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ABSTRACT
A useful feature in graph query engines is to clarify “Why certain
entities (nodes, attribute values or edges) are missing” in query an-
swers. This task is even more challenging when the relevant data is
already missing in the underlying data source. Missing data, on the
other hand, can be inferred by enforcing data constraints for graphs.
We demonstrate GRIP, a system that exploits data constraints to
clarify missing answers for graph queries. (1) Constraint-based ex-
planation. Given a desired yet missing entity in the query answer,
GRIP ensures to generate finite and minimal sequences of data con-
straints (an “explanation”) that should be consecutively enforced to
𝐺 to ensure its occurrence for the same query. (2) Answering “why”
and “how” questions. Users can queryGRIPwith both “Why” (“Why”
the element is missing) and “How” questions (“How” to refine the
graph to include the missing answer). GRIP engine supports run-
time generation of explanations by incrementally maintaining a
set of bi-directional search trees. (3) Interactive exploration. GRIP
provides user-friendly GUI to support interactive ad visual explo-
ration of explanations, including both automated generation and
step-by-step inspection of graph manipulations.
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Figure 1: Explain missing answers in medical search.

1 INTRODUCTION
A useful feature of graph query systems is to clarify why a specific
entity (e.g., a node, an attribute value of a node, or an edge) is
missing in the query answer. Given the query answer 𝑄 (𝐺) of a
query 𝑄 (e.g., SPARQL) in an (incomplete) graph 𝐺 , and a desired
yet missing entity 𝑔 that should be in 𝑄 (𝐺), the problem is to
identify the (missing) fraction of 𝐺 , denoted as Δ𝐺 , such that the
entity 𝑔 occurs in the query answer 𝑄 (𝐺 ′). Why-provenance [1]
clarifies missing answers with the existing fraction of data source
that is responsible for missing answers. The problem for graph
data is nevertheless more involved, especially when the data that
is responsible for the missing answer may also be missing.

The missing data, on the other hand, can be inferred by enforc-
ing data constraints [3–6, 9]. Data constraints for graphs identify
node pairs (𝑣, 𝑣 ′) in𝐺 via graph pattern matching between a graph
pattern 𝑃 and 𝐺 , and either enforce node equivalence or assert a
missing edge between 𝑣 and 𝑣 ′, for any pair (𝑣, 𝑣 ′) from a same
matching function (simply “matching”, typically defined by sub-
graph isomorphism). For example,

• Graphs keys [3] states that “the two nodes that match the des-
ignated pattern nodes in the same matching are equivalent
and should refer to the same real-world entity”;

• Graph association rules [4, 6, 8] state that “there is an edge
between two nodes if they are induced from a samematching
between 𝑃 and 𝐺”.

Can data constraints be used to explain “why” specific entity of
interests is missing in graph search? Naturally, the enforcement of a
data constraint may introduce new nodes and edges, hence provides
useful provenance information towards recovering missing query

Demo Track Paper  SIGMOD ’21, June 20–25, 2021, Virtual Event, China

2779

https://doi.org/10.1145/3448016.3452758
https://doi.org/10.1145/3448016.3452758


Missing Element g

Data Constraints �

⍴
Actions

Query processing

(Q,G)
Graph & Query 

Q(G)
Query  Answer

Explanation

�G
Why & How?

Figure 2: Workflow of GRIP.

answers. Moreover, this helps us understand how to “manipulate”
the graph towards desired answers.

Example 1: Consider a medical study scenario over a knowledge
base about COVID-19 illustrated in Fig. 1 (excluding the fraction
marked in red). A user starts with a SPARQL query 𝑄 “find all
viruses that may be relevant to COVID-19 and has a realm ‘Riboviria’”
While the answer 𝑄 (𝐺) contains a relevant virus “SARS-COV-2”
(𝑣2), another entity 𝑣1 ‘COVID Virus’ that is known to be relevant
is not in the answer. Using 𝐺 alone does not clarify whether 𝑣1
indeed belongs to the missing answer of 𝑄 , or is simply irrelevant.

Two data constraints are validated for the facts in 𝐺 .

𝜑1 (Graph association rule): “if a virus possesses a spe-
cific RNA which can be identified by a testing method,
then this method can be used to identify the virus”.

𝜑2 (graph key): “if two viruses cause the same disease
and can be identified by the same testing method, then
they refer to the same realm”.

Enforcing 𝜑1 “inserts” a missing edge between 𝑣2 and 𝑣3. A
follow-up enforcement of 𝜑2 enriches the missing “realm” infor-
mation of virus 𝑣1. This enriches 𝐺 and restores 𝑣1 in 𝑄 (𝐺). An
explanation can then be characterized by a sequence of enforce-
ment of 𝜑1 and 𝜑2, along with useful provenance information such
as the “manipulations” and corresponding data changes of 𝐺 . ✷

Several methods have been developed to complete knowledge
graphs [2, 7]. These methods aim to infer new data rather than
relevant information for clarifying missing answers. Moreover, it is
desirable to compute a minimal amount of manipulation to include
missing answer, rather than completing the entire graph.
GRIP. These motivate us to develop GRIP, a system that can in-
teractively search and explain missing query answers with con-
straints [9]. It has the following unique features.
Constraint-based explanation. GRIP is designed to infer at query-
time only a necessary amount of data that is responsible for user-
specified missing answers. It can clarify missing nodes, attribute
values, or edges.GRIP characterize explanations as non-destructive
“actions” that only enrich graphs with new information. Each action
specifies a data constraint, a node pair to be operated on, and a
graph editing operator. By exploiting validated data constraints
(e.g., graph keys and graph association rules), GRIP automatically
computes a minimal sequence of actions that is responsible for the
occurrence of a missing element. It guarantees finite and minimal
explanations, and efficiently computes the explanations with a bi-
directional inference algorithm.

Figure 3: Bidirectional search for explaining missing answer 𝑣1.
Answering “Why” and “How” questions. GRIP supports efficient
querying of the explanations. It incrementally maintains the prove-
nance information as cost-effective provenance trees. Users can
easily request explanations by asking ad-hoc “Why” and “How”
questions, which asks why a specific element is missing (to find
relevant data constraints) and how to manipulate graphs to include
the missing entities for the query (to inspect the useful actions and
suggested changes to the graph data).
Interactive exploration. GRIP browsers provide user-friendly GUI
for users to visually explore the explanation and provenance trees
(with step-by-step exploration), inspect changes and responsible
data constraints, and track the incremental maintenance of the ex-
planations upon new requests. We also demonstrate the application
of GRIP in validating data constraint quality and graph refinement.

Below we overviewGRIP (Section 2) and its major workflow, key
enabling techniques and system architecture. We demonstrate its
ease of use and effectiveness, and show its applications (Section 3).

2 SYSTEM OVERVIEW
2.1 Workflow of GRIP
The interactive workflow in GRIP consists of multiple search ses-
sions. A single session is illustrated in Fig. 2). (1) It starts by pro-
cessing a graph query 𝑄 over (a possibly incomplete) graph 𝐺 and
returns the query answer 𝑄 (𝐺) to users for inspection. (2) Given
𝑄 (𝐺), a set of data constraints Σ, and a user specified missing query
answer 𝑔 (which can be a node, a node attribute, or an edge) that
may not be even in 𝐺 , GRIP either generates a minimal explana-
tion 𝜌 as a sequence of actions or returns ∅ (“not explainable”;
to be discussed). (3) Users may then specify ad-hoc “why” and
“how” questions, on any inferred new data. GRIP returns specific
manipulations of graph Δ𝐺 accordingly for users to validate. (4)
Upon validated manipulation, GRIP commits the updates to 𝐺 and
resumes to step (3), or triggers the next session upon a new query.

We next introduce the key enabling techniques of GRIP.

2.2 Constraint-based Explanation
Data constraints. A graph data constraint 𝜑 has a general form
P → 𝑋 , where P is a graph pattern and 𝑋 is a value constraint [9].
GRIP supports two classes of constraints that:

• enforce node equality (NE): P → 𝑢𝑜 .id = 𝑢 ′𝑜 .id; or
• capture missing edges (EG): P → ∃𝑟 (𝑢𝑜 , 𝑢 ′𝑜 )

Graph patterns. The pattern P=(𝑃 (𝑢𝑜 , 𝑢 ′𝑜 ),𝐿) consists of a graph
pattern 𝑃 (𝑢𝑜 , 𝑢 ′𝑜 ) with labeled pattern nodes and edges, and a set
of value constraints 𝐿 defined on node attributes of 𝑃 . There are
two designated “entity nodes” 𝑢𝑜 and 𝑢 ′𝑜 in 𝑃 . A matching between
P and a graph 𝐺 is a subgraph isomorphism that (1) maps each
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Figure 4: Architecture of GRIP
pattern node (resp. edge) in 𝑃 (𝑢𝑜 , 𝑢 ′𝑜 ) to a node (resp. edge) with a
same label (a match) in 𝐺 , and (2) ensures all matches satisfy the
constraints 𝐿. A node pair (𝑣, 𝑣 ′) is a match of P (and of a NE or
EG P → 𝑋 ), if 𝑣 and 𝑣 ′ matches 𝑢𝑜 and 𝑢 ′𝑜 in a same matching.
Semantics. A NE (resp. EG) 𝜑 with pattern P=(𝑃 (𝑢𝑜 , 𝑢 ′𝑜 ), 𝐿) states
that “for any match (𝑣, 𝑣 ′) of (𝑢𝑜 , 𝑢 ′𝑜 ), 𝑣 and 𝑣 ′ are equivalent and
should refer to a same entity” (resp. “has a missing edge 𝑟 (𝑣, 𝑣 ′)”).
Given a graph𝐺=(𝑉 , 𝐸) with nodes𝑉 and edges 𝐸, a match (𝑣, 𝑣 ′) of
aNE (resp. EG) 𝜑 is a violation of 𝜑 if 𝑣 .id ≠ 𝑣 ′.id (resp. 𝑟 (𝑣, 𝑣 ′) ∉ 𝐸).
Actions and sequences. Given a graph 𝐺 and constraints Σ, an
action 𝑠 is a triple ((𝑣, 𝑣 ′), 𝑜 (𝑣, 𝑣 ′), 𝜑), where (𝑣, 𝑣 ′) is a violation of
𝜑 in𝐺 , and 𝑜 (𝑣, 𝑣 ′) is an operator that either “merges” 𝑣 and 𝑣 ′ and
enriches their missing attribute values (given the node equivalence),
or inserts a missing edge 𝑟 (𝑣, 𝑣 ′), thus removes the violation by
enforcing 𝜑 on (𝑣, 𝑣 ′). The result of 𝑠 on𝐺 , denoted as𝐺𝑠 , refers to
the graph obtained by applying 𝑜 (𝑣, 𝑣 ′) on 𝐺 .

The result of a sequence 𝜌 = {𝑠1, ..., 𝑠𝑛} of actions from 𝐺 is a
graph 𝐺𝜌 obtained by sequentially applying the operators in the
actions. A sequence is terminating if no action can extend it towards
a new graph (𝐺𝜌 ·𝑎 = 𝐺𝜌 for any action 𝑎).
Σ-explainable. Given the query answer 𝑄 (𝐺) of a query 𝑄 in
graph 𝐺 , and constraints Σ, a missing answer 𝑔 not in 𝐺 is Σ-
explainable if there is a non-empty sequence 𝜌 such that 𝑔 is in
𝑄 (𝐺𝜌 ). We say 𝜌 is an explanation of 𝑔 w.r.t. Σ,𝑄 and 𝐺 [9]. GRIP
process is justified by a Church-Rosser property [9].
Computing Minimal Explanations. GRIP explains missing an-
swers with informative and minimal explanations. A minimal expla-
nation is a sequence where any sub-sequence is not an explanation.
Furthermore, it solves the following problem:

𝜌 = argmax
|𝜌′ | ≤𝑏

cg(𝜌 ′,𝐺)

where cg(𝜌 ′,𝐺) quantifies the cumulative informativeness gain (the
amount of new information) by applying the operators in 𝜌 ′ [9],
and 𝑏 is a tunable size bound of explanations (set as 3 by default).
Bi-directional algorithm. GRIP performs a bidirectional Breadth-
First search (up to size bound 𝑏) over a partially observed tree
which contains possible actions. The forward search starts from
𝐺 with a root action 𝑠𝑟 and explores admissible actions, while the
backward search starts with a “virtual” action 𝑠𝑔 that contains 𝑔
and “reverse engineers” Σ enforcement to explore a set of enabling
actions that may result in this action. The bidirectional search stops
until a common action 𝑠 is identified. An explanation is constructed
as the sequence from 𝑠𝑟 to 𝑠𝑔 passing 𝑠 . As there may exist multiple

Figure 5: GRIP User Interface: Configuration
𝑠 in the intersection, the best explanation that maximizes accumu-
lated gain cg is then returned. During the bi-directional search,
GRIP keeps tracking if the action infers the missing data to recover
𝑔 as a part of the query answer.

GRIP ensures to generate finite, minimal and optimal (most
informative) explanations. The overall explanation cost is in 𝑂 (𝑇 ·
( |𝑉 |2 |Σ|𝑏/2)). Here 𝑇 is the time cost for detecting new missing
data triggered by an action.

Example 2: Fig. 3 illustrates the bidirectional search to explain a
missing answer in Example 1. (1) It initializes a forward tree from
a root action 𝑠𝑟 and explores possible actions 𝑠1 and 𝑠4 (details of
constraints and violations are omitted). (2) It constructs a "virtual"
action 𝑠2 that contains 𝑔 and explores actions that may result in
this action, i.e., 𝑠1 and 𝑠3. (3) The bidirectional search stops at 𝑠1
since it is a common action for both forward and backward search.
GRIP then returns an explanation {𝑠1, 𝑠2} to users. ✷

Exploring explanations. GRIP tracks bi-directional search by
maintaining a class of provenance trees, where each node is an
action, and there is an edge (𝑠, 𝑠 ′) between two actions if 𝑠 and 𝑠 ′
are explored consecutively in a sequence. It helps users to query the
provenance information with three types of questions. (1) “Why
a specific entity 𝑔 is missing in 𝑄 (𝐺)?” To answer this question,
GRIP retrieves the optimal explanation 𝜌 of 𝑔 from the provenance
tree that leads to the inclusion of 𝑔 in 𝑄 (𝐺𝜌 ), along with involved
constraints and violations. (2) “How to manipulate 𝐺 to recover 𝑔?”
GRIP extracts the corresponding sequence of the operators from
𝜌 (“merge” and “insert”) and the corresponding changes posed to
the graph 𝐺 . (3) While provenance trees only store the explored
fraction that is relevant to clarify 𝑔, GRIP also helps users with
ad-hoc “What-if” analysis (“What can be inferred if I start from a
specific action of interests?”) GRIP guides the user to explore, in a
step-by-step mode, (a) what new data can be inferred and (b) the
responsible constraints and actions.

2.3 GRIP Architecture
GRIP adopts a three-tier architecture depicted in Fig. 4. (1) The top
layer is an interactive interface that allows users to visually config-
ure, and input missing elements. We demonstrate the user-friendly
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Figure 6: GRIP Explanation of missing answer

GUI in Section 3. (2) The configuration component allows users to
load or input data constraints and input required parameters. (3)
The query engine processes graph queries e.g., SPARQL. (4) The ex-
planation engine generates explanations and allow users to explore
the provenance tree. It interacts with the query engine to explain
missing query answers. (5) The storage and index layer provides
fast access to attributed graphs.

3 DEMONSTRATION
Setup. We demonstrate GRIP with real-world graphs and
show its application in understanding missing informations: (1)
KG_COVID1, an knowledge graph of 15M entities (e.g., virus, dis-
ease, RNA) and 38M edges. (2) DBYa [9], with 592𝐾 nodes, 4.5𝑀
edges, and 50𝐾 equivalent pairs with aligned attributes curated from
knowledge bases DBPedia and YAGO; (3) DBIM [9], which con-
tains 33𝐾 nodes, 200𝐾 edges and 33.4𝐾 entities covering 10 types
of equivalent pairs across DBPedia and IMDb (a movie knowledge
base); (4)OAG [9], an open academic graph which unifies Microsoft
Academic Graph and Aminer with 2.5𝑀 nodes, 5.2𝑀 edges. We use
Apache Jena2 as the SPARQL query engine. We also provide a web
portal3 and the source code of GRIP4.
Scenarios. We showcase the following scenarios.
Explaining missing answers for SPARQL.We invite the users to in-
teract with the user-friendly GUI of GRIP to search graphs with
SPARQL queries and easily track explanations for missing answers
(Fig. 6). Accessing the "Configuration" panel at any session, users
are able to select real-world graphs and tune the size of explana-
tion. Users can construct SPARQL queries using “Graph Search”
panel. The constraints are visualized in the “Constraint” panel. The
provenance tree is visualized in the “Explanation” panel. Users can
inspect the rich information in the tree nodes of provenance trees,
such as the constraints and their violations, the inferred missing
data and responsible operators. We show that GRIP is capable to
explain missing query answers with data that is not in the current
dataset with graph data constraints. When no query is give, GRIP
can be used to explain why a certain attribute value of a node or a
certain edge is missing.

1https://github.com/Knowledge-Graph-Hub/kg-covid-19
2https://jena.apache.org/
3https://grip.hcma.repl.co/
4https://github.com/wsu-db/GRIP/

φ
  

Figure 7: Clarifying inaccurate elements.

Queryable Explanations.We invite users to query and explore the
provenance information with “Why”, “How” and “What-if” ques-
tions. A user can select a node in the provenance tree to pose any
of these questions. GRIP responses by highlighting the relevant
constraints, violations, actions and operations. Figure 6 illustrates
the answer of “why the ‘realm’ information of node 𝑣1 is miss-
ing?”, where the sequence 𝜌 = {𝑠1, 𝑠2} is highlighted with involved
violations, attributes values and constraits.
Interactive exploration. In this scenario, we invite users to interac-
tively browse and explore the provenance tree, and inspect how
the provenance tree are generated in a controllable way. In each
session, a user can select any node in the provenance tree and in-
spect a step-by-step forward/backward exploration rooted at the
selected node. Following the similar forward/backward search used
by Σ-explanation, GRIP incrementally extends the provenance tree
and infers more missing data as requested. Figure 5 demonstrates a
forward exploration from provenance node 𝑠2, which triggers an
action 𝑠5 to remove a new violation of 𝜑3 (not shown).
Applications.We show that GRIP can be used in real-world applica-
tions. (1) If no query and missing entity is specified, GRIP performs
budgeted graph refinement by inferring new elements with Σ. (2)
GRIP can be used to validate if any constraint is responsible for
inferring “erroneous” entities. Fig. 7 illustrates a fragment of DBIM
(𝐺1) with two graph association rules:

(𝜑):“an actor (𝑢) stars in amovie (𝑢 ′) if a producer (𝑝)
he collaborates also produces the same movie”.

(𝜑 ′): “an actor (𝑤 ) collaborates with an actor (𝑤 ′) if
they both starred a movie (𝑚).”

The insertion of an edge collab (𝑣1, 𝑣3) is annotated as “inaccu-
rate” (‘M.Gibson’ and ‘M.Hewitt’ collaborated in a movie). BiExp
generates an explanation, which states that an edge insertion
⊕((𝑣3, 𝑣2), starring) (by enforcing 𝜑) leads to the inaccurate ele-
ment collab (𝑣1, 𝑣3) (by enforcing 𝜑 ′). A closer inspection suggests
that 𝜑 can be an “overkill”, given the exception of (𝑣3, 𝑣2) (“an actor
may not always be starring a movie produced by a producer he
collaborated with”).
Performance.GRIP tracks the performance such as session response
time, and visualizes analytics of factors such as number of con-
straints and cost bound. GRIP is able to generate explanations for a
missing query efficiently, for example, it takes on average 5 seconds
to generate an explanation over KG_COVID with 50 constraints.
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