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Abstract: Wearable sensing technologies are having a worldwide impact on the creation of novel
business opportunities and application services that are benefiting the common citizen. By using
these technologies, people have transformed the way they live, interact with each other and their
surroundings, their daily routines, and how they monitor their health conditions. We review recent
advances in the area of wearable sensing technologies, focusing on aspects such as sensor technologies,
communication infrastructures, service infrastructures, security, and privacy. We also review the
use of consumer wearables during the coronavirus disease 19 (COVID-19) pandemic caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and we discuss open challenges that
must be addressed to further improve the efficacy of wearable sensing systems in the future.

Keywords: wearables; smartphones; sensing; fitness; mobile payments; financial technology;
m-health; crowdsensing; Internet of Things; security; privacy; energy; COVID-19; SARS-CoV-2

1. Introduction

Wearable sensing technologies continue to improve rapidly with advances in sensors,
communication technologies, and artificial intelligence (Al) in the past decade. Research
and development in wearable sensing technologies are fueling a revolution in the creation of
novel services in gaming, fitness, entertainment, and specialized applications in industries
such as healthcare, security, and defense, among others. In 2020, the market for wearable
devices was USD 80 billion, which has tripled in terms of annual revenue since 2014 and it
is expected to reach USD138 billion by 2025 [1]. In the consumer wearables market, in 2019,
smartwatches and wristbands dominated the market with a combined market share of
51%; as of 2021, the leading wearables are ear-worn wearables with a market share of 48%,
followed by a 37% combined market share of smartwatches and wristbands [2]. Figure 1
presents the consumer wearable devices” market share by device type (2019-2022).
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Figure 1. Consumer wearables device market share (2019-2022).
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Ear-worn wearables, in special hearables such as true wireless stereo (TWS) wearables,
have surged from almost zero market share to a significant share of the wearable device
market [1] since the introduction of Apple AirPods in 2016, and have significantly increased
during the coronavirus disease (COVID-19) pandemic [3], caused by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2), as many people have worked and studied from
their homes worldwide. During the pandemic, smart reusable masks that can detect SARS-
CoV-2 and self-sterilize have become an active area of research and development [4-8].
The COVID-19 pandemic has also positively impacted the adoption of other consumer
wearable technologies for mobile payment systems, patient tracking, contact tracing, and
remote patient monitoring and treatment [9-12]. Combined fitness/medical-connected
services was the leading market for wearable sensing technologies as of 2020 [13-15]. Other
markets such as industrial wearables services, entertainment/gaming (i.e., augmented
reality (AR) games and devices), and wearables for defense and security are also surging
in popularity with recent technological advances in wearable technologies.

According to latest market research analysis, by 2025, the wearable payments ser-
vices market (around USD 72 billion by 2025) is expected to be larger than the combined
fitness/medical wearables services market by approximately USD10 billion [13-15]. The
wearable payments market has grown due to the adoption of near-field communication
(NFC) in smartphones by manufacturers supporting financial payment standards [16-18],
and the incorporation in the near future of NFC in new generations of smartwatches, fitness
trackers, and other wearables such as smart rings [19]. However, by 2028, it is forecasted
that the wearable fitness market will be approximately USD 138.7 billion [20], while the
wearable payment services will remain around USD 80 billion [21]. Figure 2 presents the
market value of wearable services for the years 2018-2020, and a projection for 2025 based
on available market research data [13-15,22].
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Figure 2. Wearable services market value.

Consumer wearable sensing systems were initially researched with cellphones and
smartphones during the second half of the 2000s. During that time, the widespread
adoption of cellular communication in the world, the mobile Internet, and the embedding
of sensors in cellphones such as location sensors, accelerometers, and cameras paved the
way to the development of sensing applications (in particular applications related to human-
centric activities) in urban environments at a low cost compared with the deployment
of static wireless sensor networks (WSNs) to achieve the same human-centric sensing
goals [23]. The research in this area led to the development of many applications in
the context of participatory and crowdsensing systems [24,25] using not only embedded
cellphone sensors, but using external sensors connected via Bluetooth. Table 1 presents a
summary of related works in mobile and wearable sensing during the past decade.
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Table 1. Summary of survey works in mobile and wearable sensing.

References Year Title Remarks
Review of applications and architectures for
[24] 2010 A survey of mobile phone sensing smaFtPhone Sensmg m human-centric ar_1d
participatory sensing systems. No mention of
wearables
A survey on privacy in mobile participatory sensing Review of privacy mechanlsms for
[25] 2011 applications smartphone-based crowdsensing systems. No
PP mention of wearables.
A survey on human activity recognition using ReVI?W of I.ne.ic.hme !earnmg (ML) modgls o
[26] 2012 wearable sensors classify activities using wearables. Review does
not include deep learning (DL) systems.
Review of mobile-smartphone-based sensing
. . ) applications in participatory /crowdsensing
[27] 2012 Mobile phone sensing systems: A survey settings. Mentions two systems that, as of
2012,used electrocardiogram (ECG) sensors.
Review of mobile sensing systems based on
[28] 2013 Mobile sensing systems smartphones and their communication
architectures. Provides short review on security.
Wearables: Fundamentals, advancements, and a Review of wearable technology as of 2014 with a
[29] 2014 ) ! ’ focus on sensors and applications. Does not
roadmap for the future PP
P review security or privacy issues.
Review of monetary and nonmonetary
A survey of incentive techniques for mobile crowd incentives mechanisms for mobile crowdsensmg
[30] 2015 sensin systems based on smartphones. Incentives are
3 important in crowdsensing to recruit
participants to collect data.
Reviews energy-aware security mechanisms for
. . WSNs, mobile devices (focus on smartphones),
[31] 2015 A survey on energy-aware security mechanisms and network nodes as of 2015. Review does not
mention wearables.
. . . . . Presents risk awareness and perception for
[32] 2016 Zi;iii:;ESHuZleth services a security and privacy risk eHealth wearables using Amazon Mechanical
Y Turk.
Review of application-specific and
Incentive mechanisms for participatory sensing: eneral-purpose incentive mechanisms for
- Survey and research challenges mobile crowdsensing systems based on
smartphones.
[34] 2016 Deep, convolutional, and recurrent models for human  Reviews and evaluates of deep learning methods
: activity recognition using wearables for human activity recognition.
Review focuses on consumer wearables available
. as of 2017. Work also addresses security, power,
3 . ‘ urity, ,
[35] 2017 A survey of wearable devices and challenges task offloading, and machine learning. Work
does not address privacy issues.
[36] 2017 The use of wearables in healthcare—challenges and Reviews applications of wearables in healthcare
” opportunities from the application perspective.
Review of wearables available as of 2017 in the
[37] 2017 A survey on smart wearables in the application of context of fitness. Work does not address
i fitness security, privacy, power, or ML in wearable
systems.
Describes architectures and protocols to enable
[17] 2017 Mobile payment systems: secure network mobile payments. From the device perspective,

architectures and protocols

it focuses on mobile phones. No mention of
wearables.
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Table 1. Cont.

References Year Title Remarks
Review of privacy issues in consumer wearables.
[38] 2018 Privacy issues and solutions for consumer wearables ~ Work does not address power or machine
learning.
;4 CZ;;[Z);?ZZ(Z‘Z‘;n;:lgz;%:m:;:li; mobile Review of the utilization of consumer wearables
[39] 2018 PP  ané equip P 3 , for stress and sleep monitoring. No privacy or
biofeedback, monitoring stress, and sleep in physically o . .
. . security issues mentioned in the paper.
active populations
Reviews the utilization of wearables for medical
[40] 2018 Wearables and the medical revolution use (m-Health). No privacy or security issues
reviewed in the paper.
Demystifying IoT security: An exhaustive survey on ~ Review of security issues and solutions in
[41] 2019 0T vulnerabilities and a first empirical look on Internet of Things (IoT) systems. Review does
Internet-scale IoT exploitations not mention wearables.
) Buddy's wearable is not your buddy: Privacy Rev1ew of privacyissues and possible privacy
[42] 2019 implications of pet wearables violations or privacy leakages to owners of pets
p P (pet parents) by having their pets use wearables.
. . Lo Reviews power and energy harvesting
[43] 2020 Design archztgcturesf or energy haroesting in the techniques for Internet of Things (IoT) devices
Internet of Things including wearable devices
g .
A comprehensive overview of smart wearables: The F(:l:/vh:agrr;lﬁ?;;s;z:v]?}ii}; 1‘1};:)1:11: ijv‘;g\tls(s related
[44] 2020 state of the art literature, recent advances, and future - :
challences published works from 2010 to 2019 (before the
8 COVID-19 pandemic).
[45] 2020 Use of wearable sensor technology in gait, balance, Review of wearables and ML systems with a
” and range of motion analysis focus on gait analysis.
. Review of sensors and applications of wearables
[46] 2020 Wea'rabl'e s and the Intgrﬁet of Things (IoT), before the COVID-19 pandemic. This work does
applications, opportunities, and challenges: A Survey . . .
not review security, privacy, or ML.
. Reviews contact tracing apps developed during
[9] 2020 A survey of COVID-19 contact tracing apps the COVID-19 pandemic.
Review of wearables in the context of industrial
[47] 2021 Wearables for Industrial Work Safety: A Survey settings. Work focuses on applications of
wearables for industry.
Review provides a comprehensive historical
[48] 2021 A survey on wearable technology: History, review of wearables devices. Reports on

state-of-the-art and current challenges

applications and some aspects of security and
privacy.

Most of the works cited in Table 1 addressed specific aspects of mobile and wearable

sensing systems, with many works focusing on smartphone-based sensing/crowdsensing
systems in the past decade. In this work, we present a comprehensive review to provide
the reader with not only a summary of past works but also new opportunities in wearables.
Moreover, the unexpected COVID-19 pandemic has brought to the spotlight the use of
wearable sensing technologies, and has positively shifted the perception and adoption
of wearable technologies despite their privacy and security issues. Thus, while recent
advancements in wearable sensing technologies have paved the way for the emergence
of a plethora of services we are currently using in our lives, there are several areas still in
need of further research. In this work, we describe current advances in wearable sensing
technologies and services, and their use and opportunities to continue moving the field
forward. The main contributions of this paper are as follows:
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1. Introduction

\

2. Wearable
sensing
technologies

\

Taxonomy

Energy sources

*  We present a comprehensive review of current advances in wearable sensing technolo-
gies;

*  We describe recent developments in communication, services, security, and privacy
technologies for wearables;

¢  We discuss some research opportunities and challenges that we need to address in the
future for wearable sensing technologies.

We organize the rest of the paper as follows: In Section 2, we review the hardware ar-
chitecture of wearable sensing devices. Section 3 presents communication technologies for
wearable sensing. In Section 4, we discuss remote services for wearable sensing. Section 5
reviews security and privacy challenges and solutions for wearable sensing devices. In
Section 6, we present challenges and opportunities in wearable sensing. Finally, Section 7
presents concluding remarks. Figure 3 presents the organization of this work.

Software
. archi Datab . . 6G 6th Generation cellular network
Types of services technologies Security Privacy BAN  Body Area Network
w® * A w y.4 LAN  Local Area Network
ML Machine Learning
4. Remote services for . 5. Security and privacy 'v:v/mN 'v”\ffs:’"a' L“feal “AE‘W"h"kM .
o 0 ireless Local Area Networl
wearable sensing for wearable sensing WWAN Wireless Wide Area Network

§ ¥

6. Challenges and
3. Communication

! opportunities for ﬁ 7. Conclusion
—  technologies for wearable senting

wearable sensing

LAN/WLAN

technologies BAN/PAN + WWAN Security / l \ Interoperability

Privacy Energy harvesting
6G and ML at the edge

Figure 3. Paper organization.

2. Wearable Sensing Technologies

A wearable sensing device is a device that consists of sensors, actuators/output
devices, a power generating unit, and an embedded computer, which may be implanted,
worn, or carried around by a user [29,38]. This user may be a person or, in the case of
some wearables, worn by animals. Depending on the characteristics and sensing goals of a
wearable sensing device, it may be connected to external systems using the Internet either
through a cellular network and/or wireless local area network (WLAN). External systems
can store and conduct analysis using artificial intelligence (Al) techniques and may provide
feedback to the user of the device. While the ubiquity of wireless sensing technologies has
dramatically increased in recent years, early utilization of wearable sensing devices dates
back decades ago [29,48]. As of 2021, there are at least 266 companies producing at least
430 wearable sensing devices [49] that can be categorized in a taxonomy based on three
layers that include: market type, intrusiveness, and body location.

The first layer (market type) determines the ease with which a general user can typ-
ically access a wearable sensor device. Based on the market, devices can be grouped
into consumer wearable sensing devices/systems and specialized wearables. Consumer
wearable sensing devices can be further categorized into fitness, entertainment/gaming,
security, or pet use [42,50]. Specialized wearables can only be acquired through special-
ized vendors, and they comply with special standards or may be regulated by laws that
specify who may acquire and/or use them and the specific purposes for which each is
designed. Thus, we can categorize specialized wearable sensing devices into industrial,
healthcare/medical, security /defense, and research fields.

The second layer (intrusiveness level) determines whether the wearable can be im-
planted/placed into the body of a living organism (implantable), placed on/worn by a
living organism (non-implantable), or carried by a user, for example, on a backpack (exter-
nal). Under this classification, ingestibles would be classified as an implantable device [51].
The difference between a nonimplantable and an external wearable is whether the device



Sensors 2021, 21, 6828

6 of 34

is directly in contact with the body of the user (nonimplantable) or not (external). Figure 4
illustrates sensors based on intrusiveness level.

Implantable

Implantable Cardioverter

S

E_,

External

Defibrillator (1C0}

Non-implantable

Wearable air quality

§=<

Smartwatch

sensor

wristband

Figure 4. Wearable sensors based on intrusiveness level.

The third layer (body location) determines the placement of the wearable sensing

device, which can be the head, trunk, arm, or leg. It is worth noting that these are general
positions on the body of a user, so when we refer to the head, this location may include the
neck, ears, or eyes. Thus, an example is a consumer, nonimplantable wearable device that
can be worn on a wrist (e.g., a fitness wristband).

A wearable sensor device may be composed of the following components depending

on its objectives and functionalities (as shown in Figure 5):

A power unit. This component of the wearable sensor device provides the energy
used by the wearable sensor device to operate. Some wearable devices may include
rechargeable or nonrechargeable batteries and energy-harvesting technologies [43].
Table 2 presents different types of power-generating units that can be used.

Sensors. These are electronic and microelectro-mechanical systems (MEMS) compo-
nents that measure a physical quantity on the user (human-centric) or their surround-
ing environment (environmental). These sensors may be intrusive to the user (e.g.,
implanted in the body), with part of the wearable device worn by the user (e.g., smart
fabrics [52] and photoplethysmography (PPG) sensors [53]), or carried around/worn
by the user (e.g., location trackers [54]). Figure 6 shows a Venn diagram with wearable
sensors grouped by type, and Table 3 describes each sensor.

Processing/control unit. Based on the capabilities and/or design/objectives of the
wearable, this component may perform basic calculations, filter data, or execute Al
algorithms or control algorithms.

Embedded storage media. Some wearable sensing devices have a flash-type storage
media that stores sensor data for further analysis.

Network interfaces. Using communication interfaces, a wearable sensor device may
create a personal area network (PAN) with other wearable sensors, to communicate
with a more powerful device such as a smart phone, or to directly forward data to a
remote service.

Actuators. Actuator components produce vibrations, sound, and visual cues (e.g.,
lights, screens, or heads-up displays) to notify the user about the device’s status. Some
wearable sensing devices may not send data to a remote server/service, but they
may provide automated feedback or execute an intrusive action on the user (e.g., an
automatic defibrillator [55] and wearables for automated medication delivery [56,57]
using microneedles) without the need for external systems, and some wearables
provide information on a smartphone screen.
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If smartphones are classified as external wearable sensing devices based on intru-
siveness, as of 2021, the most-used wearable sensors (from those presented in Table 3)
were the sensors embedded in most smartphones. These sensors are the microphone,
location sensors, CMOS/CCD camera sensors, accelerometers, gyroscopes, and, to a lesser
extent, the NFC interface as a contactless payment sensor. According to the 2021 Ericsson
mobility report [58], as there are 5.5 billion smartphones in the world, there are 5.5 billion
microphones, 5.5 billion location sensors, 5.5 billion CMOS/CCD cameras, and 5.5 billion
accelerometers and gyroscopes collecting data in the world. If considered a wearable, the
smartphone would be the most-used wearable during the COVID-19 pandemic caused by
SARS-CoV-2. As these sensors are commonly available in most if not all smartphones, the
NFC interface with 2.2 billion NFC-enabled smartphones/smartphone-like devices (e.g.,
tablets) [59] is next.

If the smartphone is not considered a wearable, then the most-available wearable
sensors are accelerometers embedded in 708 million smartwatches and activity tracker
units shipped between 2018 and 2021 (projection) [60]. However, if it is assumed that all
true wireless stereo (TWS) hearables have microphones, then there would be 709 million
microphones shipped as part of the TWSs sold between 2018 and 2021 (projection) [61].
After these sensors, the most commonly used sensor is the photoplethysmography(PPG)
sensor available in many smartwatches, activity trackers, and pulse oximeters [62].

Storage
Ty A
L} '
[} '
1 [}
[ . . '
1| Processing unit / [
Sensors > Gt ool — Actuators
1 ]
IO A\
] ' * . ]
] H ' '
[ H H '
[ ' 4 '
' i ; ;
....... b Power unit tebocscsas
Wearable sensing
device

Figure 5. Typical components of a wearable sensing device. The red dotted line indicates possible
connection.
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Laser emitter Near-Field
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Radiation :
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Figure 6. Typical sensors available in wearable devices grouped by type of collected data.
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Table 2. Energy sources for wearable sensing devices.
. les of W 1
Energy Source Description Exan}p e earable
Sensing Devices
Use of standard-size small or ~ Insulin pumps, cochlear
. ialized-size batteries that ~ implants/devices,

Nonrechargeable batteries specialized-size batteries that  implants / evices

power a wearable sensing implantable cardioverter

device defibrillators

Rechargeable batteries

Lithium ion batteries that may
be connected to an external
power source to be recharged

Smart watches, smart phones,
heart trackers, insulin pumps,
digital stethoscopes [63],
portable handheld ultrasound
diagnostic devices [64]

Solar-powered

Use of photovoltaic (PV) cells
to recharge a battery that
powers a wearable

Smart bracelets [65], smart
watches, external wearables
such as tracking devices,
smart fabrics

Radiofrequency (RF)

Use of antennas that extract
energy from radio signals to
recharge a battery or to power
directly a wearable sensor

Radiofrequency identification
(RFID) implants [66],
bioelectronic

stickers/tattoos [67]

Movement and mechanical
waves

Use of piezoelectric devices to
extract energy from human
movements [68] or
mechanical waves such as
wind or ultrasound to
recharge a battery or to power
a device [69]

Implantable medical
devices [69], wrist
wearables [70]

Thermoelectric generators

Use of body heat to generate
power to recharge a battery or
to power directly a wearable
sensor [71]

Biometric wearables and
smart t-shirts for
electrocardiogram
monitoring [72]

Table 3. Sensor technologies for wearable sensing devices.

Sensor Type

Description/Application

Wearable Device
Examples

Type of Collected
Data

Smart fabrics (e-textiles)

Fabrics developed from traditional materials
(e.g., cotton, polyester, nylon) combined with

materials possessing electrical conductivity,
or that can be embedded /uses to carry other
sensors/electronic components. Some smart

fabrics can detect the presence of chemical

substances [73]

Zephyr compression shirt,
Nadi X smart yoga pants

Human-centric

Electrocardiogram (ECG)

Measures the electrical impulses of the heart

muscle. Usually placed in contact with the
skin. May be used in conjunction with

Shimmer3 ECG chest unit,

Human-centric

Sensor implantable cardioverter defibrillators. Apple Watch Series 6
Provides heart pulse data
Enables communication at short distances

Near-field communication (less than 10 cm). Used as a wearable NFC Ring, many

(NFC) payment sensor [74,75]. Can be used to smartphones, Human-centric
detect proximity and infer location, and for =~ smartwaches

multiple-factor authentication methods [76].

Galvanic skin response
(GSR) sensor

Measures skin conductivity. Used in

wearables to recognize stress

Empatica E4 wristband

levels/emotional state of an individual [77].

Human-centric




Sensors 2021, 21, 6828 9 of 34
Table 3. Cont.
. s Wearable Device Type of Collected
Sensor Type Description/Application Examples Data
Measures blood volume changes. These
sensors illuminate the skin of a wearer and
Photoplethysmography measure light absorption to determine Wellvue O, Ring, pulse

(PPG) sensor

human body variables including heart
rate [78,79], blood oxygenation levels [80],
and blood pressure when used in
conjunction with an ECG sensor [81].

oximeters, most fitness
bands and smart watches

Human-centric

Electroencephalography

Measure electrical activity in the scalp of a
user. These devices can be used to diagnose
abnormal brain activity when used in

(EEG) sensors healthcare applications [82] or to control Emotiv EpocX Human-centric
devices through brain-computer interfaces
(BCIs) [83].
Monitor blood glucose levels for people with

Glucose monitors diabetes. Devices can monitor glucose levels Dexcom G6 CGM Human-centric

continuously or at a single moment in
time [84].

Infrared (IR) sensor

Measures skin or ambient temperature.
Temperature can be used to predict ovulation
in female mammals.

Ava fertility tracker

Human-
centric/environmental

Accelerometer/gyroscope

Detects sudden accelerationmovement.
Accelerometers can be used to detect and

Shimmer3 IMU, Samsung
Galaxy Watch 3, activity

Human-centric/

Microphone

characterize human activities [85]. trackers, smartphones Environmental
Detects sound. They can be used to detect .

o . . Ek RE family of
health conditions, ambient sounds, activity, o CORE family o Human-

location contexts (e.g., being in a restaurant,
hospital, home) [86].

stethoscopes /stethoscope
attachments

centric/Environmental

Location sensor

Tracks the locations/places where a user
carrying a device with location may be [87].
Location sensors may be outdoor location or
indoor location sensors and include
technologies such as a global positioning
system (GPS; United States), Galileo
(European Space Agency), GLONASS
(Russia), BeiDou (China) receivers, or the

Game Golf GPS receiver,
Jiobit, Pet tracker,
smartphones, most

Human-
centric/Environmental

Navigation with Indian Constellation (India) smartwatches
systems. Indoor location
technologies/sensors may include
sonar-based, dead reckoning, Bluetooth low
energy (BLE) beacons, among others [88].
Iristick,

Ray-Ban/Facebook Stories

Complementary Takes photographs. When combined with Al,
. . - . smart glasses, H1
Metal-Oxide it may be used to detect objects and possibly
. . L. . . head-mounted smart Human-
Semiconductor recognize people’s identities without Jasses, Microsoft centric/Environmental
(CMOS)/CCD imaging consent [89]. May be used to detect emotions & ’
. HoloLens, Axon Body 2
sensor in humans.
body cameras,
smartphones,
Store information about its wearer. RFID can
be active or passive and can be used to track  3M RFID tags, ARDES
Radiofrequency assets [90]. RFID can be used for Injection needle with RFID  Human-
identification (RFID) tags ~ location-based systems and to estimate chip for cats and dogs, centric/Environmental
crowd size in crowd-management smartphones

systems [91].
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Table 3. Cont.

. s Wearable Device Type of Collected
Sensor Type Description/Application Examples Data
Laser emitters are used to measure distances
anl there e plans to be integmete hem n | CuraviPlus Laser Therapy
p & Belt for Lower Back Pain, Human-

Laser emitter

future augmented reality (AR) glasses and
smartphones [92]. A laser emitter can also be
used for both acute and chronic pain
management [93].

future smart AR glasses
and smartphones

centric/Environmental

Ultrasound sensor

Detects objects in the proximity of a
user/device [94]. Used also as an imaging
sensor in handheld healthcare medical
devices [64].

WeWALK smart cane,
UltraCane, SonoQue, and
Clarius portable handheld
ultrasound devices

Human-
centric/Environmental

Detects harmful gas concentrations/volatile

Atmotube PRO, TZOA,

Air quality sensor components [95]. Flow 2 by plume labs Environmental
Separates and measures the spectral
components reflected by a material. The light GoyaLab IndiGo modular .
Spectrometer . . Environmental
spectrum can be used to determine the visible spectrometer
components of the material [96].
Instadose 2 Personal
Radiation (X-ray) badge,
S L Land R fe i
. Tracks ionizing [97] and nonionizing [98] andauer aySafe i3 .
Radiation sensor L. . . Real-time Personal, Environmental
radiation in the proximity of its wearer. L .
Radiation Dosimetry,
Landauee Tactical
RadWatch
Barometric pressure Detects barometric (atmospheric) pressure.
sensor p Can be used to detect movement, Garmin Fenix 5X Environmental
activity [99,100], and altitude.
Determi ientati d used fi .
Compass etermines orientation and used tor Most smartwatches Environmental

navigation

3. Communication Technologies for Wearable Sensing

Advances in communication technologies support the current generation of wearable
sensing services. From improvements in intrabody, body area networks (BANs), and
personal area networks (PANs) to worldwide deployments of broadband wireless network
connectivity, and computing paradigms such as cloud computing and blockchain, commu-
nication technologies are supporting many services that use wearable sensing technologies
to deliver and provide value-added services to their users.

Figure 7 shows a general architecture for a wearable sensing system. In this archi-
tecture, wearable sensor devices collect data and conduct filtering or execute basic data
analysis and/or models trained using machine learning (ML) algorithms [23]. Some
wearable sensing devices may connect to other sensors (intrabody area networks) or to
a smartphone using BANs or PANs. At some point, and based on the design or features
of the wearable sensing device, the latter may forward the data collected to a remote
service using a cellular network or WLAN either directly connected to the Internet or via
a smartphone or communication hub that serves as a gateway device for the wearable
device. Depending of the application, specialized networks such as tactical communication
networks and satellite communication may be used.

Today, technological advances in communication technologies are found in intrabody
networks, BANs, and PANs. These networking technologies are used in wearable sensing
to connect wearable sensor devices amongst themselves and to other devices such as
a smartphone, a communication hub, or actuator devices over a short distance [101].
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Wireless technologies used in these networks can be of two types: radiofrequency-based
wireless body area network (RE-WBAN), and nonradiofrequency-based wireless body area
networks (non-RF-WBAN). In the first group (RF-WBAN), technologies include Bluetooth
and Bluetooth low energy [102,103], Zigbee [104], IEEE 802.15.6 WBAN [105], near-field
communication (NFC) [106], as well as proprietary protocols such as Sensium [107] and
ANT [108]. NFC is most used as a contactless payment sensor [109] over short distances
(less than 10 cm). The drawbacks of RF protocols for wireless sensing devices and intrabody
communications include radio signal degradation due to the composition of body tissues
(signal attenuation) [110], broadcast of signals at low power to avoid damaging tissues
due to heat dissipation, and power consumption issues related to continuous operation.
In the second group (Non-RF-WBAN), the use of molecular communication [111-113],
ultrasonic communication [114], and wired networks (e.g., the USB personal healthcare
device) [115,116] have been proposed as alternatives to wireless communications for PANs
and BANSs.

Wireless sensing devices use wireless local area networks (WLANS) to connect to
the Internet, to other sensing devices, or to local hubs that serve as gateways to other
systems and networks using the Transmission Control Protocol/Internet Protocol (TCP/IP)
network stack or dedicated protocols such as Continua [115] and ISO/IEEE 11073 [116].
While most wearables connect to WLANSs, local hubs, or PANs (i.e., smartphones) to send
data to remote services, newer wearables, especially in the consumer market, access remote
services using mobile broadband [117].

Communication
hub

third-party

| Data collection

Data transport | Data analysis |

Figure 7. General architecture of wearable sensing systems.

Advances in mobile Internet broadband and cellular networks (4G/5G) along with
decreasing costs have fueled the mass adoption and utilization of wearable sensing tech-
nologies and services. As of 2021 [58], there were more than 8 billion cellular subscriptions
in the world. More than 80% of these subscriptions are mobile broadband connections
and 5.5 billion are smartphone connections. According to Ericsson [58], part of the future
improvements in network capacity provided by 5G cellular networks by 2024 will satisfy
the growing demand for services including services making use of consumer wearable
sensing devices. Other networking solutions exist for wearable sensing technologies in spe-
cific markets. These include Mobile Adhoc NETworks (MANETSs), intranets, and satellite
networks with proprietary protocols [118].

4. Remote Service Technologies for Wearable Sensing

In the previous section, we described computer network technologies enabling com-
munication infrastructures for wearable sensing. While these technologies are responsible
for transporting data between two entities (i.e., wearable sensors and a service provider),
they do not implement a service on their own. The kind of data collected and why the
data are being collected, used, and shared create value for stakeholders through the im-
plementation of services. These services may fall into four major system categories [23]:
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location-based services (LBSs), human-centric sensing (HCS), participatory/crowdsensing
systems (PS/CSs), and hybrids or combinations of these categories. Table 4 describes
examples of these systems.

Wearable sensing services can be implemented using private servers [23], servers de-
ployed in the cloud [119], and more recently as distributed apps (DApps) using blockchain
and smart contract technology [120-122]. Remote service implementations making use of
hybrid architectures between servers/the cloud and blockchain technology have recently
been proposed for participatory /crowdsensing and human-centric systems [123-126]. A
drawback of using public blockchains to store sensor data is the high monetary cost when
data are uploaded to a public blockchain [127].

For services implemented using private servers and cloud services, remote services use
technologies such as Structured Query Language (SQL) relational databases (e.g., Postgres,
MySQL, MS SQL Server, and Oracle) and nonrelational (NoSQL) databases (e.g., Apache
Ignite, Memcached, Cassandra, Hadoop/Hbase/HDEFS, Azure Cosmos, Amazon S3, and
Google Cloud Storage). Nonrelational databases are chosen by many of these services
because they are useful for storing large amounts of data (big data) in real time. For
example, data collected by Uber can be in the order of petabytes (PB) per day [128].

Table 4. Types of wearable sensing systems.

Examples of

Type of System Description Systems
Location-based svstems Use location data to track, query, or provide a Smart Caddie, OneBusAway [130], Jiobit
Y service based on location only [129]. pet tracking system, Uber, Lyft
Use sensors to monitor human-related
physiological variables, activities and behaviors. Fitbit Premium + Health, Garmin
Human-centric systems Personal monitoring systems (e.g., fitness systems) ~Connect, Samsung Health, Apple
and intelligent medical/healthcare systems fall Healthkit

into this category [131,132]

Participatory/ crowdsensing
systems

Use collaborative data collected from a crowd to
estimate communal parameters of

interest [133,134] such as traffic, pollution, noise
levels and others [135].

Participatory /crowdsensing systems include
systems for crowd management [91,136,137],
emergency management [138], and recently
COVID-19 epidemiological systems based on
mobile phones and sensors [10,11].

Crowdsync, COVIDNearby,
CovidSens [139], MetroSense [140]

Hybrid systems

Systems making use of the characteristics of more

than one class/kind of system above. PokemonGo

Many of these systems are implemented in clouds using software engineering archi-
tectures based on microservices [141]. Microservices implement a remote service using
a collection of small, independent services potentially deployed on different platforms
or technology stacks [141]. Some of their advantages over monolithic architectures for
software [142] include adaptability to changes in technology, reduced time-to-market (new
features for a given remote service may be released as a microservice on its own), scalability,
and flexible software engineering development practices (e.g., DevOps [143]) which suit
many startup companies designing wearable systems and services. Data collected by
remote systems can be analyzed using Al and ML techniques [26,45] such as deep learning
(DL) [34], and feedback may be provided to users or to external third parties based on
privacy policies or terms of use and commercial agreements [144].
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5. Security and Privacy for Wearable Sensing

Security and privacy are two of the most significant aspects in the adoption of wear-
able sensing technology and systems in many application areas. For example, in mobile
health (m-Health), if a wearable system that delivers medications or provides intrusive
actions in the body of its user (e.g., implantable cardioverter defibrilators (ICD) with re-
mote connectivity) has exploitable security flaws, the consequences could be catastrophic.
From the privacy perspective, past research on smartphone-based sensing systems [25]
demonstrated that certain kinds of data collected (e.g., location data) could be exploited to
reveal aspects considered private for a user or a participant in a crowdsensing system. In
this section, we first review security issues in wearable systems, and then review privacy
aspects in wearables.

5.1. Security

Wearable sensing systems are susceptible to similar vulnerabilities and attacks found
in other Internet of Thing (IoT) devices and systems. Security attacks, for wearable sensing
technologies, can occur in a wearable sensing device, during data transport, or in the
remote services collecting and analyzing data by exploiting vulnerabilities not considered
at the design phase of a system. Table 5 summarizes vulnerabilities in wearable sensing
devices.

In contrast to other IoT devices or computer systems that may be physically isolated
or protected, the lack of physical security in wearable devices can be easily exploited
by adversaries launching spoofing attacks to submit incorrect/fake data to a remote ser-
vice [145,146]. A second type of spoofing attack (called mule attack [147]) may attempt to
tamper with a wearable’s context or environment to make the wearable submit incorrect
data [148,149]. For example, a mule attack on a fitness band or smartwatch to detect or
register activity levels could be easily manipulated by an adversary by waving their arm
or tying the wearable to a rope and make the fitness band or smartwatch rotate while
standing at the same location [147]. Solutions proposed in the literature for spoofing attacks
include the utilization of Al to recognize correct patterns/context [150] and the utilization
of multiple sensors worn by a user to test the data collection context or to verify the data
during collection phase [79,151-153].

When wearables are used in remote services collecting data from users to estimate
environmental variables of interest (e.g., pollution, noise, or road traffic levels) through
participatory or crowdsensing systems, spoofing attacks can be mitigated at the remote
service by taking advantage of the redundant data collected by multiple users to estimate
and filter out incorrect, erroneous, or fake data. Methods to filter out data in remote
services include kriging, principal component analysis (PCA), Markov random fields
(MRFs), Gaussian mixture models (GMMs), stochastic processes [154-158], and anomaly
detection algorithms based on ML methods such as support vector machines (SVMs),
neural networks (NNs) [159], and recent methods based on DL (i.e., convolutional neural
networks (CNNs), and long short-term memory (LSTM) neural networks [160-162]).

A second vulnerability that can be exploited in wearable devices is the limited en-
ergy management and harvesting, which an adversary could exploit to perform battery
exhaustion attacks and render a wearable ineffective in executing its tasks. In contrast
to other IoT devices and computer systems, such as desktops, in which energy/power is
not an issue because they are always connected to a reliable power source (i.e., a city’s
power grid), most wearables use nonrechargeable or rechargeable batteries and/or energy-
harvesting techniques (as we described in Section 1). Techniques available to mitigate
this kind of attack include the development of power-aware frameworks and operating
systems that continuously monitor the power consumption of the device [163,164], assess-
ing the software’s power consumption before being implemented into a battery-powered
device [165-167], and runtime anomaly detection methods that detect abnormal power
patterns [168-170]. While most of these methods have been developed for smartphones,
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they can be adapted for wearables and used to detect and mitigate battery exhaustion
attacks.

Table 5. Vulnerabilities in wearable sensing devices (adapted from [41]).

Vulnerability

Description

Examples of Attacks

Limited physical security

Unauthorized physical access to a wearable
device by an adversary without difficulty

Physically damaging a device, spoofing
attacks [145,146], manipulation of a device’s
context/environment to make the device
malfunction or incorrectly collect/register
data [148,149]

Limited power

Wearable devices use batteries or energy
harvesting techniques; attacks may drain
their batteries and render them unusable

Battery exhaustion attacks [171]

Weak encryption

Use of encryption protocols that may not
sufficiently protect data sent by a wearable
due to energy limitations, processing power
limitations, and bad software engineering

Eavesdropping, injection, and denial of
service (DoS) attacks in health monitoring
devices [172]

practices

Weak authentication

Failure to authenticate a user, a wearable
device, or data generated by a wearable due
to energy, computational power, poor design,
mode of use, or user interface constraints that
may not allow the implementation of strong
authentication protocols on a wearable
device

Stealing, losing, or duplicating a physical
token for a wearable device [173]

Unnecessary open ports

Devices may keep operating system (OS)
ports/network addresses that may be
exploited in security attacks or privacy
violations

Tracking of users using botnets and
Bluetooth low energy (BLE) [174]

Software vulnerabilities

Software may be implemented with errors or
weak programming practices that make
wearables vulnerable to security attacks;
some of these weak practices include
backdoors and errors during firmware
updates

Attacks on fitness trackers during firmware
updates [151]
Logic bombs [175]

The use of encryption protocols that can be broken by an adversary with enough
computational resources occurs when manufacturers use weak encryption in their devices
(either in software and /or hardware). Weak encryption may enable attackers to eavesdrop
on data in transit either to another wearable or to a remote service on the Internet. Weak
encryption may occur due to limitations in the software, hardware, power availability, or
weak programming practices, which may expose a wearable to attacks. In the past, research
has shown that manufacturers sell consumer wearables with a lack of encryption, so can
be attacked either through passively eavesdropping Bluetooth connections, through man
in the middle (MITM) attacks, or by failing to encrypt data stored locally [172,176-179].
These attacks can violate user privacy, impersonate a user, or fabricate data submitted
to a remote service. To mitigate this vulnerability, manufacturers should use hardware
that supports strong encryption (e.g., ARM and Intel processors have hardware-specific
extensions implementing Advance Encryption Standard (AES) algorithms), strong end-
to-end encryption protocols (when supported by hardware/software),and good software
engineering practices.
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Weak authentication vulnerabilities arise when a wearable device, a wearable’s user,
or data sent by a wearable cannot be authenticated due to due to energy, computational
power, poor design, mode of use, or user interface constraints in the device or the system.
Cryptographic authentication mechanisms available for other types of computers may not
be enough to authenticate users, data, or wearable devices. For example, usually, login
identifiers and passwords are used to authenticate a user in a laptop or desktop environ-
ment. However, because many wearable devices can be easily removed by users and worn
by somebody else, the use of single-time authentication methods such as passwords are not
enough to guarantee who is using a wearable device. To enforce authentication, various
user authentication methods have been proposed based on biometrics [180], multifactor
authentication mechanisms [76,181], and multiple wearable devices [182,183].

Unnecessary open ports make wearables susceptible to security and privacy attacks.
While these attacks, so far, are less common than in other IoTs and computer systems, they
are still present in wearables. For example, Issoufaly and Tournoux [174] highlighted how
fingerprinting of wearables’ BLE medium access control (MAC) addresses can be easily
exploited to track users via these addresses. In their research, they found that even though
security and privacy features exist in BLE specifications, these features are rarely used.
Robles-Cordero et al. [184] arrived at similar conclusions. Becker et al. [185] showed that
even with BLE address randomization, passive tracking is possible. Knackmuf et al. [186]
also explored unnecessary open port attacks, in which they used a packet sniffer tool to
find an open port on a popular infusion pump. While open port vulnerabilities can be
easily solved by having good product development practices, they pose a significant threat
to wearables.

Other vulnerabilities of wearable devices that can be exploited are those arising
from weak software development practices [187]. Software vulnerabilities can lead to
malfunctioning, leaks in privacy, manipulation of data, or causing a wearable to execute
attacks on other devices over a network (or the Internet). Software vulnerabilities may be
caused by weak programming practices that can be present as part of the original software
(firmware) with which a wearable is manufactured, or as part of firmware updates. Some
of the vulnerabilities, such as inadequate encryption, inadequate authentication, and the
unnecessary open ports previously discussed in this section, may be the result of weak
programming practices. Weak programming practices can generate significant technical
debt [188,189] in wearable sensing systems. Examples in the literature of possible attacks
include remotely accessing implantable cardiac devices to make them fail [190] or to violate
users’ privacy [191]. After Corbin [192] reported that former U.S. Vice President Dick
Cheney’s pacemaker had software vulnerabilities that could enable hackers to cause heart
attacks remotely, the former Vice President disabled the remote access capabilities of his
pacemaker.

5.2. Privacy

Wearable sensing services may expose users to various privacy threats because the
data collected by these services can be potentially linked back to users [193]. Research on
user privacy perceptions on the utilization of consumer wearables has identified privacy
concerns related to social implications, criminal abuse, facial recognition, access control,
social media sync, right to forget, surveillance and sousveillance, speech disclosure, and
surreptitious audio/video (A/V) recordings when using a device, which may continuously
register users” actions [194]. Table 6 summarizes these privacy concerns.
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Table 6. Wearable user’s privacy concerns, as researched by the authors of [194].

Privacy Concern Description

Unawareness by a network of friends regarding data being

Social implications collected about them

Criminal abuse Fear that wearable data will be used by criminals to harass a user
Association and recognition of a bystander to a place or a

Facial recognition situation where the bystander would not wish to be recognized
by others

Fear of users of third-party service providers sharing data

A ntrol -
ccess contro. without consent

Immediate publishing or sharing by the wearable device without

Social media syne the knowledge of the user

Discrete display and visual =~ Notifications/information of users that might be seen by
occlusion bystanders who should not have access

The user’s wish to delete collected data that he or she wants to

Right to forget forget

User fears: surveillance and ~ Continuous tracking of user activities that might make the user
sousveillance feel that no matter what they do, everything is recorded

Capturing speech that a user or bystanders would not want to

Speech disclosure
P record or share

Recording of video without permission that might affect

Surreptitious A/V recording bystanders

Fear of sharing a location inadvertently to third parties that

Location disclosure
should not have access

These concerns can be classified into three main privacy issues categories, which
include context privacy, bystanders’ privacy, and external data sharing privacy [38]. Table 7
presents each privacy concern with a privacy issue and the related solutions found in the
literature.

The first privacy issue we present is context privacy. Context privacy comprises the
context/actions deemed private by a wearable user that can be inferred based on the
data or metadata collected through a wearable. Many wearables are used continuously,
and users may not remember that the utilization of a wearable may possibly register all
users’ actions (and data about users’ surroundings), and private information could be
inferred [195]. Solutions to solve this issue include methods that only collect data when
the user desires it [196-198], and methods to avoid or deny data collection when the user
wishes [199]. For both types of solutions, the idea is for the user to create rules at different
levels that may be based on raw sensor data readings, or more complex rules that may
involve activity recognition at the wearable device.
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Table 7. Privacy concerns and issues for wearables (adapted from [38]).

User Privacy Concern Privacy Issue Recently Proposed Solutions

Access control
Location disclosure

Social implications Virtual trip lines [196]

Bubble sensing [197]

(])Dézfs;tg: isplay and visual ng;ecxt Privacy bubbles [198]
¢ P Y Virtual walls [199]

User’s fear

Speech disclosure

Right to forget

BlindSpot [200]
Using IR to disable devices [201]
Using Bluetooth to disable capturing
device [202]
Virtual Walls [199]
Privacy-aware restricted areas [203]
Bystanders’ PrivacyEye [204]
privacy PrivacyVisor [205]
PrivacyVisor III [206]
Perturbed eyeglass frames [207]
Respectful cameras [208]
Negative face blurring [209]

Speech disclosure

Social implications

Facial recognition
(identification)

Surreptitious A/V recording
User’s fears

Location disclosure

FacePET [210]
I-Pic [211]
Access control
Location disclosure
Social implications k-anonymity [212]
User’s fear External I-diversity [213]
Criminal abuse data-sharing t-closeness [214]
Social media sync privacy Differential privacy [215,216]
Discrete display and visual Homomorphic encryption [217,218]
occlusion
Right to forget

A second privacy issue with wearables is bystanders” privacy. Bystanders’ privacy
is the issue of the re-identification of third parties (bystanders) who have not provided
consent when a sensing device is used in a bystander’s surroundings [89]. Research in
the area of bystanders’ privacy has focused on understanding user and bystander privacy
perceptions and privacy norms on the utilization of camera-enabled and voice-capturing
devices in shared spaces [194,204,208,219-227] and on the development of systems for
bystander privacy protection [200-211].

In the area of privacy perceptions and norms of camera-enabled and voice-capturing
devices in shared spaces, past research has identified a conflict in spaces shared between
users and bystanders [219,224,225,228], a desire of bystanders to have some control over
what may be recorded and shared about them [220-222], and the meaning and definition
of the contexts that affect the social meaning of privacy [223,228]. To protect bystanders’
privacy, research has focused on policies and systems to disable devices [200-204] and
obfuscation of faces in photos in some systems [205-211].

Another privacy issue with wearables is external data sharing. When data are collected
by remote services (such as systems described in Table 4), the issue of external data-sharing
relates to how a remote service can protect a wearable’s user privacy when shared with
a third party. Third-party data-sharing can occur because of commercial agreements by
which an external party provides some type of service on behalf of the remote service
provider, or because the remote service provider sells the collected sensor data. Solutions
that address this issue to protect the privacy of the collected data focus on anonymization
methods in databases and cryptographic-based methods.
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Anonymization methods in databases protect wearable users’ privacy by providing
meaningful third-party data (in the statistical sense) without releasing data that can identify
users. Depending on the kind of data to be released, these methods can be classified as
methods for microdata release or methods for statistical data release [229]. In the first
group (methods for microdata release), the goal is to protect users’ private data by de-
identifying private attributes of identities during the release of microdata (i.e., records
from a database). Examples of methods for microdata release include k-anonymity [212],
l-diversity [213], and t-closeness [214]. In the second group (methods for statistical data
release), we protect user privacy by guaranteeing that the release or calculation of a
statistical result (such as an average) using collected data cannot reveal information about
the specific records or a user. An example of a method that falls into this latter category
is differential privacy [215,216,230]. A third class of methods available to protect data
when externally shared is cryptographic-based methods, using homomorphic encryption
techniques [217,218]. Homomorphic encryption allows a remote service provider to release
data encrypted so that an external party can perform calculations on the encrypted data
without revealing the original data or identifiable data.

6. Challenges and Research Opportunities for Wearable Sensing Technologies

In the previous sections, we reviewed the technological advances in various aspects of
wearable sensing systems. Although significant work has been untertaken on wearable
sensing systems in the last ten years, in this section, we identify areas of interest that need
further research. These areas include security, privacy, 6G and ML at the edge (federated
learning), energy harvesting and management, and interoperability.

6.1. Security

Even though we reviewed the vulnerabilities of and possible solutions for wearable
technologies, security will continue to play an important role in the research and devel-
opment and use of and trust in wearable devices. Attacks on wearables devices launched
by an adversary can have catastrophic consequences for a user, especially if the wearable
device is used in m-Health systems [158,231]. In addition, wearables connected to the
Internet could be hacked and used to attack other systems. This creates the issue of devel-
oping wearables with a security-by-design paradigm [232,233] to identify security risks
and vulnerabilities during the design and development phases of a system rather than
mitigating them after cyberattacks. The Mirai botnet illustrates this issue.

During late 2016, a distributed denial of service (DDoS) was launched over the Internet
using a botnet called Mirai, which infected approximately 65,000 IoT devices such as DVR
devices, IP cameras, routers, and printers [234]. Mirai converted them into zombies (i.e.,
devices controlled by a remote machine) and then used the infected IoT devices to launch
various DDoS attacks on DNS servers. According to Antonakakis et al. [234], the attack was
enabled by the design decisions of a small group of consumer electronics manufacturers.
Although this attack used nonwearable IoTs, it underscores the need to incorporate security
as part of the design process of a wearable. More research is needed to continue protecting
current and next-generation wearables and mitigate emerging threats.

6.2. Privacy

One of the privacy challenges for users of wearable sensing technologies is making
informed choices about the sensing devices that consumers buy and use. This highlights the
importance of the development of usable privacy policies [235]. Privacy policies disclose
the practices of remote services in terms of aspects such as data collection, management,
and sharing about websites, services, and devices that consumers buy and use [144].

Although laws regarding the requirements of privacy policies and their content may
differ from country to country, the General Data Protection Regulation (GDPR) regulation
standardized these requirements for the European Union (EU) countries by mandating
remote services to provide a privacy policy if these services control and process the personal



Sensors 2021, 21, 6828

19 of 34

data of individuals located in the EU, independent of the services being physically located
in the EU or not [236]. However, companies whose markets may not be EU countries are
not bound by this requirement, which may leave users in non-EU countries without an
understanding of how remote services use with the data they collect through wearables.
Furthermore, if privacy policies are provided, the accessibility and understandability of
these privacy policies remain challenges. More research is needed on usable and practical
privacy policies for wearables and for general IoT devices.

Another open privacy challenge for wearable sensing technologies is the control of
users’ sensor data collected by remote services and how data are shared with third parties
(i.e., external systems or services) without users” consent. There are two aspects to this
issue:the first is how the users know that their data are being shared with third parties (an
issue related to privacy policies) and when this occurs; the second is how users’ privacy
may be protected when data are externally shared. While we reviewed solutions for
the second issue, more work is needed to enable data-sharing with third parties while
protecting users’ privacy and allowing users to have control over their data.

Finally, bystanders’ privacy [89] continues to be an open challenge in wearable devices.
Even though we reviewed some solutions to address this issue, more research is needed
to protect bystanders and to develop wearables with a focus on facial and voice privacy
protection.

6.3. 6G and Machine Learning at the Edge (Federated Learning)

Currently, 5G networks continue to be deployed worldwide to support increasing
mobile Internet traffic, including a growing demand for wearable sensing services [58].
However, the next generation of cellular networks (6G) will be designed to meet the
demands of an intelligent, fully connected digital world [237,238]. It is expected that 6G
networks will support pervasive and ubiquitous sensing services under very-low-latency
requirements in the order of hundreds of microseconds [237]. To accomplish this, research
is needed to integrate Al to dynamically predict traffic requirements, conduct adaptive and
intelligent network management, and enhance remote sensing services.

Currently, remote services collect and store large amounts of wearable sensor data
in clouds using machine learning (ML) and deep learning (DL) techniques to extract
knowledge. Advances in graphical processing units (GPUs) have fueled a revolution
in deep neural networks (DNNs) and DL by shortening the training time of DNN /DL
models from months to hours. However, 6G networks will require part of this process to
be conducted at edge devices (e.g., wearables, cellular phones, IoTs).

Federated learning (FL) [239] is a paradigm in ML /DL that is being investigated to
train Al models using a decentralized process that is executed at edge devices. As ML/DL
models in FL are trained at edge devices that collaborate among themselves rather than in
centralized servers in a cloud (or data centers connected to the core of the Internet), less data
are sent over the Internet, with advantages such as improved privacy, security, and access
rights management. The resulting models built using FL can be as robust as models built
using centralized ML/DL and are useful in areas such as telecommunications [240] and
healthcare [241], amongst others. Additionally, research on techniques against adversarial
ML, wherein wrong or fake data are used on purpose to make Al models fail, in FL
environments is needed.

6.4. Energy Harvesting and Management

Advances in software, hardware, communication, computation, sensor technology,
and Al have enabled the current generation of wearables; their power consumption will
become increasingly important in the future. This will make energy harvesting and man-
agement one of the most important aspects that will drive the design and implementation
of the next generation of wearables. Without power, a device cannot work, and one of
the goals of using wearables is that a wearable device can continue performing its tasks
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without having to recharge, or if it needs to be recharged, it can be achieved in a way that
is not cumbersome for its user (e.g., using wireless charging).

To improve energy management in wearables, hardware research should focus on the
optimization of specific tasks of the wearable without relying on software. In particular,
given the use of DL to classify and recognize wearable sensor data and the future use of FL
to train ML models at the edge, hardware research can focus on alternate implementations
of deep neural networks and other ML models to minimize power. Currently, FL algorithms
may use high-power-consuming GPUs in battery-powered devices such as wearables to
train distributed DL models, which may affect the usefulness of a wearable device [242,243].
An example of hardware-based optimization for DL models is the IBM Fusion chip [244],
which can encode an artificial neural network analogically using phase-change memory
(PCM) circuits performing classification without using a microprocessor, thus accelerating
a classification task while minimizing power. Other areas of research include intelligent
software management to predict power usage and to switch among different power profiles
(software optimizations such as decreasing the clock rate frequency [43]) and harvesting
techniques that can collect energy from a wearable’s environment to enable its continuous
operation.

A second aspect of energy management is the cost of energy needed to enable a wear-
able sensing system, from fabrication to operation and retirement or disposal. According
to Smil [245], and using a concept called embodied energy (the sum of energy required
to produce a good or service [246]), an approximation to the embodied energy of the
production of all laptops, tablet, and mobile phones sold in 2015 was 1 EJ (1 x10'® Joules)
with an approximate weight of 550,000 metric tons; the 72 million cars sold during the
same year accounted for 7 EJ of energy, while weighting about 100 million tons. According
to his analysis, while the cars weighed 180 more times that of all portable electronics,
they required only seven times as much energy to make [245]; while a car may last for a
decade (or longer), many portable devices are disposed only after two years of operation.
Cellular networks, which are needed for many future wearables, face a similar issue. In a
research study, Humar et al. [247] found that embodied energy in cellular networks cannot
be neglected because it accounts for an important and significant amount of their total
energy consumption, and that embodied energy should be seriously considered in the
design and development of other devices and systems used in the telecommunications
sector (e.g., data centers). Thus, more work is needed to better estimate, optimize, and
manage the energy consumption of telecommunication systems (such as wearable sensing
systems) across their full lifecycle.

6.5. Interoperability

Wearable payment systems, fitness, and medical wearables are three of the fastest-
growing market segments of wearable services. While the financial payments industry
has worked (since the early years of 2000) to make payment systems interoperable and
secure through standards such as the Payment Application Data Security Standard (PA-
DSS) [16,248,249], this was not the case for fitness wearable services as of 2021.

On the fitness wearables side, the competition among many start-ups and well-
established technological companies to position themselves as major players in the wear-
ables market has made their wearable ecosystems closed ecosystems, with the exception
of when a wearable/tech company takes over another wearable company (e.g., Google’s
Fitbit acquisition in 2021 for USD 2.1 billion [250]), or when a company partners through
business deals with third parties, including insurance companies or employee wellness
benefit services. For example, Virgin Pulse, as of October of 2021, was supporting eight
wearable brands including Fitbit, Misfit, Garmin, Polar, Withings, MiBand (via VP Mobile
App), Apple Watch (via VP Mobile App), and the Samsung Gear family (via VP Mobile
App) [251]. Thus, which data can be shared among different systems is left to each com-
pany, which may hinder interoperability. On the medical wearables side (m-Health), the
regulations to determine if a wearable is an approved medical device and what constitutes
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an electronic health record (EHR) varies from country to country [252,253]. For example,
in the U.S., the process to approve a device for the purpose of medical diagnosis, cure,
mitigation, and treatment of disease in humans or other animals is managed through the
U.S. Food and Drug Administration (FDA/USFDA) [254]. Depending on the intrusiveness
and risks to the human or animal, the device can fall into three classes (I being the lowest
risk and III being the highest risk) and can take up approximately eight months to be FDA-
approved. However, it can take much more time to document all the needed information
for safety approval. For a wearable with connectivity (wired, wireless, or public Internet or
intranet), the FDA submission should include a cybersecurity review of the device similar
to the one described on the guidance document titled Content of Premarket Submissions for
Management of Cybersecurity in Medical Devices [255]. A submitting organization can use
a list of FDA-recognized cybersecurity consensus standards for IT and medical device
security to document cybersecurity management. Table 8 presents these FDA-recognized
standards (as of October 2021).

For EHR records in the U.S,, if the data records generated by a medical device will
be stored as part of an electronic health record (EHR), then different guidelines are used,
which include the Health Insurance Portability and Accountability Act (HIPAA) and the
Health Information Technology for Economic and Clinical Health (HITECH) Act. The
largest companies in terms of market share developing software for EHR management
tend to have closed networks (allowing sharing of EHRs easily only amongst network
members of a specific company [256]), which has prompted the creation of alliances to share
EHRs among smaller EHR software providers and practitioners (e.g., CommonWell Health
Alliance [257]), lately as part of the U.S. Coronavirus Aid, Relief, and Economic Security
Act (U.S. CARES Act) [258], giving hospitals and medical practitioners the option to use
application programming interfaces (APIs) to exchange data using the recently developed
United States Core Data for Interoperability (USCDI), which is a standardized set of health
data classes and elements to allow interoperable exchange of health information nationwide.
The second version of the USCDI was released in July 2021 [259].

While it is not mandated for fitness wearables companies to use medical-level stan-
dards, the latest development of standards for healthcare devices can provide interoper-
ability among consumer wearables services in a secure and privacy-protected way, which
may benefit users in the near future.

Table 8. U.S. FDA-recognized standards for medical informatics security.

Organization

FDA Date FDA Number Organization Designation/Date Standard
Security for industrial automation and control
7 June 2021 13-119 ANSIISA 62443-4-1-2018 systems Part 4-1: Product security development
life-cycle requirements.
Health informatics-Device interoperability. Part
7 June 2021 13-118 IEEE Std 11073-40102:2020  40102: Foundational-Cybersecurity-Capabilities
for mitigation.
Health informatics-Device interoperability Part
7 June 2021 13-117 IEEE Std 11073-40101-2020  40101: Foundational-Cybersecurity-Processes for
vulnerability assessment.
29119-1 First edition ~ Software and systems engineering-Software
6 July 2020 13-115 IEC IEEEISO 2013-09-01 testing-Part 1: Concepts and definitions
Health informatics-Point-of-care medical device
6 July 2020 13-114 IEEE Std 11073-10101-2019 communication. Part 10101: Nomenclature
23 December 13-112 AAMI TIR97:2019 Prmaples for medical deche security-Postmarket
2019 risk management for device manufacturers
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Table 8. Cont.

.. Organization
FDA Date FDA Number Organization Designation/Date Standard
] . (American National Standard) Standard for
15 July 2019 13-109 AAMIANSTUL 2800-1: 2019 Safety for Medical Device Interoperability
Standard for Safety Software Cybersecurity for
. .. Network-Connectable Products Part 2-1:
7 June 2018 13-104 ANSI UL 2900_2_121:01{5; Edition Particular Requirements for Network
Connectable Components of Healthcare and
Wellness Systems
Application of risk management for IT-networks
4 December TR 80001-2-9 Edition ~ ncOrporating medical devices-Part 2-9: .
13-103 IEC Application guidance-guidance for use of security
2017 1.0 2017-01 . .
assurance cases to demonstrate confidence in IEC
TR 80001-2-2 security capabilities
Application of risk management for IT-networks
4 December TR 80001-2-8 Edition mcorPorf;\tmg medlcal deylces—Part 2-8:
2017 13-102 1IEC 1.0 2016-05 Application guidance-guidance on standards for
’ establishing the security capabilities identified in
IEC TR 80001-2-2
21 August 1397 IEC 82304-1 Edition 1.0 Health software-Part 1: General requirements for
2017 2016-10 product safety
. o Standard for Safety Standard for Software
21 August 13-96 ANSI UL 2900-1 First Edition Cybersecurity Network-Connectable Products
2017 2017 .
Part 1: General Requirements
Information Technology Security of In Vitro
23 December . .
2016 13-85 CLSI AUTO11-A2 Diagnostic Instruments and Software Systems;
Approved Standard-Second Edition
27 June 2016 13-83 AAMI TIR57:2016 Principles for medical device security-Risk
management.
14 August 1378 IEC ISO 30111 First edition Information technology-Security
2015 2013-11-01 techniques-Vulnerability handling processes
14 August 1377 IEC 1SO 29147 First edition Information technology-Security
2015 2014-02-15 techniques-Vulnerability disclosure
Application of risk management for IT-networks
27 January 1370 IEC TR 80001-2-5 Edition  incorporating medical devices-Part 2-5:
2015 1.02014-12 Application guidance-Guidance on distributed
alarm systems
Industrial communication networks-Network
TR 62443-3-1 Edition  and system security-Part 3-1: Security
6 August 2013 13-62 IEC 1.0 2009-07 technologies for industrial automation and
control systems
Industrial communication networks-Network
] 62443-2-1 Edition 1.0  and system security-Part 2-1: Establishing an
6 August 2013 13-61 IEC 2010-11 industrial automation and control system security
program
. Industrial communication networks-Network
6 August 2013 13-60 1IEC TS 62443-1-1 Edition and system security-Part 1-1: Terminology
1.0 2009-07
concepts and models
Y . Application of risk management for IT Networks
6 August 2013 13-44 1IEC TR 80001-2-3 Edition incorporating medical devices-Part 2-3: Guidance

1.0 2012-07

for wireless networks




Sensors 2021, 21, 6828

23 of 34

Table 8. Cont.

o e Organization
FDA Date FDA Number Organization Designation/Date Standard
Application of risk management for IT Networks
TR 80001-2-2 Edition  incorporating medical devices-Part 2-2: Guidance
6 August 2013 13-42 IEC 1.0 2012-07 for the disclosure and communication of medical
device security needs risks and controls

} -, Application of risk management for IT-networks

6 August 2013 13-38 IEC 80001-1 Edition 1.0 incorporating medical devices-Part 1: Roles

2010-10 responsibilities and activities

7. Conclusions

Over the last few decades, we have witnessed significant developments in the design
and deployment of wearable sensing technologies. The size and cost of these technologies
continue to decrease while their performance and capabilities continue to improve, making
them increasingly pervasive in a wide range of applications. We foresee that wearable
sensing technologies and services will continue to be improved and deployed worldwide
in the future. In this work, we reviewed technological advances that have made wearable
sensing possible and affordable. We described different types of wearable sensors, com-
munication and remote services technologies, and security and privacy issues related to
wearable devices. We also reviewed the use of consumer wearables during the COVID-19
pandemic caused by SARS-CoV-2. Finally, we discussed research challenges that must be
addressed to further improve wearable sensing systems in terms of their designs, energy
consumption, security, privacy, and interoperability.

In this review, we did not discuss the extensive use of different types of sensors that
track human behaviors (e.g., movements of elderly people or flexing a finger) for different
types of users in various types of environments, the safety of wearable sensors (we only
presented a summary of FDA-approved standards), integration issues with body area
networks (BANs) with other emerging technologies (e.g., fog, edge, and 6G), or Al-enabled
sensors that could play a pivotal role in future medical services. In the future, we will
explore some of these issues.
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Abbreviations

The following abbreviations are used in this manuscript:

cm centimeter

4G Fourth-generation cellular networks

5G Fifth-generation cellular networks

6G Sixth-generation cellular network

AAMI Association for the Advancement of Medical Instrumentation
API Application Programming Interface

A/V Audio/Video

AES Advanced Encryption Standard

Al Artificial Intelligence

ANSI American National Standards Institute

AR Augmented Reality

BAN Body Area Network

BCI Brain-Computer Interfaces

BLE Bluetooth Low Energy

CARES U.S. Coronavirus Aid, Relief, and Economic Security Act
CCD Charged Coupled Device

CLSI Clinical & Laboratory Standards Institute
CMOS Complementary Metal-Oxide Semiconductor
CNN Convolutional Neural Network

COVID-19  Coronavirus Disease 2019

DApps Distributed Apps

DDoS Distributed Denial of Service

DL Deep Learning

DNN Deep Neural Network

DNS Domain Name System

DoS Denial of Service

DVR Digital Video Recorder

ECG Electrocardiography

EEG Electroencephalography

EHR Electronic Health Record

EJ Exajoule

EU European Union

FDA Food and Drug Administration

FL Federated Learning

GDPR General Data Protection Regulation
GLONASS  Global Navigation Satellite System

GMM Gaussian Mixture Model

GPS Global Positioning System

GPU Graphical Processing Unit

GSR Galvanic Skin Response

HCS Human-Centric Sensing

HDFS Hadoop Distributed File System

HIPAA Health Insurance Portability and Accountability Ac
HITECH Health Information Technology for Economic and Clinical Health
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers
IoT Internet of Things

IT Information Technology

IR InfraRed

ISA International Society of Automation

ISO International Organization for Standardization
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LAN Local Area Network
LBS Location-Based Services
LiDAR Light Detection And Ranging
LSTM Long Short-Term Memory
MAC Medium Access Control
MANET Mobile Adhoc NETworks
MEMS Microelectromechanical Systems
m-Health Mobile Health
MITM Man In the Middle
ML Machine Learning
MRF Markov Random Field
NFC Near-Field Communication
NN Neural Network
(O] Operating System
PA-DSS Payment Application Data Security Standard
PAN Personal Area Network
PB Petabytes
PCA Principal Component Analysis
PCM Phase-Change Memory
PPG Photoplethysmography
PS/CS Participatory /Crowdsensing Systems
PV Photovoltaic
RF Radiofrequency
RFID Radiofrequency Identification
SARS-CoV-2  Severe Acute Respiratory Syndrome Coronavirus 2
SQL Structured Query Language
SVM Support Vector Machine
TCP/1P Transmission Control Protocol/Internet Protocol
TWS True Wireless Stereo
UL UL Incorporated, previously known as Underwriters Laboratories
uUsD US Dollars
USFDA US Food and Drug Administration
WLAN Wireless Local Area Network
WSN Wireless Sensor Network
WWAN Wireless Wide Area Network
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