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Abstract—Microwave radiometry has  provided valnahle
spacehorne ohservations of Farth's genphysical for
decades. The receni SMOS, Aquarius, and SMAP saielliies have
demonsirated the value of measurements al 1400 MHz for obsery-
ing surface soil moisture, sea surface salinity, sea ice thickness, soil
freezefihaw state. and other peophysical variables. However, the
information obtained is limited by penetration through the subsur-
[ace at 1400 MHz and by o reduced sensitivity to surface salinity in
cold or wind-roughened waters. Recent airborne experiments have
shown the potential of brightness temperature measurcments from
200-1400 MHz to address these limitations by enabling sensing
of soil moisture and sea ice thickness to greater depths, sensing of
temperature deep within ice sheets, improved sensing of sea salinily
in cold waters, and enhanced sensitivity to soil moisture under veg-
elatlion canopies. However, the absence of significant spectrum re-
served for plu.iu microwave measurements in the 300-1400 MHz
band reguires both an npponlnﬁhcmngﬂrdm and systems
for reducing the impact of interference. Here, we
summarize the potential advantages and applications of S00-1400
MHz microwave radiometry for Farth observation and review
recent experiments and demonstrations of these concepts. We also
describe the remaining questions and challenges to he addressed
in advancing to future spacehborne operation of this technology
along with recommendations lor Tuture research activities.

Index Terms—Earth observations, microwave radiometry.

I. INTRODUCTION

ICROWAVE radiometry provides valuable observations
M of Earth’s geophysical properties, including those of the
almosphere, ocean. cryosphere, and land [1]. [2]. Microwave
radiometers observe the thermal noise naturally emitted from the
observed scene, with the thermal noise power received reported
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in terms of the brightness temperature. This brightness tempera-
ture depends not only on the physical temperature of the medinm
observed (to which sensitivity is achieved approximalely to the
depth of microwave penetration), but also on the dielectric prop-
erties and surface roughness of the scene. Dielectric propertics
typically dominate the observed response, making microwave
radiometry useful for sensing geophysical properties that affect
the microwave permittivity, especially the presence of waler.
Further improvements in sensing performance can be achieved
by combining measurements in multiple frequencies, incidence
angles, or polarizations. Numerous spaceborne microwave ra-
diometers have provided valuable geophysical observations on
Earth's surface through the use of brightness lemperature mea-
surcmenls at frequencics near 1.4, 6.8, 10,7, 18.7, 22, 37, and
89 GHz, with additional sensors focused on atmospheric ohser-
vations at even higher frequencies.

Because microwave radiometry involves measurement of the
naturally emitled thermal noise power (which oocurs al very
small power levels), it is often performed in portions {or bands)
of the electromagnetic spectrum where anthropogenic radio
transmissions are restricied [2]. Despite these restriclions, no
band is completely free of emissions from active services,
due to the presence of both in-band (shared) and out-of-band
signals. When such transmissions are present, they represeni
radio-frequency inlerference (RFI) o a microwave radiometer
and can prevent or bias brightness temperatures measurements,
polentially resulting in erroneous retrievals of geophysical prod-
ucls. Because RFI is ofien observed even in proiecied bands
{e.g., [3], [4]), vigilani protection and enforcement of existing
spectmm allocations are crucial. Many microwave-radiometer
science applications benefil from the use of additional spectrum
to improve radiometric performance, and measurements are of-
ten performed in portions of the spectrum that are not protected.
This opportunistic use of the spectrum has been successful in
some cases [2], [5] bul is being compromised as radio-spectrum
OCCUpANCY continues 10 increase.

To address the challenge of RFI, additional subsystems have
been developed that aim to separate man-made signals from
thermal emission contrbulions (e.g., [2]-{13]). These signal
detection and RFI filtering approaches can in some cases allow
brighlness lemperature observations to continue in nonprotected
portions of the specirum. However, an overall degradation occurs
as compared to the case of fully available spectrum because
cormmupted portions of the cbhserved time-frequency space musl
be discarded when estimating the brighiness temperature of the
ohserved scene.

The advancement of RF filtering techniques has recently en-
abled the consideration of microwave radiometric measurements
in the even more heavily occupied portions of the radio spectrum
below the protected 1400-1427 MHz band [14]-[31]. While the
high presence of radio transmissions in this portion of the spec-
trum represents a significant challenge, mulliple experiments
[14], [15].022], [23).[26],[28]. [29] over the past decade have
demonsirated the value of passive microwave remole sensing al
frequencies lower than 1400 MHz. An expansion into this lower
frequency range opens the door to “hyperspectral™ radiometry
in which the brightness temperature is measured as a function
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Fig. |. Penetration depths in 8 soil mediom (20% sand, 60% clay. and bulk
density 1.57 gicm® ) s a function of frequency and volumetric soil mosture (m,,)
using the diekectric model of [32).

of frequency instead of in a single narrowhand channel alone.
This Turther opens the possibility of new retrieval approaches
in which information on geophysical properties is derived from
a scene's microwave spectral signature, analogous to retrievals
performed in hyperspectral optical or infrared scnsing.

This article reviews the motivations for the use of microwave
radiometry at frequencies from 500 1o 1400 MHz (Section 11),
along with the associaled techmical challenges (Section IIT)
including the significant presence of RFl and the require-
ment of large antenna sizes for spacebome operation. Recent
progress in demonstraling these approaches is then reviewed in
Section 1V, along with recommendations to achieve continued
progress (Section V).

Il. PROPERTIES OF MICROWAVE THERMAL EMISSION AT
500-1400 MHz

A key factor that motivates microwave radiometry in this
frequency range is the increased penetration through geophys-
ical media {e.g., soil, vegetation, and ice) thal occurs as the
electromagnetic frequency is reduced and the wavelength in-
creases. Lower frequencies also reduce sensitivily o surface
roughness and to scatiering from inhomogeneitics within the
medium observed. The measurement of the brightness tem-
perature as a function of frequency is also of interest for a
variety of remote sensing applications, as described below for
specific terrestrial surfaces. The discussions to follow are derived
from relatively low-order models that are sufficient to illustrate
the basic physical properties expecied for the 500-1400 MHz
brightness lemperatures of the media considered.

A. Soil

Fig. 1 illustrales the penetration depth (i.e.. the distance over
which thermally emitted fields within the medinm will propagate
before attenuating by a factor of 1/¢) as a function of frequency
for a soil medium consisting of 60% clay and 20% sand of
bulk density 1.57 g/cm’, obtained from the Peplinski model
of the soil dielectric constant [32]. Curves are illustrated for
three levels of soil moisture ranging from “dry™ (volumetric
soil moisture of 0.05 cm™/em’) to “wet™ (0.30 cm*/em®). The
increased penetration depths available at lower frequencies are
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Fig. . Vertically palarized (V) soil surface emissivity at 30" from zenith as a
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apparent. Current 1400 1427 MHz soil moisture sensing using
the SMAP or SMOS missions [33], [34] is described as being
sensitive o s0il moisture in the upper 5 cm of the surface when
abserved al an incidence angle of 40° (note Fig. 1 comresponds
to sensing at nadir). The greater penetration available at lower
frequencies enables sensing of soil moisture al greater depths
[14], [15], and the possibility of sensing a soil moisture profile
is also evident if measurements at multiple frequencies ane
combined (since individual frequencies will respond to the soil
muoisture only up Io their approximale depth of penetration).

The increased penetration depths that occur in this frequency
range have also motivated the use of 225-500 MHz radar [35],
[36] and specular reflections [37]-[39] for moniloring soil mois-
ture al greater depths. All of these emerging lechnologies have
the potenlial to exiend the depths to which soil moisture can be
sensed, with each sensing type (microwave radiometry as dis-
cussed here, radar backscatler, and specular reflection sensing)
having dislinct dependencies on other confounding parameters
such as surface roughness and vegetation coverage. Fig. 2 exam-
ines the effect of surface roughness on microwave radiometry
by plotting the vertically polarized emissivity of a simulated soil
surface as a function of the surface root-mean-square height.
These predictions were produced using fully 3-I) numerical
simulations of rough surface emissivily with the sparse-matrix
canomical grid method [40]-[42]. The results compared for 500
and 1400 MHz illustrate the weaker impact of surface roughness
at lower frequencies, so thal this confounding factor is less likely
0 introduce errors thal require subsequent correction in soil
moisture retrievals.

Although the effects of vegetation on emissions al frequen-
cies lower than 1400 MHz have been less studied, atienua-
tion through a vegetation canopy should still be expressible at
these freguencies in terms of an optical depth + that satisfies
T = b VW [43], where VWC represents the vegetation water
content in kg/m’. Previous studies of variations in vegetation
optical depth (VOD) with frequency have suggested that the
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Fraction of | Radiative Fully
Power Transfer | Numerical
- Transmitted
1400 MHz 35% 60%
500 MHz 45% 81%

Fig. 3. Simolated vegetation medium comprisad of 196 dielectric cylinders
(left) for which transmission through the medium (right) was compuied at 500
and 1400 MHz using both & traditional radistive transfer approach and a fully
numerical approach.

scaling coefficient b has the form ¢/ A% with ¢ and x constant and
A lhe electromagnetic wavelength. Van De Griend and Wigneron
[44] report = values that vary from 0.4 to 1.4 depending on the
vegetation type, so that VOD reductions at 500 MHz as com-
pared to 1400 MHz can be estimated (o range from 30%—75%.

Further evidence of the improved penetration through vegeta-
tion at lower frequencies was obtained through a numerical sim-
ulation of transmission through a simulated vegetation medium
representing forest trees [45], [46]. The simulated medium con-
sists of 196 cylinders of 20 m height and 12 cm diameter arranged
as shown in Fig. 3. Cylinder permittivities were determined
using a model relaled to the VWC, with a resulting VWC of
17.3 kg/m’ for the simulated medium. The fraction of the power
density from an illuminating plane wave transmitted through
the medium was computed at both 500 and 1400 MHz using a
fully numerical solufion as well as a traditional radhative irans-
lec/distorted Born approximation method. The results, though
for a specific peometry only, show the increased penetration
that occurs al 500 MHz that is predicted by the numerical model
o be even larger due Lo its more accurale consideration of the
medinm geometry for this specific case (Fig. 3).

The accuracy that has been demonstraled for soil moisture
sensing using the 1400 MHz microwave radiometry of the
SMAP and SMOS missions motivates the examination of the
polential of microwave radiometry al lower frequencies for soil
moisture monitorng: demonstrations of this concept will be de-
scribed in Section IV. The increased penetration depths available
also suggest the application of these methods to the sensing of
permafrost properties [47], in which monitoring the status of
the seasonally thawed “active layer™ above deeper frozen soils
is of interest. Both the SMOS and SMAP L-band radiometers
have demonstrated the capability of sensing frozen soil to a
depth of 15 cm for monitoring freezefthaw staie [48]. [49].
use of multiple-frequency measurements suggests the capability
of ohserving permafrost subsurface propertics as a function of
depth to monitor the status of the active layer.

B. Sea Surfaces

Although penetration into seawater remains small even at
frequencics as low as 500 MHz. the increased impact of sea
waler conductivity at lower frequencics resulis in an increased
sensitivity to surface salinity (SSS. [16]-[18]). This is
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particularly valuable for colder waters, where past 1400 MHz
microwave radiomelers such as Aquarius, SMOS, and SMAP
have experienced challenges with achieving accurate estimation
of 555 [18].

Fig. 4 illustrates these behaviors using the sea water dielectric
constant model of [50] (see also [51], [52] that show similar
varialions with salinity and temperature). Changes in the pre-
dicted nadir brightness temperatures for a flat sea surface are
shown as a function of frequency and salinity al sea surface
temperatures (SS5T) of 20°C and 40°C. The changes are plotted
with respect to the predicted brightness temperatare at 555
30 psu to highlight the sensitivity to changes in §585. The
resulls demonstrate the increased sensilivity achieved at lower
frequencies under both “warm™ and “cold” conditions. Note that
the 0°C 5000 MHz change in brighiness temperature with 555
remains larger than that at 1400 MHz at 20°C. The challenge
in sensing 855 remotely in cold waters using 1400 MHz alone
is also evident, given that a change of only ~~1.2 K in nadir
brightness temperalures occurs as S55 varies from 30—36 psu.
At 500 MHz. this change is three times larger (i, 4.5 K).

As in the soil surface case, lower microwave frequencies
will experience a decreased sensitivity to surface roughness,
reducing their utility for sensing oceanic wind speeds while
increasing utility for sensing 555. The signatures of salinity,
wind speed, sea-surface lemperature, and galactic emissions also
vary over the 500—1400 MHz range, potentially reducing the
requirement for ancillary dala in 8858 retrievals if brighiness
temperatures are measured as a function of frequency.
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(upper) and salinity in psu (lower) and frequancy. Tce physical tamperature of
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C. 5ea ice

The strong contrast in microwave thermal emission between
open water and ice covered occan surfaces has long enabled
the monitoring of sea ice coverage using microwave radiometry
[53]. Because the presence of ice can be delecied using a wide
range of microwave frequencies, the primary utility of frequen-
cies at or lower than 1400 MHz lies in the sensing of other ice
properties of interest in climale studies, such as ice thickness
(19231

The success of the SMOS and SMAP 1400-MHz radiometers
in providing sea ice thickness information at thicknesses up
lo ~50 cm [54]-[56] motivales examination of the benefits
of lower frequencies. Similar expectations regarding increased
penetration occur for sea ice media. although in this case the
complexity of the sea ice medium must be considered [201-{23],
I57]. In particular. the wide varation in salinity that can occur
between first year and multiyear ice types and their overlying
snow cover significantly influences penetration info sea ice al all
frequencies.

Fig. 5 illustrates the relevant effects using models of sea ice
thermal emission [22], [57]. The upper plot illustrates predicted
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nadir brightness lemperatures as a function of ice thickness
(for ice salinity 6 psu and physical temperature —10°C) and
frequency, while the lower plot considers brightness lempera-
tures versus salinity for ice iemperature — 10°C and a fixed 1-m
ice thickness. Results were compuied using a radiative transfer
approach [22]: the predictions of 3-D fully numerical solution
([401-[42], not shown) that includes surface roughness effects
have also been investigated. The resulis in Fig. 5 demonstrate
the saturation in 1400-MHz brightness temperatures that occurs
for ice thicknesses greater than ~50 cm, so that sensitivity to
thickness is reduced beyond this range. In contrasl, brighiness
temperatures at 500 MHz retain sensitivity to ice thickness even
for thicknesses greater than 1 m. The variations in brightness
temperatures with salinity also indicate the potential for ambi-
guities in the retrieval process if a single-frequency measure-
ment is performed (because the same brightness temperature
can oceur for two distinet salinity values); however, the use of
multiple-frequency channels can resolve such ambiguilics and
can enable the sensing of salinity.

Improving the remole sensing of sea ice thickness in the
0.5—1.5-m range is of particular inlerest, given the challenges
faced for this thickness range [55] by current and planned sen-
sors (i.e., 1400-MHz radiometers, laser, and radar altimeters).
The increasing presence of seasonal sea ice in this thickness
range—due to the continuing decline of perennial ice in the
Arctic [58]—further motivates a focus on developing the ability
to remolely measure and monitor the thickness of younger sea
ice and on bridging the gap in thickness sensing between the
“thinner ice™ performance available from 1400 MHz radiometry
and the “thicker ice™ performance available from radar or optical
altimetry.

Lower frequencies are also mone sensilive to ice salinity, sug-
gesting the possibility that measurements at multiple frequencies
could be used o sense both ice thickness and salinity simulta-
neously [22], [539]. Studies of the effects of the roughness of the
sea ice/water interface using a 3-D fully numerical solution also
support the hypothesis that surface roughness effects are reduced
at Jower frequencies. In addition, the potential for sensing the
thickness of both sea ice and any covering snow layer (neglected
in Fig. 5) has also been described [60], [61]. Additional discus-
sions of (his possibility are provided in Section T'V.

. fee Sheeis

Fig. 6 provides an illustration of penetration depths in pure
ice as a function of frequency and ice temperature following the
model of [62]. This model indicates that penetration depths of
multiple kilometers can occur in cold and dry (polar) ice at fre-
quencies less than 100 MHz, an inference that is well supported
by decades of radar sounding of ice sheets at frequencies from
1 to 1000 MHz [63]. Because the thermal emission ohserved
by a microwave radiometer should be sensitive Lo emissions
from portions of the ice sheet within the penetration depth, the
potential for remolely sensing the lemperatures within an ice
sheet arises [24]-{28], [64]-166]. Macelloni ! al. [66] explone
this possibility using the 1400 MHz observations of SMOS,
and demonstrates the limitations associated with the use of a
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Fig. 6. (Upper) Penetration depth in laboratory-grown pure ice &5 a function
of frequency and ice tamperature {lower) example temperatare profiles within
an ice sheel under the Robin model [67], [68] for varying surface sccumalation
rates and ice thicknesses and surface lemperature 216 K.

single-frequency band for this application. Improvemenis are
expected if measurements are performed at multiple frequencies,
because the depth of penetration varies with frequency.

The lower portion of Fig. 6 illustraies this concept further.
Multiple example ice-sheet internal temperature profiles are
shown, generaled using a simple 1-D model [67], [68]. The
increasing temperature with depth arises because the ice sheet
effectively insulates the bedrock below from the cold surface.
The resulting temperature profile is a balance between down-
ward vertical advection of cold ice from the surface and slow
conductive warming from the geothermal heat Aux at the ice-
sheet base. Ice-sheet brightness temperatures should therefore
be larger at lower frequencies because these frequencies are
sensitive to the typically higher physical temperatures deeper
within the ice sheet. Measurements at higher frequencies should
correspond (o the lower physical lemperatures al shallower
depths. By combining multiple-frequency measurements into
a model-based retrieval. information on the temperature profile
should be achievable [241-{28]. More information on this ap-
proach is provided in Section TV.

The above discussion neglected inhomogencitics within the
ice sheet. While the 500— 1400 MHz band is not expected to be
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sensitive to the grain size of snow particles in the upper fim (a key
parameter for microwave radiometry at higher frequencies such
as 19 and 37 GHe). Mlucluations in ice densily with depth in the
upper ~ 100 m do have a significant impact on thermal emission
[25]-128], [69]-171]. Methods for addressing this confounding
factor in sensing deep ice temperature are further described in
Section TV. Tn addition to sensing the temperature profile, in
some cases lower frequency brighiness lemperalure measure-
ments (e.g.. at 500 MHz) may be sensitive to dielectric properties
at the ice sheet base [24], potentially enabling detection of the
presence of basal liquid waler and thereby further improving the
monitoring of conditions that affect ice sheet dynamics.

E. Lake Ice and Snow Thickness Sensing

For media such as lake ice or snow covered land that can
be madeled locally as a layered diclectnc medium having pla-
nar interfaces on which all roughness is small compared to
the electromagnetic wavelength, brightness temperatures can
exhibit an oscillatory behavior in the spectrum [1]. [72]-]78].
The oscillations in frequency arise from self-interference effects
because reflections within the layered medium cause a portion
of the emitted signals to transit through layers more than once.
For sufliciently flal interfaces, these multipath emissions can
interfere with the directly emitted signals. In the simplest geom-
etry of a single dielectric layer, the spectrum exhibits alternating
maxima and minima caused by constructive and destructive
self-interference. The spectral spacing of these features is deter-
mined by the round-trip electrical length of the laver, and thereby
provides a method, independent of the brightness lemperature,
to measure the layer thickness.

While this effect can be a confounding signal, it can also
be an observable. This effect has not yet been observed
below 1400 MHz, bul it has been observed al 7-11 GHz in
freshwaler ice and in the snow on thal ice [73]-[77] and is under
investigation for snow sensing on land surfaces [78]. The effect
has also been observed in soil surfaces at 1400 MHz [72] and
from buried planar objects at 2-6 GHz [73]. The reduced vol-
ume and surface scattering at the longer wavelengths discussed
here imply the presence of this signal below 1400 MHz and
the potential application of this approach in sensing snow or ice
laver thickness.

I1I. TECHNICAL CHALLENGES

While the previous section clearly motivates extending mi-
crowave radiometry into the 500—1400 MHz range. several
challenges also exist thal musi be addressed to enable successiul
measurements.

A, Apertire Sizes

A first concern is the increased aperturc size required to
retain a scientifically relevant spatial resolution when operating
from a satellite. Because the spatial resolution of a microwave
radiomeler is determined by the size of its antenna relalive to
the wavelengih, an increase in aperiure dimension proporiional
to the wavelength used should be expected (i.e., a factor of 2.8

when going to 500 from 1400 MHz). This is true regardless of
whether an interferometric or real aperture radiometry approach
is used, although an inlerferometric sysiem could permil use of
a thinned array antenna thal is capable of observing at mulliple
incidence angles simullancously.

The 6-m antenna diameter of SMAP’s 1400-MHz radiometer
[34] serves as a benchmark for further examination. This
aperture size enables a 40-km Earth footprint when operating
from SMAP’s orbit altitude of 685 km and obsecrving at an Earth
incidence angle of 40°. A similar system operating at 500 MHz
would require an aperture size 280% larger, ie.. a diameler
of 16.8 m. While deployable reflectors of this size have been
reported [79], methods for reducing the required aperture size
arc highly desirable to simplily spacecraft accommodation and
operation.

Options under consideration include operation at a reduced
orbit altitude, ¢.g., a reduction to 400-km altitude would bring
the required aperture diameter closer o 10 m. Performing
measurements at nadir also would eliminate the extension of
footprint diameter caused by the projection of the antenna beam
patiern onlo the Earth’s surface (proportional to =L, where 0
is the incidence angle). Operation at nadir could then reduce
the required aperture dimension by a faclor of approximately
veos 407 (12.5% reduction) as compared to SMAP; the square
rood of the projection factor is considered since the projection
applies for only one dimension of the footprint. Note, however,
that operation near nadir reduces the utility of dual-polarization
measurements and would likely reduce the observed swath width
and spatial coverage because conical scanning would no longer
be possible. These factors may be unacceptable for some appli-
cations, for example those requiring frequent revisil coverage
ncar the equator.

A reduction in the desired spatial resolution from 40 km to a
coarser resolution may also not be detrimental for some science
investigations. In this regard, NASA’s Aquarius mission serves
as an example, as its 1400-MHz microwave radiometer used an
antenna diameter of 2.5 m for measurements of 555 at ~100
km spatial resolution [80].

Beyond considerations of size, the anlenna must have the
required effective aperture, beam width, and beam efficiency
10 be capable of meeling desired spatial resolulion requiremenis
over the range of frequencies of interesl. Trade-offs of antenna
gain and impedance matching as a function of frequency can
then occur. New antenna concepis are available lo address these
challenges, including the use of end-fire anlenna types deployed
using exiendable booms [81]-[83]. the creation of an anicnna
array through the use of multiple spacecrafi flying in formation
[84], or new lightweight deployable aperture antenna types [79].
These developments make clear that current and emerging tech-
nologies are capable of overcoming the challenges of increased
aperture size and wideband performance.

8. RFI

The radio spectrum from 500 to 1400 MHz is heavily occupied
and used worldwide for television broadcast (~500—T7(0 MHz),
fixed and mobile communications (~700—960, 13501400
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MHz), radio navigalion (~960— 1350 MHz). and a host of other
applications [2]. These sources can cause RF] to a radiometer
and can corrupt measurement of the underlying naturally emitted
thermal signals.

While some approaches have been proposed for “estimalting
and subtracting” the man-made components of measured signals
[B5] so that the brightness lemperature of the remaining signal
can he oblained, the vast majority of brighiness temperature
sensing methods are based on the exclusion from use of any
portions of the observed time, frequency, or angle space that
contain RFL The use of resolution in angle space implics mea-
surements at multiple angles as acquired with a phased-array
anlenna [B6]88], while resolution in time implies that multiple
samples of observed signals are oblained within an integration
period, and resolution in frequency implics that the radiometer
bandwidth is divided into multiple subchannels [3]-{9]. The
general approach is 1o estimate the twtal thermal noise power
within a given inlegration lime and observed bandwidth by
integrating the power in all subtimes and subfrequency channels
not Nagged as containing RFT. A variety of detection algorithms
have been described for the detection of RFL including those
based on signal time, frequency, angle, polarization, or statistical
properties [3]-[7]. Because specific algorithms typically are
designed Tor specific interferer types, combining the flags of
multiple detection approaches is required to improve perfor-
mance; this approach is implemented in the RFI processing
for SMAP's radiometer [3], [4]. Recent demonstrations have
also shown the ahility to perform RFI delection and filtering in
real-lime on-board a spacecrafi, so that an increased data rate is
not required for downlinking all time and frequency subsamples
for use in ground processing [10]1-{13]. These delection and
filtering approaches work well when interference is sparse in the
observation space. A recent experiment, however, demonstrated
that such methods can fail in persistently shared spectrum [89].

Regardless of the detection approaches used, the loss of time
and frequency samples that results following RFI flagging causes
adegradation in the radiometric resolution, commonly described
in terms of the noise equivalent delta temperature (NEDT):

TFJ" + .n’."'!l'll.'!
VN
where T,y and Ty, represent the receiver lemperature and
scene brightness temperatures, respectively, and N == (BW )i,
is the effective number of averaged independent samples, where
BW is the radiometer bandwidth and f;,, the integration time.
Because RFT flagging reduces N by removing time and fre-
quency samples from the integration process, NEDT is in-
creased. However, the degradation is relatively slow: for ex-
ample, Aagging 75% of the time and frequency samples within
an integration period degrades NEDT by a factor of only two.
These considerations suggest that microwave radiometers oper-
ating at 500— 1400 MHz should be designed to achieve NED'T
values that are a factor of two or more betier than the NEDT
corresponding 1o the desired science goals if no RF is present,
so that degradations in this parameter caused by RFI can still be
tolerated. Although the radiometric uncertainty values required
to achieve a specific performance for a particular geophysical
product remain under investigation, preliminary results for ice

NEDT (1)
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sheet temperature profile sensing [25]. |26] and for sea ice
thickness sensing [59] have shown that radiometric uncernainties
in the range 0.5-1 K when achieved in multiple-frequency
channels in the 500-1400 MHz range can provide desirable
science performance.

The success of microwave radiometry in unprotected bands
depends largely on the assumplion that the available time—
frequency space within such bands is not fully utilized. so
that microwave emission measurements of value to scientific
applications still be made within temporarily unused portions.
How valid is this assumption? Some information can be oblained
by considering the properties of systems already operating in
this portion of the spectrum. For example, broadcast television
alrcady operates on the principle of sharing in frequency through
the licensing process. ln a given location, broadcasters are
required to have sufficiently separated frequencies to prevent
interference, so thal unused portions of the spectrum occur. This
occupancy then vanies from location (o location, bul on average a
significant portion of the spectrum can remain available. Similar
considerations arise for radar-based radio-navigation systems,
whose pulsed transmission lypes produce significant RFI only
for a portion of an integration time that is readily detected
and filtered. The reduced presence of transmitters in locations
wilh smaller human populations (e.g.. high latitudes or other
remote locations where remole sensing has greatest benefit) also
suggests that successful thermal emission measurements should
be possible in these regions. The particular benefits of lower
requency measurements in high latitude regions (for example,
io observe sea ice, ice sheeis, permafrost, or high-latitude sea
salinity) were discussed in the previous section. Examples il-
lustrating successful measurement of 500— 1400 MHz thermal
emission will be shown in Section I'V.

These arguments in no way impact the importance of retaining
protected portions of the spectrum for microwave radiometric
measurements. as it is only in such bands that scientific perfor-
mance can be guaranteed globally, and it is only through the use
of such bands that the accuracy and precision of the proposed
S00-1400 MHz radiometric measurements can be confirmed.
We merely highlight the scientific opportunities that lie within
other portions of the spectmam when permitted by the instanta-
neous spectral occupancy of the region under observation.

C. Receiver Design and Calibration

Many of the sensing applications described in Section 11
benefit from the measurement of thermal emissions as a function
of frequency. The requirement to exploit differing portions of
the spectrum opporunistically also molivales operation over a
range of frequencies. “Wide-band™ operation implies that the
radiometer receiver should provide multiple-frequency chan-
nels ohserving over the 500— 1400 MHz frequency range. in
comirast to more traditional designs that use single-frequency
receivers (or multiple single-frequency receivers used across
widely separated bands). Below we assume that the radiometer
receiver includes an analog front-end subsystem for amplifying.
hiltering, down-converling, or conditioning the received RF sig-
nals appropriately, followed by a digital receiver that samples
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signals provided by the analog front-end for further processing
and recording.

One option for achieving multiple-frequency measurements
uses a “traditional™ approach in which multiple single-frequency
receivers are comhbined, each having its own front-end and
subsequent receiver chain that receive signals from a common
antenna. The simpler “namow-band™ design of each individual
receiver simplifies component selection and improves RF per-
formance, but comes at the cost of added complexity, mass,
power consumplion, and volume thal grows with the number
of channels. The digital receiver for such syslems can consist
either of a separate digital subsystem for each channel or a
single digital receiver that samples the recombined outputs of
multiple-Irequency channels.

An allernative approach uscs a wide-band receiver thal has
a single analog receiver for the entire bandwidth with mea-
surements as a function of frequency computed by the digital
receiver. The continuing growth in the performance of analog-
to-digital (A/D) converters and digital processing subsystems
has enabled the real-time processing of bandwidths | GHz or
larger [10], [11], making this approach feasible with current
technologies.

While both approaches are availuble (or their combination into
a hybrid strategy), mulliple considerations motivate the carly
separation of a received wider bandwidth into narrower band-
width subchannels prior to digitization. A major concern arises
from the potential cormupting effect of a very strong interferer
on the analog portions of the receiver. Should an inlerferer’s
power in a portion of the band be sufficient (o cause a receiver
component o saturate, any portion of the observed bandwidth
encountering the saturaled component will also be impacted.
This suggests attempling (o minimize the analog receiver gain
in a wide bandwidth radiometer, as well as analog separation of
channels prior to the highest gain stages of the receiver. Nole that
the separated channels could still be recombined in an analog
fashion prior to their digitization.

Requirements for radiometer calibration [29], [30] also moti-
vale separation into narmower frequency sub-bands in the analog
domain. Microwave radiomeler calibration methods are typi-
cally based on the assumption that impedance mismatch effects
are small, so that the impact of inlemal reflections within the
analog subsystem is minimal. In this case, component effects
can be modeled by their impact on signal amplitudes oanly,
with these effects typically remaining relatively stable over time
and correctable using standard iniemnal and external calibration
methods.

When impedance mismatches become more significant. as is
typical for wide bandwidth components, the phase interference
effects that occur cause signals within the radiometer o depend
on both the amplitude and phase of individual components and
their interconnections. Because phase responses can vary more
significantly with changes in temperature, vibration, or other
effects, a stable radiometer calibration can be more difficult to
achieve in the fully wideband radiometer case, unless analog
COmMpONENts are minmimized.

A variety of receiver architectures and calibration strategies
have been demonstrated successfully, as will be described in
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Seclion 1V, and the relative trade-offs of differing stralegies
remain a subject of active investigation [29], [30]. [90]. [91]. An
allemative wide-band receiver implementation for measuring
the thickness of layered mediais also under investigation through
the measurement of the time-domain autocorrelation of received
thermal noise [74]1-[78], although resulis from such systems in
the 500-1400 MHz frequency range have yel o be reporied.
Finally. we note that current methods for “vicarious™ external
calibration based on expectations for the long-term behavior
of the brightness lemperature of Earth’s ocean or rain forest
regions [92]-[93] will require the creation of new models for
these effects at frequencies less than 1400 MHz.

D. Ionospheric and Celestial Emission Effects

A final challenge for spaceborne operation arises from the
increased influence of the ionosphere and celestial emission
sources as frequency decreases.

From 500 to 1400 MHz, ionospheric effects can still be
represented using approximations valid at 1400 MHz, so that
the primary faclor governing ionospheric influence is the total
electron content (TEC) along the path. In this frequency range,
both the amount of Faraday rotation and ionosphere specific
allenuation are inversely proportional (o the frequency squared,
50 that both are ~38 times larger at 500 MHz as compared to
1400 MHz. The compensation of ionospheric contributions is
therefore required to ensure accurate measurements. Conlinuing
improvements in knowledge of the ionospheric TEC suggest
that the required correction methods are available, as has been
already demonstrated at 1400 MHz [96]. [97]. The use of nadir
observations in circular polarization, as proposed in [31], can
also help to reduce the impact of ionospheric effects.

The impact of brightness contributions from celestial sources,
as well as those from the sun and moon, musl also be corrected to
achieve accuraie Earth brighiness temperature estimaies. Ther-
mal emission contributions from many celestial sources increase
al lower frequencies, making their contributions more significant
than al 1400 MHz. The availability of sky maps [98]. [99] for
such sources and predictions of their radio emissions as a func-
tion of frequency makes the required corrections feasible with
currently available information. Tt is noled that these effects are
maost significant for oceanic measuremenis, since the reflectivity
of these emissions is most significant over the sea surface. The
reduced impact of roughness al lower frequencies may also
simplify the modeling required as compared to the reflected sky
correction algorithms used at 1400 MHz [100], [101].

TV. RECENT DEMONSTRATIONS
A. Measurements of Ice Sheet Internal Temperatures

Measurements of ice sheet and sea ice brightness temperatures
from 500 to 2000 MHz are reported in [22], [26], [28], and [29]
using the ultra-wideband software defined microwave radiome-
ter (UWBRAD) of The Ohio State University. This instrument
divides the ohserved spectrum into 12-100 MHz channels, with
cach channel further resolved inlo 512 subchannels as pan
of RFI detection and filtering operations. Table 1 provides a
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Fip. 7. Schematic of the I'WBRAD microwave radinmeter,

summary of the instrument properties. The radiometer design
uses a “pseudo correlation”-type wideband front-end [21] that
is then subdivided and filtered into subchannels before the down-
conversion of each channel 1o 1F center frequency 162 MHz and
sampling at 250 MSPS (Fig. 7). Data sampling is performed
by A/D converiers interfaced to a compuler, and all subsequent
processing is performed by software in the computer.

UWBRAD was deploved in airborne observations of the
northwestern Greenland Tee Sheet in 2016 and 2017, and across
the Antarctic Ice Sheel in 2018, Fig. B illustrates sample cali-
brated brightness temperamre spectrograms acquired by UW-
BRAD near Thule Air Base, Greenland, in 2017. Note that
signiicant RFI was observed in this portion of the Right, pre-
sumably due to sources near the base and those operating aboard
the aircraft. The lower plot shows that a combination of RFI
processing strategies can allow the geophysical signatures of
this portion of the ice sheet to be acquired at the cost of the
loss of some portions of the observed bandwidth and integration
lime.

Fig. 9 plots UWBRAD nadir-looking right-hand circularly
polarized brightness temperatures for a portion of the 2017 flight
over the Greenland Tee Sheet (flight path in lower portion of
figure) following an integration over the 512 subchannels of cach
frequency band (after RFl processing). The results show low
hrightness temperatures for a portion of the flight path over the
sea surface, followed by higher values over the rocky shores of
Greenland, and then a significant decrease within the percolation
facies of the ice sheet where scattering loss is appreciable even
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Fig. 8. UWBRAD brighiness temperature spectrogram (Kelvin) for a portion

of the 2017 flight over the Greanland Tce Sheat near Thule Air Rase hefore
(upper} and after {lower) RFI processing.

at these frequencies [26]. [28]. As the flight transitioned to the
dry snow zone in the upper elevations of the ice sheet (between
the Camp Century, NEEM. and NonthGRIP borchole sites),
brightness temperamires showed smaller fluctuations.

Measurements between the borehole sites were then used to
reirieve ice sheel temperature profiles (Fig. 10 ) by matching
brightness temperatures predicted by a forward model and mea-
sured data [26]. The retrieval process also requires consirainis
on the density fluctuations within the ice sheet to be introduced;
these constraints were obtained through use of the in sifu temper-
ature profile information available at the borehole sites. While
this implies that the retrieved data are not independent of the in
situ lemperature information, the resulis between the borehole
sites all show reasonable variations, as expected for ice sheet
temperature profiles in this region.

Yardim &f al. [26] further provide estimates of the error in the
temperatures retrieved as a function of depth and position that
show a significant reduction in uncerizinty when compared (o
the a-prieri estimates available.

These resulis demonstrate the utility of 500-2000 MHz
brightness temperature observations for obtaining information
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Fig. 1. Temperature profiles (Kelvin} within Greenland ioa sheet retieved
from 2017 UWBRAD observations versus longiisde in degrees. Basal iopogra-
phy [102] shown in dark red.

on ice sheel internal temperatures and for discriminating be-
tween ice sheet facies. Ongoing studies are incorporating an-
cillary information on density properties from models or from
other radar measurements. Resulls from the 2018 Antarctic de-
ployment are also expected to be reporied in future publications
[103].

B. Measurements of Sea Ice Properties

The UWBRAD deployments to Greenland in 2017 and to
Antarctica in 2013 also included observations over sea ice [22].
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BEEM

Fig. 11. Flight path over Arctic sea ice in 2017 U'WBRAD Greenland cam-
paign including labels for six locations of interest, overlaid on ALDS-2 PALSAR
SAR image
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Fig. 12 (Upper) UWBRAD 12 channel bnghiness lemperstunss over 2017
Groenland sea woe flight path shown i Fig. 11 (lower) sea ioe thickness retneved
from UWBRAD observations: numbered locations as in Fig. 11.

Fig. 11 illustrales the 2017 Greenland sea ice fight path: the
corresponding brightness temperature observations are shown
in the upper plot of Fig. 12. Six locations of interest are labeled
in both figures. The flight path included a mixture of both “thin"
and “thicker” ice due to dynamic activily in this region at the
time of the experiment. The variation in brightness temperatures
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from “warmer” (i.e., thicker ice) o “colder” (thinner ice) is
apparent, along with changes in the spectral signamres in each
case. Unforiunalely, no ia sifu information on ice thickness was
available for this experiment at commensurate spatial scales. so
that any retricvals obtained from the UWBRAD measurements
can be assessed in terms of their plausibility only. Datasets from
coastal sea ice observations in the 2018 Antarclic campaign
have more extensive i sifu ground truth and are curmently under
investigation.

Relrievals of sea ice thickness and salinity from these mea-
surements were performed again through matching between
measurements and a forward model for sea ice brightness tem-
peratures. The latter was developed using standard models for
incoherent emissions from a layered medium, with ice, air,
and S5Ts oblained from weather models [201-122]. [54)-[57].
The required model for the dielectric constant of sea ice as a
function of ice temperature and salinity was adapted from [57].
No evidence of brightness lemperature oscillations in frequency
was obtained (as would occur if the sea ice interfaces were very
smooth [721-[78]). This is not a surprising result given the high
levels of sea ice roughness al both the ice—waler and ice—air
interfaces that can occur in dynamically evolving sea ice regions.

The lower plot of Fig. 12 illustrates the retrieved sea ice
thicknesses oblained, and shows variations over plausible ranges
of < 10 cm for the “thin ice™ cases o ~2 m for the thicker cases.
The retrieved salinities (not shown) are also plausible, but in
some cases appear to be higher than expectations. The source of
this overestimation of salinity is currently under investigation,
and may be related to snow layers overlying the sea ice. Model
investigations of these effects are continning to improve future
retrievals. It is noted that the 2 m thickness retrieved appears
i exceed the ~ 100 cm “saluration™ level in Fig. 5. but such
saturation levels are dependent on sea ice salinity and can
approach 2 m or more with lower salinity multiyear ice.

A four-channel version of the UWBRAD instrument was
deployed for in sifu observalions of sea ice as part of the
Multidisciplinary drifting Observatery for the Study of Arctic
Climate campaign from Sep. 2019 to Aug. 2020 [104], [105].
The exlensive in sifu information available on sea ice propertics
acquired during this campaign is providing further oppormanities
for improving underslanding of the effect of sea ice structure and
composition on 500—2000 MHz brighiness iemperatures.

C. Soil Moisture Remote Seasing Experiments

Two airborne field experiments have been conducted in Aus-
tralia demonstrating the capability of passive microwave soil
moisture remote sensing at “P-band” (742752 MHz) in com-
parison to L-band [14], [15]. Both P- and L-band brighiness
temperature observations were made with a spatial resolution
of 75 m at mulliple incidence angles using the polanmetric
P-band mullibcam radiometer (PPMR) and the polarimetric
L-band multibeam radiometer (PLMR). The PPMR operates
at 742-752 MHz having four dual-polarized beams with look
angles of +15% and +45%, respectively, and a beam width of
30° x 30°. The PLMR operates at 1401-1425 MHz with six
dual-polarized beams having looking anglesof £7°,+21.5°, and
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Fig. 13, Maps of P- and L-band b lemperature observations over the
Cressy area al incidence angles of 13.5° and 22.1°, respectively. logether with
prownd soil moisture measurements over the sudy area on three consecutive
days. Black lines show the location of a ceater pivol irmigator sl the time of
sampling, with the arrow showing the direction of rotation {sdapted from [14])

+38.5°, respectively, and a beamwidth of 17° x 15°. The cali-
braticns of PPMR and PLMR were confirmed before and after
each flight using the sky and a microwave absorber box as cold
and warm largeis. respeclively, and an accuracy of betier than
1.5 K was achieved. Intensive ground sampling of the top 5 cm
soil moisture, vegetation water conlent, and surface roughness
was also underiaken coincident with airbome measurements.

Ye ef al. [14] present the results of experimenis conducted
over a center pivot irrigated dairy farm, with radius of ~500 m
al Cressy in Tasmania, Australia between the 17th and 19th of
January 2017. The circular farm was dominated by pasture with
different height and density, and with a reservoir located in the
northwest. Fig. 13 shows brightness lemperature observations
al P- and L-bands (acquired within 1 h during moming flights)
together with ground soil moisture measurements acquired later
in the day gridded to 75-m resolution across the experiment
period. Both P- and L-band brighiness temperalures are found
o decrease with higher soil moisture. but P-band brightness
temperamures show a higher correlation to the soil moismre
spalial pattern than those at T.-band. This is expected to be due
io a higher penetration depth at P-band and a grealer sensitivity
of P-band brightness temperamre to soil moisture.

The P-band soil moisture remote-sensing capability was fur-
ther studied over a helerogencous cropping area of 900 m by
2550 m at Cora Lynn, located to the south east of Melbourne,
Australia. A total of five lights were carried out every ~3 days
during a two-week long airbomne field experiment from October
19-12th, 2018. Fig. 14 shows the land cover over the study arca

and brightness temperature maps at P- and L-band collected
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Fig. 14. Land cover mup with P-/L-band horizontally polarized brightness
temperature images collected from 21° and 15°, respectively, over the Cora
Lynn Right anea on October 15t 2018 {adapted from [15]).
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Fig. 15. Dwal-polanzed brightness temperature images over the Com Lynn
ilight area at multiple incidence angles (7.5%, 217, and 38.5" for L-band: 15° and
45" for P-band) collected on October 12th 2018 (sdapted from [15]).

on October 1st. A similar spatial pattern was found between
brightness temperature observations al both frequencies, with
some subtle varialions interpreied as due to the deeper sensing
depth at P-band. In particular, P-band had lower brightness
temperatures than L-band over agricultural fields, potentially
due to higher penetralion through vegetation.

Multiangle brightness temperature maps are shown in Fig. 15.
The P-band brighiness temperatures had a stronger angular
regponse than those at L-band. especially in verfical polarization.
It was found that the angular relationship at P- and L-bands
varied under different land surface conditions. Consequently,
the impact of vegetation water content and so0il roughness on the
multiangular P-band brightness temperature response is under
further investigation.

). Mission Studies

Macelloni ef al. [31] describe a proposal based on the ap-
proaches described here for the CryoRad mission formulated
under the support of ASI (ltalian Space Agency). The CryoRad
proposal was submitted to ESA’s Earth Explorer 10 competi-
lion, and though not selected, received Favorable reviews for
its novelty and scientific maturity: the proposal has also been
resubmitted to the Earth Explorer 11 competition. The CryoRad
proposal's goals were devoled to advancing cryospheric science
by providing measurements of sea ice thickness and salinity,
ice-sheet temperatures, 555, and the status of permafrost. The
mission concept was based on a low-frequency, wideband ra-
diometer operaling in the frequency range 400—2000 MHz.
The proposed CryoRad antenna is a large deployable reflector
whose diameter of ~12 m balances trade-offs between science
performance and cost/complexity considerations. The proposed
reflector antenna would include an antenna feed cluster having
nine circularly polarized feed homs, and would be deployed
in orhil. CryoRad’s polar orbit was designed for complete and
conlinuous coverage of the poles, and would operate with a
repeating ground track to revisit ground calibration sites and
to provide regular repeat intervals. CryoRad would observe al
nadir and wilh circular polarization o avoid Faraday rotation
effects. The mission studies of [31] show that with a swath of
120 km and a field of view of 40 km at the lowest frequency,
it would be possible (0 provide an average revisil time of three
days at latitudes greater than 60" and ten days at the equator.
The development of the CryoRad mission concepl is continuing
loward additional mission opportunities.

Dinnat & al. [16] repori on science requirements and the
lechnical definition of a nexi-gencration spacehbome instrument
for 555 and sea ice remote sensing. The new sensor is de-
signed o improve salinity retrievals in cold walers o improve
measurements in coastal regions, and (o retrieve sea ice thick-
ness. Science requirements were derived from a general ocean
circulation model and obhservations reporied in the lilerature
wilh a special focus on coastal currents and river plumes. The
sudy’s goals included the resolution of surface features as
small as 20 km to enhance the capability o monitor 585 in
coastal oceans and to detect S55 mesoscale variability in the
world ocean. This requirement points to a 15-m class reflector
antenna. Measurements in the cold waters of high latitudes drive
the requirement for increased sensilivity to S55, which can be
achieved by using frequencies below 1000 MHz. Additional fre-
quencies up to T000 MHz were also considered to complement
frequencies less than 2000 MHz o retrieve information about
other environmenial paramelers such as surface roughness and
55T

The expected SSS retrieval performance was computed using
a mission simulator based on a state-of-the an radiative transfer
madel (two-scale model with wind and dieleciric parameter-
izations validated at low microwave frequencies) to predict
ocean brightness temperatures over a period of six months al
six frequencies (600, BDO. 1000, 1400, 3000, and 5000 MHz).
Spatiotemporal coverage was derived from the orbit param-
elers and sensor geometry of the SMAP L-band microwave
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Fig. 16, Simulated random emor in satellite 555 retrieval as a function of
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averaged on daily maps ot 0.5 0.5 resalation in Iatitede and longitude [ 16].

radiometer. Random noise was added to the simulated brightness
temperature measurements and on the in sifu parameters (SST,
wind speed and direction, 555) used in the forward model. The
maodel for the radiometer NEDT accounted for the expected
hardware performance and included an increase in bandwidth
at the higher frequencies. 555 retrievals were computed from
the resulting noisy sensor data and noisy ancillary data and
compared lo the true 555 values that were input to the simulator,
Simulated 555 errors (Fig. 16) show a substantial reduction
at the lowest frequencies for waters 15°C and below, with
a reduction by a factor 3 between 1400 and 600800 MHz.
A compromise between increasing the brightness temperature
sensitivity 1o 885 and SST (a source of error) leads to an
optimum frequency of ~800 MHz that slightly outperforms
lower frequencies. A significant advanlage of frequencies below
1{dM) MHz is the homogeneous performance across a range of
55T values, improving on results using only 1400 MHz which
suffer from regional and seasonal changes in performance as
illustrated in the error maps of Fig. 17.

V. RECOMMENDATIONS

The analyses and experiments reported in this article summa-
rize the growing evidence of the polential for microwave radiom-
etry from 500— 1400 MHz to make a significant contribution
to the future of Earth remole sensing. A growing international
community of researchers is exploring these concepts, and it is
reasonable to expect continned progress in the near future. Con-
tinued research is recommended particulary in the following
areas:

1) Assessments of spectrum availability for spaceborne ob-
servations through both measurements and analysis, io-
cluding surveys of licensed emitters internationally and
estimations of the impact of these emitiers on spacebome
microwave radiometers.
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Fig. 17.  Maps of simulsied random error in satellite 555 for retnievals using
(top) 1400 MHz and (hottom) 200 MHz frequencies. Maps are darived from six
maonth of weekly products at 0.5 0.5° resolution in latinade and longimde [16].

2) Ultra-wideband antenna systems, including feeds, suitable
for space-based operation that can provide spatial resolu-
tions of ~50 km or betier from orbit while minimizing
mass and volume requirements.

3) Ultra-widehand or multiple-frequency namow-band re-
ceiver architectures and calibration procedures to provide
power comsumption.

4) Continued development and assessment of subsystems for
delecling and fillering RF1 in this frequency range.

5) Models to predict brightness temperamure signatures from
500— 1400 MHz for geophysical media, including refined
maoudels for the dielectric consiant of sea waier, sea ice. soil,
permafrost, and meteoric ice in this frequency range. A
recent experiment o improve knowledge of the dielectric
propertics of ice sheels in the 500— 1400 MHz region by
analyzing a 100-m ice core extracted at Dome-C Antarc-
tica is noted as an example [106]. Continued improvement
in characterizing the influence of the spatial variation of
ice-sheet density (as in [26]. [69]-[71]) is also recom-
mended.
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6) Continued development of geophysical parameler re-
trieval algorithms to improve performance and to specify
any required ancillary datasets or remole sensing ohserva-
tions (for example, SAR observations of sea ice to address
inhomogeneous ice types within a radiometer footprint]).

7) Continned ground-based and airborne demonstrations of
geophysical remole sensing over a wider range of targel
lypes and conditions with supporting in-sifn measure-
ments.

&) Studies of the science and application impacts of new
information on ice sheet intemnal temperatuncs, sea ice
thickness, cold water 555, soil moisture, permafrost, and
other geophysical products thal may be enhanced by
these measurements, including constraining and improv-
ing models and predictions.

VI. CoNCLUSION

The potential of microwave radiometry from 500 1400 MHz
for improving the remote sensing of land, sea, and ice surfaces
clearly motivates the continuing development of this technology.
The increased penetration through geophysical media available
al lhese frequencies, the increased sensitivity o 588, the de-
creased sensilivily to scattering inhomogeneities and surface
roughness, and the poteatial to sense deeper subsurface tem-
peratures all provide distinet advantages for lower frequency
microwave radiometry as compared Lo exisling sensors. Investi-
gations are continuing internationally with the goal of resolving
the remaining questions, expanding the datasets and demonstra-
tions available, and advancing toward operation in space.
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