Private Blockchain for Visitor Authentication and
Access Control

Ka Ying Chan
Mathematics and Computer Science
SUNY Oswego
Oswego, NY, USA
kchan2@oswego.edu

Mason Lovett
Department of Computer Science & Software
Engineering
Butler University
Indianapolis, IN, USA

Yesem Kurt Peker
TSYS School of Computer Science
Columbus State Univerity
Columbus, GA , USA
peker yesem@columbusstate.edu

mlovett@butler.edu

Abstract— This study applies the high data integrity that
comes with blockchain technology towards authentication and
access control for visitors of a physical facility. The use of smart
contracts on an Ethereum based implementation of the blockchain
allows for smart contract code to handle both access control and
visitor authentication at scale. Javascript code executed off the
blockchain enables the system to interact with and parse through
the blockchain data. The proposed system is scalable, applies to
multiple use cases, and mitigates issues a centralized approach
faces.

Keywords—nblockchain, authentication, access control

[. INTRODUCTION

Blockchain is an emerging technology that provides a
decentralized digital ledger. Data is grouped together and stored
in chunks called blocks. Every time a new block is added, it is
cryptographically attached to the previous block, creating a long
chain of blocks that are all linked to one another. This means
that changing the original block invalidates every single block
afterwards, making the blockchain tamper evident. Blockchain
is also decentralized which means that multiple computers
called nodes are all connected to one another forming a
blockchain network. Each node on the network participates in
deciding what data is valid and can be added to the blockchain.
Each node also stores a local copy of the data.

These features along with some others can help alleviate the
issues that many centralized systems face. One such issue is a
central point of failure. In a centralized system, a compromised
central machine means the whole system is compromised. With
blockchain this is not the case. Blockchain provides an
environment where trust between nodes on the network is not
necessary. As long as the rules of the network are defined
properly, the nodes do not need to have trust in one another. In
other words, the network can still function if some of the nodes
are acting maliciously or are not responding at all. Another issue
that traditional centralized systems can face is low data integrity.
If data is stored in a centralized database, modifications can be
made to old data. If the system is compromised, this means that
data could be altered and no one would be able to tell.
Blockchain is tamper evident which alleviates this issue.

This research was supported by the U.S. National Science Foundation
under grant award # 195041.

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

For this project, the main benefit of blockchain that is
leveraged is the immutability. Data is cemented into the ledger
once a block is sealed or approved by the nodes. From this point
on, that data only gets more and more difficult to modify as more
blocks are linked onto it and appended to the ledger. This feature
of blockchain technology allows the users to have a high level
of trust on the integrity of the data. This project attempts to
create a visitor authentication system which doesn’t suffer from
a centralized point of failure. The proposed system can tolerate
a certain amount of unresponsive or maliciously acting nodes on
the network and still properly track and authenticate users. This
system improves upon a traditional centralized visitor
authentication and access control system because it is harder to
undermine and the data has a higher level of integrity.

II. BACKGROUND

Blockchain technology is a way of increasing the integrity of
stored data. Blockchain works by segmenting data into groups
of transactions called blocks. These blocks are cryptographically
linked together, meaning that changing one block would change
all other blocks added after it. This creates a system that is
tamper evident, making it much more difficult to modify data
than in a traditional database or central server. Blockchain
technology relies on many different machines known as nodes
all working together to form a network. Each node has a copy of
the data that is being stored. This creates many copies of the data
which are spread out over the network. Because of this, the
system can tolerate a certain amount of nodes going down or
even acting maliciously without the system failing to maintain
data integrity. Data is added to the blockchain via data transfers
called transactions. A transaction is sent to the network, and then
the nodes decide whether it should be added to the official ledger
or not. This process of deciding whether or not to add the
contents of a transaction is called a consensus algorithm and
there are multiple. Consensus algorithms make it such that a bad
actor on one node cannot overtake the network easily. To
overtake a blockchain network, an attacker would need to
control the majority of the nodes. This makes attacking a
blockchain system much more costly than attacking a
centralized system.

There are three main categories of blockchains. The type
which aligns most closely with the central philosophy of

decentralization is a public blockchain. A public blockchain is
open for anyone with an internet connection to join. This allows
for the network to grow very large and thus makes it difficult to
attack. At this point it is worth noting that blockchain technology
provides high data integrity but since every node has access to
the data, it does not guarantee confidentiality of the data.
Because of this public blockchains are not always appropriate.
Another type of blockchain is a consortium blockchain. A
consortium blockchain is used between a set number of entities.
Unlike a public blockchain, not just anyone can join. Typically
consortium blockchains are used for businesses or associations.
These different entities will work together to have more nodes
in the network than they could individually. This is mutually
beneficial as each node makes the blockchain harder to attack.
The final type of blockchain is a private blockchain. Private
blockchains are blockchains where a single entity or business
controls the network for personal use. This can be advantageous
because the entity in charge has much more control over the
network. This can make processing transactions more efficient
and reduce the overall storage required for the data.

The blockchain used in this study is Ethereum. Ethereum
maintains one of the largest cryptocurrency blockchains as of
this time second only to Bitcoin. The native cryptocurrency on
Ethereum is called Ether. Ethereum is open source and can be
replicated by entities to create their own blockchain networks.
This means Ethereum isn’t strictly used for cryptocurrency and
can be implemented or optimized for other uses of blockchain
technology. Ethereum allows for execution of code on the
blockchain via pieces of code called smart contracts. Smart
contracts can perform logic on the data that is received from
transactions and can conditionally emit messages called events
that are stored on the blockchain. These events are how
programs running outside of the blockchain network can gather
information about what is going on within the blockchain.
However events take up storage space on the blockchain and can
cause the size of the blockchain to inflate quicker over time.
Solidity is a common language for writing smart contracts.

III. RELATED WORK

Blockchain technology has found applications in various areas.
Yaga et al. describe and detail the different aspects, use cases,
qualities, and models of blockchain technology and other
inherited processes like consensus models and cryptographic
hashes [1]. Lesavre et al. apply blockchain technology for
identity management and discuss authentication, authorizations
and data sharing within organizations or on the web [2].
Hammi et al. propose a system which attempts to solve certain
security issues in IoT devices using Blockchain technology [3].
They propose a framework, called Bubbles of Trust, where
trusted devices are grouped into a bubble. One device in the
bubble is chosen to be the master and is responsible for signing
all other devices in the bubble. All devices in the same bubble
have some identifiers and signatures that can prove their
identities in the bubble. Only devices in the same bubble can
communicate with each other. This framework can be further
developed such that cross-bubble communications are allowed
between chosen bubbles, and devices can be revoked if they are
compromised. In [4], Bouras et al. aim to produce an efficient,
scalable, decentralized IoT identity management system with

low energy consumption. Their model is based on Hyperledger
Fabric and uses a permissioned consortium blockchain. Every
node on the network must have a credential issued by a
certificate authority who maintains the nodes in the system,
authenticates interactions occurring in the network, and verifies
the integrity of transactions by digital signatures. Registration,
authentication, and revocation are split into three separate
ledgers, each of which is managed by some organizations on
the blockchain network. These ledgers can communicate using
private channels. This model can be improved by automating
the registration process and enabling multi-factor
authentication. Ouaddah et al. attempt to build a secure access
control system while letting users have more control over their
information [5]. The proposed system, called FairAccess,
categorizes all parties with public/private key pairs in the
system into resource owners, requesters, and resources. Each
user has a wallet that manages all the addresses. Resource
owners can register resources, grant access, and revoke access.
Requesters can request access and delegate access. When
access is granted, tokens are given out along with the access
control policies for the specific resources. Requirements stated
in the policies have to be fulfilled to unlock the tokens. In this
way, users do not have to expose their information to a third
party in order to gain access to resources. In [6], Cha et al.
propose a framework address the privacy issues in IoT devices.
The framework includes the use of a blockchain gateway. All
the device information and users’ privacy preferences are
handled by the gateway and stored on the blockchain. Users
gain access to devices by signing their preferences to get tokens
in return. Once tokens are validated by the devices, access is
granted. This framework has drawbacks exposed in [7] where
authors discuss attacks against the framework that lead to loss
of privacy and trust. Yavari et al. claim that Cha et al.’s attempt
is vulnerable to secret disclosure attack, replay attack,
traceability attack, and reuse token attack and propose a new
protocol called IBCbAP is to eliminate the vulnerabilities.
Modifications made include (1) using a new signature scheme
(2) adding a new random value to each session (3) adding
nonces and timestamps to messages (4) using random numbers
generated by all parties in the network in tokens. There also
have been proposals for using blockchain and smart contracts
for role-based access control. RBAC-SC makes use of
Ethereum’s smart contract technology to realize a trans-
organizational utilization of roles [8]. Authors use the
blockchain technology and smart contracts as the trust and
endorsement relations that are essential in the RBAC and utilize
a challenge-response protocol for authentication. In [9] authors
propose a RBAC model where three entities, namely role
issuer, role owner, and role verifier, are considered. A role
owner, an externally owned account, is a user whose role is
issued by the role issuer. The role verifier sets up the required
access for the services and authenticates the role owner. In[10]
a similar model is proposed with similar entities: role issuer,
resource owner, and user. The proposed model uses a
blockchain-based smart contract for managing user-role
permissions in an organization.

IV. PROPOSED WORK

In this study we propose the use of a private blockchain for
achieving somewhat continuous authentication and access
control of visitors on a site. We use the term somewhat
continuous to emphasize that a visitor is authenticated to the
system at regular time intervals and these intervals can be
shortened to get close to a continuous authentication system. We
consider the site to be divided into sections and that a visitor has
access to only some of the sections. We assume that the site has
access points (APs) that are distributed over the site. The site
also provides hardware tokens to wvisitors with these
characteristics:

e Has a mechanism to detect where a visitor is on the
site (e.g. GPS),

e Has a biometric scanner (e.g. fingerprint scanner),

e Has capability to submit transactions to the
blockchain

Our proposed system has three main components as is
described below and depicted in Fig.1.

1) Visitor management

Visitor management deals with visitor registration and
revocation. It includes a server that is responsible for getting
visitor authentication and access information (i.e. disallowed
locations) and putting it on the blockchain via a smart contract
as well as disabling the smart contract when necessary. The
server also stores the information on a token. The token can be
an app on a smart device or a physical dongle that the visitor has
to carry with them. The authentication information can come
from a fingerprint or another biometric based on the capabilities
of the token. Allowing different types of tokens will ensure
accessibility in the system.

2) Visitor reporting

Visitor reporting deals with visitor re-authentication and
updates on the location of the visitor. As the visitor is moving
around on the site, they rescan their fingerprints using the token.
The token also gets the location information and sends (reports)
the fingerprint scan along with the location, to the blockchain at
the address of the smart contract created for the token during
visitor registration. The tokens connect to the blockchain
network through one of the approved access points that is on
their list.

3) Visitor monitoring

Visitor monitoring is about detecting abnormal behavior(s)
as the visitors are on the site. Visitor monitoring starts on the
blockchain and goes on at the trusted monitoring server. The
smart contract that is created for the token when the visitor
registered has these functionalities:

e Check if the length of time since the visitor token
last reported is more than a preset value,

e Compare the newly submitted hash of fingerprint
with the one that was stored when the smart
contract was created,

e Check if the location of the visitor is in the set of
disallowed sections,

The smart contract emits an event when one of these
incidents happens:

e The visitor has not reported to the chain for more
than a preset amount of time.

e The fingerprint hash does not match the initial
fingerprint hash stored for the user

e The visitor is in a disallowed section

An event specifies which of the above abnormal cases has
occurred. The events are picked up by an off-chain server. The
off-chain server is a trusted server that listens to the blockchain
events and displays the information about abnormal cases. If
desired, this server can be used for further action such as
requesting the visitor management server for revocation of the
visitor’s smart contract or locking entries for the visitor, etc.

Visitor
Reporting

— Blockchain System

Visitor
Monitoring

Visitor
Management

Fig. 1. Overview of Proposed System

B. Implementation

We implement our proposed system on a private Ethereum
blockchain. We simulate the tokens in software; that is, we
generate a random hash value for fingerprint hashes, a random
set of disallowed sections for the visitors and ids for the tokens.
We use a laptop with a Windows 64-bit operating system, an
Intel(R) Core(TM) i5-1035G1 CPU x64-based 4-core processor
with base speed of 1.19 GHz, 8 threads, 20 GB RAM, and 477
GB SSD; and a desktop computer with a 6-core 3.6 GHz CPU,
16 GB of DDR4 3200Hz RAM, and a discrete graphics
processing unit running an Ubuntu virtual machine with 12 GB
of dedicated RAM and 4 dedicated cores for the visitor
management and monitoring servers and Raspberry Pi’s (Model
4) for access points (APs). All the APs and the servers are nodes
on the blockchain. The tokens act as wallets on the blockchain;
they do not participate in mining or the consensus algorithm.
The visitor management and monitoring servers are trusted
laptops. The access points are also trusted in the sense that their
setups are done by trusted users of the system. The untrusted
elements in the system are visitors and any person or process
that attempts to inject false data into the blockchain or interfere
with the visits.

In this section we elaborate on how the different components
of the system work. We provide step by step descriptions of each
component.

1) Visitor Management

The main component of visitor management is the visitor
registration process. The visitor management also deals with
visitor revocation.

Visitor registration: The registration process starts on a
trusted server which we call the “visitor management server”
and is completed on the blockchain. There are two smart
contracts in the registration process. The first is a universal
contract which is in charge of registering the visitors. We will
call this contract the “registration contract”. The registration
contract receives the authentication and access information
(disallowed sections) of the visitor from the visitor management
server along with a token id and creates a brand-new contract for
the visitor. This newly created contract is given a new address
and will be referred to as the “visitor contract”. The address of
the visitor contract is provided to the token that the visitor ought
to be carrying with them. The token now can send the biometric
hash and the location information to the visitor contract address
at predefined intervals. At this point the registration process is
complete. A sequence diagram for the registration process is
given in Fig 2. Pseudocodes for User Registration Contract and
Visitor Contract are given in Pseudocodes 1 and 2, respectively.

Fig. 2. Registration

Pseudocode 1. User Registration

function registerVisitor(visitorBiometric, disallowedLocations) {
tokenAccount = server.generateAccount();
biometricHash = SHA3Hash(visitorBiometric);
transaction = sendTransaction({from: server; to: registrationContract}
tokenAccount, biometricHash, disallowedlLocations);
return Token(tokenAccount, transaction.visitorContractAddress);

¥

Pseudocode 2. Visitor Contract

function startToken(){
locationTimer = new Timer(1); // 1 minute
biometricTimer = new Timer(5); // 5 minutes
while (token.isActive()) {
if (locationTimer.timeIsUp()) {
location = token.getCurrentLocation();
sendTransaction({from: tokenAccount; to: visitorContractAddress}, location)

}
if (biometricTimer.timeIsUp()) {
biometric = token.askForBiometric();
sendTransaction({from: tokenAccount; to: visitorContractAddress}, location

In the implementation, the registration contract is designed
so that only information from the visitor management server is
accepted. This avoids unauthorized external devices from
creating contracts.

Visitor Revocation: When a visitor ends their visit and exits
the site or if there is a problem with the visit communicated by
the monitoring server, the visitor management system revokes
the visitor contract by disabling it.

2) Visitor Reporting

Visitor reporting is implemented via the visitor smart
contract that was created for the visitor during registration. The
smart contract expects an update from the visitor’s token at
regular time intervals. There are two updates: One for biometric
hash and one for location. In our implementation the length of
the interval is set to 5 minutes for fingerprint hash and 1 minute
for location. That is, the token has to report the location every
minute and the visitor needs to scan their fingerprint every 5
minutes. These parameters can be adjusted based on the needs
of the system. The smart contract is designed so that if the
updates are not received in a timely manner, an event is emitted
for monitoring purposes. This is explained in Visitor Monitoring
below. Fig 3. presents how the smart contract works in a
sequence diagram.

=6

=de

Visitor

Fig. 3. Token Activities

3) Visitor Monitoring

Visitor monitoring is achieved by listening to the events
emitted by the visitor contracts. The contracts are designed such
that they only emit events that are considered abnormal. If a
visitor is wandering around the site and updating at the expected
times with no abnormal activity, then no event is emitted to
outside the blockchain. This allows for a more efficient and less
costly system in terms of space and time as less data need to be
communicated to the outside world. Note that all transactions
are still stored on the blockchain and can be accessed if needed.

The listening of the emitted events is done by a script
running on the trusted “monitoring server” presented in
Pseudocode 3.

Pseudocode 3. Monitoring Script

function startMonitoring(ourPrivateBlockchain)
while (lend)
latestBlock = ourPrivateBlockchain.getlLatest();
if (latestBlock.hasTransactions())
for (Transaction t : transactions)
eventLogs = t.logs;
if (logs.isNotEmpty())
event = logs[@].topics;
if (event == tokenCreated)
output (“New token created”);
else if (event == invalidlLocation)
output(“Token in invalid location™);
else if (event == invalidBiometric)

output (“Token received invalid biometric”)

else
output (“Unknown event™);

In figures 4 to 6 below we include screenshots presenting
how the registration, reporting, and monitoring steps work.
Fig 4. shows a screenshot of a sample of running the
registration script. At the end of the script, 10 visitor contracts
with tokens ids 0 to 9 are created. Fig 5. shows the location
updates from the visitors. These updates are displayed for
demonstration purposes. In actual use, the legitimate updates
are stored on the blockchain; they don’t need to be displayed.
Fig 6. shows the monitoring script at work. The script displays
the invalid locations and which tokens they are coming from.
For example, in Fig 1. token 5 is registered with disallowed
locations 54 and 27. In Fig. 5, it reports to be at location 27.
Monitoring script captures the invalid location and displays
token 5 in invalid location.

Creating new token with token
A

ith Tocatio
ration trar ion

1on
g new token with token number &

EY
ith locations 1 25,51,44,22,31,50

ration trar

number 7

ith Tocatio ,8
ration trar ion

number 8

Tk
ion

number 9

9 Token
Token
Token

2 Token
Token
Token
Token
Token
Token 9

loc
loc
loc
loc
loc
loc

T kO

[RNT

Fig. 6. Inavlid locations captured on the monitoring script

C. Results

We analyzed our proposed system for storage and time
requirements. For analysis, we simulated our implementation
with 5 nodes and 10 visitors with each visitor expected to send
location updates every minute and fingerprint hash every five
minutes. These parameters can be changed to be more often or
less frequent based on the use case.

We do not include a monetary cost analysis of running our
system. Being a private network, there will be the usual costs
associated with developing and maintaining the system.
Unlike in public blockchain networks, the transactions used
for registering visitors or reporting will not cost any fiat
currency.

1) Time Requirements
The table below outlines the average timing from start to
finish of the different processes present in our system.
Registering a visitor in the system for the system consists of
two processes: creating the token account and registering the
user. Creating the token account entails telling the blockchain
to create a new account for a token on the blockchain network,
then giving this token account plenty of funds so that it can
have enough gas to make transactions while it is active in the
facility. Registering the user involves sending a transaction to
the registration contract with the user’s information and
waiting for the registration contract to create a new visitor
smart contract. Once these two registration processes are done,
the sum of them makes up the total registration time.
The second central process timed was the alert notification
timing. This process displays the average time between a
token sending a transaction with a location violation and the
monitoring system displaying the alert. The alert notification
system consists of two processes. These two processes are the
time it takes for the token to send a policy-violating update
transaction and the time it takes for the system to display an
alert to the administration. The update transaction row
provides the time for either a biometric data authentication
transaction or a location update transaction to be sent and then
arrive at the user’s corresponding visitor contract. The policy
violation alert timing represents the amount of time between
the abnormal transaction being published on the chain and the
monitoring script to output an alert to the administration. The
sum of the times for the transaction to be sent and the alert
being output makes up the total time for the alert notification
process.

Table 1. Average time for registration and alerts

Average Time
(milliseconds)
Token account creation 8907.9
User info registration 4532.8
Registration total | 13440.7
Update transaction (location or fingerprint) | 8471.0
Abnormal activity alert on the monitoring | 1533.2
system (from when update goes on the
blockchain to the alert)
Alert notification total | 10004.2

2) Space Requirements
After running the simulation for 10 minutes for 10 visitors
with location updates every minute and fingerprint
submissions every five minutes, we observed that the storage
space required for the node that owns the chain (owner node)
and the node that gets added as a peer (peer node) are
different. After initializing the blockchain, the size of the
“chaindata” folder of the owner node is 33,107 bytes and that
of a peer node is 45,161 bytes. After running the simulation
for 10 minutes, the size of the chaindata folder on the owner
node is 276,147 bytes with an increase of 243,040 bytes, and
that of a peer node is 288,194 bytes with an increase of
243,033 bytes. The difference between the amounts of
increase is 7 bytes, which is negligible so we will assume that
all nodes have the same size of chaindata. With this, we can
estimate the storage requirement for longer periods. For
example, the monthly storage for a site that accepts visitors 8
hours a day with 10 visitors each ten minutes can be estimated
by
243,040 bytes/ten minutes * 6 ten minutes/hour * 8 hours/day
* 30 days which is 349977600 bytes, approximately 0.35 GB.

D. Security Analysis

In this section we consider ways an adversary may want to
compromise the system and the mechanisms we have in place to
prevent these attacks:

1) Creating unauthorized visitor contracts

Registration of users is done via the rregistration
ccontract that lives on the blockchain. Attempts to
create visitor contracts will not be honored if they
are not initiated by the registration contract. In
order to create a contract, the attacker will have to
first compromise the trusted management server.

2) Impersonating a visitor

In order for someone other than the visitor to do the
reporting for the visitor’s contract, they need to
know the address of the contract on the blockchain.
This information is stored on the token. If one steals
the token, in order to report without raising
suspicion, they would need the fingerprint hash of
the visitor. The fingerprint hash is not stored on the
token. It is on the blockchain and not visible outside
the contract.

3) Tampering with the transactions

An attacker may attempt to tamper with the
transactions by changing the disallowed locations
or fingerprint hash for a visitor. This can be done
either via the registration contract or by changing
the data on the blockchain. As explained in point 1
above, running the registration contract can’t be
done without compromising the trusted
management server. And, changing the data on the
chain is highly unlikely as the integrity of visitor

reports is guaranteed by the tamper-proof property
of the Blockchain technology

4) Unauthorized section in the time interval between
updates

A visitor has to regularly report to their smart
contract. The visitor has to report both fingerprint
hash and their location. The frequency of reporting
can be set differently for the two types of reporting.
The contracts are designed such that, if the visitor
contract doesn’t receive either of the reports on
time, it emits an event indicating no location update
or fingerprint hash is submitted. The frequency of
the updates may be increased at expense of storage
if necessary.

5) Tampering with the physical token

Similar to point 4, the visitor contract will emit an
alert if no updates are received from a token.

V. CONCLUSION

The results obtained indicate that this system is reasonable
to implement in certain cases. The system could further be
optimized per the use case by making modifications to the
blockchain system, contracts, and scripts as necessary. The
timing of the transactions could be modified as needed by
implementing a different consensus protocol on the blockchain
system. For this system, a proof-of-work consensus model was
implemented. There are also proof of authority consensus
protocols like the Clique proof of authority consensus protocol
that would improve the transaction speed of the system. A new
blockchain system could be developed specifically for this use
case to further optimize the timing, and storage of this system.

The physical token could also be adjusted depending on the
use case. A smart phone capable of gathering biometric data,
gathering location information and interfacing with the access
points in the system could be implemented.

The system could also be abstracted to monitor virtual
visitors accessing virtual resources in some sort of file system or
network.

ACKNOWLEDGMENT

We would like to thank Dr. Alfredo Perez, the PI of the REU
Site at Columbus State University for the opportunity he
provided us to work on this project.

REFERENCES

[1] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain Technology
Overview,” Gaithersburg, MD: National Institute of Standards and
Technology (NIST), 2018.

[2] L. Lesavre, P. Varin, P. Mell, M. Davidson, and J. Shook, “A taxonomic
approach to understanding emerging blockchain identity management
systems,” Gaithersburg, MD: National Institute of Standards and
Technology (NIST), 2020.

[3] M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of
trust: A decentralized blockchain-based authentication system for IOT,”
Computers & Security, vol. 78, pp. 126—142, 2018.

(4]

[3]

[6]

[7]

M. A. Bouras, Q. Lu, S. Dhelim, and H. Ning, “A lightweight blockchain-
based IOT identity management approach,” Future Internet, vol. 13, no.
2,p. 24,2021.

A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “FairAccess: A new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, pp. 5943-5964,
2016.

S. Cha, J. Chen, C. Su, and K. Yeh, “A blockchain connected gateway for
BLE-based devices in the internet of things,” IEEE Access, vol. 6, pp.
24639-24649, 2018.

M. Yavari, M. Safkhani, S. Kumari, S. Kumar, and C. Chen, “An
improved blockchain-based Authentication Protocol for IOT Network
Management,” Security and Communication Networks, vol. 2020, pp. 1—
16, 2020.

(8]

(9]

[10]

J. P. Cruz, Y. Kaji and N. Yanai, "RBAC-SC: Role-Based Access Control
Using Smart Contract," in JEEE Access, vol. 6, pp. 12240-12251, 2018,
doi: 10.1109/ACCESS.2018.2812844.

Y. Lee and K. M. Lee, “Blockchain-based RBAC for user authentication
with anonymity”, In Proceedings of the Conference on Research in
Adaptive and Convergent Systems (RACS '19). Association for
Computing Machinery, New York, NY, USA, 289-294,
2019, DOL:https://doi.org/10.1145/3338840.3355673

P. Kamboj, S. Khare and S. Pal, “User authentication using Blockchain
based smart contract in role-based access control” in Peer-to-Peer Netw.
Appl. 14,2961-2976 (2021). https://doi.org/10.1007/s12083-021-01150-
1

