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Abstract
The concept of area measure is widely viewed as fundamental. It is both intrinsically
important and also structurally significant, as a representative of the class of continuous
multiplicative quantities. Operating flexibly in this context with meaning and conceptual
understanding is thus a critical objective for elementary education. Meanwhile, the
difficulties learners encounter with area are well documented in the literature and include
challenges with visualizing structured 2D space and conceptualizing the referent-
transforming action that converts two length measures into area measure. Responding to
these challenges, we present an analysis of their activity where third-grade learners
generated figures with area by sweeping one length (a ‘squeegee’) through another length.
We describe a ‘duo’ of physical and virtual learning environments that we developed to
enable this ‘sweeping’ approach to area – and we show how this duo supported a
classroom group of students in engaging with the two challenges mentioned above. In
our analysis, we draw upon Charles Goodwin’s framework of co-operative action,
showing how, at both individual and group levels, learners began to build professional
vision around area measure and how the shared gestures they developed pointed toward
emerging collective understanding of area as a dynamic quantity.

Keywords Area .Measurement . Sweeping . Co-operative action . Duo of physical and
virtual environments

Area is a fundamental construct in the mathematics of measurable quantities. It is important
both intrinsically, as a core component in modeling many real-world situations, and
structurally, as an instance of a quantity formed through a multiplicative relation of other
quantities. Such quantities are ubiquitous across STEM disciplines as outcomes of

https://doi.org/10.1007/s40751-020-00076-2

* Corey Brady
corey.brady@vanderbilt.edu

Richard Lehrer
rich.lehrer@vanderbilt.edu

1 Vanderbilt University, Nashville, TN, USA

Digital Experiences in Mathematics Education (2021) 7:66–98

Published online: 12 July 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s40751-020-00076-2&domain=pdf
http://orcid.org/0000-0002-4086-9638
mailto:corey.brady@vanderbilt.edu


continuous processes (e.g. ‘work’ in physics, and all accumulative quantities treated through
integral calculus). Thus, being able to reason flexibly about the variation of such quantities in
continuous terms is an extremely powerful resource. Our goals for the conceptual teaching
and learning of area, then, should include a robust treatment of how area and area units can
be created dynamically and continuously from two elements of length.

However, supporting students in developing flexible, multiplicative conceptions of
area is a long-standing challenge in mathematics education(Battista 2007; Outhred and
Mitchelmore 2000). Indeed, procedural fluency in area measure often develops without
firm conceptual backing (Simon and Blume 1994). Problems involving calculating area
scan cue students to multiply dimensions or apply formulae, often without the means to
assess the reasonableness of the results of these calculations. The conceptual founda-
tions of area measure are, in fact, quite deep, as can be seen in its treatment in
differential geometry (see do Carmo 2016; Henderson 2013). In particular, the math-
ematical view of area shows its dependence on structuring the ambient space with co-
ordinates. Moreover, young learners’ challenges with area (and volume) measure can
be linked to challenges with the related operations of structuring space, co-
ordinatization and visualization (e.g. Clementset al., 2018).

Meanwhile, in relating area measure to constituent length measures, students must
contend with a referent-transforming operation (Schwartz 1988), another concept
demanding flexibility in multiplicative reasoning. In particular, the model of multipli-
cation as repeated addition ‘breaks’ for learners in making sense ofarea, in that it
reduces area to a one-dimensional quantity(see Thompson and Saldanha 2003). In this
connection, multiplicative reasoning poses a variety of conceptual and representational
challenges (Beckmann and Izsák 2015; Izsák and Beckmann 2019).

Literature Review

The study documented in this article contributes to understanding and supporting
students’ thinking about area. It is a design study (Cobb et al. 2003), involving the
creation of a ‘duo’ of a physical and virtual learning environment (Maschietto and
Soury-Lavergne 2013).We extend an innovative perspective on conceptualizing and
producing area – sweeping – that provides an entry point into both of the ‘deep’
conceptual terrains mentioned above: structuring space and transforming units.

A variety of authors have identified sweeping as a promising approach to area
measure (Kobiela and Lehrer 2019; Kobiela et al. 2010; Lehrer and Slovin 2014;
Panorkou 2018, 2021; Smith et al. 2016; Vishnubhotla and Panorkou 2017). We build
on this literature by describing a classroom’s engagement with these conceptual
challenges through a sequence of sweeping tasks that blended the complementary
affordances of physical and virtual environments. This extended exposure to sweeping
allowed students to design, generate and analyze figures, providing new perspectives
on and provocations to their thinking about area.

Area as a Continuous Quantity

Many existing approaches follow a ‘cover and count’ approach to partitioning figures
and calculating their areas(e.g. Battista et al. 1998; Izsák 2005). In this approach, a
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figure is conceived of as being subjected to ‘covering’ by individual unit-squares or by
a unit-square grid. After covering, the area is calculated by counting the squares used.
This conceptualization may be useful for determining the value of the result (see Steffe
1988), but it does not offer a way of conceptualizing the production of area of a figure
as a quantity determined through continuous variation of the linear measures of its
sides(Simon and Blume 1996; Thompson and Carlson 2017; Panorkou 2021). In
contrast, sweeping activity can reveal: the challenges of generating 2D space by co-
ordinating measures of lengths (Panorkou 2021); the value of strategically dissecting a
figure and rearranging its components; the richness of students’ flexible ways of
composing the area of shapes from dissected components whose individual areas they
can reason about and calculate (Kobiela and Lehrer 2019).

Learners as Designers of Figures

Many existing approaches to area measure focus students on analyzing static, pre-
created, shapes (see Clements et al. 2018). Sweeping, in contrast, engages students
kinestheticallyin creating shapes, which supports conceptualizing area and building
resources for reasoning about figures (see Panorkou and Pratt 2016). Additionally,
positioning classroom students as creators leverages the diversity of their thinking.
Their constructions can be resources for other students and for the class as a group.

To investigate these resources, we designed and integrated two learning environ-
ments – one physical, the other virtual – to supporta third-grade class in creating and
interpreting shapes by sweeping one length through another. Below, we illustrate how
tasks invoking the physical environment, supported by teacher facilitation, fostered
seeds of a dynamic construction of area as a variational quantity – illuminating
students’ thinking and supporting them in engaging key conceptual challenges. We
next turn to discussions showing classroom-level meaning-making based on these
experiences, indicating how the group discourse pointed toward more refined ways
of thinking about area. We then describe connections between these conceptual seeds
and key features of our Sweeping Area app,1created as a virtual environment to extend
students’ individual and collective experiences with physical sweeping. Finally, we
outline students’ work with the app as they leveraged its features in their area
investigations.

Analytical Framework

This Special Issue explores possibilities for generative relations between physical and
virtual learning environments. Several researchers have articulated learning designs that
purposefully integrate these modalities. Instead of assessing modalities as ‘competing’
routes to engage a mathematical concept (as in Moyer-Packenham and Westenskow
2013), a ‘duo’ (Maschietto and Soury-Lavergne 2013) of physical and virtual tools can
be designed to operate together. While Maschietto and Soury-Lavergne (2013) and
Voltolini (2018) use duos in their studies to highlight processes of instrumental genesis

1 Available in the Apple AppStore as a free download for iPads and as a web application for all devices at:
http://modelsandmodeling.org/sweepingarea
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(Verillon and Rabardel 1995), our study focuses on paired physical/virtual sweeping
environments promoting co-operative action (Goodwin 2018).

Accordingly, we are interested in the role our physical/virtual duo as an interacting
pair of cognitive artifacts (see Bartolini Bussi and Mariotti 2008) mediating the
classroom group’s engagement with the production and measure of area in distinctive
ways. We describe how this pair was used to structure a sequence of actions in which
the classroom group created physical and virtual representations of area and negotiated
interpretations of those representations. Re-mediation of representational features
(Arzarello and Robutti 2010) across physical and virtual modes enabled students to
build on varying understandings of area and its measure as they stabilized among the
group.

Pursuing the notion that visualizing and structuring area is a challenge (see Clements
et al. 2018), we study how students –individually and as a class – began to develop a
form of professional vision (Goodwin 1994, 2018) related to area measure. Our use of
this construct arises from considering the classroom group as a community of learners
(Lave and Wenger 1991) grappling with the area construct and with forms of reasoning
about and measuring it. Here, professional vision captures patterns of change in
students’ relations to disciplinary practices (see Ford and Forman 2006; Vossoughi
et al. 2020).

To track this emergence, we describe challenges that students encountered with
sweeping, and we analyze the initial whole-class discussions that students had about
sweeping work. In these interactions, we trace the development of a shared means of
describing fundamental features of area. In particular, we identify an expressive gesture
that stabilizes collective interpretation of area as dynamic. Shared gesture is an appro-
priate locus for analyzing students’ early engagement with sweeping, as expressive
gestures at conceptual ‘growth points’ (McNeill 1992, 2008) can emerge in advance of
verbal articulation (e.g. Church and Goldin-Meadow 1986). Moreover, in building a
collective gesture, the children’s interactions paralleled accounts of communities of
scientists constructing shared understanding (e.g. Becvar et al. 2005; Ochs et al. 1994)
to develop professional vision in their own contexts.

Goodwin’s co-operative action framework treats communicative interaction as
distributed semiosis, where multiple actors build meaningful actions through innova-
tions and improvisations upon an evolving shared substrate. Substrate captures spatial
and temporal context as an active resource, out of which actors construct meaningful
action and build interpretations of each other’s actions. As co-operative action pro-
ceeds, the collective substrate is enriched: successive actions add resources through
sedimentation.

Further, in subsequent work, actors can enlist elements of shared substrate in a
variety of ways, creating multi-modal, laminated actions that reference and re-use
resources with creative transformation. In this article, we use co-operative action to
focus on whole-class interactions in a third-grade class occurring with reference to the
public display space afforded by the teacher’s document camera and smartboard. The
size of the projection and its accessibility to the students makes this a quasi-theatrical
space, where students present, respond to, interpret and extend each other’s sweeping
constructions. Goodwin’s treatment of environmentally-coupled gesture is particularly
relevant, as are his analyses of interactions that cultivate professional vision and offer
occasions to assess it.
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Methods

Our study was conducted in a third-grade classroom at an elementary school in the US
Southwest serving 875 students from pre-K through 5. The student population is 40%
Hispanic, 28%White, 25% Pacific Islander (mostly Marshallese), 5% Asian, 1% Black
and 1% multiple races, with 82% of students qualifying for free or reduced lunch. Our
partner teacher, JF, had taught at this school for 9 years and participated in professional
development about measure and geometry for 3 years prior to the conduct of this study.
The authors of this study (CB and RL) acted as participant observers (Jorgensen 1989),
supporting the teacher both with the logistics of physical and virtual sweeping envi-
ronments and with the facilitation of classroom discussions.

Curricular Context

This class’s history of engaging with measurement in general, and with area measure in
particular, is relevant. The teacher, JF, is a participant in a multi-year study of
measurement, involving teachers across multiple grades in the elementary school. In
studying length measure, students were consistently supported in seeing lengths in
terms of distances that could be traveled – a perspective conducive to key ideas of
linear measure, including connecting the starting point of measurement with the idea of
having traveled zero units (Lakoff and Núñez 2000).

Within area measure, the students had experienced two key tasks, which they and
the teacher referred to in the data we analyze here:

& Comparing Three Rectangles As an introduction to area measure, students were to
compare three paper rectangles (A, B and C) of different, unknown dimensions,
with an eye toward determining which covered the most space. They dissected
these rectangles (by folding) to establish space-covering relations among them
(Lehrer et al. 1998; Strom et al. 2001). As students dissected the rectangles, they
often privileged and re-used a partition (e.g. a 1 × 2 rectangle) to compare the
figures’ areas by counting the number of them covering each one. The counting of
units of measure, most of which were not square, emerged as a practical means for
comparing areas.

& Comparing Handprints Students next compared the space covered by their hand-
prints aiming to order them (Lehrer et al. 1998). As they considered this challenge,
they decided to count units that covered the handprints. But, because the handprints
were not rectilinear, a square or rectangular unit was not an obvious choice. Many
selected units resembling the contour of the figure and that could be contained
within its boundaries, including beads, dried beans or pieces of pasta versus square
grid paper. In contrast to the ‘natural’ emergence of a unit of measure in the prior
task, the children’s understanding of the properties of units of area measure was
hard-won here. It was only after finding inconsistent measurements with initial
units that resembled the contour of the handprints that they became persuaded that
square units were viable choices. Then, after selecting a square unit, strategies to
include partial units in the unit count emerged to facilitate more accurate
comparisons.
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We viewed the challenges that learners encountered in both of these prior tasks and
their resolutions as potential resources for introducing students to generating area
dynamically and measuring it via unit dissection, which we shortly describe.

Data Analysis

We collected classroom videos, using a mobile camera and a wireless microphone
worn by the teacher. Engaged as participant-observers, we also took field-notes and
collected snapshots of student work products. Semi-structured, videotaped interviews
of nine students from the class contributed importantly to our understanding of the
students’ ways of thinking, but these are not analyzed here. Videos of classroom
interactions were brought into the StudioCode software and marked up with explor-
atory codes to identify sequences of co-operative action and to interpret students’ ways
of thinking. Sequences of talk and interaction that illustrated important themes in the
classroom were identified and analyzed through iterative viewing and interpreting.

For both physical and virtual modalities, we decided to present classroom data
exclusively from the first class session where students used that modality. We chose
this sampling approach to highlight how sweeping framed and supported(a) particular
patterns in students’ conceptions about area measure and (b) connections to multipli-
cative reasoning and multiplication strategies. Moreover, this choice highlights the
designed relation between the two elements of the physical/virtual duo. The collective
sense-making discussion at the end of the first physical sweeping day illustrates a series
of interpretive achievements that created the need for the virtual environment and
grounded its core functionality in operations whose utility the class recognized.

Results

In this section, we begin by analyzing the class’s first day engaging with physical
sweeping, describing how they came to make sense of sweeping and swept figures. At
individual and then collective levels, we show how students developed a version of
professional vision (Goodwin 1994, 2018). In the whole-class discussion, we track how
shared meaning-making work led to stable interpretations and also produced a shared,
environmentally-coupled, representational gesture for sweeping area. Finally, analyzing
the class’s first day working with the virtual sweeping app, we show how the substrate
established in enacting and interpreting physical sweeps supported students in their
virtual sweeping work.

The Physical Sweeping Environment

Students began with tempera paint spread out evenly on large ceramic tiles. Using one
of two types of ‘sweepers’ (squeegees and ice scrapers), they could then clear paint
from a part of the tile, creating a figure in negative space (Kobiela et al. 2010; Kobiela
and Lehrer 2019). Plastic-laminated sheets with inch rulers on their borders were
provided, intended to support students in applying linear measurements to the vertical
and horizontal dimensions of their tiles and to the figures created on them (see Fig. 1).
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JF opened the class saying that whereas in prior activity students considered the
areas of existing shapes that others had made, today they would design shapes of their
own. Likening the material set-up to painting on a canvas, she demonstrated how to use
a squeegee to sweep an area (see Fig. 2) and asked students to share thoughts. Their
responses illustrated the salience of length measure to them. When one student pointed
out the bottom ruler, the class immediately produced a family of ideas and terms
connected with length (‘traveling’ along the edge; units, partitioned into equal sub-
units; numerical values).

In describing the swept figure itself, the class also evinced a variety of thoughts on
how to interpret the shape, such as, including seeing the sweep as a square (or not); as a
rectangle (or not); as an imperfect figure (with one side “going like a little diagonal”);
and as a shape “like Arkansas” (their home state). The idea of determining its area
measure was also raised, but JF framed this as a longer-term goal (“and maybe we’ll
eventually get to finding the area”). JF then gave the students the task to design a figure
of their own, describe their process for creating it; and make and justify any statements
they could about it.

In demonstrating the sweeping action and its results via the document camera, JF
created a powerful image in the class’s shared experience – an image that they spent
much of the class session making sense of and building upon. And in formulating their
first interpretations of the shape, the class identified some of the challenges to be
overcome, including the nature and status of a swept shape as a material representation,
some of whose features should be attended to and others ignored.

Fig. 1 Physical sweeping: two pairs’ early creations and one of the available squeegees.

Fig. 2 JF illustrated sweeping a 5in squeegee through 4in in the paint
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What Kind of Thing Is a (Physical) Sweep?

How did students understand the figures they made? In the first place, working with the
tempera paint on the tiles was engaging: it was playful, a bit unusual and delightfully
messy. It also was somewhat mysterious, and students initially seemed surprised by the
figures that resulted from their sweeps. Further, although they were encouraged to
explore many shapes, even ‘curvy’ ones, students found value in the intentional,
physical focus required to keep the sweeper’s angle fixed during a sweep, which
produced rectangles or, later (when the sweeper was held at an angle not perpendicular
to the direction of sweep), parallelograms.

As an illuminating case, we consider Humberto’s sense-making reflections on his
first figure, in interaction with JF. We do not claim that Humberto is representative of
the class as a whole, but he did offer an image of one way of thinking about sweeping
in connection to other work the class had done. Moreover, JF’s facilitation with
Humberto was characteristic of her interactions with other students. When Humberto
told JF about his figure, she asked him if he had used the rulers set alongside the tile in
any way. (Unlike others in the class, Humberto was working alone on this day.)

JF: OK, you’re wiping down, you’re traveling that distance, OK. And wha...
((pointing at the two rulers and virtually tracing over both of them in an L-shaped
motion)) what are these little guys? Did you use those at all?
Humberto: Yeah. I used them to measure how much I ... how long it is
JF: How long what was?
Humberto: The…the square that I made
JF: Can you show me? What do you mean you used it to measure?
Humberto: I used this ((places the squeegee at the top of the sweep, as in Fig. 3))
and I went from up to down ((re-enacts the sweep)).
JF: (OK)
Humberto: and then looked at these ((touches the 0 point and then the 7 of the
vertical ruler)) and they showed me how much, how much I went
JF: How far did you go?

Fig. 3 Humberto re-enacting his sweeping motion, over the top of the swept figure
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Humberto: I went seven inches long
JF: Traveled seven inches, OK…

Humberto conversed fluidly about one linear measure of his swept figure – the
(vertical)extent of the squeegee’s movement. He successfully measured this extent on
his own, and JF’s repeated reference to traveling made explicit connections to the
class’s prior work on length measurement. In JF’s demonstration, students had also
similarly been able to reason well about length measure in the direction of her
(horizontal) sweep. For Humberto and others in the class, movement (or travel) made
the co-ordinatized length measure of the corresponding ruler salient.

In contrast, when JF next asked Humberto “how wide” his squeegee was, turning to
the other linear dimension, Humberto reacted as though her question were incompre-
hensible. At first, he responded by describing “why” one would use a squeegee (saying,
“if there’s snow… you can just use this and that’ll take it off”), apparently mis-hearing
“wide” for “why” in JF’s question. As the discussion proceeded, it became clear that
Humberto was not attending to the role of the squeegee’s width–indeed, not perceiving
or processing this aspect of the figure. For Humberto, the squeegee’s properties were
embodied, an extension of his arm and hand, a physical tool to paint a (linear) vertical
magnitude on the tile.

JF continued to urge Humberto to measure the size/width of his squeegee. Eager to
comply, Humberto attempted to enlist the ruler salient to him (the vertical one) to
measure some attribute of the tool. By laying it down, he was able to bring the heightof
the squeegee into this measuring-space (see Fig. 4a). When JF pressed him instead to
measure the part of the squeegee he had actually used to make the swept figure,
Humberto objected:

Humberto: You can’t because you... it would only take one number ((see Fig.
4b))
JF: It what?
Humberto: It will only take one number

Here, Humberto was still attending solely to the vertical ruler. His objection was
based on the (accurate and important) observation that the squeegee tip essentially took

Fig. 4 a Measuring the squeegee’s handle; b “It would only take one number”
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up only one location at a time on the vertical ruler during the sweeping action – rather
than occupying an interval, as would be necessary for a length measurement.

Humberto’s struggles suggest a perceptual barrier: he was not actually seeing the
same world as JF. The 3½ minute exchange (of which the above segment is a part)
involved a series of impasses like those Goodwin (2018) described in his own
experience:

running smack into an opaque wall, a domain of phenomena that seems abso-
lutely crucial to what the participants are doing, but that I do not understand
simply by speaking the same language or living in the same country (p. 192)

Goodwin calls the perceptual knowledge that he (like Humberto) lacked professional
vision.

JF’s facilitation (above, and continuing below), allowed Humberto to struggle
authentically with developing professional vision in ways that other ethnographers of
scientific practice have described. For instance, like the physicists that Ochs et al.
(1994) followed, Humberto (with JF), “not only direct their joint attention to static,
two-dimensional graphic representations, they also animate those representations by
gesturally and verbally enacting dynamic events” (p. 161), such as using the swept
figure as a “stage” (p. 152) for gestures, joint re-enactments and re-animations. And,
like the scientists Goodwin (2018) studied, Humberto and JF used pointing and other
environmentally-coupled gestures liberally to highlight phenomena.

Moreover, Humberto verbally treated the sweeping space as a “liminal world” (Ochs
et al. 1994, p. 163) – a space he could enter and an objective space to point at. For
instance, his “I went seven inches long” above is similar in form to locutions made by
the physicists that blend a personal pronoun (‘I’ or ‘you’) with action by an inanimate
object – e.g. “I go below in temperature” or “you’re fluctuating inside that barrier” (pp.
165–166).Humberto’s fusion of himself and the sweeper in talk(see Nemirovsky et al.
1998) – blending the sweeping action and the swept figure – also indicated his
immersion in a sense-making struggle.

This exchange ended in a sudden epiphany, a pivotal instant when Humberto’s
perception appeared to shift fundamentally. Setting this stage for this moment, JF
offered to hold the squeegee in place for Humberto and gestured to highlight the
horizontal ruler:

JF: And what about that tool at the bottom? ((1 sec.)) Can that help you at all?
Humberto: Yeah
JF: How?
Humberto: It can wipe…
JF: Well… What about this tool? ((indicating the horizontal ruler with her finger
and sliding along it, as shown in Fig. 5)) Can this tool help you to measure i–
Humberto: OH!!! ((Pointing with right index finger at the ruler, shown in Fig.
6a)) … ((Switching to left finger, pointing at the zero-point and travelling the
width of the swept figure, shown in Fig. 6b))It [[inaudible]]…from there
((pointing at origin)) to five ((pointing at 5))
JF: OK, so how long do you think it is?
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Humberto: Five
JF: Five what
Humberto: [inaudible] Five inches long

JF’s initial attempt to bring the second ruler to Humberto’s attention failed: he interpreted
‘tool’ to mean squeegee (“it can wipe…”).Her second, pivotal gesture operated at a
different level; it linked the world as she was seeing it(professional vision)with the frame
of action that Humberto was occupying (embodied activity). JF used her body as a
scaffold for Humberto’s: her right hand maintained the squeegee in the position that
Humberto had held it, while she contorted slightly to configure her left hand so that it
approximated the position of Humberto’s own left hand. Thus, Humberto observed JF’s
hands operating the equipment in a physical set-up that he could (and later did) adopt.
Indeed, though his ‘eureka’ moment was accompanied by a spontaneous right-handed
gesture at the ruler, he then switched to his left hand to ‘pick up’ JF’s travel/measure
gesture, like an apparatus whose operation she had demonstrated.

Humberto’s work with JF illustrated that, in expanding ideas of linear measure
through travel to make sense of sweeping and swept figures, students encountered a
barrier of professional vision: the challenge of seeing the production of area as co-

Fig. 5 JF held the squeegee in place and highlighted the horizontal ruler

Fig. 6 a Epiphany about the horizontal dimension; b applying travel to find the squeegee’s length measure
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ordinating motion in two dimensions. Their exchange also identified some key features
of interpersonal interactions that supported developing shared vision: jointly re-
enacting sweeps; creating environmentally coupled gestures; highlighting aspects of
swept figures through pointing. These interactional dynamics re-appeared at the whole-
group level as the class attempted to relate and compare swept figures made by
different students.

Group Discussion: Building up Resources for Comparing Two Figures as
Representations of Area

We now describe how the classroom group began to establish ways of interpreting the
sweeping action and the figures it produced. This episode mediated between physical
and virtual sweeping, building upon physical experiences and preparing the ground for
the class to make use of the virtual environment in constructing and interpreting
representations of area. Moreover, the group display space – a smartboard showing a
document camera – offered a connecting ground between projections of tiles with
physical sweeps and of screens with virtual ones. We use co-operative action to address
the question, “how are embodied knowledge and professional vision calibrated as
public practice within a community?” (Goodwin 2018, p. 348).

After approximately 25 min of individual and small-group work, JF called the class
back together and student groups were invited to share out. Jaime and Paloma showed
their creation first using the document camera(see Fig. 7).Asked about how they
created their shape, Jaime and Paloma both indicated they started at the origin ((Paloma
pointing)). “Then”, Paloma demonstrated, “we traveled all the way to four” ((tracing
with index finger along the x-axis to the 4in mark, as in Fig. 7b)).

As a starting point for group meaning-making, Paloma’s description recapitulated
thinking we observed among individual groups. She and her partner viewed their sweep
as a ‘travel’, which made the direction and extent of their sweep (and the horizontal
ruler) salient. Like others, they seemed to view the sweeper as an enormously thick pen,
and the group did not yet share an understanding of the sweep as a mathematical
representation in two dimensions. On one hand, it was not clear which aspects of the
figure were seen as to-be-measured. And on the other, there was some debate about the
precision that should be taken as significant. (Although this figure was actually quite
‘clean’, some students disputed that the sweep came exactly to the 4in mark.)

Fig. 7 a Jaime and Paloma’s construction; b Paloma, “we traveled all the way to four”
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After some discussion, JF requested of Paloma, “Hold your arm up like you were the
squeegee…and then show me how you traveled”. Following her teacher, Paloma
created the first public instance of a ‘sweeping forearm’ gesture. In executing the
gesture this first time, Paloma exhibited physical intensity, bracing herself on the frame
of the smartboard and holding her arm notably tight (see Fig. 8). Levy and Fowler
(2000) argue that such physical intensity indicates that a gesture is introducing new
information into the discourse, analogous to how prosodic cues indicate emphasis in
speech.

Next, JF had Paloma repeat the gesture, with the entire class following along (see
Fig. 9), helping to ensure that this ‘sweeping forearm’ was available as a group
resource.

After CB documented this sweep on the whiteboard, as “Sweep 5in squeegee
through 4in”,NatalieandJacinta asked if they could share their sweep, whose descrip-
tion turned out to be, “Sweep 4in squeegee through 5in” (Fig. 10).

Natalie told CB that her figure was “the same” as Jaime and Paloma’s. CB asked the
class if they thought, “sweep five-inch squeegee through four inches [was] the same as
sweep four-inch squeegee through five inches”. One student argued yes, “because the
numbers are just switched”, but others were uncertain. Approximately 10 min of
discussion followed, in which different ideas were forwarded, but the class remained
unresolved.

As with Humberto above, the value of the class’s struggle partly derives from its
fundamental nature. To a geometer’s eyes, both groups’ shapes were 5 × 4in rectangles.
(Moreover, they also were ‘the same’ shape as the one JF had produced in her
demonstration.) Further, these figures were both located in the lower-left corner of
their tiles and oriented with their 4in sides horizontal. Thus, geometrically, the figures
were as much ‘the same’ as they could possibly have been. (In particular, their
‘sameness’ did not rely even on rotational or translational congruence.)

On the other hand, as material representations in an imprecise medium, these figures
required interpretation to be seen as ‘the same’. They had quite different looks, and they
were constructed from different sweeping actions. The two groups had swept in
different directions, to different extents, and they had used sweepers of different sizes

Fig. 8 a Paloma re-animated the left-to-right sweep that created the figure; bmid-gesture, Jaime joined her, to
form a gestural ‘duet’
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and types (one a 5in rubber squeegee, the other a 4in ice scraper). To ‘see through’
these differences, the class needed to build a shared means of distinguishing and
mathematizing relevant features of swept figures. Even after determining that the two
shapes were both rectangles and that each had pairs of 4in and 5in sides, the class was
still unsure about whether the shapes were ‘the same’.

Mobilizing Resources to Achieve Spatial Structuring and Visualize Area Production

RL then asked whether the two shapes covered the same amount of space, and how
their areas might be measured. Wanda offered to show how she and her partner thought
about the space covered by a sweep. In the subsequent three-minute strip of talk and
interaction, Wanda’s contributions, collaboratively augmented, brought together the
two groups’ sweeps and built on gestural resources the class has just developed. As she
presented, the projected visual space was progressively annotated with material

Fig. 9 In chorus, the class performed the ‘sweeping forearm’ as a ‘choral’ gesture with Paloma

Fig. 10 Natalie & Jacinta’s sweep (a rectangle is added to the figure to highlight the border)
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overlays and by students’ actions. Several actors entered into the action, gesturally and
verbally, further using and developing the class’s substrate of available resources.

Wanda began with her claim that the shapes were the same, using the sweeper-
forearm gesture in each of the two orientations:

Wanda: If you do the five-inch squeegee brush this way (see Fig. 11a)… to the four.
It’s basically the same as the four-inch squeegee-brush…down five (see Fig. 11b)

Focusing on the actions, Wanda introduced a proposition that the two sweeps were
equivalent. But because her gestural re-enactment had a single swept figure as its
background, she also implicitly made the claim that either sweeping action could have
produced this figure.

CB then asked her about measuring the area:

CB: Do you have an idea about how…to measure the area of that shape?
Wanda: ((nodding)) If… You can have five square inches here((covering a 1-inch
wide section of the ruler (see Fig. 12) and gesturing upward))

CB asked her to show where the five square inches were:

Wanda: ((indicating a region at the base of the new “column”))
This is one square inch…
((then, gesturing upward with hand and arm, from the one-inch mark on the
horizontal ruler (see Fig. 13a–c)))
all the way up here, that’s ... five square inches

As Wanda repeated her gesture, CB placed a piece of spaghetti along the line she cut
with her hand and arm (as shown in Fig. 13d). Wanda’s contribution here connected a
variety of concepts and gestural ideas. Though starting from the horizontal ruler, she
referred to the figure with a covering palm (see Fig. 12) where others used a pointing

Fig. 11 a & b The two sweeps were “basically the same”
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finger, suggesting a 2D versus a 1D referent. Then, with an upward-thrusting hand, she
built on the ‘sweeper-forearm’ to indicate the length of the squeegee (employing a new
kind of ‘travel’), while also highlighting one border of the region produced by
sweeping it1in.

RL then pressed Wanda to identify the square inches in this 1in-wide region:

RL: And where are the squares?
Wanda: ((Gesturing discretely at each square in a stack of imagined squares))

Fig. 12 “You can have five square inches here”

Fig. 13 a–d Wanda showed the five square inches that are produced by sweeping the five-inch squeegee
through 1 in
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CB asked her to repeat and, as she placed her hand at the 1in vertical mark, he offered
another annotation, placing a spaghetti piece horizontally at the level Wanda indicated:

CB: So maybe I need to do something like this?((placing spaghetti as in Fig.
14c))
Wanda: Yeah. ((moving to the vertical 2in mark as in Fig. 14d)) And that’s a
square…
CB: ((places second spaghetti noodle)
Wanda: ((rapidly continuing)) and that’s a square, and that’s a square, and that’s a
square

Although they were ostensibly used to outline the five square inches at the left-most
edge of the sweep, the spaghetti pieces extended suggestively to the right, over the rest
of the swept figure. Here, the spaghetti, as a nascent notational tool, bridged between
stabilizing swept area (in the column to the left) and suggesting continuation (in the
horizontal rows extending rightward). When Wanda indicated subsequent columns of
five square inches, her hand (consciously or not) carried forward the sweeper-forearm
gesture, as in Fig. 15, moving in discrete, one-inch steps from left to right. She counted,
“five, ten, fifteen, twenty” and a small chorus of voices from the class joined her.

Here, Humberto responded to an emerging figure in the shared space, arguing that
more vertical lines should be added for these additional column-groups (see Fig. 16a):

Humberto: But you need f -, three more... ((pause))
You need three more
JF: And where would those go, Humberto?
Humberto: On the four, and the three and the two

After these spaghetti pieces were in place, JF asked:

JF: What have you all created? What have you now made appear up there?
S1: ((loudly whispering)) Square!
Wanda: Your squares
Ss: Square inch, square grid

Fig. 14 a – e Wanda showed where the five square inches were; CB placed spaghetti to delineate
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Though the final figure in Fig. 16b resembles figures created in a cover-and-(composite)-
count approach to area, the process of its construction as a representation, above, stabilized
shared experiences and the class’s collaboratively constructed gesture. Through a process of
progressive annotation, the classroom group collectively witnessed and participated in the
unit structuring of the 5 × 4in rectangle. The final, structured, rectangular figure is, of course,
significant, but it hides the layers of meaning developed in the discussion. Jaime and
Paloma’s original sweep gained in representational richness and social significance as it

Fig. 15 Wanda imagined and counted ‘groups of five’ square inches, one group for each column

Fig. 16 a Humberto rose to request additional vertical spaghetti annotations; b the result
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was re-animated, marked up, gestured upon and spoken over. The result was a new
imagined action, in which, as a sweeper moved from left to right, it produced a structuring
of 2D space, generating columns of area, as though at a fixed ‘rate’ determined by its length.

To expand on this point, JF returned to the idea that this ‘same’ shape could have been
produced by Natalie and Jacinta’s downward sweep. Animating this on top of the already-
structured rectangular figure, JF used a particularly energetic and crisp set of sweeper-
forearmmovements, pausing after each inch of sweeping to identify the row of four square
inches produced. As when Paloma first introduced the ‘sweeping forearm’, above, JF’s
physical intensity suggested that something new was being ‘loaded onto’ this gesture.
Indeed, her action sharpened the gesture, and rendered the continuous movement of the
sweeper into discrete chunks, each of which produced a composite unit of four squares.
This ‘chunky’ sweepingmotion embodied how linear units contributed to the formation of
area units and to their accumulation via composite-unit iteration, both of which are
typically challenging, even for older learners (e.g. Kara et al. 2011).

To solidify the discussion, JF and RL led a notational review that indicated the
complexity of the equivalences that the group had been exploring. On the one hand,
‘sweep 5in squeegee through 4in’describedJaime&Paloma’s sweep, while‘5 ×
4in’described the figure produced. By the explanation initiated by Wanda, this figure’s
area was structured as ‘4 × 5sq in’– four columns of five square inches each.
Analogously, Natalie & Jacinta’s action was ‘sweep 4in squeegee through 5in’, while
‘4 × 5in’described the figure produced. Figure 17 show this area was structured as ‘5 ×
4sq in’– five rows of four square inches each, a view of the entire sweep as composed
of partial sweeps (Kobiela and Lehrer 2019; Panorkou 2021). Finally, counting squares
showed the figure to have an area of 20 square inches (or ‘20 × 1sq in’).

This review provoked new perspectives on area equivalence. Humberto pronounced:

Humberto: It’s the same…
JF: It’s the same what?
Humberto: the squares
JF: It’s the same what?
Humberto: Five groups of four inch- … five groups of four and four groups of
five are the same
JF: So, in other words, they cover…
S1: They just flip-flop
S2: - same area do like…
Jeremy: -They’re like A, B and C
JF: Like what?
Jeremy: ((Points at the orange rectangles next to the smartboard screen))
S4: A, B and C

Fig. 17 JF enacted a 4in squeegee sweeping out the same area, but now in 4in2‘chunks’
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Jeremy’s remark built on Humberto’s assertion that different processes can generate the
same area. His connection to the Three Rectangles task signaled the recognition of a
recurring theme in which mathematical equivalences linked apparently different
shapes. This student-created connection to the class’s collective history encapsulated
the shared sense-making effort and established relations with their prior work (see Fig.
18).

Collective meaning-making and progressive symbolization around two 4 × 5in
rectangles involved intertwined processes of (a) building professional vision and (b)
constructing communal gestures. In our analysis, gestures were significant because they
highlighted developments in the substrate the class could draw upon in future co-
operative action. LeBaron and Streeck (2000) note that such gestures, “embody
experiences that have emerged in situated action”(p. 136).

Through reuse, these gestures can be a means of achieving ‘discourse deixis’
(Levinson 1983).(For instance, a ‘sweeping forearm’ could point back to the moment
when JF invited Paloma to move “like you were the squeegee”.)Butsuch gestures can
also become symbols – “package theoretical conceptions” (Becvar et al. 2005, p. 89) –
as starting points for subsequent co-operative action. In this way, JF built on the
‘sweeping forearm’ to amplify the image of ‘chunks’ of square inches being structured
and produced at a ‘unit-rate’ by the squeegee’s length. This meaning may not yet have
been fully mastered by the class, but JF’s modified gesture offered a direction for
thought.

Virtual Sweeping with the Sweeping Area App

As Maschietto and Soury-Lavergne (2013) assert, the virtual component of a duo of
artifacts neither replaces the physical component nor replicates all of its aspects.
Instead, as a re-mediation (see Arzarello and Robutti 2010), it foregrounds different
capacities and perhaps provides new perspectives on questions provoked in the

Fig. 18 Jeremy made a connection to the orange equal-area rectangles A, B and C from the Three Rectangles
task

Digital Experiences in Mathematics Education (2021) 7:66–98 85



physical environment. There should be both continuities and discontinuities between
the tools, defined by pedagogical design intentions.

In the above, we have described students’ challenges in conceptualizing area and
traced the class’s development of ways of talking about different sweeping actions that
could produce ‘the same’ figure. In building these shared ways of talking and thinking,
students were learning to foreground certain features of physical sweeps and back-
ground or ignore others. They also became attentive to the appropriate level of
precision to apply to swept figures, as they found that these ways of interpreting and
communicating enabled them to see particular sweeps as material representations of
area that could be equivalent in several ways (corresponding to congruence of figures
or equality of area). Indeed, we view the student activity sequence from physical to
virtual, mediated through shared meaning-making, as offering the class an opportunity
to construct a shared notational system for area (see Goodman 1976), one that they
could then use to frame and answer questions about the areas of families of figures.

The imprecision of the physical sweeping environment served as an asset both for
the class’s initial work and for their shared meaning-making. It required the students: to
become explicit about representationally relevant features of swept figures; to expand
their ideas about ‘travel’ to apply them to area-producing motion; to develop consistent,
shared interpretations of figures through descriptions, gestures and arithmetic
representations.

The virtual environment offered different affordances, designed to enable students to
explore features of area measure as a quantity. First, in contrast with physical sweeping,
the Sweeping Area app enabled flexible production of swept figures at scales, dimen-
sions and levels of precision specified by the student. In addition to varying the length
of their squeegee (see Fig. 19a and b), the app allowed students to alter the units of
horizontal and vertical measure and/or to subdivide these units (see Fig. 19c). This
permitted them to create sweepers of non-integer lengths and/or sweep through non-
integer extents, with greater precision and flexibility. Together, these features enabled
students to investigate families of related sweeps, by systematically varying the extent
of sweeps or changing sweeper sizes.

Second, while in the physical medium, some students did create parallelograms by
orienting the sweeper at an angle to the sweep and carefully maintaining that orienta-
tion, the app made such constructions more accessible and literally less strenuous, again
allowing a proliferation of interesting cases to be explored by all members of the class
and put in a broader context (see Fig. 20a and b).Finally, the app’s re-mediation and
extension of the ‘spaghetti annotations’ described above allowed students to dissect
their swept areas (either with a full grid, see Fig. 21a, or in single custom cuts at

Fig. 19 a & b Varying the virtual squeegee length and the units of measure in the virtual space; c introducing
fractional units (here half-units)
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horizontal or vertical locations they chose, see Fig. 21b), and then to drag and
rearrange the resulting pieces (see Fig. 21c). Here again, the physical environment
grounded or provoked the need for actions, which the virtual environment then enabled
students to generalize and explore.

We introduced the app on Day 3. In that session, the features above enabled several
extensions of work students had done in physical sweeping, supporting a growing
network of multi-faceted ties between sweeping actions and symbolic structures of
arithmetic. Through the app, students connected patterns within and across swept
figures with patterns in arithmetic operations on numbers. For instance, at the start of
class, Zamora used a doubling strategy to sweep a 3in sweeper through 8in and
calculate its area. She explained that the initial column of 3in2(created by sweeping
1in)would become 6in2 when the extent doubled to 2in; then 12in2 when it doubled
again to 4in; and, finally, 24in2 when it doubled again to 8in.As shown in Fig. 22,
Zamora indicated the second copy of the 4in sweep, using an open-handed gesture
reminiscent of Wanda’s shown in Fig. 12.

The app’s support for creating sweeps quickly also enabled students to build, “new
action by decomposing and reusing with transformation resources provided by earlier
actors” (Goodwin 2018, p. 429). That is, it made the class’s substrate more accessible
as a resource for conceiving new action. Journals revealed traces of these lines of
inquiry, as students recorded and symbolized their work in the app. For instance,
perhaps drawing on Zamora’s demo of a 3in squeegee, Humberto’s journal (see Fig.
20a) showed his experiments with a family of shapes produced by that squeegee
sweeping different lengths. Other students picked up on the doubling theme in
Zamora’s example. Figure 23b shows Jeremy’s work in calculating 8 × 6in by doubling
from 4 × 6 = 24, an exemplar of investigations of change in one dimension on area
(Panorkou 2021).

Fig. 20 a Sweeping a rectangle left to right; b sweeping a parallelogram with a tilted squeegee

Fig. 21 a Dissecting a swept figure along the unit grid; b dissecting with specific cuts; c rearranging dissected
pieces
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The app also facilitated creation and dissection of parallelograms. In the physical
environment, Laura had swept a parallelogram, where it was a challenge (a) to maintain
the sweeper’s orientation to produce parallel edges and (b) to account for fractional area
units in the ‘spaghetti dissection’. She asked to show a virtual parallelogram to the class
and then explained why she wanted to move a part of her figure from the right side to
the left, to create a rectangle (see Fig. 24a and b). When she then enacted this dissection
and rearrangement (see Fig. 24c), the class broke out in spontaneous applause.

The class briefly debated whether the rectangle that Laura created by moving the
highlighted triangle had the same area as the original parallelogram. Some argued that,
“it’s the same”, while others insisted that she had “changed it”. A persuasive contri-
bution then came from Wanda, who recognized a similarity to the earlier Comparing
Handprints task. She noted that there, too, “you had to match the pieces to make a
whole”, referring to matching partial area units to make whole square units. Thus, as

Fig. 22 A repeated doubling strategy to calculate 3 × 8in

a

b

Fig. 23 a Humberto explored sweeps of a 3-in squeegee through 4, 7, 3, 2 and 1in; b Jeremy doubled24in2 to
get 48in2
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Laura moved the large triangle, she was seen as pairing several complementary partial
units at once. On recognizing this, Connor, a vocal opponent of area conservation,
changed his opinion, saying. “Yes, it’s the s-… I thought it was different, but it’s the
same because if you add them to that piece over there, it’s the same”.

An interactive demonstration of dissection and rearrangement under the app’s two
cutting options – to cut with the full grid (see Fig. 25a) or to “Cut Your Own” along
selective vertical or horizontal lines (see Fig. 25b) – deepened the connection with
Comparing Handprints. And the class was ready to use dissection to extend their
exploration of sweeping and calculating areas.

All students we observed were able to dissect parallelograms into rectangles, though
they varied in whether they chose to match individual partial units or to use the Cut-
Your-Own tool. And even among Cut-Your-Own users, there was not yet a shared
understanding of how to cut optimally. Nevertheless, students generally made the
connection that rearrangements helped them to produce rectangular figures whose areas
could be described with number sentences.

This increasingly flexible connection between rectangular areas and arithmetic
sentences suggested a final task for the day. RL introduced the idea by wondering,
“whether anyone had found a quick way to find the area” of a rectangular sweep. When
several responded that they had, CB wrote a scenario on the board – “Sweep 3in
through 5in”, putting boxes around the bolded numbers – and asked whether it was
possible to find the area without drawing it. Students answered “15”, and several
offered ways of thinking about this area (knowing 3 groups of 5 = 15; knowing that
4 groups of 5 = 20 minus 5 = 15; and skip-counting 5, 10, 15). Students asserted they
could visualize the area without actually constructing the sweep. A final student noted a
pair of multiplication facts: “three times five equals fifteen” and “five times three is
fifteen”.

Fig. 24 a& b Laura described moving part of her parallelogram to the other side, to make a rectangle; c doing
the rearrangement (using the trackpad on her projected Chromebook)

Fig. 25 a Rearranging a parallelogram after cutting with the grid; b cutting your own
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CB then said he was going to change the numbers in the boxes and asked who
thought they could find the area, no matter what numbers he chose. About half of the
class raised their hands. JF selected Judah, who answered the challenge “Sweep 2in
through 6in” by saying he knew the multiplication fact two times six is 12. Then, it was
his turn to invent a scenario. When he said, “The sweeper will be eight inches…and it
will sweep through twelve …inches”, there were audible gasps in the room at the
difficulty facing Monica, who had agreed to try Judah’s challenge.

CB asked what Monica might type in to a calculator, if she had one, to answer the
question. This provoked responses from Monica and from others in the class:

Monica: Twelve times eight
CB: Any other thing you could put in the calculator?
Jaime: Eight times twelve
S3: Twelve times eight
CB: Anything else?
S4: Twelve plus twelve plus twelve plus twelve plus twelve plus twelve …
CB: Right! I could do that how many times?
S4: Eight times.
CB: Eight times. Or if I did it the other way, it could be…
S5: eight plus eight plus eight plus eight plus eight plus…
CB: ((nodding))
Connor: Or, do it eight times, but… ten plus two
RL: Oh!

With Connor’s guidance, CB annotated his proposed strategy as “8 × (10+2)”. Jaime
then volunteered an idea that he may or may not have connected with Connor’s:

Jaime: I was gonna say, eight times… eight times twelve you can break it up.
Like you can put eight times ten you just take the ten off of the, of the twelve.
And then eight times, eight times one … eight times tenis eighty. And eight and
eight; two eight times…equals…
JF: So, you’re talking about doing…kinda two sets…two sets of parentheses? So,
eight groups of ten plus eight groups of two?
CB: ((notating 8 × 10 + 8 × 2)) That’s what you’re saying, right?
Jaime: ((nods)).

Jaime’s language of breaking up and taking off suggested a connection to the dissection
and rearrangement of a rectangular figure, offering opportunities to return to the
sweeping representation. In order to compare the three notational expressions:

8� 12 8� 10þ 2ð Þ 8� 10þ 8� 2

CB created an 8in squeegee and swept it through 12 in. Monica and Jaime worked
together to use dissection to represent Jaime’s arithmetic strategy, 8 × 10 + 8 × 2 (see
Fig. 26a), and to calculate the result (see Fig. 26b). The class session ended with the
reflection that one could represent any multiplication expression with a sweep and that
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related calculation strategies could be expressed with dissection of the swept figure into
pieces.

Discussion

In approaching this study, we identified two mathematical issues associated with the
construct of area, which also corresponded to learners’ challenges with area measure-
ment: (a) the structuring of 2D space and (b) the unit- and referent-transforming nature
of area as a quantity. We showed how sweeping tasks involving individual construction
and group interpretation across physical and virtual environments provided students
with resources to address these challenges. And we showed how a progressively
enriched representation of sweeping as dynamic area production enabled students to
make connections to their prior work on area measure, to multiplicative number
patterns and, through dissection, to geometric reasoning about groups of figures with
equal area.

Structuring 2D Space

Sweeping introduced an asymmetry between dimensions in the dynamic construction
of area. Asymmetry and dynamism created initial difficulties for students, but also
provided means for overcoming these challenges. On one hand, this asymmetry
encouraged students to attend to the extent-dimension of their dynamic sweeps (how
far they swept), sometimes exclusively, collapsing area creation to travel. On the other,
sweeping encouraged the active seeing of area (professional vision, 2D structuring),
through seeing the action of sweeping in a particular way. As illustrated in Wanda’s
presentation, augmented by the class and by JF, the sweeping action generated area
through a ‘chunky’ production of columns of square units, one for each unit of the
squeegee’s length.

Using the app, students then flexibly explored the effects of using (a) different
sweep-extents and (b) different-sized sweepers. Moreover, in discussion, the class
increasingly explored the ‘commutativity’ they discovered between these length-
measures to assert that a given shape could be created in multiple ways (sweeping
one direction or the other, or swapping the roles of squeegee length and sweep extent).
Thus, under a sweeping lens, the class saw the two dimensions of area construction as

Fig. 26 a Monica dissecting 8 × 12in into 8 × 10in and 8 × 2in; b Jaime calculating the areas
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asymmetric but exchangeable: squeegee length and sweep extent had different roles
(asymmetry), but, for any rectangular shape, there was a pair of sweeps with roles
reversed that could produce it (exchangeability).

Unit Transformation

Izsák and Beckmann (2019) argue that unit-transforming approaches to area (such
those of Schwartz and of Thompson and colleagues), “do not address how exactly one
might derive, or determine, units of the product given units of the factors” (p. 89). They
assert that, to make sense of 1 cm × 1 cm = 1 cm2, a student, “would either have to
accept a convention or already know something about tiling rectangles with square
centimeters”. We agree that unit transformation is a challenging concept. And yet,
dynamic sweeping constructions in both physical and virtual media allowed students to
interact playfully with that mystery and use it to design shapes.

Moreover, using the app in subsequent class sessions, students engaged with a
variety of explorations that highlighted ways in which sweeping transformed constit-
uent units. For instance, the class created a ½-unit squeegee and swept it through ½
unit, observing the result and rationalizing it in various ways, including connections to
a 1-unit squeegee swept through ½ unit, and to a ½-unit squeegee swept through 1 unit.
Students then independently explored fractional-length squeegees and/or sweeping
through fractional extents more generally, visualizing the results and using dissection
and rearrangement to calculate the area values. The class also used lengths measured in
different metrics, including invented lengths for squeegees (e.g. “Volks”) and for
lengths (e.g. “Wagons”) to create area measure in “Volks-Wagons”. These tasks
offered students further opportunities to illuminate the nature of area and its emergence
through the interaction of two length quantities (Thompson 2000).

Conclusions and Directions for Future Research

The duo of physical/virtual sweeping environments illuminated and supported stu-
dents’ thinking about area. Moreover, the study opened several additional directions for
future research, in reasoning about area and in the design of duos of physical and virtual
learning environments.

Construction and Perception

Sweeping positioned students as creators of the shapes they interpreted, and whose
areas they analyzed and calculated, making for ‘low threshold, high ceiling’ tasks (see
Papert 1980). Creating small or simple shapes offered a ‘way in’ for children with less
well-developed arithmetical skills, while deep mathematical ideas were increasingly
accessible to students as their confidence grew. The continuity between low-threshold
and high-ceiling constructions also fostered the growth of a shared professional vision.

Students learned to see sweeps as geometrical figures:(1) interpreting their own and
their classmates’ constructions as material representations and (2) attending to the role
of both dimensions as a sweep unfolded. Moreover, in moving from physical to virtual
environments, this professional vision could become increasingly active, as continuities
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between interpretive and constructive/transformational operations were established. For
example, representing dissection with spaghetti pieces placed on top of physical sweeps
to stabilize an aspect of interpretive vision could then be expanded and reimagined with
the virtual sweeping environment’s dissection tools.

The integration of perceptual and conceptual planes in activities that demand
professional vision is also significant for design. Hutchins (1995) describes how
navigational tools transform conceptual calculations into perceptual activities:

These tools thus implement computation as simple manipulation of physical
objects and implement conceptual judgements as perceptual inferences. (p. 171)

In the context of learning tasks, we propose an opposite approach. Environments that
reverse the translation Hutchins describes can be valuable – causing conceptual activity
to manifest itself crisply as problems in the perceptual domain. Solving such problems
can become a means to build professional vision, and virtual tools can be designed to
connect interpretative actions and constructive or transformational actions.

Asymmetry and Mathematizing

Part of the power of sweeping arises from the asymmetry it imposes on the
dimensions of area, viewed as symmetric in other approaches– though see the
PerContare project for another asymmetry-leveraging approach (Baccaglini-Frank
2015). Here, too, problematizing a basic feature of area may offer learning
affordances. Due to asymmetry, the sweeping interpretations of arithmetic axioms
seem more noteworthy to students. For example, the class wrestled with the
commutative law in discussing whether Paloma and Jaime’s and Natalie and
Jacinta’s rectangles had the same area: asymmetry gave commutativity an interpre-
tation that children found worthy of debate in the discussion above and celebration
in Humberto’s realization that, “It’s the same”.

Similarly, the students’ work shown in Fig. 26 hinted at the distributive law,
interpreted as a single sweep broken up into two sub-sweeps with equal total extent
(or, as sweeping with/without a pause –see Kobiela and Lehrer 2019). The notewor-
thiness of arithmetical properties as connected to the area measures of figures appeared
in challenges of interpreting representations in the physical domain, and it was ampli-
fied and extended in the virtual, where modified sweeping actions or dissections and
rearrangements could reveal new equivalences.

Dissection and Rearrangement

The discoveries that can be accessed through dissections and rearrangements suggest
another direction for future research, in which the sweeping app offers an entry point
into treating fundamental area concepts in an ancient Greek tradition. Dissection,
rearrangement and re-composition are reversible operations for which the quantity of
interest (area) is invariant – and we believe playing with figures in this way can be
powerful. To support this design trajectory, we have since enhanced the app to allow
students to rotate and reflect dissected parts of shapes and to work on challenges such
as dissecting one figure (whether generated by sweeping or not) into another.
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Strom et al. (2001) mapped classroom discourse within the Comparing Rectangles
task, revealing the emergence of unit dissection to facilitate comparisons by counting.
Initial dissections were less uniform, and so were not countable, but were nevertheless
useful for establishing space-covering relations among rectangles. As we expand the
field of figures to include parallelograms (as well as triangles, trapezoids, and other
shapes), a full unit dissection approach (unit grid) gives way to identifying more
strategic and economical cuts, with increased opportunities for understanding area
equivalence in new ways.

Students can establish equivalence for shapes that not only do not look alike but are
also produced differently and may belong to different classes of shapes (e.g. types of
polygons). These are fundamental ideas in mathematics, yet the approach encourages
students to see these basic findings as discussion-worthy – disrupting their prior
conceptions and enabling discovery and geometric proof of area formulas and relations.
This may be significant from the point of view of both conceptual development and
curricular innovation.

Continuity and Discretization

A key feature to be investigated in future work with this physical/virtual sweeping duo
is whether and, if so, how it supports students in viewing the sweep dimension as a
continuous quantity, while also allowing that sweep to be discretized. In the fully
analog physical environment, the sweep was continuous and a length unit by length
unit sweep bridged between discrete and continuous perspectives on area and its
measure. Students’ meaning-making discussions then highlighted that their intentions
in creating sweeps often focused on sweeps of integer lengths or, if fractional,
involving specific fractional steps.

This feature of their investigation – seeking a precision of execution that matched
their own authorial intent – connected well with the two features of the app, namely (a)
‘snapping’ to the grid and (b) adjusting the grid to reflect the student’s choice of
partitions of the length units. Integrating the two perspectives of continuity and
discretization (continuous quantity and precision of area production and measurement)
is important yet challenging (Kobiela and Lehrer 2019; Thompson and Carlson 2017).

Additionally, understanding a sweep as producing area as it unfolds at a ‘chunked’
unit rate is worthy of future research. In JF’s animation of a ‘chunky’ sweep (see Fig.
17), we saw discretization of the process of area production. This theme appeared as a
notable enhancement to the shared ‘sweeping forearm’ gesture, where it helped to show
how sweeping horizontally produced column-groups of area units, one column per unit
swept, while sweeping vertically produced rows, one row per unit swept. The app
amplified this idea through its implementation of ‘snapping’: snapping occurs con-
stantly during the sweep, rather than only when the user stops dragging. Thus, in the
app as in JF’s version of the gesture, the visualization of the sweeping process is
discretized, highlighting the notion of chunked unit rate.

On one hand, it seems paradoxical to lower the threshold for the area concept by
converting an extensive (amount) quantity (counting square units) into an intensive (rate)
one (producing area at a rate proportional to the squeegee length). However, viewing “5 ×
4in” as the figure formed when a 5in squeegee sweeps for a 4-in. extent did allow Wanda
and the class to experience a squeegee as producing area at a rate of 5 square inches for each
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inch it moved. Once this ‘unit rate’ of area production was comprehensible, they could see
the whole figure’s area as (5 in2) x 4 and apply a groups-of approach to the multiplication.
Discretizing a continuous sweep into unit-sized steps may allow sweeping to become a
situation like those Kaput (1985) identified, “where the intensive quantity is familiar
enough to be well ‘chunked’ into a single familiar ‘rate’ entity” (p.22).

In pursuing this theme in students’ thinking about area, the duo of environments
jointly sustain a duality between continuous and discrete conceptions. The physical
environment is inherently continuous and analog, while students’ and the teacher’s
notations with spaghetti, animations with ‘chunky’ gestures and skip-count accounting
of area impose a discretizing lens on the resulting figure. Dually, the virtual environ-
ment is inherently discrete and digital, while students’ fluid use of it to explore families
of swept figures rapidly and connect their areas impose an imagined continuity, to see a
range of sweeps as modifications of one another.

Connections

Finally, sweeping offers students opportunities to make connections between area (as
part of the ‘mathematics of quantities’) and arithmetic facts (as part of the ‘mathematics
of pure number’). Such connections appeared in students’ recognition that columns of
area produced by a physical squeegee corresponded to ‘groups of’ the squeegee length,
whose contributions to a figure’s area could be calculated with skip counting. In the
virtual setting, Humberto’s experiments with rectangles made by a 3in sweeper ex-
tended a similar line of thought. Both Schwartz (1996) and Kaput (1985) cite argu-
ments by Gauss and Bolzano – and Kaput also cites Janke (1980), Lebesgue (1966) and
Whitney (1968a, 1968b)– in favor of learning the mathematics of grounded, measur-
able quantities, as opposed to that of pure number. While the mathematics of area is
elementary, it is also fundamental – and the connections we have sketched in the
discussion suggest that sweeping area could be a taproot domain of activity, accessing
and connecting a diverse set of important ideas.
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