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ABSTRACT

Detecting nodes with erroneous values in real-world graphs re-
mains challenging due to the lack of examples and various error
scenarios. We demonstrate GEDet, an error detection engine that
can detect erroneous nodes in graphs with a few examples. The
GEDet framework tackles error detection as a few-shot node clas-
sification problem. We invite the attendees to experience the fol-
lowing unique features. (1) Few-shot detection. Users only need
to provide a few examples of erroneous nodes to perform error
detection with GEDet. GEDet achieves desirable accuracy with
(a) a graph augmentation module, which automatically generates
synthetic examples to learn the classifier, and (b) an adversarial
detection module, which improves classifiers to better distinguish
erroneous nodes from both cleaned nodes and synthetic examples.
We show that GEDet significantly improves the state-of-the-art
error detection methods. (2) Diverse error scenarios. GEDet profiles
data errors with a built-in library of transformation functions from
correct values to errors. Users can also easily “plug in” new error
types or examples. (3) User-centric detection. GEDet supports (a)
an active learning mode to engage users to verify detected results,
and adapts the error detection process accordingly; and (b) visual
interfaces to interpret and track detected errors.
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1 INTRODUCTION

Ensuring high-quality graph data is important for applications such
as knowledge bases and social networks [5]. The cornerstone task
is to detect the nodes with incorrect values (“erroneous nodes”).
Various methods have been developed to curate and infer new
graph data from correct counterparts [5]. Nevertheless, detecting
erroneous nodes in real-world graphs remains challenging.

(1) There are often multiple types of errors. Existing methods [1] are
optimized to cope with a single type of error. They may work well
for individual scenarios such as violations of data constraints [2]
or anomalies [4], yet may not capture multiple types of errors.
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Figure 1: Erroneous Nodes in Knowledge Graphs

(2) One may also use supervised learning to generate a node classi-
fier from labeled nodes (“correct” or “erroneous”). However, it is
often hard to obtain a large amount of (manually) labeled examples.

Example 1: Fig. 1 illustrates a fraction of a real-world knowledge
graph about films. Each node carries a type (e.g., film) and a set
of attributes (e.g., ‘title’) with values (e.g., “HarryPotter_I"). Each
edge carries the relationships between nodes (e.g., screenWriterOf).
There are three erroneous nodes! with different types of errors:

o The genre of film v; should be “fantasy”;

o Film vy has the same genre as v; that should be “fantasy”,

and a duration “10,000,000m” that should be “161m”.
o Film v3’s main subject “time travel” should be “magic”.

The erroneous nodes v; and vz can be captured as (1) violation
of a data constraint ¢ [2] that states “if a movie is based on a book
(e.g., v4), then they should have the same genre and main subject”,
and (2) an outlier with large duration [4]. Nevertheless, the node v3
cannot be captured by either outlier detection (as “time travel” is a
common subject value), or the above data constraint (as there is no
link between v3 and v4). Sequential application of the two detection
process overlapped at vy, yet v3 remains undetected. O

GEDet. We demonstrate GEDet, a first few-shot learning based
Graph Erroneous node DETection system [3]. GEDet only requires
a few examples and automatically derives a node classifier to distin-
guish erroneous nodes from correct ones, and can simultaneously
detect multiple types of errors with the desired accuracy.

“Few-shot” detection. To generalize error detection from a few exam-
ples, GEDet enables few-shot learning [6] to enrich the examples
with similar yet synthetic examples. It encodes error generation as
transformations, which are functions that (conditionally) convert
correct attribute values to data errors (e.g., anomalies, constraint vio-
lations). GEDet derives transformations from the examples that best
approximate the observed error distribution and performs graph
augmentation with synthetic examples as well as useful links.

Uhttps://www.wikidata.org/w/index.php?title=Q102438&action=history
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To detect erroneous nodes from correct ones in graphs, GEDet
follows representation learning [7] to embed nodes to their low-
dimensional vectors (node embeddings), such that the derived labels
(“error” or “correct”) from the embeddings minimize the classifica-
tion error given the examples (including synthetic ones). GEDet
jointly incorporates attribute-, node-, and topology-level features
to derive the classifier. To further reduce the impact of low-quality
synthetic examples to the accuracy, GEDet advocates adversarial
learning that enforces the classifier to also distinguish synthetic
and real examples (“synthetic” or “real”) produced by a generator
in a “two-player game”. These allow GEDet to achieve desirable
accuracy (both precision and recall) with little manual effort.

Multi-type error detection. GEDet supports multiple types of errors.

By default, it cold-starts with few-shot learning and error detection
with a built-in library of transformations. Users can easily declare
new error types by “plugging in” examples or transformations.
GEDet bookkeeps the transformations and adapts the classifiers to
detect errors upon new transformations.

“Human-in-the-loop” error detection. GEDet supports both (1) auto-

mated detection that requires little manual effort for system tuning,
and (2) interactive detection, which queries the user to verify de-
tected errors and incrementally updates the node classifier via active
learning. Moreover, it provides explanations to users on detected
errors with relevant transformations and suggested correct values.

GEDet provides user-friendly interfaces for error detection and
interpretation ? with open-source code® and a video walkthrough®.

2 SYSTEM OVERVIEW
2.1 Graphs and Transformations

Graphs. GEDet processes an attributed graph G (where each node

is a tuple) in its feature representation (X, A), where (a) X is a
matrix of nodes features, and each row X, of X is a vector encoding
of a node tuple v (obtained by e.g., word embedding or one-hot
encoding); and (b) A is the adjacency matrix of G.

Examples. An example is simply a node v € V labeled as ‘correct’
or erroneous (‘error’). For an erroneous example v € Vg and its
attribute v.A with a wrong value a’, a correct counterpart a* is
specified. GEDet only needs a few examples V- for error detection.

Transformations. GEDet characterizes error generation with trans-
formations. A transformation (C, ¢) specifies a condition C (can
be empty) and an editing function ¢ defined on node attributes. It
selects all the nodes that satisfy the condition C, and for each node
v, applies ¢ to replace the value v.A to an incorrect counterpart a’.
GEDet maintains a built-in library ¥ of transformations, each has
a type from, by default, “string noise” (randomly modify v.A as a
string), “anomalies”, or “constraint violations”.

Example 2: GEDet initializes a built-in library ¥ of transforma-
tions from e.g., data constraints, domain information or quality
rules. For example, given the data constraint ¢ (Example 1), a trans-
formation Tj is registered in ¥ with a condition C that selects nodes

Zhttps://gdet.hcma.repl.co/
3https://github.com/CWRU-DB-Group/GDet
4https://youtube.com/playlist?list=PLOYKREc7vLdWfX31XplYvpiklA8zAFEfS

2876

le 'correct' (real)
@ 'error’ (real) h
lo "error'(synthetic

“synthetic

L e

i
i

o_unlabeled v V> { 1
Vi ey, 1 |

; G 4y o 530 —Lgpaf 1§
Vi V. H H

1 2 ____O vy ! - decoder

Vy node augmentation L } a

{ V3 graph encoder

Vs v V2GLX, Ay, Z, D

i Enc Dec
G=(X A Ly §
/ ! Ve graph encoder decoder de
:\ Vs x

eighbor augmentation i

Graph Augmentation Adversarial Detection ("'two-player game")

Figure 2: Workflow of GEDet Few-shot Detection

with an edge “basedOn” to any “book” node, and ¢1 (v.genre, p) —>
‘filmBasedOnNovel’. Another transformation T, can be specified
with empty ¢2(v.duration) — a (a>60,000m) with type “anom-
alies”. A user can provide two examples Vo~ = {ov1 (‘error’), vg
(‘correct’) } to GEDet (Example 1). The transformations in ¥ (e.g.,
T;) will be used to produce more synthetic examples. O

2.2 Workflow of GEDet

We start with the major modules and enabling models of GEDet.

Graph augmentation module. This module learns how to gen-
erate errors from the examples Vi, and in turn enriches examples
with synthetic errors and neighbor information. This benefits the
follow-up graph representation learning [7], which iteratively up-
dates node embeddings via label propagation.

(1) To generalize from a few examples, GEDet generates synthetic
erroneous examples from Vg with an error generative model H,
which simulates the generation process of various errors character-
ized by transformations V. It samples a set of correct nodes, and
applies H for each sample to create a set of synthetic erroneous
examples (with a synthetic label “error”). The sampling favors cor-
rect nodes with less erroneous neighbors, to mitigate skewed label
distribution (e.g., neighbors that are all correct) that may lead to
biased detection. This augments node features X to Xpy.

(2) GEDet adopts a link inference model L to introduce a set of
virtual neighbors for the nodes (including examples). The model .L
favors to link a node with its reachable, labeled non-neighbors that
have similar features, thus enrich its neighbors and mitigate the
impact of sparse labels. This enhances adjacency matrix A to Ay.

Error generator H. Given transformations ¥ and a set of erroneous
examples V¢ C Vg (where each node v € V¢ has a correct counter-
part v™¥), the error generative model H (with learnable weights W)
aims to simulate the real transformations from v* to their erroneous
counterparts via a weighted combination of ¥. To learn H, GEDet
solves the following optimization problem:

1
W* = arg m‘/‘a}x log Z exp(v;e F(v,¥(v%)))
where Z is a normalizer such that the log-term is in (0, 1]. The func-

tion F(o, ¥(0%)) = X Z¢j ey wj - sim(v.A;, ¢ (v * .A;)) quantifies
the accumulated similarity (sim) between the attribute values of
each node (an n-ary tuple) v* and their transformed counterparts.

Link inference model L. The model £ (1) samples a set of nodes and

their most similar counterparts (determined by a node similarity
function [3]), and learns a transition probability for each edge
in G, such that each sampled node is more likely to reach their
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Figure 3: GEDet Architecture (storage layer not shown)

similar counterparts compared with other nodes via a random walk
following the transition probability. £ then enhances the adjacency
matrix A with new links that connect a (test) node to its top-k
non-neighbors with the highest transition probability.

Graph augmentation (illustrated in Fig. 2) yields the following
as input for representation learning: (1) Gy = (X, Ar) with fea-
tures of synthetic examples; and (2) Gy = (X, Ar), with the original
features X. Both share the augmented topology Ay.

Example 3: Given a correct node v4 (Example 2) and a transfor-
mation T3 with (v.main subject) —> (a=‘time travel’), the error
generator H replaces v4 with a synthetic erroneous node v}, where
attribute ‘main subject’ has a value ‘time travel’. The link inference
L further identifies nodes 01 and v, as useful virtual neighbors of v3
due to their common series “Harry Potter” and similar duration (not
shown). The augmented data helps GEDet to produce a classifier
that captures the erroneous node vs. a

Adversarial detection module. This module generates a node
classifier to detect erroneous nodes. To reduce the impact of syn-
thetic examples, it exploits the principle of adversarial learning. The
idea is to enforce the classifier to further differentiate synthetic
examples from real ones. Specifically, GEDet jointly trains
o agenerator G, to “fool” a discriminator O by simulating the
distribution of real labels over the augmented graph Gg; and
o a discriminator D, which aims to classify nodes from Gy
and G as real or synthetic.
asin a two-player game. By forcing the discriminator to differentiate
not only “error” and “correct” but also “synthetic” and “real” labels,
GEDet further improves the accuracy of error detection.

Graph autoencoder Z. GEDet uses a graph autoencoder (GAE) Z,
a class of graph neural networks, to learn node representations for
downstream error detection. Given a graph G = (X, A), a GAE learns
an encoding Z € RIVIxd (d’ < d) of X (by an encoder Enc), from
which reconstructing (X, A) is possible (by a decoder Dec). GEDet
learns embeddings Zgy and Zy, for Gg=(Xy, Ar) and Gr=(X, Ar),
respectively. For Gy, it aims to minimize a reconstruction loss
min dist((Xg, Ar), Dec(Enc((Xgy, Ar))), determined by a distance
metric dist. The goal for Gy, is similarly defined.

Adversarial models (G and D). GEDet integrates a generative ad-

versarial network (GAN) that consists of a generator G and a dis-
criminator D. It jointly learns G and D to minimize a bi-criteria
loss L(D) = L + AL*, where the supervised loss L (defined by the
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cross-entropy errors) quantifies the loss of accuracy on classifying
“error” and “correct” examples in a supervised manner. The unsu-
pervised loss L* (with a balance factor A=0.5 by default) quantifies
the accuracy loss on classifying the real and synthetic examples.
The loss is minimized by learning a node embedding matrix M.
The matrix M is then converted via a softmax function to “error” or
“correct” class probabilities. GEDet applies a co-training algorithm
to jointly learn G and D (see [3] for a formal analysis).

Workflow. GEDet supports automatic and interactive modes. In
both modes, it only requires a few examples from users to cold-start.

Automated detection. In this mode, GEDet automatically detects er-
roneous nodes from scratch without manual tuning effort. (1) In the
building phase, GEDet cold-starts to build the models from scratch
over given examples Vg via few-shot learning. It initializes trans-
formations including (a) mappings from provided correct values
and erroneous ones in Vi, (b) available data constraints and qual-
ity rules, and (c) random string transformations. (2) The detection
phase loads the trained models to assign labels to test nodes of
interests (the rest of nodes in G by default). For each test node,
GEDet infers its embedding in the classification layer of discrimi-
nator D, applies a softmax function to convert the embedding to
class probabilities, and chooses the larger one (‘error’ or ‘correct’).

Interactive detection. In the interactive mode, GEDet periodically
samples detected erroneous nodes and requests users for verifica-
tion. Following active learning, GEDet adopts a query selection
policy that favors top-k (k=4 by default) nodes with the least con-
fidence in its most likely label. It queries the user to verify the
labels of selected nodes, receives the corrected labels (if any), and
incrementally updates the adversarial models G and D to improve
the accuracy of error detection. Users may also “plug in” new error
types as transformations. In this case, GEDet also updates the graph
augmentation models H and L to incorporate new error types.

2.3 System Architecture

GEDet adopts a three-tier architecture (Fig. 3). (1) The interactive
GUI provides data access for novice users as well as professional
users who have domain knowledge. GEDet can start with an empty
transformation library. The interactive GUI allows professional
users to submit examples, as well as transformations including
“string noise” (stored as CSV, JSON), “anomalies”, and “constraint
violations” (stored as XML). GEDet does not require novice users to
provide transformations. Instead, it can learn string transformations
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from erroneous examples with their correct counterparts and enrich
the transformation libraries. Users can set detection modes, inspect
errors and interpretations via visual panels (see Section 3). The
enhanced graph topology matrix Ay and suggested correct values
with interpretation insights (e.g. error types) for detected errors
are saved and can be used for downstream applications (e.g. node
classification). (2) The model tier integrates (a) a featurizer that
transforms input graphs into feature representations, (b) the graph
augmentation and adversarial detection modules, (c) a scheduler that
orchestrates the learning and loading of GEDet models for different
detection modes, and (d) a query selector that selects detected errors
with the selection policy in the interactive mode. (3) The storage
tier manages graphs, examples, and transformations.

3 DEMONSTRATION OVERVIEW

Setup. The GEDet builders and servers are deployed in Google
Colaboratory (Colab) environment with Tensorflow libraries and
NVIDIA TESLA P100 with 16GB GPU memory. We demonstrate
GEDet with the datasets in Table 1. These datasets contain errors
injected by an error generator BART °, from multiple scenarios e.g.,
misspelling, outliers, string disturbance, and random errors.

Scenarios. We walk through GEDet with the following scenarios.

Automatic error detection. We invite the users to experience auto-
matic error detection with the user-friendly GUI (Fig. 4). A user can
select graph data and submit examples via “Configuration” panel.
Using the “Exploration” panel, users will be able to inspect (1) the
augmented examples, and enhanced neighbors of specific nodes in
the “Graph View” tab, (2) the detected erroneous nodes and their
interpretations (e.g., error types, transformations, and suggested
correct values), and (3) the clustered visualization of the node em-
bedding M in terms of error type, in the “Embedding View”. The
accuracy is reported in the “Performance monitor”.

Interactive detection. We also invite users to interact with GEDet
to provide guided error detection. Users can switch to “interactive
mode” in Configuration panel. GEDet will request users to label a
list of detected erroneous nodes. To facilitate the manual labeling of
these nodes, GEDet highlights these nodes in the “Graph View”, and
suggests the top-2 similar nodes with labels are in the “Exploration”
panel. The GEDet scheduler resumes learning after user completes
verification. Users can also observe the change of decision boundary
with the “Embedding View” as more nodes are verified (Fig. 5).

Shttps://github.com/dbunibas/BART
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Table 1: Overview of Real-world Graphs

Dataset | |V| |[E] | #node types | # edge types | avg. # attr
DBP® | 2.2M | 7.4M 73 584 4
OAG7 [ 0.6M | 1.7M 5 6 2
Yelp® | 1.5M | 1.6M 42 20 5

Table 2: Examples of Graph Data Constraints
Node type

Constraint (support/confidence) Transformation

If a music genre of v* has deriva-
tive “New_Age”, its origin is “Blues”
(249/0.99)

¢(v*.origin) +—

Music(DBP) a(a # “Blues”")

If two transportation tools o} and v} are
Transport(DBP) | related, they have the same manufac-
turer. (705/0.88)

$(v].manufacturer)
+— a(a # a})

If users v} and v} friend each other and
UserGroup(Yelp) | have the same ratings, and v} has score
“5”, then v; also has score “5”. (157/1.0)

$(v3.score)
+— a(a # “5")

Plug-and-detect. A user can also declare and plug in new trans-
formations. Three examples are illustrated in Table 2, which are
induced from data constraints with validated quality.

Performance comparison. We compare GEDet with 8 state-of-the-

art methods in accuracy, learning cost and detection cost (see [3] for
details), including 4 standalone methods (constraint-based detec-
tion, outlier detection, and learning-based classification), 2 ensem-
ble methods, and 2 GEDet variants without data augmentation or
adversarial detection. while there is no “single winner” from single
methods for multi-type errors, GEDet always achieves comparable
precision with the best method, and significantly outperforms all in
recall. It is also feasible to detect errors in large graphs. For example,
it takes on average 350 seconds on model training over OAG, and
up to 8 seconds to detect errors, with a gain of precision 30% and
recall 35% on average compared with baseline methods.
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