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ABSTRACT  

Ultra-wideband (UWB) ground penetrating radar (GPR) is an effective, widely used tool for detection and mapping of 
buried targets. However, traditional ground penetrating radar systems struggle to resolve and identify congested target 
configurations and irregularly shaped targets. This is a significant limitation for many municipalities who seek to use GPR 
to locate and image underground utility pipes. This research investigates the implementation of orbital angular momentum 
(OAM) control in an UWB GPR, with the goal of addressing these limitations. Control of OAM is a novel technique which 
leverages an additional degree of freedom offered by spatially structured helical waveforms. This paper examines several 
free-space and buried target configurations to determine the ability of helical OAM waveforms to improve detectability 
and distinguishability of buried objects including those with symmetric, asymmetric, and chiral geometries. Microwave 
OAM can be generated using a uniform circular array (UCA) of antennas with phase delays applied according to azimuth 
angle. Here, a four-channel network analyzer transceiver is connected to a UCA to enable UWB capability. The 
characteristic phase delays of OAM waveforms are implemented synthetically via signal processing. The viability 
demonstrated with the method opens design and analysis degrees of freedom for penetrating radar that may help with 
discerning challenging targets, such as buried landmines and wires.  
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1. INTRODUCTION  

Ground penetrating radars (GPRs) launch electromagnetic (EM) waves into earth. The waves interact with subsurface 
objects, layers and materials by reflecting, scattering and absorbing. The GPR receives and analyzes the return waves to 
render an understanding of out-of-sight subsurface features, materials and geometries. The conventional GPR uses horn 
or bow-tie antennas to launch waves initially as dipole radiators, often with a specified polarization, that form into spherical 
and eventually planar wavefronts, with nominally homogeneous properties along the wavefront. Resolving spatial 
dimensions relevant to GPR applications requires that the source waves contain a broad band of frequencies, i.e. are 
ultrawideband (UWB). Developments over the past couple decades in understanding of how EM beams, both laser and 
radar, propagate, and how to control the shape of the beams opens new degrees of freedom in GPR system design and 
operation. One of these is to control the shape of the beam, i.e., to control the ‘structure’ of the beam [1].  Beams with a 
helical structure to the waves contain orbital angular momentum (OAM) [2].  Classical descriptions of beams with OAM 
assume that the beam propagates with a single fixed frequency.  A focus of this research is extending the operation of 
OAM beams to GPR by introducing UWB frequency content through synthetic methods based on superposition of single-
frequency OAM beams in a manner similar to step-frequency GPR systems. 

EM beams are collimated waves that propagate in a particular direction, which for GPRs is nominally vertical. Most 
descriptions of beams make use of the paraxial approximation. This assumes that the waves propagate as scalars, oscillate 
at a fixed frequency, ω, and that the angular deviation with respect to the beamline axis of the normal direction to the 
wavefronts are small [3]. The geometry of a paraxial beam propagating along the z-axis appears in Figure 1.  
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Figure 1. Electromagnetic beam centered on and propagating along z-axis with possible rotation component [2] 

Since EM waves are propagating vector field disturbances, it is individual components of the electric, magnetic, or 
corresponding potential field that propagate as scalars. For a generic scalar, ψ(x, y, z, t) , the wave equation with wave 
speed c is  
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An idealized case is when the wave oscillates at a fixed circular frequency, 𝜔 = 2𝜋𝑓.   
 

𝜓(𝑥, 𝑦, 𝑧, 𝑡) = 𝜑(𝑥, 𝑦, 𝑧)𝑒௜ఠ௧       (2) 

 
The constant frequency assumption enables reducing the wave equation into a spatial form, known as the Helmholtz 
equation, where 𝑘 = 𝜔/𝑐 is the circular wavenumber 
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Imposing small deviation angles for the wavefront geometry with a slowly varying function A(x,y,z) creates a separable 
form   
 

φ(x, y, z) = A(x, y, z)eି୧୩୸      (4) 

 
This leads to the simple form of the paraxial wave equation  
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Solutions to the paraxial equation give the shape of propagating beams.  Multiple families of solutions exist. A simple 
form is if A is a constant, possibly complex. This is a plane wave propagating in the z-direction. For lasers and similar 



 
 

 

 

optical beams, assuming a cylindrical paraboloidal wavefront geometry leads to the commonly cited Gaussian beam 
solution in cylindrical coordinates, Aୋ(r, θ, z) [4]. 
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𝑊଴ is the beam width, 𝑧଴ is the Rayleigh range, R(z) is the wavefront curvature and 𝜁(𝑧) is the Guoy phase, such that 
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Other solutions to the paraxial wave equation in cylindrical coordinates exist. Of note for this research is the Gauss-
LaGuerre modal solution [4] 
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Lୋ
୪  are the Gauss-LaGuerre polynomials of integer order l. Different values of the order parameter give rise to different 

forms of solutions.  If the order l = 0 , the solution reverts to the Gaussian beam.  If l ≠ 0 the solution leads to helical 
shaped wavefronts, with the sign of l indicating the handedness of the rotation, the value of l indicating the number of 
intertwined helices, Figure 2.  The Gauss-LaGuerre modes are mutually orthogonal when integrated over the entire 3-D 
space.  

 

Figure 2 Wave with single helix (mode l = 1) propagating along z-axis 

The Guass-LaGuerre modal solution was known as early as 1966 [4], but it did not receive much attention until 1992 
where it was shown that these solutions contain waves with angular momentum and that this angular momentum directly 
corresponds to the angular momentum of photons [5].  There are two main types of angular momentum for photons – 
extrinsic and intrinsic.  Extrinsic angular momentum derives from the linear angular momentum of a photon as it moves 
relative to a fixed axis.  Intrinsic angular momentum arises from the internal action of the photon and is independent of 



 
 

 

 

the choice of reference axis.  Intrinsic angular momentum further separates into two components; spin angular momentum 
(SAM), which derives from the polarization and orbital angular momentum (OAM) corresponding to helical wavefronts 
around an axis corresponding to the direction of propagation [6].  EM waves propagating in free space obey superposition 
and may allow for conversion between SAM and OAM [7].  It is in the interaction with matter where SAM and OAM are 
more readily distinguished [6]. 

In a manner inspired by conventional radar cross sections, the OAM scattering parameter,  𝜎ை௟  , of an object due to a mode 
with helicity, l, is  

 𝜎ை௟ ≜ lim
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 are the scattered and incident fields, respectively [8]. Determining the scattering parameter of objects 

largely remains an open question, with some results deriving from numerical simulations [9]. A simplistic interpretation 
is that if the scatterer has a helical geometry with pitch, ps, that matches the handedness and pitch, pi, of the incident helix, 
then a strong scattering signal will result.  Mismatches between helicity and pitch result in smaller scattering cross-sections. 
The dependence of the incident wave helix pitch on frequency raises the possibility of a highly frequency and shape 
dependent OAM scattering cross section. 

 

 

Figure 3 Match or mismatch of scattering target helical geometry with that of incident beam affects effective OAM cross-
section 

2. SYNTHETIC OAM  

The use of OAM as a potential tool for increasing the diversity of design options and potentially improving the performance 
of GPRs requires effective methods of creating, receiving and processing OAM waves.  One method is to launch ordinary 
beams with minimal OAM into a waveplate that selects and converts the incoming waves into those with OAM.  Waveplate 
methods are effective in both the optical and microwave regimes but tend to incur large signal losses and lack flexibility 
in the production of different types of OAM due to the fixed solid nature of plate geometry [10] [11].  Synthetic techniques 
are a viable alternative to generating beams with OAM in radio and microwave frequencies [2] [8] [9].  The approach is 
to use a circular array of antennas to launch the waves.  If the antennas broadcast at the same frequency, all that is needed 
is to control the phasing of the signals corresponding to the geometric phase of the antenna on the circular and the desired 
helicity of the outgoing wave, Figure 4.  



 
 

 

 

 

a.  b.  

Figure 4 Circular antenna arrays for synthetic OAM, a. schematic with array of linearly polarized dipole antennas, and b. 4-
channel circular array testing scattering target with circular symmetry. 

The spatial field produced by the circular array with N antennas can be represented in terms of the EM vector potential 
A(x,y,z) [13] [14], where  
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Receiving an OAM microwave signal can make use of a circular antenna array to receive the sinusoids, at each antenna, 
Rn(t), at the same frequency as the launch wave, and to measure the corresponding magnitude, Rn, and phase, αn, such 
that 

R୬(t) =  R୬exp[i(ω୬t + α୬)]     (12) 

Inserting an OAM modal phase shift, φ୬୪, onto each signal 
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R୬୪(t) =  R୬exp[i(ω୬t + α୬ + φ୬୪)]     (14) 

 

aligns the received signals in a manner that imposes OAM modal orthogonality.  Combining the phase shifted signals 
produces the received OAM mode of interest, ROl.(t) 

R୓୪(t) = ∑ R୬୪
୒ିଵ
୬ୀ଴ (t)      (15) 

3. SYNTHETIC UWB GPR 

GPR generally uses a broad frequency band to resolve the short spatial distances.  This differs from conventional airborne 
and free space radars which use various forms of continuous waves with time gating to produce pulses with time of arrival 
indicating distance.  GPRs require short pulses, on the order of 1 ns or less, to resolve the distances characteristic of  
subsurface feature and layer dielectric properties.  Two common methods are: 1. To produce the pulses in one distinct 
pulse generation with circuits designed to create the impulses, such as with step recovery diodes [12]. These time-domain 
methods are technically challenging due to the short duration of events and large dynamic range of signals involved; and 
2. Synthetic methods which use step frequency approaches.  The competition between impulse and frequency domain 
methods predates GPR and appeared in the early days of radar and sonar developments.   

Synthetic UWB steps are:  1. Select an overall UWB frequency band. 2. Pick an initial launch frequency, nominally either 
the upper or lower end of the UWB frequency band. 3. Launch a continuous sinusoidal EM wave into the medium under 
test. 4. Receive return signals at the same frequency as in step 2. 5. Measure the magnitude and phase of the return signal. 
6. Increment the launch frequency by a discrete amount.  Maintain the same signal amplitude or record the new launch 
signal amplitude. 7. Repeat steps 3 to 6 until the testing covers the entire UWB frequency band with an adequate sampling 



 
 

 

 

density.  8. Convert the magnitude and phase versus frequency data of the return signals into complex number equivalents. 
9. Perform an inverse discrete Fourier Transform on the return signal data to synthesize the return signal in the time 
domain. 10. Evaluate and manage any spurious imaginary signals in the synthesized time domain signal.  Figure 5 is a 
diagram of the overall method.  Network analyzers are standard instruments for performing synthetic impulse GPR. 

 

 

Figure 5 Operational principle of synthetic UWB GPR using step frequency method: a. Complex values of source sinusoid 
signals, b. Inverse Fourier Transform (IFT) converts to synthetic impulse in time domain, c. Complex values of received 
sinusoid signals, and d . IFT converts to synthetic impulse response in time domain  

4. SYNTHETIC OAM UWB GPR 

The above discussion raises the question as to whether it is possible to combine synthetic methods to extend OAM radar 
to the UWB regime.  The overall approach is as follows: 1. Use circular array of dipole antennas operating in a phased 
array manner to generate helical wave at a fixed frequency with simplified phase helicity, i.e. OAM modes. 2. Collect 
return signals with circular array of antennas.  Measure amplitude and phase at launch frequency. 3. Step launch frequency 
to new values. 4. Repeat steps 1 to 3 until test covers entire frequency band with sufficient sampling density. 5. Use 
Fractional Hilbert Transform (FHT) to decompose return signal for OAM content versus time. 6. Repeat steps 1 to 5 by 
using different OAM launch mode.  7. Repeat steps 1 to 6 until test covers entire range of OAM modes.  

The FHT, FH(f) in step 5 introduces an OAM modal phase shift, φ୬୪ ,for each individual antenna at each frequency, f, [15].   

H୊(f) = [cosφ୬୪ + i ∗ sgn(f)sinφ୬୪][Xୖ(f) + i ∗ X୍(f)]     (16) 

sgn(f) is the signum function, and XR(f) and XI(f), are the real and imaginary components of the frequency domain signal 
amplitude components, respectively.   The signum function ensures that if the original time domain function is real, the 
signal produced by the FHT. If the modal phase shift is 𝜋/4, then the FHT reverts to the conventional Hilbert transform.   

5. EXPERIMENTS 

A four-channel network analyzer (Keysight PNA-X N5241A) is the basis for a set of experiments implementing synthetic 
OAM GPR.  The instruments collects a matrix of the magnitude and phase of the frequency response between four antennas 
as sources and receivers over a 0 to 13.5 GHz band, in the form of S-parameters. A first set of tests attempted to confirm 
whether it was possible to use OAM to measure sensitivity to helical geometries of reflectors with embedded right-hand 
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or left-handed helicity at a pitch in the available test frequency range.  In this case targets with a sensitivity centered on 
1.2 GHz were selected, Figure 6.  The results of these experiments appear in Figure 7.  A quick examination of the curves 
shows a fair amount of variation versus frequency.  However, in the frequency band of interest near 1.2 GHz, the sensitivity 
to the particular OAM mode corresponds to that predicted from the experiments. 

 

 

Figure 6 Experimental setup for synthetic UWB OAM GPR  

  
(a) 

 
(b) 
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Figure 7 S11 + S22 + S33 + S44 signal magnitudes. (a) The left-handed spiral target at a 1-meter distance. Signal magnitude 
near 1.2 GHz is greatest when the incident signal is post-processed with OAM -1 phasing. (b) The left-handed spiral target at 
a 2-meter distance. Signal magnitude near 1.2 GHz is greatest when the incident signal is post-processed with OAM -1 
phasing. (c) The right-handed spiral target at a 1-meter distance. Signal magnitude near 1.2 GHz is greatest when the incident 
signal is post-processed with OAM +1 phasing. (d) The right-handed spiral target at a 2-meter distance. Signal magnitude 
near 1.2 GHz is greatest when the incident signal is post-processed with OAM +1 phasing. 



 
 

 

 

Next a series of measurements were conducted with the synthetic OAM UWB GPR system on various additional shapes.  
A circular TV dish antenna served as a strong reflector with cylindrical symmetry, Figure 4. A strong smooth set of 
scattering curves formed when the antenna was centered on the circular antenna array axis.  The reflection curves changed 
with the position of the antenna to off-axis configurations. The scattering from various geometries of wire bundles appears 
in Figure 9 to Figure 11.  In all of these cases the scattering curves changed significantly with changes in geometry. 

a.  b.  
Figure 8 Scattering of OAM modes from circular TV dish antenna; a. Centered on antenna array axis, and b. Offset 0.3 m 
from antenna array axis. 

a.  b.  

Figure 9 Scattering of OAM modes from a circular wrapped wire bundle 

 

a.  b.  

Figure 10 Scattering of OAM modes from a pretzel-shaped wire bundle 



 
 

 

 

a.  b. 

 

 

Figure 11 Scattering of OAM modes from an ell-shaped wire bundle 

6. CONCLUSIONS 

Control of the shape, i.e., structure, introduces additional degrees of freedom for the design of penetrating radar systems.  
Beams with OAM have the potential to interact with material objects in manners that differs from non-OAM beams. 
Conventional implementations of OAM use a single fixed frequency.  GPRs require operation with wide, even ultra-wide 
frequency bands.  Synthetic methods can extent OAM to UWB frequency bands with potential for use in GPR.  
Experiments with synthetic OAM UWB radar using a four-channel network analyzer confirm sensitivity to helical 
geometry as predicted, and sensitivity to geometry and position of various scattering objects, including those with circular 
symmetry and wire bundles. Many issues regarding understanding OAM modal scattering parameters from various objects 
remain open for further investigation. Since EM beams superpose in free space, there may be other favorable array 
arrangements for penetrating radars as well.  
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