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Abstract—Detecting nodes with erroneous information in
graphs is important yet challenging, due to the lack of examples
and the diversified s cenarios o f e rrors. W e i ntroduce G EDet, a
few-shot learning based framework to detect erroneous nodes in
graphs. GEDet consists of two novel components, each addresses
a unique challenge. (1) To cope with the lack of examples, we
introduce a graph augmentation module to enrich training labels.
The module not only generates additional synthetic training
labels by simulating different erroneous scenarios, but also
exploits non-local relations to enrich neighborhood information.
(2) To further improve the accuracy, we introduce an adversar-
ially learned module that can better detect erroneous nodes by
distinguishing nodes with synthetic and real labels encoded by
graph autoencoders. Unlike conventional error detection models,
GEDet yields effective classifiers that are optimized for a few yet
diversified e xamples i n the p resence o f multiple e rror scenarios.
We show that using only a small number of examples, GEDet
significantly improves the competing methods such as constraint-
based detection and anomaly detection, with a gain of 35% on
recall, and 30% on precision.

Index Terms—data cleaning, few-shot learning, adversarial
deep learning, graphs

I. INTRODUCTION

Ensuring high-quality graph data such as knowledge bases
and social networks is important for various downstream appli-
cations. The cornerstone task is to detect erroneous nodes that
have wrong values in attributed graphs. Various approaches
have been studied to curate graph data [20]. Nevertheless,
these methods focus on inferring new information from their
correct counterparts and cannot be directly used to detect
erroneous nodes that are already in graphs.

Detecting errors has been extensively studied for relational
data [1], and has been recently extended to attributed graphs.
These methods are optimized for “pre-emptively” assumed
erroneous scenarios. Erroneous nodes with incorrect attribute
values can be captured as violations of data constraints [10],
anomalies [17], or via statistical inference [19]. These methods
can be accurate for specific types of errors, yet may not achieve
good performance in the presence of multiple types of errors.
Consider the following example from real knowledge graphs.

Example 1: Fig. 1 illustrates a fraction of a knowledge
graph about films. E achn ode c arries a t ype ( e.g.,film) and
a set of attributes (e.g., ‘title’) with values (e.g., “HarryPot-
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title: HarryPotter I
genre: filmBasedOnNovel
main subject: magic

title: HarryPotterSeries
genre: fantasy
main subject: magic

Vy (book)

basedOn

(person)

Yo name: J.K. Rowling
oo

subsequentWork

Vs (film)

title: HarryPotter III
genre: fantasy
main subject: time travel

title: HarryPotter II
genre: filmBasedOnNovel
duration: 10,000,000m

Fig. 1: Detecting Erroneous Nodes in Knowledge Graphs

ter_I). Each edge carries the relationships between nodes
(e.g., screenWriterOf). There are three erroneous nodes'):
o Film v; has a genre “filmBasedOnNovel” that should be
“fantasy”, same as the genre of the book v.
o Film vy has the same genre as v; that should be “fantasy”,
and a duration “10,000,000m” that should be “161m”.
o Film v3’s main subject “time travel” should be “magic”.

Multiple erroneous scenarios exist for a single type of nodes
e.g., “film”. For example, (1) the erroneous node v; can be
detected as its “genre” violates a graph data constraint ¢ [10]
that states “if a movie is based on a book (‘basedOn’), then
they should have the same genre and main subject”; (2) node
vo has an outlier over the values of the duration of films.

Nonetheless, applying individual methods or a simple
“union” of their results may not capture all the errors from
different scenarios. For example, node v3 may not be captured
by outlier detection as “time travel” can be a common main
subject. The constraint ¢ also fails to capture vz, as no direct
link connects vz and v4. The union of the results from the two
approaches overlapped at vy, and v3 remains undetected. O

We identify the following challenges.

Multiple Erroneous Scenarios. Erroneous nodes are character-
ized by more than one type of errors (misspelling, violation
of value constraints, numerical outliers) [28], [20]. Such a
diversity cannot be fully captured by a single model. For
example, data constraints and outlier detection may achieve
good precision but often a low recall; a simple combination
does not ensure coverage due to overlapped errors [1].
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Lack of Examples. It is often difficult to obtain a full set of
correctly labeled examples, especially over real graphs. This
issue remains in error detection by crowd-sourcing [5], due to
labels with low-quality. This limits the capability of learning-
based approaches that detect errors via node classification.

Another source of sparsity comes from the inherent incom-
pleteness of real-world graphs [20]. Specifically, missing edges
leads to the insufficient neighborhood, hence may downgrade
the performance of error detection (e.g., constraint-based de-
tection, or message-passing based learning [31]).

The above challenges call for graph error detection ap-
proaches that can utilize a few examples from different error
scenarios to achieve good performance.

Contribution. This paper proposes Graph Error Detection
(GEDet), a few-shot learning-based framework to identify
erroneous nodes in graphs. GEDet addresses the above chal-
lenges with the following novel features.

Few-shot Error Detection. GEDet enables few-shot learn-
ing [30] based error detection framework with a novel graph
augmentation strategy. It enhances supervised information
with both synthetic labels and non-local neighbors.

(1) GEDet generates synthetic erroneous examples with an
error generative model. The error generation combines trans-
formations to simulate various types of errors characterized
including data anomalies and graph data constraints.

(2) Moreover, GEDet actively identifies useful nodes with
features that may contribute to error detection via label propa-
gation. It enhances node neighbors via a biased link inference
process that favors such non-local counterparts. This further
mitigates the impact of sparse neighbors due to missing edges.

Adversarially Learned Detection. The detection module of
GEDet exploits the principle of adversarial learning to improve
the accuracy of error detection. In a nutshell, GEDet learns
a generator to simulate the distribution of real labels from
graph autoencoders over the augmented graphs to “fool” a
discriminator. By forcing the discriminator to differentiate not
only “error” and “correct” but also “synthetic” and “real”
labels, GEDet improves the accuracy of error detection.

Achieving high recall with reasonable precision has been
a difficult task for existing error detection [1]. The few-
shot module of GEDet ensures its coverage of heterogeneous
errors (hence improves the recall), and the adversarial model
improves the decision boundary of classification (hence retains
reasonable precision). This ensures GEDet a robust perfor-
mance on error detection over graphs with multiple error
scenarios, as verified by our experiments.

II. PRELIMINARIES ON ERROR DETECTION IN GRAPHS
A. Error Detection Problem

Graphs. A graph G = (V, E) consists of a set of nodes V'
and a set of edges £ C V x V. Each node v € V (resp.
edge e € F) carries a node type L(v) from a set T (resp.
relation L(e) from a set R). Each node v € V also carries a
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vector (v.Aq,...v.4,) defined on n attributes, where v.A; =
a; (i € [1,n]) denotes that the attribute A; of v has value a;.

Given a graph G = (V, E), we consider a “ground truth”
node v* for each node v € V that carries correct values
of all the attributes of v. A node v is erroneous (annotated
by a class label ‘error’) if there exists an attribute A, such
that v.A # v*.A (v.A can be ‘null’ that denotes a missing
value); otherwise, v is correct (v = v*; annotated by a class
label ‘correct’). A node is labeled if its class label is known;
otherwise it is unlabeled.

Problem statement. Error detection in a graph G=(V, E) can
be formulated as a node classification problem. The training
nodes Vo = Ve U Ve (V- C V) refers to a set of labeled
nodes, where (a) V¢ is a set of erroneous nodes, and for each
node v € V', a correct counterpart v* is known; and (b) V¢
is a set of correct nodes with labels ‘correct’.

Given graph G and the training nodes V7, the error detec-
tion problem is to learn a model that accesses G to infer the
class labels of a set of unlabeled fest nodes from V' \ Vr.

B. Enabling Techniques

GEDet is empowered by several established techniques that
are nontrivially enhanced to improve the accuracy of error
detection in graphs. We next revisit these techniques.

Graph Representation Learning. GEDet is empowered by
graph representation learning, which aims to derive proper
vectorized representation of graphs that can be used for
downstream tasks e.g., classification.

Graph representation. Graph learning requires a proper en-
coding of attributed graphs as feature matrix. Given a graph
G=(V, E), a feature representation of G is a pair (X¢, Ag),
where (1) X¢ is a node feature matrix (X € RIVIXd) that
records for each node v € V a feature vector x, € R%; and
(2) Ag is the adjacency matrix of G.

GEDet uses a library of established encoding functions
(e.g., word embedding [11]) to convert heterogeneous nodes
to feature space R?. To encode different types of nodes it
concatenates type as one-hot feature [23], and applies meta-
path based propagation [33], which groups the neighbors of
a node according to their similarity and distances following
meta-path connections (see Section IV).

Graph Convolutional Autoencoders. GEDet exploits graph au-
toencoders (GAE) [31], [15] to learn node representations
for downstream error detection. A graph autoencoder takes
as input a graph representation G = (X¢, Ag) to learn an
encoding Z € RIVIxd (d <« d) of X¢ (by an encoder Enc),
from which reconstructing (X¢, Ag) is possible (by a decoder
Dec). That is, the learning minimizes a reconstruction loss:

mindist((Xg,Ag),Dec(Enc(Xg,Ag)) @))]
which is quantified by a distance metric dist.

A majority of successful applications of GAEs relied on
graph convolutional networks (GCN) [14] to encode nodes
due to its simplicity and linear complexity. The ¢-th layer of
a GCN takes a feature vector h(*~1)(x,) for each node v as

Authorized licensed use limited to: University of Texas at Arlington. Downloaded on December 31,2021 at 21:22:21 UTC from IEEE Xplore. Restrictions apply.



Symbol Notation
G=(V,E) Heterogeneous graph with nodes V' and edges &
e ¢ Labeled training nodes;
Vr=Vvouv V¢ erroneous nodes; Vgcz correct nodes
feature representation of G:
(Xe, Ac) (X¢: feature matrix; Ag: adjacency matrix)
™ (x,) the embedding of node v (at layer n)
H®™ graph embedding matrix at layer n
H the error generative model
L the link inference model
Z the graph convolutional autoencoder
g, D generator and discriminator of GAN
L(G), L(D) loss function of G and D
Ls, L supervised and unsupervised loss of L(D)

TABLE I: Table of Notations
input (h°(x,) refers to node features x,). Node v updates its
feature vector h’(x,) by aggregating the counterparts from
its neighborhood N(v). As updated feature vector h(x,)
becomes the input to the (¢ + 1)-th layer, the aggregation
propagates from layer 1 to n as follows:

HE+) — o (ﬁ—%gb—%maww) )

where A = A + 1, |v| is the adjacency matrix of G with self-
loops (I}y| refers to the identity matrix), Di=Y ; A, w®
is a layer-specific trainable weight matrix, o(-) is an activation
function, and H“*1) is the output at the /*" layer.

GEDet specifies a GAE as follows. (1) The general term

Enc is specified with a n-layer GCN (n=2 by default). (2)
The decoder consists the following. (a) A structure decoder
reconstructs the original network structure with the learned
representations Z (Ag = o(ZZ7)). (b) A feature decoder
reconstructs X (Xg = o(D~2AD~ 2 ZW®)),
Few-shot Learning. Few-shot learning [30] aims to learn ef-
fective models from a few labeled examples, by e.g., enhancing
augmented training data. This can be achieved by using (hand-
crafted) rules [22]. GEDet capitalizes on transformations to
simulate error generation and produce a set of nodes with
synthetic erroneous attribute values (with a label “synthetic
error”). It also consistently enhances neighbors of nodes to
better improve accuracy (see Section IV).

Generative Adversarial Networks. Generative adversarial
networks (GANSs) are used to generate synthetic data that ap-
proximates real data distribution by jointly learning a generator
G and a discriminator D. The generator G produces synthetic
data as close to the real counterpart as possible, and D learns to
distinguish real embeddings from synthetic counterparts from
G. It has been shown that GANs can improve semi-supervised
learning [25], [6] with improved decision boundary when the
target model is forced to distinguish true and synthetic labels.
C. Error Detection as “Two-player Game”

GEDet models error detection as a two-players game be-
tween a generator G and a discriminator D. It exploits the
principle of adversarial detection with the following intuition.

o A generator G tries its best to “fool” a discriminator D
by representing the augmented G (including synthetically
labeled nodes) as close to the real counterpart as possible.

o The discriminator D meanwhile learns to distinguish
nodes with real labels from the candidates from G.
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The “competition” between G and D in a joint learning
process iteratively improves the performance of both: G even-
tually learns the distribution of the real labels, and D improves
accuracy of error detection.

Consider the labeled set L = {(x,y)}, where x represents
amnode and y € {‘error’(y = 1), ‘correct’ (y = 2)}. We
introduce a third label ‘synthetic error’ (y = 3) to annotate an
embedding of a node with synthetic errors from G. We can
enforce a learning objective of D in the form of:

mng$NL log Pp(y|x,y < 2) + Eyplog Pp(y < 2|z)
(3)

where p and pg refers to the distribution of the real data and
its synthetic counterpart from G, respectively. The first, second,
and third terms are to maximize the log conditional probability
for (1) the labeled nodes with true labels, (2) the unlabeled
nodes (as either ‘error’ or ‘correct’), and (3) the generated
synthetic examples (into the class of ‘synthetic error’).

+ Ezwpg 10g PD(3|x)

Although desirable, GANs cannot be directly applied for
error detection in graphs. GEDet obtains a compact encod-
ing (including error distribution and augmented topology of
original graphs) from graph autoencoders. The generator and
discriminator then play a competitive game over the compact
encoding to improve the decision boundary by specifying and
optimizing the above objective (Section V).

III. FRAMEWORK OVERVIEW
A. GEDet Models

We start with the cornerstone models in GEDet framework.
Error Generative Model (#). We advocate to learning real

node error distribution at the attribute level, and characterize
various error scenarios with transformations. A transformation
simulates error generation process by “perturbing” a correct
attributed value to a mismatched counterpart. Given labeled
nodes V7 and a library of transformations W, the error
generative model 7 converts the node attribute values of V7 to
approximate real error distribution with observed conditional
distribution of the node attribute values.

Link Inference Model (£). To mitigate the impact of missing
neighborhood, GEDet adopts a link inference model £ to
infer links to non-local nodes that may contribute to the local
representation learning of a node via layer-wise propagation.

GEDet applies the error generative mode #H and link infer-
ence model £ to perform graph augmentation, with synthetic
labels and enriched neighbors, respectively (see Section IV).

Error Detection Model (Z, D and §G). GEDet detects
errors with a graph convolutional autoencoder model Z and a
GAN model. Graph autoencoder Z generates the robust graph
embedding as input for GAN. GAN consists (1) a generator G
to produce a synthetic graph sample with labels from training
nodes and synthetic ones, and (2) a discriminator D that
transforms an input graph sample to scalar values, and further
infers node class labels and distinguishes real and synthetic
labels for unlabeled nodes via a classification layer.
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Fig. 2: Overview of GEDet Framework

B. GEDet Framework

We next provide an overview of GEDet framework (illus-
trated in Fig. 2). GEDet takes as input with an attributed graph
G = (V, E), a set of training nodes V- C V' with labels, and
a library of transformation functions ¥ (Section IV-A).

Scope Generation. This module induces from the original
graph G a scope G to facilitate graph learning. This step
necessarily converts attributed input G to uniform feature
representation. Specifically, for each node type [ € T, GEDet
induces a corresponding scope graph G; = (V}, E;), where

o VICV,Lw)=1lYweV;

o (v,v') € E;NR.

where F; C V; x V}, and R is a node proximity relation
induced by a set of meta-paths [26]. A meta-path ® is a
path in the form of 73 LN T2 NN Ti+1 (abbrevi-
ated as 7173 ...7;+1), which describes a composite relation
R = Ry 0 Ryo---0 Ry between entities 77 and 7;41, where o
denotes the composition operator on relations. Following [26],
GEDet asserts that two nodes (v,v’) of the same type are
similar ((v,v") € R) if they are connected by a symmetric
meta path with a high node proximity score.

Given a set of targeted node type 77 C T induced from
e.g., test node set, a scope graph G = (Vp, Er) is induced
as the union of each type-specific scope graph G; = (V, E))
for each | € T', i.e, Vi = Uy Vio Er = U Er- The
feature representation G = (Xr, Ar) is then derived as the
input for graph augmentation.

Graph Augmentation. This module augments the input scope
graph G by the following procedures.

Node augmentation. GEDet learns the error generative model
‘H from the training nodes V7 following the data distribution
in G and exploits transformations W. # is used to generate a
set of nodes with transformed erroneous values and a synthetic
“error” label. This yields a graph representation Gz with node
features X g7, which includes a set of synthetic feature vectors
X5 obtained from the nodes with transformed attribute values.

Neighbor augmentation. Based on the link inference model
L, GEDet further enhances the neighbors of the nodes in the
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scope graph G by inferring non-local relationships that favor
error detection. This introduces a set of “virtual neighbors” for
the nodes in G, and transforms the adjacency matrix Ap of
G to an enriched counterpart Ay .

The graph augmentation (illustrated in Fig. 2) yields the
following representations: (1) Gy (Xpy,Ar) with fea-
tures encoding transformed attribute values; and (2) G
(X, AL), with the original features X from the scope Gr.
Both G and G, share the augmented topology Af.

Graph augmentation is quite effective: using only 10 exam-
ples, it improves the accuracy of error detection with a gain
of 10%, as verified in Section VL

Adversarial Detection. This module learns compact node
embeddings with graph autoencoder Z and generates classi-
fiers (as illustrated in Fig. 2). (1) The graph autoencoder Z
derives the latent representation Zy and Z, of Gy and Gy,
respectively. The encoding Zg of synthetic nodes Xg can be
induced via node index. (2) The input Xg = Zg & Xg for
the generator G is computed by concatenating Zg and Xg;
the input X} = X @ Z;, for discriminator D is computed
similarly. GEDet then jointly learns G and D in the competitive
game, and derives the class labels at the prediction stage.

The adversarial learning further improves the accuracy of
error detection with a gain of 11% compared with GEDet-B,
as verified in our experimental study.

We next introduce the details of graph augmentation and
error detection modules, in Sections IV and V, respectively.

IV. GRAPH AUGMENTATION
A. Augmentation of Labeled Nodes

The node augmentation module learns an error generative
model H to approximate error distribution of the scope graph
G, and produces synthetic erroneous nodes.

Characterizing Heterogeneous Errors. GEDet characterizes
various erroneous scenarios with transformation functions (or
simply transformations). Given a correct node v* with attribute
v*.A, a transformation ¢ € W converts v*.A = a* to a
mismatched counterpart a (¢p(v*.A) — a(a # ax)), thus
leads to an erroneous counterpart.
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A transformation can be derived and applied to multiple
nodes and multiple attributes, and can be specified in various
forms such as (string) transformation rules [12], numerical
errors [4], or induced from violations of data constraints [10].

Example 2: A semantic constraint ¢’ defined on films that
states “a film m and a book b should have the same genre
if m is based on b (Example 1)” can be expressed as a
rule basedOn(m, b) — m.genre = b.genre. A corresponding
transformation rule can be derived to “violate” ': if node vy,
(resp. vp) in G has type film (resp. book) and basedOn(v,,,
vp), then change v,,,.genre such that v,,,.genre # vy.genre. O

Weighted transformations. An erroneous node may be caused
by multiple transformations. Given a library of transforma-
tions W, and a set of erroneous nodes V¢ C Vg (with the
corresponding “ground truth” set V*), the error generative
process aims to simulate the transformations from each ground
truth v* to corresponding v € V¢ as close as possible.

Given that v* and v should refer to same real-world entity,
we introduce a closeness measure between v with n attributes
and a weighted transformation of its ground truth v* as

Fo, (")) =Y > w;-sim(v.A;, ¢;(v".4)) @
i G;eT
which computes the accumulated similarity (sim) over all
attribute values and their transformed counterparts, and over
all transformations in W. If a transformation ¢ is not applicable
to v*. A4, ¢(v*.A) = v*.A by default.

The overall closeness is measured by the probability:

P(U(VH)|Ve) = %exp(EveWF(v,\I!(v*)))

®)

where Z is a normalizer such that P(¥(V*)|V¢) € [0, 1].

GEDet then learns the weights W = {wy, ... wy,} of the m
transformations in ¥ from the training examples V¢ and V*
such that the log-likelihood of their relevancy is maximized:

W = arg maxlog P(¥(V7)[V*) ©)

The above objective function can be learned by L-
BFGS [27]. The overall learning cost is O(c(|V¢||n||¥])?),
with ¢ the number of gradient computations performed by the
optimization. Our experiments verify that the learning cost is
affordable (see Section VI), and n (number of node attributes),
U, and |V*¢| are all small in practice.

Where to inject “errors”?. A potential impact from synthetic
label injection is the skewed label distribution of neighbors,
especially for message-passing based graph learning. When
most neighbors of a node have a majority label, there is a
higher chance for the node to be assigned a wrong label [7].

In response, GEDet uses a prioritization strategy. Denote
the number of transformations in W that are applicable to node
v €V as ¢(v). A ranking score of node v is computed as

N ()nve]
[Vel

ifveVeand Nv)NVe £
otherwise

)
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where N (v) is the neighbors of v in Gr. We sample top-
k nodes in the graph (k:% by default, to balance the
number of labeled correct and erroneous nodes). Intuitively, it
favors the correct nodes that have more erroneous neighbors
and are more “vulnerable” to given transformations (as more
attributes can be transformed). This “breaks” the links between
correct nodes and erroneous ones and mitigate the impact
from skewed neighbors as the correct nodes are transformed
to create synthetic “erroneous” ones. If no such nodes can be
found, it randomly samples k correct or unlabeled nodes.

Remarks. GEDet supports the following: (1) Assigning higher
weights to transformations that violate high-quality data con-
straints for graphs [10], [16]; (2) User-defined transformations
such as anomaly detection; and (3) (User-defined) composite
transformations (e.g., ¢=¢1¢2) to simulate error generation
process as a sequence of transformations. On the other hand,
our case analysis verified that GEDet is less sensitive to the
quality of data constraints compared with constraint-based
error detection (see “Case study” in Section VI).

B. Neighborhood Augmentation

The neighborhood augmentation further enhances sparse
neighbors to mitigate the impact of missing links. While link
prediction has been well studied, inferring all the missing links
with these methods is neither affordable nor necessary.

Our idea is to learn and apply a biased link inference model
L that optimizes the likelihood of connecting a node to its
(non-neighbor) counterparts that can “contribute” to improve
error detection, and performs only necessary amount of link
inference for efficient augmentation. To this end, we specialize
supervised random walk [3] to the following strategy.
(1) GEDet samples a set S of “seed” nodes from Vi with
heuristic node importance ranking measures, such as degree,
betweenness or PageRank. For each node v € S, it assigns
a set of positive nodes S(v)™ that (a) have the same class
(‘error’ or ’correct’), and (b) also have a node similarity with
v no smaller than a threshold 6,,, where 6, is the smallest node
similarity between v and its direct neighbors.

GEDet supports a built-in library of node similarity mea-
sures e.g., Euclidean distance and node embedding similarity.

(2) GEDet then specializes a supervised random walk [3] to
learn £ as a function f,, (parameterized by a learnable vector
w) that properly assigns strength values to each edge (v,v’)
in G. Our goal is to ensure a random walk, if following the
probability induced by edge strengths (a “transit probability”)
from a seed v, is more likely to visit the nodes in S(v)*:

min F(w) = |jw|]? s.t.

Yo € S,V & S(v)T,v" € S(0)T i puur < Pour
Here p is the vector of PageRank scores that depends on
edge strengths, and p,,, refers to the PageRank score of node
v’ with v the selected source node.
Once the weighted adjacency matrix is learned, for each
labeled node v in G, GEDet selects top k£ non-local neighbors
with the same label and with the highest transit probability.

()
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V. ADVERSARIALLY LEARNED ERROR DETECTION

One may directly apply graph representation learning
e.g.,GCN and generate a node classifier. Nevertheless, a node
may still not be correctly detected due to label propagation
from both real and synthetic ones, and from a skewed label
distribution. GEDet improves the accuracy by capitalizing
graph autoencoder and GAN, with an observation that is
consistent with [7].

We introduce the learning objectives of G and D in the
two-player game, and then present the learning algorithm.

Loss Function of Generator. The learning objective of the
generator G is to minimize the difference between the synthetic
graph embeddings X ¢ and the real counterpart from X7 . We
define the loss function of G (denoted as L(G)) as the feature
matching loss [25]:

2

L(G) = vy, ey (B9x.)) = Avgg exy (B x0) |
9)
where Avg(-) computes the mean vector representation of a
graph feature matrix. Correspondingly, Avg, . X, (h(z) (xv))
represents the mean vector representation of all feature vec-
tors of nodes in graph embedding X7; Avg,, ¢ x, (1 (x}))
represents the mean vector representation of all feature vectors
of nodes in synthetic graph embedding X§. Intuitively, G has
higher chance to fool the discriminator D by faking node
embeddings closer to the real counterpart by minimizing L(G).

Loss Function of Discriminator. To enable discriminator D
to recognize erroneous nodes, and also to differentiate nodes
having real and synthetic labels, we quantify the loss of D as
o Supervised loss (L®), which quantifies the loss of accu-
racy on node label classification (‘error’ or ‘correct’); and
o Unsupervised loss (L"), its counterpart on distinguishing
synthetic or real labels.
The learning objectives for D is thus to minimize the bi-
criteria loss L(D), which is defined as

L(D) = L* + AL (10)
where the supervised loss L° and the unsupervised loss L*
(balanced by a hyper-parameter \) are defined as follows.

Supervised Loss. We use softmax cross-entropy to calculate the
cross-entropy errors given the true labels in the real training
graph. We denote the node embedding matrix generated by D
as H™, where H™ € RN'%2 (N’ is the number of nodes in
X1). The supervised loss is defined as

1
—W Z [yv log (pv) +(1— yv)log (1 _pv)] (11)
T veVr

where V7 is the labeled node set in G, y, is the ground
truth label of node v (1 for “error” and O for “correct”), and
p, refers to the predicted probability of v being “error”, which
can be computed by applying a softmax function on H ™.

L=

Unsupervised Loss. The discriminator D also aims to classify
the real or synthetic examples as accurately as possible by
minimizing the unsupervised loss L". We define L“ as:

LY = —E,,~x; [log D(2y)] = B, wxy [log(1 = D(,))] (12)
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Algorithm: Adversarial Learning of GEDet
Input: real graph embedding X, synthetic graph embedding X,
learning rate o
repeat
Draw all synthetic nodes from synthetic graph embedding X%
Draw all real nodes from real graph embedding X,
Update the discriminator by descending gradients of losses:
Vo, L(D)
Draw all synthetic nodes from synthetic graph embedding X%
Draw all real nodes from real graph embedding X,
Update the generator by descending gradients of losses:
Voo L(G)
Reduce learning rate «
until Convergence or reaching the predefined total iterations

Fig. 3: The Adversarial Learning Algorithm

where D(x,,) represents the probability that node v comes
from the real data X instead of synthetic data X§. Both X
and X are fed to learn D by updating trainable variables.

Adversarial Learning. Following [24], G feeds X4 to a
sequence of transpose convolutions and batch normalization
operations. D takes real feature matrix X} and its synthetic
counterpart X that is generated from G as inputs. It also
applies a stack of convolutions with batch normalization oper-
ations. To prevent overfitting, D applies regularization through
dropout and global average pooling operations. To determine
the probability of an input being real,D feeds the logits through
the LogSumExp operation. It feeds the logits through the
softmax function to obtain classification probability.

As illustrated in Fig. 3, GEDet trains generator G and
discriminator D by iteratively minimizing their corresponding
losses. In the main training loop, we use equation (9) and
equation (10) to compute the discriminator loss L(D) and
generator loss L(G). We optimize the gradients by applying
Adam [13]) and update corresponding discriminator D and
generator G. At the end of each iteration, we reduce the
learning rate (e.g., multiplied by a decreasing ratio) to prevent
an unstable training process due to high learning rate.

Error Prediction. Following Equation (11), a node embedding
matrix H™ from the real input X 7 is generated in D, where
H™ ¢ RN'%2 For each node in X} with a 2-dimensional
vector of logits, after applying the softmax function, we can
get the predicted class probabilities and choose the larger one
as the predicted class (‘error’ or ‘correct’).

Analysis. We next justify how our adversarial detection mod-
ule improves the accuracy of error detection. Our analysis
follows from that GAN can help semi-supervised classification
by forming fine-grained decision boundary [32], [7].

(1) Our generator G follows weighted transformation to gen-
erate synthetically labeled nodes. This not only enhances
supervised information for error detection, but also reduce the
influence of labeled nodes that may interplay from different
“correct” and “error” clusters (recall the prioritized strategy of
graph augmentation in Section IV-A). [7] interprets the loss
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TABLE III: Scope Graphs (annotated by type)
L(D) from the graph Laplacian regularization perspective:
1#£]
L(D)=L°+ X Z a;j - neq (y{,y;)
vi,v;EV

y, denotes predicted label of v;. neq(-,) is a 0-or-1 function
representing not equal. o; is a regularization parameter that
enables synthetic nodes to affect discriminator loss by chang-
ing the degree of node v;, denoted as deg(%).
i (i4))
V/deg(i)deg(j)
(2) As a first step, G generates synthetic samples in low-density
areas that lie between error and correct node manifolds. In the
learning process, discriminating synthetic samples from real
nodes in D makes the classifier be aware of low-density areas,
which benefits separating correct and error node clusters.
The classifier tends to learn a higher curvature function and
more accurately captures the boundary of different clusters.
Inside each cluster, the confidence of classification boosts as
the supervised loss L® decreases and the decision boundary
gets refined. With sufficient synthetic nodes lying between
“correct” and “error” clusters, we link synthetic nodes to the
nearest real nodes to regularize the graph Laplacian loss.

13)

(14)

Oéij

VI. EXPERIMENT

Using real-world graphs, we experimentally verify the ef-
fectiveness and the training cost of GEDet framework.

A. Experiment settings

Datasets. We use the following real-world graphs: (1) DBP?,
a knowledge graph that contains entities such as “scientist”
or “organization” and relationships among entities such as
“worksAt”; (2) OAG, a fraction of the open academic graph3 s
where nodes refer to e.g., papers, authors, organizations, and
an edge can be “cite” or “affiliatedTo™; (3) Yelp®, a graph with
nodes as users and local services (e.g., plumbers, restaurants),
and edges such as “friendWith” and “reviews”.

We also report the sizes of individual scope graphs that
are induced by specific types (e.g., ‘Data Mining’ from OAG
denotes a scope graph with nodes having a topic ‘Data

Zhtps://wiki.dbpedia.org/develop/datasets
3https://www.openacademic.ai/oag/
“https://www.kaggle.com/yelp-dataset
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Dataset V] |E] # node types | # edge types | avg. # attr Data Constraint (support/confidence) Transformation rules
DBP 2.2M | 7.4M 73 584 4 If a music genre v* has deriva- $(v* origin)
OAG 0.6M | 1.7TM 5 6 2 Music tive “New_Age_Music”, its origin ’_1; -(Erzg;ZTiBl "
Yelp [ 1.5M [ 1.6M 42 20 5 is “Blues”. (249,/0.99) ale ues
TABLE II: Overview of Real-world Graphs If two transportation tools v} and X
Transport | v} lated, they have th ¢(vi.manufacturer)
Dataset |VT‘ ‘ETl avg. # attr |V7“ IVE‘ anspo: Vo are related, they have the same —_ a(a ?é GI)
Agent(DBP) 216 212 3 13 3 manufacturer. (705/088)
MusicGenre(DBP) 164 402 3 10 3 N .
Transportation(DBP) 637 | 642 3 38 1 If users vT and v; friend each other §
Species(DBP) 17.7K | 20K 1 1062 | 134 UserGroup! | nd have ttf?sfam}f raings, and vi ﬂz"s(coz) 5
Data Mining(OAG) 112K | 12.9K 3 670 | 158 as score ">, then wy also has ala
Machine Learning(OAG) | 3.4K | 3.3K 3 203 | 54 score “57. (157/1.0)
UserGroup1(Yelp) 3.4K 2.6K 3 202 57
UserGroup2(Yelp) 33K | 25K 3 196 | 45 TABLE IV: Examples of Graph Data Constraints

Mining’). The details of these datasets and scope graphs are
summarized in Tables II and III, respectively.

Error Generation. We implemented a configurable error gen-
erator that enhances BART [2], a tool to introduce erroneous
attribute values to real graphs. Following [2], it introduces two
classes of errors to node attribute values:

(1) Detectable errors refer to violations of a set of data
constraints 3 [10]. We invoke the algorithm in [9] to discover
3. The generator then injects errors to the nodes that match
their “If”” condition (“node matches”) to violate the constraints.
For DBP, OAG, and Yelp and their scope graphs, we have
discovered 89, 21, and 112 constraints with 1000, 10, and 20
as minimum support (number of node matches) and 0.9, 0.8,
and 0.85 as minimum confidence (the node matches that also
satisfy the consequent), respectively. Three constraints (with
general transformation rules) are illustrated in Table IV.

(2) Random errors are generated from multiple scenarios in-
cluding misspelling, outlier values (both string and numerical
values), missing values (‘null’), and random string disturbance.
We ensured that injecting these erroneous values alone are not
leading to violations of the data constraints 3.

The generator is controlled by node error rate (the probabil-
ity that a node is erroneous, set as 0.01 by default), attribute
error rate (the probability that an attribute is selected to pollute;
set as 0.33 by default), and detectable rate (the probability that
an error is a detectable; set as 0.5 by default). We also retain
the transformations W that are used to inject the errors for
graph augmentation. For each graph, we randomly partition
the nodes to obtain 6 folds for training examples, 1 fold for
the validation set, and 3 folds for testing nodes (see Table III).

Algorithms. We implemented GEDet (including graph aug-
mentation and adversarial error detection), and compare its
performance with 8 baselines categorized as follows.

(1) Variants of GEDet, including (a) GEDet-C, a simpler
GAN-based alternative that directly differentiates the nodes
in Gy and G by learning a discriminator over synthetic
encodings Xg (from Gp) and original counterpart X (from
(1) without graph autoencoders; (b) GEDet-B, an alternative
based on few-shot learning, which replaces the adversarial
detection with a GCN-based classifier; and (c) GCN, a variant
of GEDet-B that learns a semi-supervised node classifier with
GCN, without graph augmentation and adversarial training.
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Dataset Metrics | VioDet | OutlierDet | Hybrid | Alad | Raha GCN GEDet-B | GEDet-C GEDet

P 0.99 0.10 0.17 0.39 0.38 0.40 0.50 0.43 0.44

Agent R 0.20 0.17 0.33 0.37 0.65 0.33 0.33 0.50 0.67
F 0.33 0.13 0.22 0.38 0.47 0.36 0.40 0.46 0.53

P 0.50 0.17 0.27 0.11 0.21 0.50 0.23 0.40 0.24

Music R 0.27 0.13 0.50 0.25 0.67 0.17 0.67 0.33 0.83
F 0.35 0.15 0.35 0.15 0.32 0.25 0.34 0.36 0.37

P 027 0.17 021 022 | 0.24 022 022 022 0.24

Transport R 0.13 0.12 0.32 0.90 0.12 0.88 0.91 0.97 0.98
F 0.17 0.14 0.26 0.35 0.16 0.35 0.36 0.36 0.39

P 0.85 0.35 0.35 0.13 0.40 0.57 0.51 0.98 091

Species R 0.24 0.32 0.45 0.89 0.60 0.35 0.40 0.43 0.48
F 0.38 0.34 0.40 0.23 0.48 0.43 0.45 0.60 0.63

P 0.26 0.10 0.24 0.23 0.50 0.35 0.58 0.98 0.98

Data Mining R 0.30 0.24 0.43 0.77 0.43 0.74 0.48 0.44 0.45
F 0.28 0.14 0.31 0.35 0.47 0.47 0.53 0.61 0.62

Machine P 0.24 0.08 0.26 0.23 0.62 0.63 0.57 0.97 0.97
Learnlin R 0.27 0.28 0.50 0.40 0.45 0.43 0.54 0.43 0.45
g F 0.25 0.13 0.34 0.30 0.52 0.51 0.55 0.59 0.62

P 0.33 0.56 0.31 0.27 0.63 0.51 0.53 0.81 0.78

UserGroupl R 0.55 0.30 0.67 0.55 0.60 0.52 0.58 0.53 0.64
F 0.41 0.39 0.42 0.36 0.62 0.52 0.55 0.64 0.70

P 0.31 0.51 0.28 0.27 0.59 0.66 0.34 0.92 0.96

UserGroup2 R 0.54 0.30 0.65 0.73 0.56 0.33 0.70 0.43 0.45
F 0.39 0.38 0.39 0.39 0.57 0.44 0.46 0.59 0.61

TABLE V: Performance of Error Detection. Bold: best result; Underlined: second best.
. . . . . ErryNErr ErrgMErr
(2) Anomaly detection, including (a) OutlierDet, which com- are defined as P = %, R= %, and F = %’

putes a local outlier factor [4] to node features and quantify
the degree of being an outlier in k nearest neighbors; and (b)
Alad [17], a framework that measures normality of the nodes
by considering both the topological structures of the graph and
attribute distribution estimation within local context of nodes.
(3) VioDet, a constraint-based error detection that detects
errors as the union of the violations of a set of data constraints
>’ mined from the original datasets.

(4) Ensemble approaches that combine multiple detection
methods: (a) Raha [18] is a state-of-the-art method to detect
errors in relational data. It configures a library of built-in
detectors e.g., outlier detection, to generate error detection
strategies; (b) Hybrid, a method that adopts the Union-all
strategy [1] and takes the union of the detected erroneous
nodes from OutlierDet and VioDet to improve the recall.

Configuration. We use consistent settings for fair comparison.
(1) For OutlierDet and Alad, we optimized model hyperpa-
rameters to achieve their best performance. As Alad ranks
nodes and is evaluated by AUC-PR curve [17], we applied
the default setting to learn Alad, selected the thresholds that
enable its best performance in terms of AUC-PR curve, and
derived anomalies as erroneous nodes. (2) We used the same
set of data constraints Y for GEDet and its variants, and
VioDet (illustrated in Table IV). We use the same settings for
variants of GEDet on each dataset. (3) As Raha is designed
for relational data, we created one table per node type (with
unified schema) and applied Raha to the created table.

Evaluation metrics. We evaluate the performance in effec-
tiveness and efficiency. For effectiveness, we report precision,
recall, and F;-score. Denote Erry as the set of erroneous nodes
detected from the graph, and Err as the set of nodes that
are erroneous in the graph. The precision, recall and F;-score

respectively. For efficiency, we report the training time of the
algorithms GEDet, GEDet-B and GCN.

All Experiments were executed on a Unix environment with
Intel 2.33GHz CPUs, and 8GB memory. All the algorithms
were implemented in Python on Tensorflow. Each experiment
was run 5 times and the median results were reported.

Our code and datasets of GEDet are available.

B. Experiment results

We first evaluate the effectiveness of GEDet and the baseline
algorithms, and the impact of several factors. We then evaluate
the training cost of GEDet. In addition, we conduct case
studies to evaluate the impact of the quality of data constraints.

Exp-1: Accuracy of GEDet. We report the accuracy of the
methods over all the datasets in Table V. GEDet and its
variants (GEDet-C, GEDet-B, and GCN) are learned by using
10% of the training nodes V7 (summarized in Table III).

(1) There is “no single winner” especially on precision: partic-
ular methods may achieve high precision over specific datasets.
For example, VioDet is particularly accurate for ‘Agent’ errors
(0.99) due to high quality data constraints.

(2) We take a closer look at the 6 competing methods (all
excluding GEDet, GEDet-C and GEDet-B). The low recall of
VioDet and OutlierDet suggest the errors are quite diversified.
The recall is not improved much by a union-all strategy
(Hybrid). Alad is able to improve highest recall over some
cases, but at a cost of low precision and F;-score. Among
these, Raha (which assembles multiple methods) and GCN
(graph representation learning) achieve best F;-scores.

(3) Despite the diversified errors, GEDet, GEDet-C and

Shttps://github.com/sxgcase/GEDet
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Fig. 4: Impact of factors to model performance
GEDet-B achieve either the top or the second best results in
precision, recall or F;-score in almost all the datasets. This is
not recognized in individual competing methods. On average,
GEDet has an additional gain of Fj-score as 23%, 33%,
21%, 24%, 10% and 15% compared with VioDet, OutlierDet,
Hybrid, Alad, Raha and GCN, respectively.

The overall performance of GEDet, GEDet-C and GEDet-B
are relatively more stable for different node types and errors
compared with competing methods. For example, VioDet has
a high precision of 0.99 on Agent, and only achieves 0.24

precision on Machine Learning; similarly for OutlierDet.

(4) For all datasets, GEDet, GEDet-C and GEDet-B achieve
a comparable performance. GEDet improves the F;-score of
GEDet-B (resp. GEDet-C) with an average gain of 10% (resp.
3%). These verify the effectiveness of the adversarial module
and the need for graph embedding learning of GEDet.

Exp-2: Impact of factors. We next investigate the impact of
the factors to GEDet. They include (1) the data imbalance p.
= % and (2) the training data ratio p; T/T|

Impact of Data Imbalance. Fixing other parameters as default,
we vary the imbalance p. from 0.1 to 0.9 over Machine
Learning (OAG). Fig. 4(a) tells us that while all methods
achieve better performance over more balanced data, GEDet,
GEDet-C and GEDet-B are less sensitive compared with
GCN, due to the graph augmentation module can counteract
imbalanced training examples. Table V consistently justifies
this observation as the fraction of |V¢| varies over different
datasets (summarized in Table III): compared with GCN, the
methods GEDet, GEDet-C, and GEDet-B are less sensitive.

Varying Training data size. Fixing other parameters as default,
we vary p; over dataset UserGroupl(Yelp) from 15% to
1% and report the result in Fig. 4(b) (the result of VioDet
and OutlierDet are insensitive and constantly 0.41 and 0.39,
respectively; not shown). While the accuracy decreases for all
models as less training data is available, GEDet is the least
sensitive (remains a recall above 0.6; not shown). Indeed, it
effectively counteracts the impact of lack of examples, with
the graph augmentation model that improves recall, and the
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adversarial module that improves the accuracy.

Figure 4(c) verifies the robustness of GEDet over three other
datasets. We found that for all the datasets, graph augmentation
improves recall better with more available training examples,
while the adversarial learning helps retain a stable accuracy.

Exp-3: Learning cost. We evaluate the learning cost of
GEDet-based methods. We set the number of epochs as
200 for all the methods and apply an “early-stop” strategy
based on validation performance and make GEDet-C and
GEDet terminate early if no improvement is observed within
consecutive 40 epochs. As shown in Fig. 4(d), (1) it is quite
feasible to learn GEDet. For example, it takes 257 seconds to
learn GEDet to achieve a recall at 0.98 over Transportation
(DBP); (2) GEDet improves the accuracy of error detection at
a cost of small overhead. For example, it introduces on average
13%, 57% and 85% additional cost compared with GEDet-B,
GEDet-C and GCN, respectively.

Exp-4: Impact of Data Constraints. We further evaluate
the impact of the quality and availability of constraints X by
comparing GEDet with VioDet and GEDet-N, a variant of
GEDet that excludes all transformations induced by X..

Method Data Mining | UserGroupl | Machine Learning
GEDet 0.6209 0.7009 0.6217
GEDet-N 0.6030 0.6813 0.6053
VioDet 0.2800 0.4100 0.2500

As shown in the above table, GEDet can exploit high-quality
data constraints when available. For ¥ with all constraints that
have confidence larger than 0.95, GEDet outperforms GEDet-
N with a gain of 2% on F'1-score. Nonetheless, GEDet-N still
outperforms VioDet with a gain at least 27% in ‘UserGroupl’
and up to 35% in ‘Machine Learning (OAG)’. This shows that
GEDet is quite robust even when no constraints are available.

We also showcase of real-life errors captured by GEDet
that are missed by VioDet and OutlierDet. Fig. 5 illustrates a
fraction of Transport. An incorrect value “VW Polo MKS5”
occurs in the subclass of car model vy, which should be
“supermini” ®; Similarly for v3. A constraint states that “if
a car is a subsequent work of another and they have the same
manufacturer, then they belong to the same subclass”. This
constraint can capture vs, but fails to capture vo, as there is no
link between v; and vy. On the other hand, OutlierDet fails to
capture vy or vs. GEDet successfully identifies the erroneous
nodes v, and vz in the scope induced by the meta paths from
Vg to v; via vy, following which the correct subclass values
are exploited to identify the erroneous nodes.

VII. RELATED WORK

Error detection for graphs. Error detection [1], [5] charac-
terize erroneous values as data outliers [19], [12], [21], [17],
or violations of data constraints [5]. In particular, graph data
dependencies [10], [16] incorporate both topological and value
constraints to detect erroneous nodes. It has been observed
that individual methods may achieve high precision but often

Shttps://www.wikidata.org/w/index.phptitle=Q758735&action=history
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Fig. 5: Case study: Error Detection in DBPedia

low recall even when combined [1], [12]. We integrate trans-
formations to simulate various erroneous scenarios. The graph
data augmentation and adversarial learning help improve recall
and retain reasonable precision using a few yet diversified
erroneous nodes, as verified by our experiments.

Generative Adversarial Networks. GANs have recently been
extended to graph learning [29], [8], [7]. LGGAN [8] ex-
tends discriminator to generate labeled graphs that preserve
important properties from the input graphs. GraphSGAN
[7] exploits GANs to improve graph learning, by forcing
discriminator to distinguish fake samples injected to node
neighbors that are sensitive to skewed label distribution. To the
best of our knowledge, GEDet is among the first to incorporate
few-shot learning and GANs for graph error detection.

Few-shot Error Detection. For relational data, HoloDe-
tect [12] incorporates few-shot learning to detect data errors. It
proposed a policy learning process to generate training data via
string transformations. Our work differs from [12] as follows.
(1) We enhance few-shot learning to error detection i graphs
beyond relational data. (2) Our graph augmentation exploits
transformations and neighborhood augmentation beyond string
operations. (3) We exploit adversarially learned models to cope
with sparse labels. These are not discussed in [12].

VIII. CONCLUSION

We introduced GEDet, an adversarial and few-shot learning-
based error detection framework for graphs. GEDet uses graph
augmentation to enhance training examples and neighborhood
information, and incorporates graph autoencoders to generative
adversarial network to improve the accuracy of error detection.
Our experimental study verifies that the graph augmentation
and adversarial error detection of GEDet achieve significant
gain on accuracy compared with state-of-the-art baselines. A
future topic is to enhance GEDet with active learning.
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