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Abstract—The conventional ground penetrating radar (GPR)
data analysis methods, which use piecemeal approaches in
processing the GPR data formulated in variant formats such
as A-Scan, B-Scan, and C-Scan, fail to provide a global view of
underground objects on the fly to adapt the operations of GPR
systems in the field. To bridge the gap, in this paper, we propose a
novel GPR data analysis approach termed ''ScanCloud' which is
focused on the whole in situ GPR dataset rather than on individ-
ual A-Scans, B-Scans or C-Scans. We also study the integration
of ScanCloud and a deep reinforcement learning method called
deep deterministic policy gradient (DDPG) to adapt the operation
of GPR system. The proposed method is evaluated using GPR
modeling software called GprMax. Simulation results show the
efficacy of ScanCloud and the adaptive GPR system enabled by
the integration of ScanCluod and DDPG.

Index Terms—Autonomous Cognitive GPR, deep reinforce-
ment learning, subsurface sensing, object reconstruction, 3D
ScanCloud

I. INTRODUCTION

Ccurate 3D maps for underground infrastructure, like

gas, water, and sewage pipes, are significant for gov-
ernments, service organizations, and structural architects.
Nonetheless, exact locations and conditions of underground
infrastructure in old cities are generally unknown. A ground-
penetrating radar (GPR) is a significant device for locating
and identifying underground objects [1]. However, there are
some limitations with conventional GPR techniques: piece-
meal analysis of different formats of GPR data ( A-Scan,
B-Scan, and C-Scan) and offline interpretation of GPR data
with the need of domain expert experience. These limitations
result in inaccurate and incomplete knowledge of underground
objects and time-consuming operation of GPR systems.

To address these limitations, we propose a new approach
termed ScanCloud that considers all the GPR A-Scans in
the field as a point cloud. The rational behind ScanCloud
is that holistically analyzing all the in-situ available GPR
data may provide more knowledge than focusing on partial
A-Scan data or individual B-Scan images. Specifically, we
model the GPR sensing process by integrating the 1D A-
Scan signals and analyzing them to extract (x, y, z) coordinates
of the signal where the amplitude pulse from the object is
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detected. This information is stored in a database to form a
novel 3D ScanCloud dataset. This allows us to develop new
data point each time an A-Scan is received.

We also integrate ScanCloud analysis and deep reinforce-
ment learning (DRL) to adapt the operation of a GPR system.
To that end, we first apply Rényi entropy and modified 3D
OTSU methods to detect the region of interest (Rol) in the
ScanCloud. The Rol is transformed into a signature that serves
as input into an object classifier. All the previous procedures
result in a reward function for the deep deterministic policy
gradient (DDPG) [2], [3], a typical DRL method dealing with
large and continuous state and/or action spaces. This paper
is focused on the development of a DDPG framework that
enables adaptive GPRs for subsurface object detection. To this
end, a proper reward function is needed to effectively reflect
the value of different actions of the GPR agent at different
states. To the best of our knowledge, this is the first work on
subsurface object detection based on ScanCloud and DDPG.
The main contribution of this paper can be summarized as
follows.

1) By formulating GPR-based subsurface object detection

as a Markov decision problem, a 3D data modality and
a deep reinforcement learning framework is established
to resolve the problem.

2) A deep deterministic policy gradient (DDPG) algorithm
with a novel reward function that combines rewards from
amplitude analysis, Region of Interest (Rol) identifica-
tion and object classification is proposed.

3) To show the efficacy of the proposed framework, simu-
lation based validations are performed on real-time GPR
data from GprMax simulator by combining DDPG with
GPR operation modeling [4], [5].

In this paper, we investigate continuous subsurface object
detection to generate object shape and orientation using DDPG
[6]. The rest of this paper is organized as follows: the related
work is presented in Section II. In Section III, an overview of
the system model and architecture of the proposed ScanCloud
is presented. The proposed DDPG approach is discussed in
Section IV. Section V presents performance evaluation and
discussion. Finally, Section VI concludes the paper.

II. RELATED WORK

Among different sensor modalities, GPRs have been widely
used in subsurface target detection. However, mapping the
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underground targets from GPR signals is nontrivial, because
different from a laser scanner, a GPR cannot provide 3D posi-
tions by any other means but C-Scans. Feng et al. [7] designed
a GPR-based model reconstruction system for underground
utilities using an auto-encoder. Yang et al. [8] also designed
a GPR-based subsurface object detection and reconstruction
using random motion and depthnet. Chen et al. [9] proposed an
automatic concrete crack-detection method fusing point clouds
and images based on improved Otsu’s algorithm.

Recent research such as combining visual exploration of 2D
ground data and 3D point cloud data for roads environment
[10], [11], [12] is gaining attention. This method [10] is
designed to inspect road surfaces, manholes covers and gullies.
Weilin et al. [11] proposed a method that detects tree trunks
with irregular contours, using LiDAR data and 2D images
from GPR scanner. The authors in [12] designed a two-step
process that involves a grid data creation, where through
interpolation, the point cloud data is changed into grid data
suitable for filling the empty data, and then enhancing the
homogeneous points.

Point cloud has become one of the most significant data
format for 3D representation. It’s gaining increased popularity
as a result of increased availability of acquisition devices, such
as LiDAR, as well as increased application in areas such as
robotics, autonomous driving, augmented and virtual reality.
Jiirgen describes the relevance of 3D point clouds for a large
number of geospatial applications through machine learning
and deep learning [13]. Other sophisticated applications of
point clouds include but not limited to connected autonomous
vehicles [14], ground points segmentation for challenging
terrains for autonomous vehicles [15], and in modeling and
predicting vehicle accident occurrence in smart cities [16].

III. THE PROPOSED SYSTEM MODEL AND ARCHITECTURE
A. MDP Formulation of Subsurface Detection

The cognitive control of the positioning and operational
parameters of a GPR can be formulated as a sequential
decision-making problem which can be further modeled as
a finite-horizon Markov decision process (MDP) with finite
state and action spaces.

Without loss of generality, we consider a discrete-time
system in which time is divided into slots of unit length
AT such that each slot ¢ corresponds to the time duration
[(r=1)-AT,t-AT). The complete notation used in this paper
is given in Table I.

The MDP model is described as follows:

« S : a set of environment and system operational states.
Let s, = (k;,¥;) € S denote the state of the GPR
sensing system and the environment in each discrete time
slot t. x; is the newly updated observation about the
environment, in the form of captured A-Scan signal. ¥;
is the operating state vector of the GPR, such as the
remaining battery energy of the mobile GPR platform
and the agent’s position X; € C (a complex number),
ie., X; = x; + jy;, representing the GPR location with
coordinates (x;, y;).

TABLE I

NOMENCLATURE
ScanCloud
Xt V> 2t The x,y, and z coordinates of the received pulse signal
@ Amplitude
|mg (i) ] Signal Evelope
i Amplitude reward
r[ot Region of interest (Rol) reward
r’c Object classification reward
DDPG
02 Q network
o+ Deterministic policy function
02’ Target Q network
o Target policy network
r €R Reward at time step ¢

o A : aset of actions of the GPR. Let a; = (&, V,, p;) € A
denote the action vector to be performed at time step ¢
where p; is the operational parameter values of the GPR;
(&,V;) denote the moving direction and velocity of the
GPR platform, respectively. Thus, the position of the GPR
at time step ¢ can be derived as X, = X;_1 +V, - AT - el

In reinforcement learning for discrete action spaces, explo-
ration is done via probabilistically selecting a random action
such as e-greedy. For continuous action spaces, exploration is
done via adding noise to the action itself. In this paper we
will investigate a DDPG framework where a GPR agent is
reinforced to learn a Q-function and a policy.

B. The Architecture of the ScanCloud based Cognitive GPR

In this section, we present an overview of the proposed
ScanCloud architecture, as shown in Figure 1. The architecture
has an iterative operational process involving environment
observation, reward identification, DDPG-based policy learn-
ing, and action execution. The observations (A-Scan signals)
from the agent are feed into the amplitude analyzer for x,y, z
coordinates extraction, which are stored in the ScanCloud
database. From the accumulated ScanCloud points a region
of interest (Rol) is detected in the object formation module
where the Rol is made of point with high amplitude values
signifying the present of a subsurface object. These Rol
points are identified and extracted through the modified 3D
OTSU technique and Rényi entropy [17], [18]. The pre-
trained classifier receives the Rol signature representation as
input for classification. The classification probability output is
used to characterize the classification confidence. The output
results from the amplitude analyze module, Rol module, and
classification module are used to form the reward for the GPR
agent, which will be described in Section I'V-A.

The DDPG module takes a tuple of state, action, reward,
and future state as experience, and guides the GPR agent to
learn a Q-function and optimum policy that maximizes the
future discounted reward for continuous action spaces. The
algorithm of the DDPG module will be described in Section
IV-B. DDPG uses off-policy data and the Bellman equation
to learn the Q-function, and uses the Q-function to learn the
policy.
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Fig. 1. The iterative operational process of the proposed 3D ScanCloud and DDPG enabled GPR.

IV. THE PROPOSED SCANCLOUD APPROACH

The region of interest (Rol) module in Figure 1 is a critical
component of the proposed method. It produces intelligence
to direct the GPR movement and its operational configurations
based on the collected ScanCloud data and prior knowledge
about GPR measurement. This section presents a DDPG
approach to the implementation of the 3D subsurface object
detection method with a novel rewarding mechanism.

A. Reward Function

The GPR agent is rewarded through the combined outcomes
from amplitude analysis, Rol detection and object classifi-
cation while interacting with the environment. The reward
function r : S X A — R is derived by combining three types
of rewards that are computed based on Hilbert Transform,
alpha shapes and Shannon entropy, respectively, effectively
characterizing the GPR agent’s newly acquired subsurface
knowledge about the subsurface object from the sensory data.

The rationale behind this combination of the three sub-
rewards is that the GPR agent would receive reward r;"""
from analysing the A-Scan’s amplitude, r7°’ when it identifies
an Rol in the A-Scan image and receive reward r;¢ when
it recognizes some object properties, such as the diameter
and material of a subsurface pipeline, through GPR data
classification.

Thus the overall reward function is

_ amp roi
re(se,ar) =nry " + pr;

ey

where ;""" denotes the amplitude analysis reward, r;""" the
region of interest (Rol) detection reward, r;¢ object recogni-
tion reward and 7, p, 0 denote the weight coefficients whose
values are determined based on the relative importance of the
amplitude analysis reward, Rol detection reward and the object
recognition reward.

+ or}*,
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In this subsection, we briefly present the concept of am-
plitude analysis reward in Subsection IV-A-1, Rol detection
reward in Subsection IV-A-2, and then describe subsurface
object classification reward in Subsection IV-A-3.

1) Reward Based on Amplitude: GPR works by sending a
signal from a receiver into a surface. The signal is reflected off
of any materials it encounters within the surface, and creates
a reading. Each reflected A-Scan pulse from the reflected
signal off the subsurface object is examined to produce a
tuple (x,y,z) that forms the coordinates of the ScanCloud
points, where x, y denote the x and y coordinates of the GPR
scanner, and z denotes A-Scan’s two way travel time. The z
of the reflected electromagnetic pulse signal is analyzed for
amplitude strength. These signals are pre-processed through
the following steps: 1) We stack every [ A-scan traces
then calculate the average to boost the signal-to-noise ratio
(SNR). The selection of 8 traces for calculation considers the
balance between the obtainable signal resolution and noise
reduction performance. 2) A signal pulse envelope is extracted
through Hilbert Transform which measures the signal power.
The Hilbert Transform of the ith A-Scan trace m(i) can
be considered as the convolution of m(i) with the function
h(i) = L which can be expressed as

1 ()
m(l)_n,[w i—7T

where #1(i) is the direct output of the Hilbert Transform of
m(i). The magnitude of the analytical signal m, (i) equals

Ima (i) = ym(i) +m (i),

where |m,(i)| denotes the envelope of m (i), which facilitates
the signal power characterization. 3) Search for the amplitude
pulse ¢, of the reflected A-Scan signal that corresponds to the

dr, 2)

3
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subsurface object in the envelope signal |m,(i)| and record
the amplitude reward as

P = ma(D)|[”Lookup”, ¢;]. “)

2) Reward Based on ScanCloud: Through the Rényi en-
tropy method, separate computation was conducted with re-
spect to the x, y, z coordinates of the ScanCloud points. Rényi
entropy is preferred because of its high level of accuracy on
signal processing tasks compared to Tsallis [19], [20], [21].

In this work Rényi entropy is calculated to recognize the
singular region on a ScanCloud. In particular, a high Rényi
entropy value demonstrates a high level of information simi-
larity while a low Rényi entropy value features a high level
of information peculiarity [18]. The Rényi entropy upon the
ScanCloud is calculated as

F
log, Y [z7 ()], ©)
f=1
where E, (x) is the entropy quantification with respect to the x
axis, zy (x) is the normalized signal, f is the coordinate index
of pulse and F is the total number of x indexes; £ = 6t - V is
the displacement along the trace x axis.

1
Eq(x) = -«

G
1 (e
Ea(y) = 7= log, ;[zg(y)] : ©)
where E, (y) is the entropy quantification with respect to the y
axis, zg(y) is the normalized signal, g is the coordinate index
of pulse and G is the total number of y indexes; $ = 6t -V is
the displacement along the trace y axis.
H

log, Y [z(2)]°, @)

h=1

Eald)= 71—
where E,(z) is the entropy quantification with respect to the
z axis, zj(z) is the normalized signal, % is the trace index, H
is the total number of traces included, and z is the time index
of pulse data on each reflection A-Scan trace waveform.

The region of interest (Rol) signifying the area where the
subsurface object is located, is computed through the 3D
OTSU threshold method. The 3D OTSU is our modified ver-
sion of OTSU, which is suitable for 3D ScanCloud data. With
two selected entropy thresholds 31 and 32, the ScanCloud can
be segmented into three classes of non-overlapping regions:
singular region, stationary background region, and the tran-
sition region in-between. The singular region entropy values
are lower than threshold 31, the stationary background region
entropy values are higher than J2. While for the transitioning
region, its entropy values are between these two thresholds.
The 3D OTSU method was applied to all ScanCloud points
to generate three Rényi entropy plots corresponding to the
x,y,7 axes, where respective optimum thresholds were com-
puted 817,315, I1;. The Rényi entropy points which fall
below intersection between the Rényi entropy and 3D OTSU
J15, 9 15, J1% are extracted and the corresponding ScanCloud
points are selected to form the intermediate first, second and
third, parts of the global Rol ScanCloud points, which is
calculated as

roi=X"NY*nZ", ®)
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Fig. 2. Region of interest from various underground object shapes: L-shape,
sphere shape, T-shape, and X-shape

X*={x| Eq(x) < J1%}, )
Y ={y| Ea(y) <31}, (10)
Z"={z| Ea(z) < 31}}, (11)

where X*,Y*, and Z* are sets of intermediate Rols points
of ScanCloud with respect to x,y, and z axis respectively.
All the three intermediate Rols are finally concatenated to
form the global Rol denoted as roi. The global Rol samples
are shown in Figures 2(a) - 2(d), where the top part of the
ScanCloud (non-orange ScanCloud points) are detected as the
Rol. This region is special because it explicitly indicates the
region where the subsurface object is located.

Let a,b,c and d denote the sides of its tetrahedrons of
the global Rol roi. We calculate the volume covered by the
global Rol which is considered as the Rol reward, which can
be expressed as

roi K

r = — 12
t 1 + e_vral ( )

where V" indicates the volume of the region-of-interest
formulated by tetrahedral elements, namely

3 (13)

N = d) (b -d) x (c = d))]

VrOl - .

In Eq. (13), P is the total number of ScanCloud tetrahedral
elements.

3) Reward Based on Subsurface Object Classification:
The obtained Rol is transformed into a signature through
Gaussian mixture model (GMM) method [22]. For the un-
derlying density model, we use a mixture of Gaussians with
Gaussian centers (uk) on a uniform 3D m X m X m grid.
Such Gaussians induce a Fisher vector [23] that preserves the
point set structure: the presence of points in a specific 3D
location would significantly influence only some, pre-known,
Fisher components. The other GMM parameters, weight and
covariance, are common to all Gaussians. Figure 3 depicts a
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Fig. 3. X-shaped ScanCloud (right) and the corresponding signature (right)

ScanCloud (left) and its corresponding signature representa-
tion (m = 8) as a color coded image (right). Each column
of the image represents a single Gaussian in a 8 X 8§ X 8
Gaussian grid. Zero values are white whereas positive and
negative values correspond respectively to the red and blue
gradients. Note that the representation lends itself to intuitive
interpretation. For example, many columns are white, except
for the first two top entries. These correspond to Gaussians
that do not have model points near them.

A 4D matrix representing the derived signature serves as in-
put to the pre-trained 3D convolutional neural network (CNN)
classifier. Subsurface objects can be recognized through dif-
ferent GPR data classification tasks, for example, determining
the shape, material type, burial depth, and diameter depend-
ing on specific applications. Our ScanCloud method is very
descriptive in that it not only provides information on object
shape, and depth as the work in GPRNet [7], GPRDepthNet
[8] did, but also material type.

The use of CNN is motivated by the fact that CNNs outper-
form other artificial neural networks on conventional computer
vision tasks such as object detection and recognition [24], [25],
[26] through feature learning. Let P = {p(1), p(2),--- , P(N)}
denote the classification probability output from the classifier
where p(n) is the class probability that the processed Scan-
Cloud belongs to class n, and N is the total number of classes.
The possible classes depend on the specific classification task.
For example, if the classification task is to determine the
material type of the subsurface object, the possible classes
could be different object shapes, namely sphere, T shape, L
shape, X shape. As entropy is a measure of uncertainty [27],
[28], in this work Shannon entropy is considered to quantify
the confidence in the classification. The Shannon entropy of
the classification probability distribution P can be computed
as

N
r == " p(n)log(p(n)). (14)
n=1

It is inferred from Eq. (14) that a balanced classification
probability distribution results in high entropy indicating high
uncertainty and low classification confidence while a skewed
classification probability distribution has low entropy indicat-
ing low uncertainty and high classification confidence.

B. DDPG Algorithm

In our previous work [29], we leverage deep Q-Network
(DQN) method for subsurface object detection. However,

DQNs are meant for problems with a few possible actions, and
are therefore not appropriate for continuous action space such
as the operational process of an adaptive GPR. Nevertheless,
a recently proposed Deep RL algorithm referred to as Deep
Deterministic Policy Gradient (DDPG) [6] can address this
issue. It combines the actor-critic classical RL approach [30]
with Deterministic Policy Gradient [31].

As used in Deep Q learning, DDPG also uses a replay buffer
to sample experience to update neural network parameters.
During each trajectory roll-out, we save all the experience
tuples (state, action, reward, next_state) and store them in
a finite-sized cache called “replay buffer.” Then, we sample
random mini-batches B of experience from the replay buffer
when we update the value and policy networks.

The value network is updated similarly as is done in Q-
learning. The updated Q value is obtained by the Bellman
equation as shown in Algorithm 1 (Line 27). However the
next-state O values are calculated with the target policy net-
work and target value network. Then, we minimize the mean-
squared loss between the updated Q value and the original Q
value:

1
L= N;(yj—Q@j,a,-wQ))? (15)

To calculate the policy loss, we take the derivative of the
objective function with respect to the policy parameter. It is
noted that the actor (policy) function is differentiable, so we
have to apply the chain rule. But since we are updating the
policy in an off-policy way with batches of experience, we
take the mean of the sum of gradients calculated from the
mini-batch:

1
Vot ~ N Z V. 0(s, an)|s:s»,~,a:/1(s_,-)Vé‘“.u(swﬂ)|Sj-
J

(16)

The GPR agent is inclined to execute the action with
the highest Q-value derived from each episode. The Q-value
corresponding to the pair of state and action represents an
expected discounted accumulated future reward.

During learning the Q-function and the policy, the agent
needs to perform action selection and execution. The agent
faces the well-known exploration-exploitation dilemma of
whether to exploit the current knowledge by following the
learned policy or to continue to explore the uncertain envi-
ronment to acquire more knowledge. To resolve the dilemma,
exploration is done by adding mean-zero Gaussian noise to the
actions during training. During testing, we do not add noise
to the actions to see how well the policy exploits what it has
learned.

As described in Algorithm 1, at first (Lines 1-4), the network
parameters are initialized. To generate a more descriptive and
interpretive region of interest (Rol) and object classification,
an iterative process is implemented (Lines 11 — 22) where
periodical Rol computation and object classification are con-
ducted after a substantial amount of ScanCloud points have
been created, resulting in reduced computational overhead.

The DDPG employs the amplitude analyzer, Rol and object
classifier modules to update the proposed reward function
(Lines 16 and 20), by combining the amplitude reward, Rol
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Algorithm 1: DDPG algorithm

1 Randomly initialize critic network Q(s,a|62) and
actor u(s|@*) with weights #2 and 6#

2 Initialize target network Q/ and ,u/ with weights
92" — 02, g1 — gH

3 Initialize replay buffer D

4 Initialize ScanCloud buffer Z

5 for episode = 1, M do

6 Initialize a random process N for action
exploration

7 Receive initial observation state s

8 for =1, T do

9 Select action a, = u(s|6*) + N; according to
the current policy and exploration noise

10 Execute action a,, capture A-Scan signal

11 if i < I then

12 Compute amplitude value ¢, and amplitude

reward r;"""

13 if /™7 > h then

14 ‘ store scan point data (x;, y;,z;) in Z

15 end

16 re=nr!"’ +C

17 else

18 Compute ¢, r/"™"" in lines (12)

19 Compute object shape & Rol rewards

7S¢ rroi
t >0t

20 re = nrlaml’ + or}¢ +ﬁrt”’i

21 C=r

22 i=0

23 end

24 Set sp41 = (X141, Yee1)

25 Store transition (s;, a;, 7y, S;41) in D

26 Sample random batch (s;,a;,r;,s;.1) from D

27 Set y; =r;+yQ (sjs1, 1 (541167 )|09)

28 Update critic by minimizing the loss in Eq.
(15)

29 Update the actor policy using the sampled
policy gradient in (Eq. 16)

30 Update the target networks:
62 —762 + (1 - 1)<
O* —T1o* + (1 —1)0H

31 end

32 end

detection reward and object classification reward. The object
classification reward is intuitively associated with the amount
of the information acquired about the subsurface object from
the observed A-Scan pulses. Next (Lines 25 - 14), a defined
amount of experiences are stored into the replay buffer in
order for the algorithm to have a stable behavior. Then the
minibatch method is used to randomly collect examples from
the replay buffer. The weights and biases of the network are
updated by training the DDPG according to the loss function
Eq.(15). The training process will terminate once it reaches a
predefined number of episodes. During each episode, the GPR

157

Model GPRNet GPRDepthNet ScanCloud

»

T
+ %
Y

AT ALY

7~
)(
A

Fig. 4. The comparison of reconstruction results between GPRNet,
GPRDepthNet, and our method ScanCloud.

agent stops performing actions after a predefined number of
time steps, or could terminate the episode early if it detected
the subsurface object. The computational complexity of the
algorithm is expressed as O(MT), where M denotes the total
number of episodes and T the number of time steps.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we systematically evaluate the performance
of the proposed method by using a GPR simulator called
GprMax [4], [5] designed for modeling GPR operations. A-
Scan signals are generated by GprMax on the fly in mimicing
the GPR data acquisition in real environment. From these A-
Scan signals a novel ScanCloud data format is formulated.
ScanCloud is a 3D data format that incorporates derived
information about the object, for example, object shape, signal
amplitude, object depth, and object diameter.

A. Experiment Settings

1) GprMax Simulator: The GprMax simulator used in this
study solves two dimensional (2D) Maxwell equations using
the Finite-Difference Time-Domain (FDTD) method [32]. The
simulation in this work considers small diameter objects of
various shapes namely sphere, T-shape, L-shape and X-shape
as shown in Figure 2. GprMax characterizes the impact of
common underground object shapes, which formulates the
GPR ScanCloud based on the reflected A-Scan signals.

2) DDPG: Simulations are conducted on a core i7 com-
puter with four cores, 2.2 GHz Intel Xeon CPU, and 16GB
RAM. The training process is run with Python 3.6 and
tensorflow 1.10.0. The size of the replay buffer is 5 x 10%,
and the sample mini batch is B = 32. During the training
process, the GPR agent interacts with the environment and
receives tuples of state, action, reward and next state. A total of
5x10* such tuples are stored in the replay buffer as experiences
which is then sampled and used during the learning. The agent
starts by exploring the environment to build knowledge about
transitions and action rewards.

B. Performance Results

1) Object Reconstruction: Based on the results shown in
Figure 4, our method outperforms other methods on 3D object
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Fig. 5. ScanCloud performance of varying bulk density and volumetric water

reconstruction. Depending on the view, other intuitive object
feature like shape, depth, and diameter can be observed. Our
method provides a much better visual intuition of special
shapes like spheres, boxes, plates, and other complex under-
ground infrastructure containing multiple objects.

Using DDPG (Algorithm 1) the GPR agent learns to take
continuous sensing actions around the geographical area to
acquire the global view of the underground infrastructure.

2) Likelihood of Successful Object Detection vs. Heteroge-
neous Medium: In this paper, we evaluate the performance of
the proposed method under different levels of clutter noise
caused by clutter from heterogeneous soil. We considered
variations of bulk density and volumetric water of the medium.
To make the clutter noise levels more distinct, different types
of soil surfaces including smooth, rough, water, and grass
surfaces, are added to the fractal-box (a box that houses
Peplinski heterogeneous soil).

Figure 5(a) shows detection accuracy vs. bulk density and
Figure 5(b) detection accuracy vs. volumetric water, indicating
that a high object detection rate and reconstruction rate is
obtained for setups with low bulk density and volumetric
water. This is because higher the bulk density and volumetric
water makes higher dielectric constant, resulting in higher
GPR signal attenuation as it propagates through the medium.

3) Classification Accuracy vs. ScanCloud Points: As GPR
data interpretation is affected by the density of the ScanCloud
points, the impact of ScanCloud dimension on the classi-
fication accuracy of the classifier was also evaluated with
various Gaussian grid sizes (m = 11,m = 8§,m = 5,m = 4,

100

Recognition accuracy %

= 11x11x11 = 8x8x8 5x5x5 == 4x4x4 = 3x3x3

2000 4000 6000 8000 10000

Number of Points

Fig. 6. ScanCloud accuracy based on 11x11x 11 grid, 8 x8x8 grid, 5x5x5
grid, 4 x4 x4 grid and 3 x 3 x 3 grid

TABLE II
CLASSIFICATION ACCURACY OF REWARD FUNCTION CHOICES

Model Dry  Wet Pavement He':terogeneous
sand sand soil
ScanCloud-r4"P  85.1 835 842 82.8
ScanCloud-r*¢ 90.1 879  89.1 83.0
ScanCloud-r"°" 90.7 884 895 87.4
ScanCloud 91.3  89.1 90.6 88.0

and m = 3). It is observed that the accuracy increases with
the increase of the grid size (m) and the number of points
representing the ScanCloud, as shown in Figure 6. However,
careful considerations must be taken when selecting a large
grid size which might introduce high computational overhead.

C. Convergence Analysis

1) Comparison Between Reward Choices: In order to eval-
uate the proposed reward function, we study the impact of
different reward choices on performance convergence. In the
evaluation, four types of rewards were considered, that is,
the reward only from, amplitude analysis, Rol detection,
object classification, and their combination. The rewards were
computed from four types of mediums namely; dry sand, wet
sand, pavement and heterogeneous soil. Table II displays the
classification accuracy scores of the various reward choices.

2) Time Steps to Reach Convergence: The time needed for
the proposed method to reach converged performance was also
evaluated. The time steps to reach convergence for different
ScanCloud architecture implementations adopting different
grid sizes (m) are displayed in Table ITI. From the table the
proposed method configured with a grid size of (8 x 8 X 8)

TABLE III

COMPARISON OF TIME STEPS CONVERGENCE WITH DIFFERENT GRID SIZES
Grid Size ]S)::r)n, d ;‘:;t d Pavement gloeiiemgeneous
3x3x3 3.25%x 107 432x10° 4.12x10° 4.25%x10°
4x4x4 3.02%x10°  425x10° 4.05x10° 4.21x10°
5%5x%5 3.11x10°  4.16x10° 3.84x10° 4.03x10°
8x8x8 2.61x10° 3.64x10° 3.21x10° 3.56x10°
1Ix11x11  295x10° 3.98x10° 3.56x10° 3.95x 103

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on December 31,2021 at 21:43:06 UTC from IEEE Xplore. Restrictions apply.



outperforms the one with grid size (11x11x11), because larger
grid size introduces higher computational overhead, despite
yielding higher classification accuracy.

VI. CONCLUSION

In this paper, a GPR-based subsurface object detection
based on deep deterministic policy gradient (DDPG) was
proposed. A novel reward function was developed such that
the GPR agent is rewarded from amplitude analysis, region
of interest identification, and object classification. With the
proposed reward function a DDPG-based model was devel-
oped to enable the GPR to learn to take optimal actions that
maximize the long-term discounted reward, hence detecting
and identifying subsurface objects from its experiences of
interacting with the environment. Simulation results show the
proposed ScanCloud-based GPR has superior performance
in terms of object detection accuracy, object classification
accuracy, and convergence. As part of the future work, the
proposed methods will be tested in real-world environment.
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