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Abstract—The conventional ground penetrating radar (GPR)
data analysis methods, which use piecemeal approaches in
processing the GPR data formulated in variant formats such
as A-Scan, B-Scan, and C-Scan, fail to provide a global view of
underground objects on the fly to adapt the operations of GPR
systems in the field. To bridge the gap, in this paper, we propose a
novel GPR data analysis approach termed "ScanCloud" which is
focused on the whole in situ GPR dataset rather than on individ-
ual A-Scans, B-Scans or C-Scans. We also study the integration
of ScanCloud and a deep reinforcement learning method called
deep deterministic policy gradient (DDPG) to adapt the operation
of GPR system. The proposed method is evaluated using GPR
modeling software called GprMax. Simulation results show the
efficacy of ScanCloud and the adaptive GPR system enabled by
the integration of ScanCluod and DDPG.

Index Terms—Autonomous Cognitive GPR, deep reinforce-
ment learning, subsurface sensing, object reconstruction, 3D
ScanCloud

I. INTRODUCTION

ACcurate 3D maps for underground infrastructure, like

gas, water, and sewage pipes, are significant for gov-

ernments, service organizations, and structural architects.

Nonetheless, exact locations and conditions of underground

infrastructure in old cities are generally unknown. A ground-

penetrating radar (GPR) is a significant device for locating

and identifying underground objects [1]. However, there are

some limitations with conventional GPR techniques: piece-

meal analysis of different formats of GPR data ( A-Scan,

B-Scan, and C-Scan) and offline interpretation of GPR data

with the need of domain expert experience. These limitations

result in inaccurate and incomplete knowledge of underground

objects and time-consuming operation of GPR systems.

To address these limitations, we propose a new approach

termed ScanCloud that considers all the GPR A-Scans in

the field as a point cloud. The rational behind ScanCloud

is that holistically analyzing all the in-situ available GPR

data may provide more knowledge than focusing on partial

A-Scan data or individual B-Scan images. Specifically, we

model the GPR sensing process by integrating the 1D A-

Scan signals and analyzing them to extract (𝑥, 𝑦, 𝑧) coordinates
of the signal where the amplitude pulse from the object is
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detected. This information is stored in a database to form a

novel 3D ScanCloud dataset. This allows us to develop new

data point each time an A-Scan is received.
We also integrate ScanCloud analysis and deep reinforce-

ment learning (DRL) to adapt the operation of a GPR system.

To that end, we first apply Rényi entropy and modified 3D

OTSU methods to detect the region of interest (RoI) in the

ScanCloud. The RoI is transformed into a signature that serves

as input into an object classifier. All the previous procedures

result in a reward function for the deep deterministic policy

gradient (DDPG) [2], [3], a typical DRL method dealing with

large and continuous state and/or action spaces. This paper

is focused on the development of a DDPG framework that

enables adaptive GPRs for subsurface object detection. To this

end, a proper reward function is needed to effectively reflect

the value of different actions of the GPR agent at different

states. To the best of our knowledge, this is the first work on

subsurface object detection based on ScanCloud and DDPG.

The main contribution of this paper can be summarized as

follows.

1) By formulating GPR-based subsurface object detection

as a Markov decision problem, a 3D data modality and

a deep reinforcement learning framework is established

to resolve the problem.

2) A deep deterministic policy gradient (DDPG) algorithm

with a novel reward function that combines rewards from

amplitude analysis, Region of Interest (RoI) identifica-

tion and object classification is proposed.

3) To show the efficacy of the proposed framework, simu-

lation based validations are performed on real-time GPR

data from GprMax simulator by combining DDPG with

GPR operation modeling [4], [5].

In this paper, we investigate continuous subsurface object

detection to generate object shape and orientation using DDPG

[6]. The rest of this paper is organized as follows: the related

work is presented in Section II. In Section III, an overview of

the system model and architecture of the proposed ScanCloud

is presented. The proposed DDPG approach is discussed in

Section IV. Section V presents performance evaluation and

discussion. Finally, Section VI concludes the paper.

II. RELATED WORK

Among different sensor modalities, GPRs have been widely

used in subsurface target detection. However, mapping the
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underground targets from GPR signals is nontrivial, because

different from a laser scanner, a GPR cannot provide 3D posi-

tions by any other means but C-Scans. Feng et al. [7] designed
a GPR-based model reconstruction system for underground

utilities using an auto-encoder. Yang et al. [8] also designed

a GPR-based subsurface object detection and reconstruction

using random motion and depthnet. Chen et al. [9] proposed an

automatic concrete crack-detection method fusing point clouds

and images based on improved Otsu’s algorithm.

Recent research such as combining visual exploration of 2D

ground data and 3D point cloud data for roads environment

[10], [11], [12] is gaining attention. This method [10] is

designed to inspect road surfaces, manholes covers and gullies.

Weilin et al. [11] proposed a method that detects tree trunks

with irregular contours, using LiDAR data and 2D images

from GPR scanner. The authors in [12] designed a two-step

process that involves a grid data creation, where through

interpolation, the point cloud data is changed into grid data

suitable for filling the empty data, and then enhancing the

homogeneous points.

Point cloud has become one of the most significant data

format for 3D representation. It’s gaining increased popularity

as a result of increased availability of acquisition devices, such

as LiDAR, as well as increased application in areas such as

robotics, autonomous driving, augmented and virtual reality.

Jürgen describes the relevance of 3D point clouds for a large

number of geospatial applications through machine learning

and deep learning [13]. Other sophisticated applications of

point clouds include but not limited to connected autonomous

vehicles [14], ground points segmentation for challenging

terrains for autonomous vehicles [15], and in modeling and

predicting vehicle accident occurrence in smart cities [16].

III. THE PROPOSED SYSTEM MODEL AND ARCHITECTURE

A. MDP Formulation of Subsurface Detection

The cognitive control of the positioning and operational

parameters of a GPR can be formulated as a sequential

decision-making problem which can be further modeled as

a finite-horizon Markov decision process (MDP) with finite

state and action spaces.

Without loss of generality, we consider a discrete-time

system in which time is divided into slots of unit length

Δ𝑇 such that each slot 𝑡 corresponds to the time duration

[(𝑡 − 1) ·Δ𝑇, 𝑡 ·Δ𝑇). The complete notation used in this paper

is given in Table I.

The MDP model is described as follows:

• S : a set of environment and system operational states.

Let 𝑠𝑡 = (κ𝑡 ,Ψ𝑡 ) ∈ S denote the state of the GPR

sensing system and the environment in each discrete time

slot 𝑡. κ𝑡 is the newly updated observation about the

environment, in the form of captured A-Scan signal. Ψ𝑡

is the operating state vector of the GPR, such as the

remaining battery energy of the mobile GPR platform

and the agent’s position 𝑋𝑡 ∈ C (a complex number),

i.e., 𝑋𝑡 = 𝑥𝑡 + 𝑗 𝑦𝑡 , representing the GPR location with

coordinates (𝑥𝑡 , 𝑦𝑡 ).

TABLE I
NOMENCLATURE

ScanCloud
𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 The 𝑥, 𝑦, and 𝑧 coordinates of the received pulse signal
𝜑 Amplitude
|𝑚𝑎 (𝑖) | Signal Evelope

𝑟
𝑎𝑚𝑝
𝑡 Amplitude reward

𝑟𝑟𝑜𝑖𝑡 Region of interest (RoI) reward
𝑟𝑠𝑐𝑡 Object classification reward

DDPG

𝜃𝑄 Q network
𝜃𝜇 Deterministic policy function

𝜃𝑄
′

Target Q network

𝜃𝜇
′

Target policy network
𝑟𝑡 ∈ � Reward at time step 𝑡

• A : a set of actions of the GPR. Let 𝑎𝑡 = (𝜉𝑡 , �𝑣𝑡 , �𝑝𝑡 ) ∈ A
denote the action vector to be performed at time step 𝑡
where �𝑝𝑡 is the operational parameter values of the GPR;

(𝜉𝑡 , �𝑣𝑡 ) denote the moving direction and velocity of the

GPR platform, respectively. Thus, the position of the GPR

at time step 𝑡 can be derived as 𝑋𝑡 = 𝑋𝑡−1 + �𝑣𝑡 ·Δ𝑇 · 𝑒 𝑗 𝜉𝑡 .

In reinforcement learning for discrete action spaces, explo-

ration is done via probabilistically selecting a random action

such as 𝜖-greedy. For continuous action spaces, exploration is

done via adding noise to the action itself. In this paper we

will investigate a DDPG framework where a GPR agent is

reinforced to learn a Q-function and a policy.

B. The Architecture of the ScanCloud based Cognitive GPR

In this section, we present an overview of the proposed

ScanCloud architecture, as shown in Figure 1. The architecture

has an iterative operational process involving environment

observation, reward identification, DDPG-based policy learn-

ing, and action execution. The observations (A-Scan signals)

from the agent are feed into the amplitude analyzer for 𝑥, 𝑦, 𝑧
coordinates extraction, which are stored in the ScanCloud

database. From the accumulated ScanCloud points a region

of interest (RoI) is detected in the object formation module

where the RoI is made of point with high amplitude values

signifying the present of a subsurface object. These RoI

points are identified and extracted through the modified 3D

OTSU technique and Rényi entropy [17], [18]. The pre-

trained classifier receives the RoI signature representation as

input for classification. The classification probability output is

used to characterize the classification confidence. The output

results from the amplitude analyze module, RoI module, and

classification module are used to form the reward for the GPR

agent, which will be described in Section IV-A.

The DDPG module takes a tuple of state, action, reward,

and future state as experience, and guides the GPR agent to

learn a Q-function and optimum policy that maximizes the

future discounted reward for continuous action spaces. The

algorithm of the DDPG module will be described in Section

IV-B. DDPG uses off-policy data and the Bellman equation

to learn the Q-function, and uses the Q-function to learn the

policy.
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Fig. 1. The iterative operational process of the proposed 3D ScanCloud and DDPG enabled GPR.

IV. THE PROPOSED SCANCLOUD APPROACH

The region of interest (RoI) module in Figure 1 is a critical

component of the proposed method. It produces intelligence

to direct the GPR movement and its operational configurations

based on the collected ScanCloud data and prior knowledge

about GPR measurement. This section presents a DDPG

approach to the implementation of the 3D subsurface object

detection method with a novel rewarding mechanism.

A. Reward Function

The GPR agent is rewarded through the combined outcomes

from amplitude analysis, RoI detection and object classifi-

cation while interacting with the environment. The reward

function 𝑟 : S × A → R is derived by combining three types

of rewards that are computed based on Hilbert Transform,

alpha shapes and Shannon entropy, respectively, effectively

characterizing the GPR agent’s newly acquired subsurface

knowledge about the subsurface object from the sensory data.

The rationale behind this combination of the three sub-

rewards is that the GPR agent would receive reward 𝑟
𝑎𝑚𝑝
𝑡

from analysing the A-Scan’s amplitude, 𝑟𝑟𝑜𝑖𝑡 when it identifies

an RoI in the A-Scan image and receive reward 𝑟𝑠𝑐𝑡 when

it recognizes some object properties, such as the diameter

and material of a subsurface pipeline, through GPR data

classification.

Thus the overall reward function is

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) = 𝜂𝑟
𝑎𝑚𝑝
𝑡 + 𝜌𝑟𝑟𝑜𝑖𝑡 + 𝜚𝑟𝑠𝑐𝑡 , (1)

where 𝑟𝑎𝑚𝑝
𝑡 denotes the amplitude analysis reward, 𝑟𝑎𝑚𝑝

𝑡 the

region of interest (RoI) detection reward, 𝑟𝑠𝑐𝑡 object recogni-

tion reward and 𝜂, 𝜌, 𝜚 denote the weight coefficients whose

values are determined based on the relative importance of the

amplitude analysis reward, RoI detection reward and the object

recognition reward.

In this subsection, we briefly present the concept of am-

plitude analysis reward in Subsection IV-A-1, RoI detection

reward in Subsection IV-A-2, and then describe subsurface

object classification reward in Subsection IV-A-3.

1) Reward Based on Amplitude: GPR works by sending a

signal from a receiver into a surface. The signal is reflected off

of any materials it encounters within the surface, and creates

a reading. Each reflected A-Scan pulse from the reflected

signal off the subsurface object is examined to produce a

tuple (𝑥, 𝑦, 𝑧) that forms the coordinates of the ScanCloud

points, where 𝑥, 𝑦 denote the 𝑥 and 𝑦 coordinates of the GPR

scanner, and 𝑧 denotes A-Scan’s two way travel time. The 𝑧
of the reflected electromagnetic pulse signal is analyzed for

amplitude strength. These signals are pre-processed through

the following steps: 1) We stack every 𝛽 A-scan traces

then calculate the average to boost the signal-to-noise ratio

(SNR). The selection of 𝛽 traces for calculation considers the

balance between the obtainable signal resolution and noise

reduction performance. 2) A signal pulse envelope is extracted

through Hilbert Transform which measures the signal power.

The Hilbert Transform of the 𝑖th A-Scan trace 𝑚(𝑖) can

be considered as the convolution of 𝑚(𝑖) with the function

ℎ(𝑖) = 1
𝜋𝑖 which can be expressed as

𝑚̂(𝑖) =
1
𝜋

∫ ∞

−∞

𝑚(𝜏)

𝑖 − 𝜏
𝑑𝜏, (2)

where 𝑚̂(𝑖) is the direct output of the Hilbert Transform of

𝑚(𝑖). The magnitude of the analytical signal 𝑚𝑎 (𝑖) equals

|𝑚𝑎 (𝑖) | =
√
𝑚(𝑖) + 𝑚̂(𝑖), (3)

where |𝑚𝑎 (𝑖) | denotes the envelope of 𝑚(𝑖), which facilitates

the signal power characterization. 3) Search for the amplitude

pulse 𝜑𝑡 of the reflected A-Scan signal that corresponds to the
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subsurface object in the envelope signal |𝑚𝑎 (𝑖) | and record

the amplitude reward as

𝑟𝑎𝑚𝑝
𝑡 = |𝑚𝑎 (𝑖) | [”𝐿𝑜𝑜𝑘𝑢𝑝”, 𝜑𝑡 ] . (4)

2) Reward Based on ScanCloud: Through the Rényi en-

tropy method, separate computation was conducted with re-

spect to the 𝑥, 𝑦, 𝑧 coordinates of the ScanCloud points. Rényi

entropy is preferred because of its high level of accuracy on

signal processing tasks compared to Tsallis [19], [20], [21].

In this work Rényi entropy is calculated to recognize the

singular region on a ScanCloud. In particular, a high Rényi

entropy value demonstrates a high level of information simi-

larity while a low Rényi entropy value features a high level

of information peculiarity [18]. The Rényi entropy upon the

ScanCloud is calculated as

𝐸𝛼 (𝑥) =
1

1 − 𝛼
log𝑒

𝐹∑
𝑓 =1

[𝑧 𝑓 (𝑥)]
𝛼, (5)

where 𝐸𝛼 (𝑥) is the entropy quantification with respect to the 𝑥
axis, 𝑧 𝑓 (𝑥) is the normalized signal, 𝑓 is the coordinate index

of pulse and 𝐹 is the total number of 𝑥 indexes; 𝑥 = 𝛿𝑡 · �𝑣 is

the displacement along the trace 𝑥 axis.

𝐸𝛼 (𝑦) =
1

1 − 𝛼
log𝑒

𝐺∑
𝑔=1

[𝑧𝑔 (𝑦)]
𝛼, (6)

where 𝐸𝛼 (𝑦) is the entropy quantification with respect to the 𝑦
axis, 𝑧𝑔 (𝑦) is the normalized signal, 𝑔 is the coordinate index

of pulse and 𝐺 is the total number of 𝑦 indexes; 𝑦̂ = 𝛿𝑡 · �𝑣 is

the displacement along the trace 𝑦 axis.

𝐸𝛼 (𝑧) =
1

1 − 𝛼
log𝑒

𝐻∑
ℎ=1

[𝑧ℎ (𝑧)]
𝛼, (7)

where 𝐸𝛼 (𝑧) is the entropy quantification with respect to the

𝑧 axis, 𝑧ℎ (𝑧) is the normalized signal, ℎ is the trace index, 𝐻
is the total number of traces included, and 𝑧 is the time index

of pulse data on each reflection A-Scan trace waveform.

The region of interest (RoI) signifying the area where the

subsurface object is located, is computed through the 3D

OTSU threshold method. The 3D OTSU is our modified ver-

sion of OTSU, which is suitable for 3D ScanCloud data. With

two selected entropy thresholds 	1 and 	2, the ScanCloud can

be segmented into three classes of non-overlapping regions:

singular region, stationary background region, and the tran-

sition region in-between. The singular region entropy values

are lower than threshold 	1, the stationary background region

entropy values are higher than 	2. While for the transitioning

region, its entropy values are between these two thresholds.

The 3D OTSU method was applied to all ScanCloud points

to generate three Rényi entropy plots corresponding to the

𝑥, 𝑦, 𝑧 axes, where respective optimum thresholds were com-

puted 	1∗𝑥 ,	1∗𝑦 ,	1∗𝑧 . The Rényi entropy points which fall

below intersection between the Rényi entropy and 3D OTSU

	1∗𝑥 ,	1∗𝑦 ,	1∗𝑧 are extracted and the corresponding ScanCloud

points are selected to form the intermediate first, second and

third, parts of the global RoI ScanCloud points, which is

calculated as

𝑟𝑜𝑖 = X∗ ∩ Y∗ ∩ Z∗, (8)

(a) L-shape (b) Sphere shape

(c) T-shape (d) X-shape

Fig. 2. Region of interest from various underground object shapes: L-shape,
sphere shape, T-shape, and X-shape

X∗ = {𝑥 | 𝐸𝛼 (𝑥) < 	1∗𝑥}, (9)

Y∗ = {𝑦 | 𝐸𝛼 (𝑦) < 	1∗𝑦}, (10)

Z∗ = {𝑧 | 𝐸𝛼 (𝑧) < 	1∗𝑧}, (11)

where X∗,Y∗, and Z∗ are sets of intermediate RoIs points

of ScanCloud with respect to 𝑥, 𝑦, and 𝑧 axis respectively.

All the three intermediate RoIs are finally concatenated to

form the global RoI denoted as 𝑟𝑜𝑖. The global RoI samples

are shown in Figures 2(a) - 2(d), where the top part of the

ScanCloud (non-orange ScanCloud points) are detected as the

RoI. This region is special because it explicitly indicates the

region where the subsurface object is located.

Let 𝑎, 𝑏, 𝑐 and 𝑑 denote the sides of its tetrahedrons of

the global RoI 𝑟𝑜𝑖. We calculate the volume covered by the

global RoI which is considered as the RoI reward, which can

be expressed as

𝑟𝑟𝑜𝑖𝑡 =
𝜅

1 + 𝑒−𝑉 𝑟𝑜𝑖
(12)

where 𝑉𝑟𝑜𝑖 indicates the volume of the region-of-interest

formulated by tetrahedral elements, namely

𝑉𝑟𝑜𝑖 =
𝑃∑
𝑝=1

| (𝑎 − 𝑑).((𝑏 − 𝑑) × (𝑐 − 𝑑)) |

6
. (13)

In Eq. (13), 𝑃 is the total number of ScanCloud tetrahedral

elements.

3) Reward Based on Subsurface Object Classification:
The obtained RoI is transformed into a signature through

Gaussian mixture model (GMM) method [22]. For the un-

derlying density model, we use a mixture of Gaussians with

Gaussian centers (𝜇𝑘) on a uniform 3D 𝑚 × 𝑚 × 𝑚 grid.

Such Gaussians induce a Fisher vector [23] that preserves the

point set structure: the presence of points in a specific 3D

location would significantly influence only some, pre-known,

Fisher components. The other GMM parameters, weight and

covariance, are common to all Gaussians. Figure 3 depicts a
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Fig. 3. X-shaped ScanCloud (right) and the corresponding signature (right)

ScanCloud (left) and its corresponding signature representa-

tion (𝑚 = 8) as a color coded image (right). Each column

of the image represents a single Gaussian in a 8 × 8 × 8
Gaussian grid. Zero values are white whereas positive and

negative values correspond respectively to the red and blue

gradients. Note that the representation lends itself to intuitive

interpretation. For example, many columns are white, except

for the first two top entries. These correspond to Gaussians

that do not have model points near them.

A 4D matrix representing the derived signature serves as in-

put to the pre-trained 3D convolutional neural network (CNN)

classifier. Subsurface objects can be recognized through dif-

ferent GPR data classification tasks, for example, determining

the shape, material type, burial depth, and diameter depend-

ing on specific applications. Our ScanCloud method is very

descriptive in that it not only provides information on object

shape, and depth as the work in GPRNet [7], GPRDepthNet

[8] did, but also material type.

The use of CNN is motivated by the fact that CNNs outper-

form other artificial neural networks on conventional computer

vision tasks such as object detection and recognition [24], [25],

[26] through feature learning. Let 𝑃 = {𝑝(1), 𝑝(2), · · · , 𝑃(𝑁)}
denote the classification probability output from the classifier

where 𝑝(𝑛) is the class probability that the processed Scan-

Cloud belongs to class 𝑛, and 𝑁 is the total number of classes.

The possible classes depend on the specific classification task.

For example, if the classification task is to determine the

material type of the subsurface object, the possible classes

could be different object shapes, namely sphere, T shape, L

shape, X shape. As entropy is a measure of uncertainty [27],

[28], in this work Shannon entropy is considered to quantify

the confidence in the classification. The Shannon entropy of

the classification probability distribution 𝑃 can be computed

as

𝑟𝑠𝑐𝑡 = −
𝑁∑
𝑛=1

𝑝(𝑛) log(𝑝(𝑛)). (14)

It is inferred from Eq. (14) that a balanced classification

probability distribution results in high entropy indicating high

uncertainty and low classification confidence while a skewed

classification probability distribution has low entropy indicat-

ing low uncertainty and high classification confidence.

B. DDPG Algorithm

In our previous work [29], we leverage deep Q-Network

(DQN) method for subsurface object detection. However,

DQNs are meant for problems with a few possible actions, and

are therefore not appropriate for continuous action space such

as the operational process of an adaptive GPR. Nevertheless,

a recently proposed Deep RL algorithm referred to as Deep

Deterministic Policy Gradient (DDPG) [6] can address this

issue. It combines the actor-critic classical RL approach [30]

with Deterministic Policy Gradient [31].

As used in Deep Q learning, DDPG also uses a replay buffer

to sample experience to update neural network parameters.

During each trajectory roll-out, we save all the experience

tuples (state, action, reward, next_state) and store them in

a finite-sized cache called “replay buffer.” Then, we sample

random mini-batches 𝐵 of experience from the replay buffer

when we update the value and policy networks.

The value network is updated similarly as is done in Q-

learning. The updated Q value is obtained by the Bellman

equation as shown in Algorithm 1 (Line 27). However the

next-state 𝑄 values are calculated with the target policy net-

work and target value network. Then, we minimize the mean-

squared loss between the updated 𝑄 value and the original 𝑄
value:

𝐿 =
1
𝑁

∑
𝑗

(𝑦 𝑗 −𝑄(𝑠 𝑗 , 𝑎 𝑗 |𝜃
𝑄))2. (15)

To calculate the policy loss, we take the derivative of the

objective function with respect to the policy parameter. It is

noted that the actor (policy) function is differentiable, so we

have to apply the chain rule. But since we are updating the

policy in an off-policy way with batches of experience, we

take the mean of the sum of gradients calculated from the

mini-batch:

∇𝜃𝜇 𝐽 ≈
1
𝑁

∑
𝑗

∇𝑎𝑄(𝑠, 𝑎 |𝜃
𝑄) |𝑠=𝑠 𝑗 ,𝑎=𝜇 (𝑠 𝑗 )∇𝜃𝜇 𝜇(𝑠 |𝜃𝜇) |𝑠 𝑗 .

(16)

The GPR agent is inclined to execute the action with

the highest Q-value derived from each episode. The Q-value

corresponding to the pair of state and action represents an

expected discounted accumulated future reward.

During learning the Q-function and the policy, the agent

needs to perform action selection and execution. The agent

faces the well-known exploration-exploitation dilemma of

whether to exploit the current knowledge by following the

learned policy or to continue to explore the uncertain envi-

ronment to acquire more knowledge. To resolve the dilemma,

exploration is done by adding mean-zero Gaussian noise to the

actions during training. During testing, we do not add noise

to the actions to see how well the policy exploits what it has

learned.

As described in Algorithm 1, at first (Lines 1-4), the network

parameters are initialized. To generate a more descriptive and

interpretive region of interest (RoI) and object classification,

an iterative process is implemented (Lines 11 – 22) where

periodical RoI computation and object classification are con-

ducted after a substantial amount of ScanCloud points have

been created, resulting in reduced computational overhead.

The DDPG employs the amplitude analyzer, RoI and object

classifier modules to update the proposed reward function

(Lines 16 and 20), by combining the amplitude reward, RoI
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Algorithm 1: DDPG algorithm

1 Randomly initialize critic network 𝑄(𝑠, 𝑎 |𝜃𝑄) and

actor 𝜇(𝑠 |𝜃𝜇) with weights 𝜃𝑄 and 𝜃𝜇

2 Initialize target network 𝑄
′
and 𝜇

′
with weights

𝜃𝑄 ′ ←− 𝜃𝑄, 𝜃𝜇
′

←− 𝜃𝜇

3 Initialize replay buffer 𝐷
4 Initialize ScanCloud buffer 𝑍
5 for episode = 1, M do
6 Initialize a random process N for action

exploration

7 Receive initial observation state 𝑠1
8 for t=1, T do
9 Select action 𝑎𝑡 = 𝜇(𝑠 |𝜃𝜇) + N𝑡 according to

the current policy and exploration noise

10 Execute action 𝑎𝑡 , capture A-Scan signal

11 if 𝑖 < 𝐼 then
12 Compute amplitude value 𝜑𝑡 and amplitude

reward 𝑟𝑎𝑚𝑝
𝑡

13 if 𝑟𝑎𝑚𝑝
𝑡 > ℎ then

14 store scan point data (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 ) in 𝑍
15 end
16 𝑟𝑡 = 𝜂𝑟

𝑎𝑚𝑝
𝑡 + 𝐶

17 else
18 Compute 𝜑𝑡 , 𝑟

𝑎𝑚𝑝
𝑡 in lines (12)

19 Compute object shape & RoI rewards

𝑟𝑠𝑐𝑡 , 𝑟
𝑟𝑜𝑖
𝑡

20 𝑟𝑡 = 𝜂𝑟
𝑎𝑚𝑝
𝑡 + 𝜚𝑟𝑠𝑐𝑡 + 𝛽𝑟𝑟𝑜𝑖𝑡

21 𝐶 = 𝑟𝑠𝑐𝑡
22 𝑖 = 0
23 end
24 Set 𝑠𝑡+1 = (𝑥𝑡+1, 𝑦𝑡+1)
25 Store transition (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in 𝐷
26 Sample random batch (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from 𝐷

27 Set 𝑦 𝑗 = 𝑟 𝑗 + 𝛾𝑄
′
(𝑠 𝑗+1, 𝜇

′
(𝑠 𝑗+1 |𝜃

𝜇
′

) |𝜃𝑄
′

)
28 Update critic by minimizing the loss in Eq.

(15)
29 Update the actor policy using the sampled

policy gradient in (Eq. 16)

30 Update the target networks:

𝜃𝑄
′

←− 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄
′

𝜃𝜇
′

←− 𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇
′

31 end
32 end

detection reward and object classification reward. The object

classification reward is intuitively associated with the amount

of the information acquired about the subsurface object from

the observed A-Scan pulses. Next (Lines 25 - 14), a defined

amount of experiences are stored into the replay buffer in

order for the algorithm to have a stable behavior. Then the

minibatch method is used to randomly collect examples from

the replay buffer. The weights and biases of the network are

updated by training the DDPG according to the loss function

Eq.(15). The training process will terminate once it reaches a

predefined number of episodes. During each episode, the GPR

ScanCloudGPRDepthNetGPRNetModel

Fig. 4. The comparison of reconstruction results between GPRNet,
GPRDepthNet, and our method ScanCloud.

agent stops performing actions after a predefined number of

time steps, or could terminate the episode early if it detected

the subsurface object. The computational complexity of the

algorithm is expressed as O(𝑀𝑇), where 𝑀 denotes the total

number of episodes and 𝑇 the number of time steps.

V. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we systematically evaluate the performance

of the proposed method by using a GPR simulator called

GprMax [4], [5] designed for modeling GPR operations. A-

Scan signals are generated by GprMax on the fly in mimicing

the GPR data acquisition in real environment. From these A-

Scan signals a novel ScanCloud data format is formulated.

ScanCloud is a 3D data format that incorporates derived

information about the object, for example, object shape, signal

amplitude, object depth, and object diameter.

A. Experiment Settings
1) GprMax Simulator: The GprMax simulator used in this

study solves two dimensional (2D) Maxwell equations using

the Finite-Difference Time-Domain (FDTD) method [32]. The

simulation in this work considers small diameter objects of

various shapes namely sphere, T-shape, L-shape and X-shape

as shown in Figure 2. GprMax characterizes the impact of

common underground object shapes, which formulates the

GPR ScanCloud based on the reflected A-Scan signals.
2) DDPG: Simulations are conducted on a core i7 com-

puter with four cores, 2.2 GHz Intel Xeon CPU, and 16GB

RAM. The training process is run with Python 3.6 and

tensorflow 1.10.0. The size of the replay buffer is 5 × 104,
and the sample mini batch is 𝐵 = 32. During the training

process, the GPR agent interacts with the environment and

receives tuples of state, action, reward and next state. A total of

5×104 such tuples are stored in the replay buffer as experiences

which is then sampled and used during the learning. The agent

starts by exploring the environment to build knowledge about

transitions and action rewards.

B. Performance Results
1) Object Reconstruction: Based on the results shown in

Figure 4, our method outperforms other methods on 3D object

157

Authorized licensed use limited to: University of Vermont Libraries. Downloaded on December 31,2021 at 21:43:06 UTC from IEEE Xplore.  Restrictions apply. 



(a)

(b)

Fig. 5. ScanCloud performance of varying bulk density and volumetric water

reconstruction. Depending on the view, other intuitive object

feature like shape, depth, and diameter can be observed. Our

method provides a much better visual intuition of special

shapes like spheres, boxes, plates, and other complex under-

ground infrastructure containing multiple objects.

Using DDPG (Algorithm 1) the GPR agent learns to take

continuous sensing actions around the geographical area to

acquire the global view of the underground infrastructure.

2) Likelihood of Successful Object Detection vs. Heteroge-
neous Medium: In this paper, we evaluate the performance of

the proposed method under different levels of clutter noise

caused by clutter from heterogeneous soil. We considered

variations of bulk density and volumetric water of the medium.

To make the clutter noise levels more distinct, different types

of soil surfaces including smooth, rough, water, and grass

surfaces, are added to the fractal-box (a box that houses

Peplinski heterogeneous soil).

Figure 5(a) shows detection accuracy vs. bulk density and

Figure 5(b) detection accuracy vs. volumetric water, indicating

that a high object detection rate and reconstruction rate is

obtained for setups with low bulk density and volumetric

water. This is because higher the bulk density and volumetric

water makes higher dielectric constant, resulting in higher

GPR signal attenuation as it propagates through the medium.

3) Classification Accuracy vs. ScanCloud Points: As GPR

data interpretation is affected by the density of the ScanCloud

points, the impact of ScanCloud dimension on the classi-

fication accuracy of the classifier was also evaluated with

various Gaussian grid sizes (𝑚 = 11, 𝑚 = 8, 𝑚 = 5, 𝑚 = 4,

Fig. 6. ScanCloud accuracy based on 11×11×11 grid, 8×8×8 grid, 5×5×5
grid, 4 × 4 × 4 grid and 3 × 3 × 3 grid

TABLE II
CLASSIFICATION ACCURACY OF REWARD FUNCTION CHOICES

Model Dry
sand

Wet
sand Pavement Heterogeneous

soil
ScanCloud-𝑟𝑎𝑚𝑝 85.1 83.5 84.2 82.8
ScanCloud-𝑟𝑠𝑐 90.1 87.9 89.1 83.0

ScanCloud-𝑟𝑟𝑜𝑖 90.7 88.4 89.5 87.4
ScanCloud 91.3 89.1 90.6 88.0

and 𝑚 = 3). It is observed that the accuracy increases with

the increase of the grid size (𝑚) and the number of points

representing the ScanCloud, as shown in Figure 6. However,

careful considerations must be taken when selecting a large

grid size which might introduce high computational overhead.

C. Convergence Analysis

1) Comparison Between Reward Choices: In order to eval-

uate the proposed reward function, we study the impact of

different reward choices on performance convergence. In the

evaluation, four types of rewards were considered, that is,

the reward only from, amplitude analysis, RoI detection,

object classification, and their combination. The rewards were

computed from four types of mediums namely; dry sand, wet

sand, pavement and heterogeneous soil. Table II displays the

classification accuracy scores of the various reward choices.

2) Time Steps to Reach Convergence: The time needed for

the proposed method to reach converged performance was also

evaluated. The time steps to reach convergence for different

ScanCloud architecture implementations adopting different

grid sizes (𝑚) are displayed in Table III. From the table the

proposed method configured with a grid size of (8 × 8 × 8)

TABLE III
COMPARISON OF TIME STEPS CONVERGENCE WITH DIFFERENT GRID SIZES

Grid Size Dry
Sand

Wet
Sand Pavement Heterogeneous

Soil
3 × 3 × 3 3.25 × 103 4.32 × 103 4.12 × 103 4.25 × 103

4 × 4 × 4 3.02 × 103 4.25 × 103 4.05 × 103 4.21 × 103

5 × 5 × 5 3.11 × 103 4.16 × 103 3.84 × 103 4.03 × 103

8 × 8 × 8 2.61 × 103 3.64 × 103 3.21 × 103 3.56 × 103

11 × 11 × 11 2.95 × 103 3.98 × 103 3.56 × 103 3.95 × 103
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outperforms the one with grid size (11×11×11), because larger

grid size introduces higher computational overhead, despite

yielding higher classification accuracy.

VI. CONCLUSION

In this paper, a GPR-based subsurface object detection

based on deep deterministic policy gradient (DDPG) was

proposed. A novel reward function was developed such that

the GPR agent is rewarded from amplitude analysis, region

of interest identification, and object classification. With the

proposed reward function a DDPG-based model was devel-

oped to enable the GPR to learn to take optimal actions that

maximize the long-term discounted reward, hence detecting

and identifying subsurface objects from its experiences of

interacting with the environment. Simulation results show the

proposed ScanCloud-based GPR has superior performance

in terms of object detection accuracy, object classification

accuracy, and convergence. As part of the future work, the

proposed methods will be tested in real-world environment.

REFERENCES

[1] M. M. Omwenga, D. Wu, Y. Liang, L. Yang, D. Huston, and T. Xia,
“Autonomous cognitive gpr based on edge computing and reinforcement
learning,” in 2019 IEEE International Conference on Industrial Internet
(ICII), 2019, pp. 348–354.

[2] S. Li, Y. Wu, X. Cui, H. Dong, F. Fang, and S. Russell, “Robust multi-
agent reinforcement learning via minimax deep deterministic policy
gradient,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, no. 1, pp. 4213–4220, Jul. 2019.

[3] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, “Deep deterministic policy gra-
dient (ddpg)-based energy harvesting wireless communications,” IEEE
Internet of Things Journal, vol. 6, no. 5, pp. 8577–8588, 2019.

[4] “Gprmax,” https://www.gprmax.com/about.shtml, 2020, [Online; ac-
cessed 10-November-2020].

[5] C. Warren, A. Giannopoulos, and I. Giannakis, “gprmax: Open source
software to simulate electromagnetic wave propagation for ground
penetrating radar,” Computer Physics Communications, vol. 209, pp.
163 – 170, 2016.

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2019.

[7] J. Feng, L. Yang, E. Hoxha, S. Sotnikov, D. Sanakov, and J. Xiao,
“Gpr-based model reconstruction system for underground utilities using
gprnet,” CoRR, vol. abs/2011.02635, 2020.

[8] J. Feng, L. Yang, H. Wang, Y. Song, and J. Xiao, “Gpr-based subsurface
object detection and reconstruction using random motion and depthnet,”
in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 7035–7041.

[9] X. Chen, J. Li, S. Huang, H. Cui, P. Liu, and Q. Sun, “An automatic
concrete crack-detection method fusing point clouds and images based
on improved otsu’s algorithm,” Sensors, vol. 21, no. 5, 2021.

[10] J. Wolf, S. Discher, L. Masopust, S. Schulz, R. Richter, and J. Döllner,
“Combined visual exploration of 2d ground radar and 3d point cloud
data for road environments,” ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.
231–236, 2018.

[11] W. Li, J. Wen, Z. Xiao, and S. Xu, “Application of ground-penetrating
radar for detecting internal anomalies in tree trunks with irregular
contours,” Sensors, vol. 18, no. 2, 2018.

[12] Y. Ge, H. Tang, D. Xia, L. Wang, B. Zhao, J. W. Teaway, H. Chen,
and T. Zhou, “Automated measurements of discontinuity geometric
properties from a 3d-point cloud based on a modified region growing
algorithm,” Engineering Geology, vol. 242, pp. 44–54, 2018.

[13] J. Döllner, “Geospatial artificial intelligence: Potentials of machine
learning for 3d point clouds and geospatial digital twins,” Journal of
Photogrammetry, Remote Sensing and Geoinformation Science volume,
p. 15–24, 2020.

[14] Q. Chen, S. Tang, Q. Yang, and S. Fu, “Cooper: Cooperative perception
for connected autonomous vehicles based on 3d point clouds,” in 2019
IEEE 39th International Conference on Distributed Computing Systems
(ICDCS), 2019, pp. 514–524.

[15] P. Narksri, E. Takeuchi, Y. Ninomiya, Y. Morales, N. Akai, and
N. Kawaguchi, “A slope-robust cascaded ground segmentation in 3d
point cloud for autonomous vehicles,” in 2018 21st International Con-
ference on Intelligent Transportation Systems (ITSC), 2018, pp. 497–
504.

[16] J. Roland, P. D. Way, C. Firat, T.-N. Doan, and M. Sartipi, “Modeling
and predicting vehicle accident occurrence in chattanooga, tennessee,”
Accident Analysis Prevention, vol. 149, p. 105860, 2021.

[17] N. Otsu, “A Threshold Selection Method from Gray-Level Histograms,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp.
62–66, Jan 1979.

[18] Y. Zhang, P. Candra, G. Wang, and T. Xia, “2-D Entropy and Short-Time
Fourier Transform to Leverage GPR Data Analysis Efficiency,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, no. 1, pp.
103–111, 2015.

[19] S. F. Solimene Raffaele, D’Alterio Antonietta, “Entropy-based clutter
rejection for intrawall diagnostics,” International Journal of Geophysics,
vol. 2012, 2012.

[20] J. Lerga, N. Saulig, and V. Mozetič, “Algorithm based
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