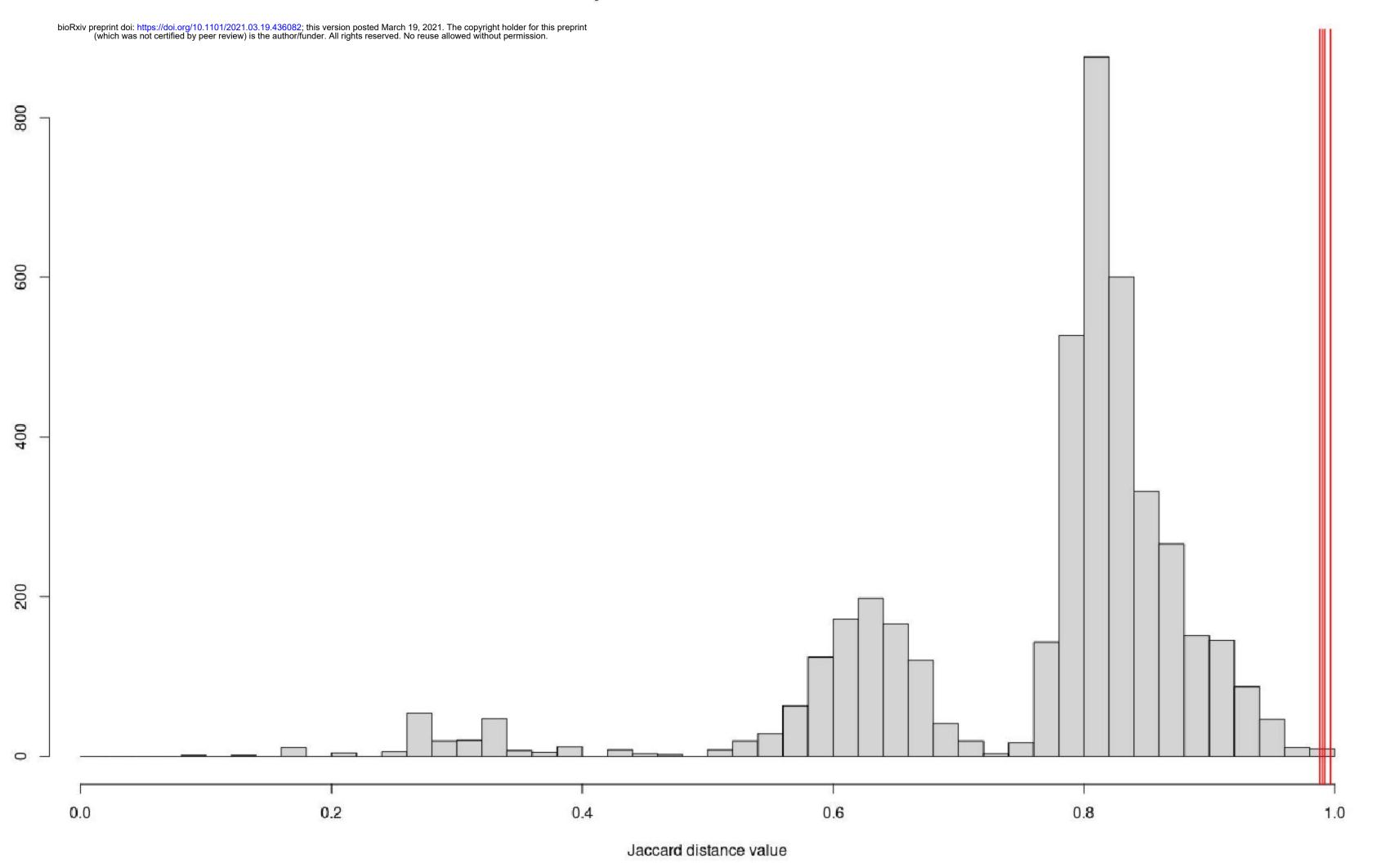
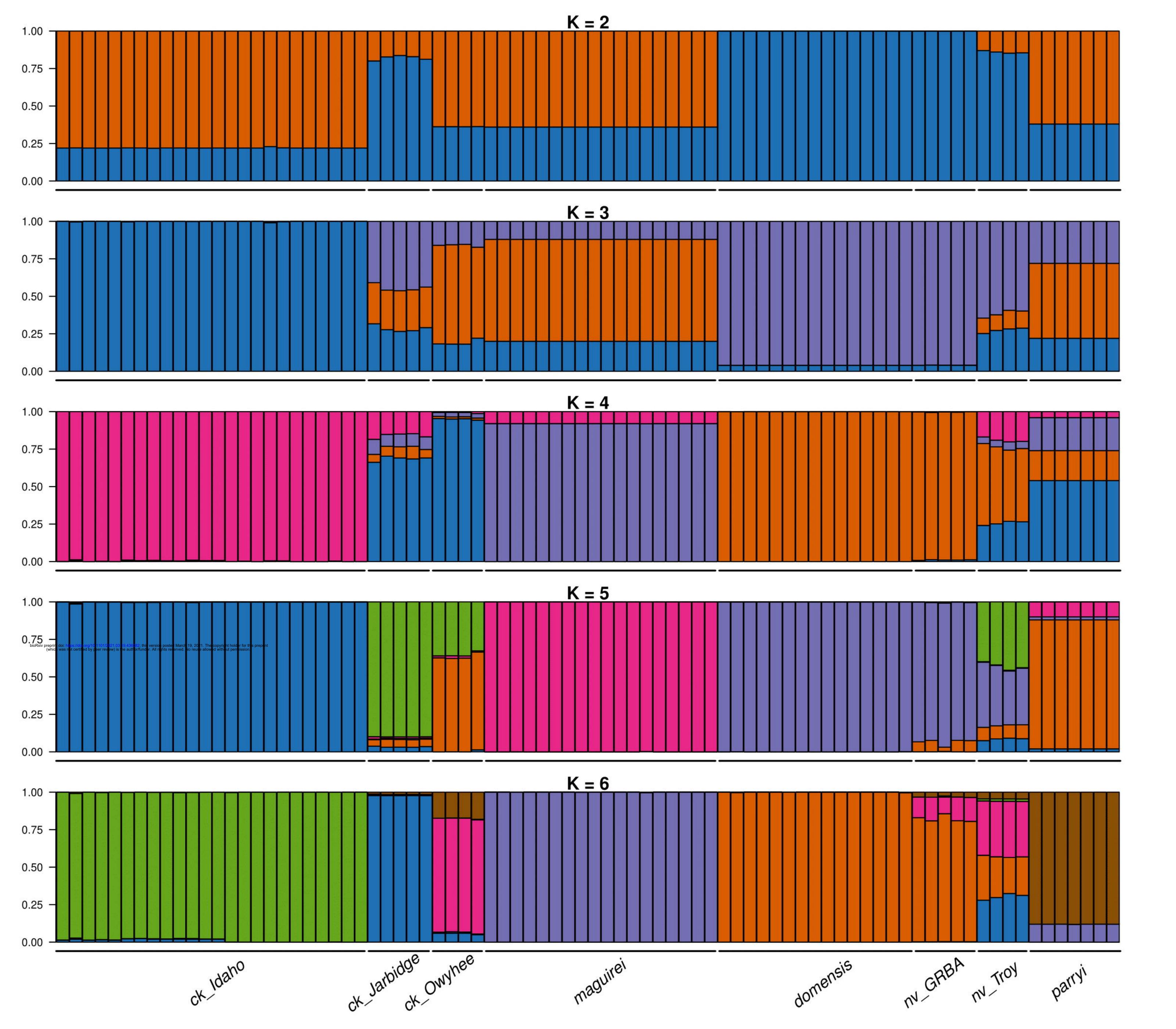
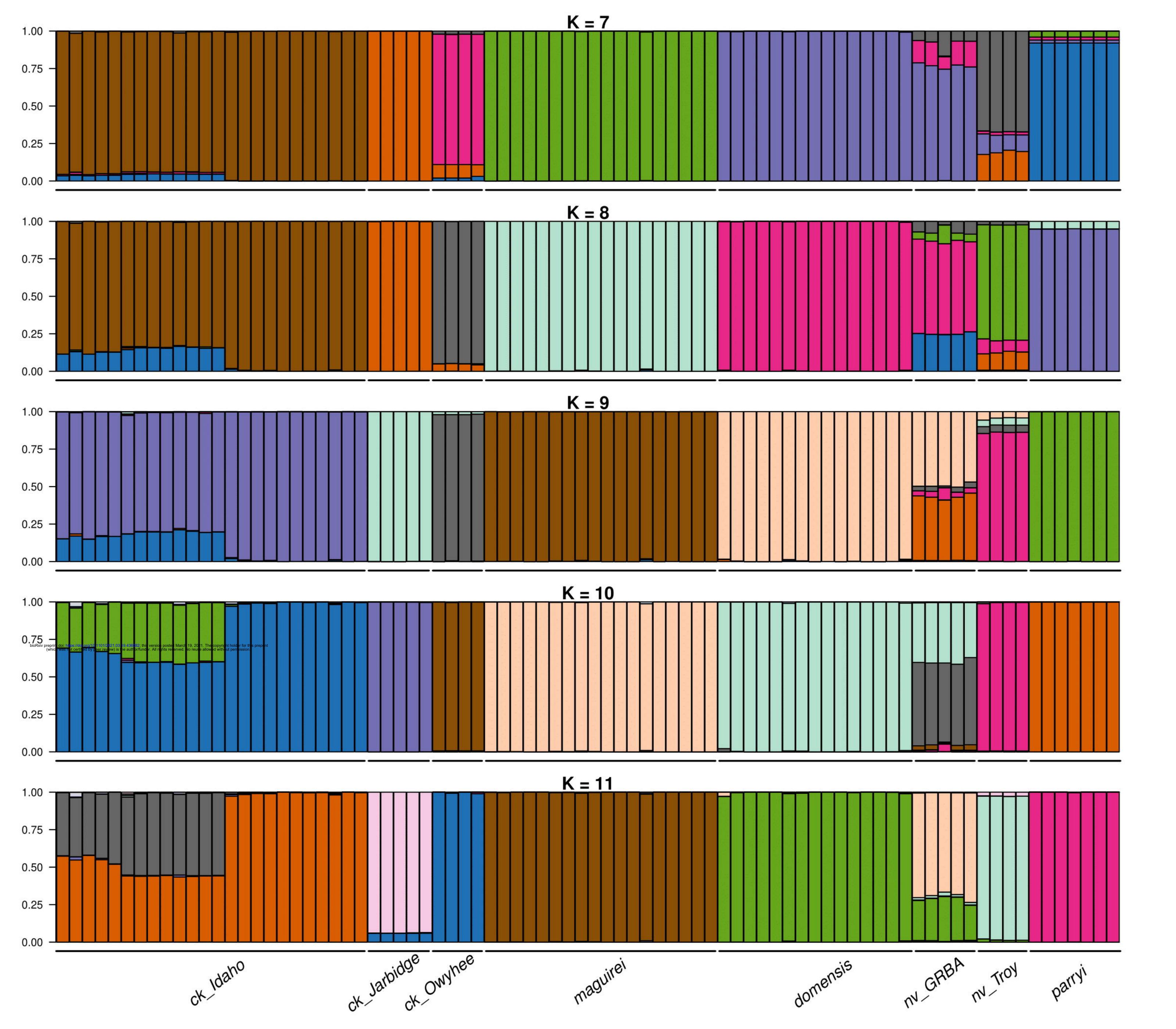
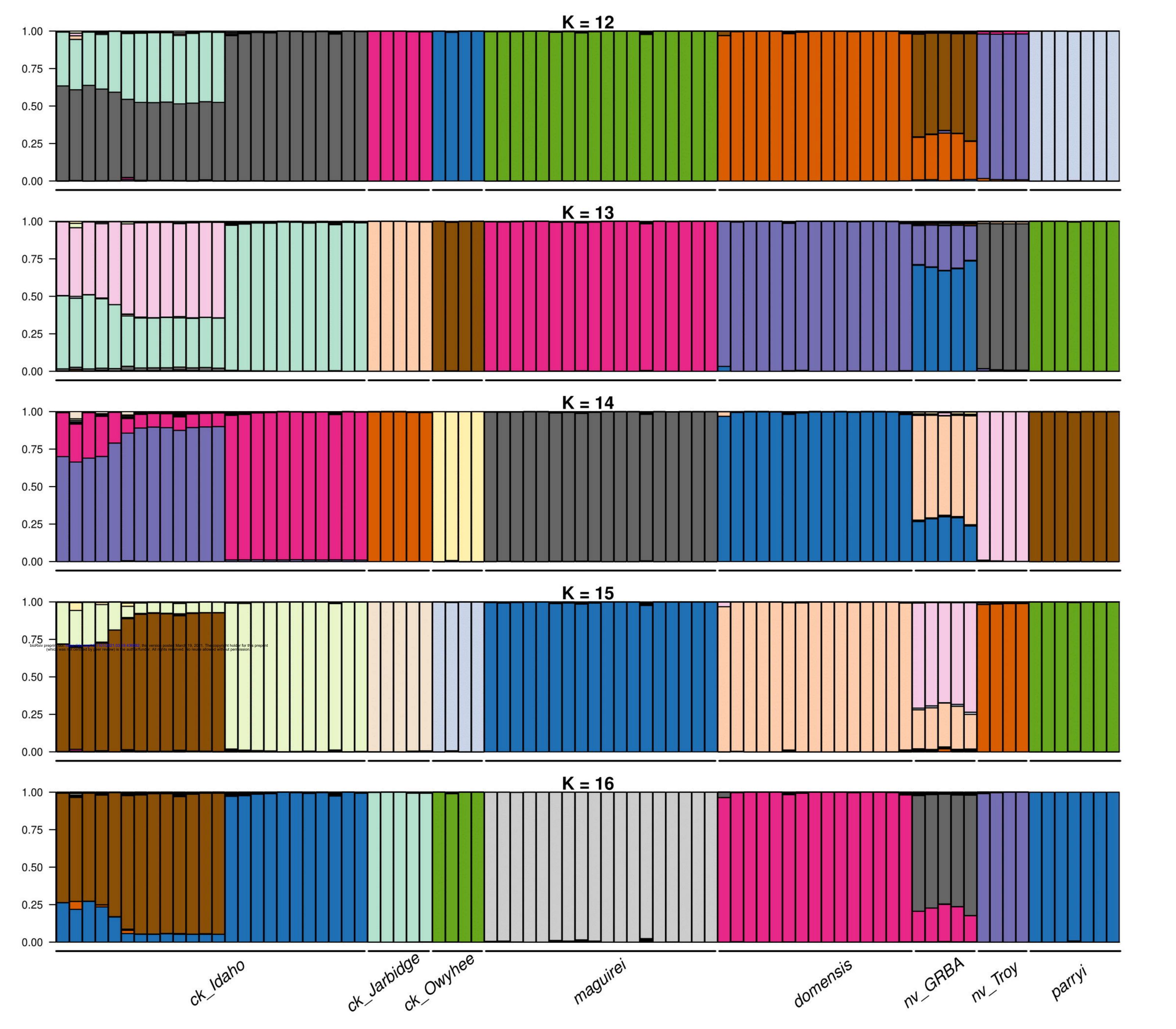

in Right Hand Fork of Logan Canvon: (B) *cusickiana*, near Cougar Point in Jarbidge, Nevada; (C) domensis, at Notch Peak in the House Range, Utah; (D) nevadensis, on Mount Washington in the Snake Range (Great Basin National Park), in Nevada. FIG. 2. Sample STRUCTURE plots at K = 7. At this level of clustering, divisions between isolated populations of variety cusickiana in Idaho (Snake River Plain, or SRP), Nevada (Jarbidge), and Oregon (Owyhee) are clearly shown. Similarities between populations of variety nevadensis in Great Basin National Park (GRBA) and domensis are shown, while populations of nevadensis further south in the Grant Range (Troy) are more distinct. Fig. 3. DAPC of only *P. cusickiana* complex samples with number of genetic clusters specified at 6; percentage of total variance for each PC axis shown. Similar to STRUCTURE results at K = 7, this analysis shows all maguirei populations as distinct from all other complex populations. Populations of varieties domensis and nevadensis group closely with cusickiana population from Oregon ("cusickiana_Owyhee"). Fig. 4. Map of sample locations with cluster membership. Sampling locations are represented by pie charts indicating percentage of population membership to clusters determined at K = 7 STRUCTURE clustering threshold. With exception to *nevadensis*, most samples fall almost entirely within a specified cluster. Fig. 5. STRUCTURE plot for *maguirei* samples at a clustering threshold of K = 3. While *maguirei* clustered together in the complex-wide analysis, our *maguirei*only analysis was able to reveal the Logan Canyon population divisions illustrated in past studies.

Fig. S1. Distribution of pairwise Jaccard similarities across all samples.
 Similarity values of replicates are indicated by red vertical lines.
 Fig. S2. STRUCTURE plots for all samples, K values ranging from 2 to 6.
 Fig. S3. STRUCTURE plots for all samples, K values ranging from 7 to 11.
 Fig. S4. STRUCTURE plots for all samples, K values ranging from 12 to 16.









Complex-Wide Jaccard Similarities

