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Abstract

Studies of biological systems and materials, together with recent experimen-
tal and theoretical advances in colloidal and nanoscale materials, have shown
how nonequilibrium forcing can be used to modulate organization in many
novel ways. In this review, we focus on how an accounting of energy dis-
sipation, using the tools of stochastic thermodynamics, can constrain and
provide intuition for the correlations and configurations that emerge in a
nonequilibrium process. We anticipate that the frameworks reviewed here
can provide a starting point to address some of the unique phenomenol-
ogy seen in biophysical systems and potentially replicate them in synthetic
materials.
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1. INTRODUCTION

Biological systems and materials use nonequilibrium forces to modulate self-assembly and orga-
nization in a variety of novel ways (1-12). Kinetic proofreading mechanisms (13, 14) show how
errors in various replication and information processing tasks in biology (15) can be reduced at
the cost of energy consumption. Escherichia coli flagellar motors (11, 12, 16) exhibit unique phe-
nomenology such as ultrasensitive response, adaptation (10), and motor restructuring as a function
of applied torque (11). These important functional features are powered by nonequilibrium driv-
ing (10, 12, 17). On larger scales, biopolymers such as actin and microtubules are used to perform
a variety of tasks, from force sensing (18, 19) to segregation of biological material (20-22). Many
of these features are powered by nonequilibrium forcing due to molecular motor activity (23—
25). On the whole, this rich phenomenology points to the need to develop an understanding of
how nonequilibrium forces drive such organization. Such an understanding would in turn enable
identification of design principles for (bioinspired) synthetic soft matter systems that can sense,
process, adapt, and respond to stimuli at the cost of energy consumption (21, 26, 27).

Recent works have also identified new and specific ways in which nonequilibrium forces can
be used to achieve novel organization and functionality in synthetic many-body nonequilibrium
systems (1, 4, 5, 7, 28-41). Examples include assemblies driven by light (28-32) and by magnetic
fields and electric fields (35, 36), supramolecular assemblies (37-39), and nonequilibrium pattern
formation (40, 41). These and other studies of active and driven matter systems have revealed how
energy consumption on the microscale can be parlayed into rules for mesoscale self-assembly and
organization (42-48). In many of these examples, it has been demonstrated that by controlling the
driving forces, one can imbue to the system many properties that are impossible or improbable
to have at equilibrium. For example, in Reference 36, by controlling the frequency of an electric
field, a system composed of metal dielectric Janus colloids can be programmed to dynamically
assemble into chains, clusters, or swarms.

In this review, we focus on thermodynamic frameworks that can elucidate the tradeoffs among
energy consumption, speed of assembly, and organization as soft materials are assembled or grown
in nonequilibrium conditions (49, 50). In particular, we focus on how ideas from stochastic ther-
modynamics (51-54) can be used to first quantify metrics of dissipation or entropy production and
then use such metrics to guide self-assembly and organization in complex many-body nonequi-
librium systems.

First, in Section 2, we specifically consider the self-assembly and growth of nonterminal struc-
tures such as crystals, fibers (42, 55, 56), and membranes (43) under nonequilibrium conditions.
We review how ideas from stochastic thermodynamics, such as the newly discovered thermody-
namic uncertainty relations (57, 58), can be used to constrain changes in compositions (42) and
morphology (43) due to nonequilibrium driving. In Section 3, we consider self-assembly and or-
ganization in active or driven media (44, 46). Unlike Section 2, the nonequilibrium forcing here
is not coupled to growth. We review how an application of stochastic thermodynamics and ideas
developed in the context of large deviation theories (59) can be used to elucidate the tradeoffs be-
tween energy consumption and organization in such systems. Finally, for each of the frameworks
reviewed, we conclude with a list of future challenges and opportunities.

Understanding and controlling self-assembly and organization in nonequilibrium conditions
have been proposed as one of the most important problems in statistical mechanics (27). This
review has a very specific and narrow focus: namely, elucidating the extent to which the energy
dissipation rates can be used to predict or constrain the outcome of nonequilibrium organization
processes. As such, the current review does not cover many of the other prerequisites required
to explain some of the above described novel phenomenology observed in nonequilibrium
biological and synthetic systems. Nonetheless, we hope that this work clarifies some of the
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thermodynamic constraints required to stabilize desired configurations or structures at the cost
of energy dissipation.

2. NONEQUILIBRIUM GROWTH PROCESS

The fields of colloidal and nanoscale self-assembly have seen dramatic progress in the past few
years (60-68). However, most of these advances are based on an equilibrium thermodynamic
framework: The target configuration minimizes a thermodynamic free energy (69). Understand-
ing the principles governing self-assembly and organization in far-from-equilibrium systems re-
mains one of the central challenges of nonequilibrium statistical mechanics (21, 27). Indeed, even
with the recent advances in nonequilibrium statistical mechanics, such as the discovery of fluc-
tuation theorems (70), no universal framework for the control of steady states in such growing
many-body systems has been developed. Classical ideas based on Onsager’s regression relation
and linear irreversible thermodynamics have previously been used to obtain equations to describe
nonequilibrium phenomena in soft matter (71). However, these are valid close to equilibrium and
are not immediately extendable to nonequilibrium growth processes.

To be more precise, imagine a self-assembly process in which a structure is assembled by as-
similating monomers from a bath. Assume that the interactions among the various particles in the
system are described by a set of energies E.q. Typically, such energies can be readily derived from
an atomistic force field. We imagine that the growth rate of the system can be varied by tuning the
concentration of monomers in the bath or equivalently the chemical potential of the bath. We use
Heoex to denote the value of the chemical potential for which the system does not grow on average
(and is in equilibrium). The system can be made to grow at a finite rate by tuning the chemical
potential to a value above this coexistence value. The excess chemical potential S = p© — fheoey 1S
the nonequilibrium driving force in this setup. This generic setup is sufficient to describe many
self-assembly processes (42). At equilibrium, §u = 0, and the configuration of the system and/or
assembly can be predicted by computing the equilibrium partition function and free energy G,
appropriate to the set of interaction energies. Away from equilibrium, the free-energy landscape
does not predict the configurations sampled. In general, for such a prediction, detailed kinetic
information describing the nonequilibrium growth process is required (72-74). However, as we
discuss below, an accounting of the entropy production rate along with an application of recently
discovered identities such as the thermodynamic uncertainty relations might make it possible to
substantially constrain the allowed configurations observed in a nonequilibrium growth process
even with minimal kinetic information.

2.1. Entropy Production

We begin by writing down the second law of thermodynamics for such growth processes (52, 75,
76). The phenomenological derivation provided below is most closely related to that discussed in
References 77 and 78 and has been used in other contexts such as in References 42, 79, and 80.
Indeed, expressions for the entropy production rate in nonequilibrium polymerization processes
are already provided in the pioneering work in References 77 and 78. The results reviewed be-
low adapt these expressions so that they can be used to constrain the configurations observed in
nonequilibrium self-assembly processes. Let P(w, N) denote the probability distribution associ-
ated with observing a system size of N and a microscopic configuration w at a particular instant of
time. The entropy of the system, S, is given by the configuration

S=—ks Y P(w,N)InP(,N), 1.

o,N
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where kg is the Boltzmann constant. To proceed, following Reference 77, we decompose the distri-
bution P(w, N) as P,(w, N) = P,(N)pn(w), where P,(N) and pn(w) are both normalized probability
distributions. In performing the decomposition, we have assumed that the system has reached
a steady state and that distribution of compositional fluctuations for a given system size, pn(w),
is independent of the time #. With this assumption, we associate with the distribution, py(w), an
effective energy functional, E.¢(w), and an effective free energy, Fef, such that Ec(w) — Feir =
—kgTIn pn(w). This is simply a statistical defining relation for the energy function (analogous to
a potential of mean force). The energy function E(w) does not control the dynamics of the sys-
tem. This effective energy function can have a form very different from that of the interactions
specified by the interaction Hamiltonian, F.q(w). Assuming that the functional form of E. is in-
dependent of N, and using the relation Ee(w) — Feir = —kpTIn pn(w), the entropy of the growing
system in Equation 1 can be rewritten as

—Fe + (Eer)N

TS = (N>t N

Here, (...)n is the average of all microscopic configurations of the assembly with respect to the
distribution, pn(w), at size N > 1, and (N), is the average size of the assembly after it has been
allowed to grow for a time ¢. In addition, when the bath size is much bigger than the assembly, the
entropy exchanged between the bath and the growing assembly is

_Eq + (Eeq)N - N(S[/L

TASbath = _<N)t N

Combining the two entropies in Equations 2 and 3, we can write down the total entropy of the
process, which must be nonnegative according to the second law of thermodynamics (42):

dStotal ~ d<N)

T —_ 7
dr dt

(6 — (ediss)) = 0. 4.
Here, (egiss) = [(Eeq — Eef)N — (Feq — Fep)]/N. For growing assemblies, % > 0, and the con-
straint in Equation 4 reduces to §jt > (egiss). The term (egs) can be viewed as a thermodynamic
reorganization cost for creating structures that are different from those corresponding to the equi-
librium landscape, E.q. Because Equation 4 is a statement of the second law of thermodynamics,
it is effectively independent of the kinetics of the nonequilibrium growth process. We note again
that similar equivalent statements of the second law of thermodynamics have been written down
in the context of a variety of polymerization processes (77-80).

2.2. Thermodynamic Uncertainty Relations

Close to equilibrium, Onsager’s fluctuation dissipation relation provides a hint that constraints
such as those in Equation 4 might be further refined. Specifically, interpreting St — (cgiss) as an
effective force driving the increase in the assembly size, the fluctuation dissipation relation implies

that the response, v = (N), is proportional to the driving force with the proportionality constant

(AN?)
2t

form the basis of the framework of linear irreversible thermodynamics and have been used suc-

being related to the fluctuations in the growth rate, D = lim,_. (71, 81). Such arguments
cessfully to describe the dynamics of active gels, biological membranes, and liquid membranes.
A newly discovered class of relations in stochastic thermodynamics, the thermodynamic un-
certainty relations (57, 58), suggests that such fluctuation dissipation relations can be extended to
far-from-equilibrium conditions. Specifically, these relations suggest that the entropy production
rates generically bound the relative fluctuations of all fluxes in the system. In their most generic
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form, these relations can be written as

- 2k (J,)? '

= Var(Jy,)
Here, X is the total entropy production of the process. J, is a generalized current that, in principle,
can be a linear combination of fluxes; (J,,) is the average generalized current; and Var(J,) is its vari-
ance. The thermodynamic uncertainty relations were first derived using large deviation theory to
analyze the statistics of current fluctuations in Markov state networks (58). Close to equilibrium,
the thermodynamic uncertainty relations are equivalent to statements of the fluctuation dissipa-
tion relation or linear response theory. These relations have been extensively reviewed elsewhere
(57, 58). By extending these relations to finite-time nonequilibrium processes, time-dependent
nonequilibrium processes have also been explored (82-85). Finally, similar classes of relations can
also be derived for other statistical quantities such as first passage times (86).

If the thermodynamic uncertainty relations can be extended to the problem of nonequilibrium

self-assembly, they result in an inequality of the form

v
(SM - <Ediss) = 5 ’ 6.
where, in the context of self-assembly, we are interested in the generalized flux J, = v = dg).
Given a nonequilibrium driving force 8 and equilibrium interactions E., the statistics of growth
rates, v or %, is the average rate of growth of the assembly, and D is related to the variance of

growth rate fluctuations of the assembly. Equation 6 provides a variational principle for estimating

E., the effective energy functional that describes the correlations in the nonequilibrium assembly.
This equation has the potential to elucidate tradeoffs among energy consumption, speed, and
organization for nonequilibrium self-assembly. Specifically, given a nonequilibrium driving force,
3u, and the ratio v/D, Equation 6 provides a bound on the reorganization energy cost, (€dgiss),
that is available in the nonequilibrium growth process. Thus, Equation 6 provides a bound on the
configurations that can be accessed in a nonequilibrium growth process (which we discuss in more
detail below). The reorganization cost, (€g4ss), can also be expressed as an information theoretic
cost, (egiss) = D[pl|peql/N, where D[p||peq] is the relative entropy between the observed steady-
state distribution of configurations p in the nonequilibrium assembly of size N and the distribution
of configurations p.q of the assembly grown close to equilibrium, i.e., §u ~ 0.

Before proceeding to review specific applications of Equation 6, we note that the thermody-
namic uncertainty relations (57, 58) have formally been derived for Markov processes on finite
graphs, whereas a growing assembly has no finite size constraints. Thus, the application of such
thermodynamic uncertainty relations to self-assembly problems needs to be done with care. In
Reference 42, we showed how such an extension can be achieved by mapping the dynamics of
a one-dimensional self-assembly process onto the dynamics of a time-independent finite-state
Markov process. In general, we anticipate that as long as the correlations in the growing assem-
bly are bounded and can be described by time-independent energy functions E.g, the dynamics
of the nonequilibrium self-assembly process can be mapped on the dynamics of a complex but
finite Markov state network. The thermodynamic uncertainty relations can hence be applied to
the finite Markov state caricature. Therefore, Equations 4 and 6 may be used to predict or bound
the correlations generated in the course of nonequilibrium self-assembly (42).

2.3. Predicting Compositions and Phase-Transition Behavior

To illustrate the effectiveness of Equation 6, we considered one- and two-dimensional lattice-
based assembly problems introduced first in References 55 and 56. The model contains two
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Figure 1

Domain lengths bound using Equation 6 in a nonequilibrium growth process. (#) Schematic of the 1D
assembly growth process. The assembly consists of two types of monomers (red and blue). (b) Schematic of
the effective Markov state model. The Markov state model resolves the nature of the terminal bond in the
self-assembled system (vertical rungs) and the number of particles in the self-assembled system (N; horizontal
axes). The s stands for a bond between similar or like monomers and the d stands for a bond between
different or unlike monomers. (¢) Comparison between the lower bounds of §i+ obtained using Equation 6
(orange curve) and from simulation (black curve). Figure adapted from Reference 42.

types of monomers (with equal concentrations in the bath) and is grown from one end. Only
nearest-neighbor interactions between monomers in the system are allowed, with €, denoting
the energy of interaction between identical monomers and ¢4 denoting the energy of interaction
between unlike monomers. When §u = 0, the system is at equilibrium, and its compositional
fluctuations resemble those of an Ising model with a coupling constant J = (e, — €4)/2. When
grown out of equilibrium, Equation 6 can be used to look for the effective nearest-neighbor
coupling constant, Jeg, that most accurately describes the compositions in the growing assem-
bly. In the case of one-dimensional assemblies (Figure 1), Equation 6 was able to predict or
bound the compositional fluctuations very accurately even far from equilibrium (42). The two-
dimensional assembly (Figure 2) exhibits more complex phenomenology. By tuning the nonequi-
librium forcing, Su, the system can be made to exhibit compositional fluctuations resembling
those seen at the critical point of a two-dimensional Ising model (56) (even though the physi-
cal interaction strengths, ¢; and ¢4, remain unmodified). In other words, nonequilibrium forcing
seems to drive the system toward a second-order phase transition (56). As a first approximation,
we used Equation 6 to obtain estimates of effective nearest-neighbor coupling strengths J. that
can most accurately describe the compositional fluctuations in the growing system. The values
of Jeg obtained from Equation 6 provide reasonably tight bounds on the compositional fluc-
tuations observed in the growing assembly and even provide a reasonably accurate bound for
the value of the driving force du. at which critical compositional fluctuations are accessed (42)

(Figure 2).
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Figure 2

Prediction of nonequilibrium phase transition behavior using Equation 6. (#) Equation 6 was applied to a model lattice-based
self-assembly problem in which a two-dimensional binary assembly is grown (56). €; denotes the energy of interaction between identical

components and ¢4 denotes the energy of interaction between unlike components. (/) When the assembly is grown at equilibrium, the
statistics of compositional fluctuations in the assembly are equivalent to that of an Ising magnet with coupling constant J = 25

Recent work in Reference 56 showed that such nonequilibrium driving can drive the compositional fluctuations in the system to a
second-order phase transition. Equation 6 is able to bound such changes in the effective free-energy landscape. For instance, the graph
in panel ¢ compares the effective magnetic constant, Jef, from the simulations with those predicted from Equations 4 and 6. This
demonstrates that Equation 6 can place accurate bounds on the compositional fluctuations excited during the nonequilibrium growth
process and also provide an accurate bound on the location of the driving force, 8, required to excite the critical fluctuations. Figure
adapted from Reference 42.

2.4. Morphological Changes in Model Membranes Due

to Nonequilibrium Driving

The nonequilibrium variational theorem may also be applied to understand how material prop-
erties of membranes (biophysical and synthetic), such as the surface tension, can be modulated
using nonequilibrium forcing (Figure 3). The role played by nonequilibrium forces in biological
processes such as those responsible for modulating cell shapes and dynamics is well established
(87-91). Indeed, experiments on model lipid vesicles that can absorb lipids from a surrounding
bath and grow have shown that nonequilibrium driving can force morphological transitions after
which the vesicles no longer grow with a spherical shape (92-94)—such systems and transitions
can potentially be good models for studying the thermodynamics of endocytosis (93) and cell
shape changes (92, 94). Recent work in Reference 73 used hydrodynamic simulations to show
how various morphologies that are functionally relevant for endocytosis and cell division can be
accessed when a membrane is forced to grow. A nonequilibrium theory for the control of material
properties and morphology in such systems can hence be very useful as it can elucidate tradeoffs
between energy consumption and organization.

The nonequilibrium variational theorem in Equation 6 can potentially be used to probe the
tradeoffs between energy consumption and organization in such a nonequilibrium growth process.
Preliminary results along these lines have been obtained in Reference 43 in which the growth of a
model one-dimensional elastic string (embedded in two dimensions; see Figure 3b) was studied.
As in the previous preliminary results, the chemical potential of the reservoir controls the growth
rate of the ring assembly and sets the nonequilibrium driving force in this system. In particular,
beyond a critical value of i > 81, the assembly no longer grows in a circular shape (Figure 3b,c).
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Figure 3

(@) The nonequilibrium variational theory is used to study growth-induced morphological transitions in biophysical and synthetic
membranes. (#, 7) Biological membranes undergo constant remodeling due to either growth or binding—unbinding of variance
membrane proteins. (4, i7) Experimental observations of morphological changes in vesicles due to the growth. (4, i) Growth and
morphological transitions studied in a model elastic string. (4, #7) Morphological changes in string geometry can be accessed by forcing
the system to grow beyond a critical rate. (4, 7i7) Similar morphological transitions can be observed when two-dimensional membrane
surfaces are forced out of equilibrium. (c) As §u is increased, the effective line tension-like parameter, yef, of the string decreases,
eventually reaching ye = 0 for Su ~ 1.1. Increasing § 1 beyond this value induces a morphological change to a configuration with
spikes. The green curve represents the effective line tensions measured in simulations. The nonequilibrium variational theory in
Equation 6 (orange curve) provides a more accurate bound for the renormalization of the line tension due to nonequilibrium forcing in
comparison to the bound given by Equation 4 (black curve). (Inset) The values of yefr from simulations were obtained by computing the
power spectrum of radial fluctuations and fitting the spectrum to expectations from Helfrich elasticity theory (43). The values of the
elastic constants estimated in this way were independent of the size of the assembly in agreement with our theoretical expectations.
Panel # adapted from Reference 92 with permission.

We analyzed the spectrum of string fluctuations in the nonequilibrium simulations and, assuming
an effective Helfrich-like form, extracted effective line tension—like (y.f) and bending rigidity—
like parameters. We found that the nonequilibrium driving renormalizes the value of the effective
line tension-like parameter obtained in this way. In particular, close to the morphological transi-
tion, the effective line tension parameter is renormalized to zero. We stress that this effective line
tension-like parameter is simply a convenient way to characterize the fluctuations in the nonequi-
librium system.

The nonequilibrium variational theorem, Equation 6, can be used to obtain estimates of the
effective line tension, Y., as a function of §u. In particular, the reorganization cost, (€gis), in
Equation 6 can be used to search for effective line tension-like values, y.f, that describe the fluc-
tuations in the configurations of the growing membrane. The results in Figure 3¢ suggest that
the theory is able to bound and predict the renormalization of such effective line tension observed
in simulations without any kinetic details of the assembly process (beyond v/D).

In summary, accounting for the entropy production rates in nonequilibrium growth and self-
assembly problems, through the formalism of stochastic thermodynamics, can potentially reveal or
constrain the configurations and correlations that are formed due to the nonequilibrium forcing.
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In particular, Equation 6 provides a bound on (e4s), which is a measure of the dissipated energy
cost to restructure the assembly from the energy landscape, E¢q to Eeg.

3. ORGANIZATION IN DRIVEN AND ACTIVE MEDIA

Model-driven and active-matter systems (8, 95-97) have provided an analytically and compu-
tationally tractable test bed to study organization in nonequilibrium systems. Models of driven
systems can be realized experimentally in a variety of ways, for instance, using external electric
and magnetic fields (27, 98-100), and lead to a variety of rich phenomenology including phase
transitions (44, 98), large mesoscopic currents along interfaces (5), and dynamic assembly into
moving nanocrystals and tubes (100). Activity can also be used to promote various novel reorgani-
zation pathways and increase the yield of novel structures, as was demonstrated in Reference 101,
where active Janus-like particles were used to enhance the self-assembly yield of Kagome lattices.
Inspired by phenomenology exhibited by actin and microtubule assemblies, studies of active ne-
matic materials have shown how nematic elastic constants and morphology can be modulated by
nonequilibrium driving (102). It has also been demonstrated that nonequilibrium chiral activity
can be used to create materials with novel elastic and transport properties that are unattainable
at equilibrium. Attempts at constructing a unified theoretical framework in such systems have
used effective temperature-like caricatures (98), developed prescriptions to compute pressure and
stresses in nonequilibrium media (103, 104) and developed effective thermodynamic frameworks
to explain various phase-transition and coexistence phenomena (105).

Interestingly, and of particular relevance to this article, recent work has also suggested that
accounting for (46, 106-108) and controlling the various rates of dissipation in active and driven
media might provide a convenient way to control and anticipate the properties of some of the
above described nonequilibrium media. Below, we review these ideas.

3.1. Controlling Structure Using Biased Energy Flows

In order to introduce the framework, we begin by considering a model-driven liquid composed
of two particle types (Figure 4a). All particles of type A are driven in phase by an external field.
Both particle types are modeled as point particles with no additional degrees of freedom. Such
a system was first introduced in Reference 98 to model colloidal particles driven differently by
external magnetic fields. The external forces do work on the system by driving particles of type A
into type B. This energy flow has been shown to induce phase separation in this system (44, 98).

In order to investigate how such energy fluxes affect the microscopic interactions in very gen-
eral settings, imagine turning off the external driving and simply consider biasing the dynamics in
terms of the rate of potential energy stored in the A-B interactions. Specifically, instead of chan-
neling energy into the system by inducing collisions between A and B particles (as the external
driving would have done), the framework of large deviation theory and biased sampling tech-
niques (109-112) are used to harvest trajectories that either pump energy into or extract energy
from the A-B interactions at a finite rate. Such biased sampling can be achieved using techniques
developed to compute large deviation functions of various quantities. Specifically, given a physical
trajectory-dependent observable (f), biasing can be achieved by formally introducing an exponen-
tial weighting function exp [k-£(?)] in the path probability of the microscopic dynamics as defined
within the framework of large deviations (113, 114). Here, the variable ¢ is extensive in time, and
its average rate £(¢)/t in the biased ensemble is controlled by the bias amplitude # at large time #
— 00. Therefore, the biased ensemble enables one to probe system configurations associated with
different rates &(7)/t, simply by modulating the external parameter %.
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(@) Model of a two-component liquid with one component driven by an external field. An experimental system, designated as A
(subpanel 7), with similar dynamics undergoes phase separation. Phase separation, designated as B (subpanel 77), is shown in simulations
of the model liquid due to driving. Subpanel / adapted with permission from Reference 98, and subpanel /i adapted with permission
from Reference 44. (b) Plot of the A-B pair correlation function for various energy-biasing strengths ¥ compared with analytical
predictions from Equation 8. (c) Plot of (¢) as a function of the biasing field % obtained from both simulations of the biased ensemble
using the cloning algorithm and equilibrium simulations with Equation 8. Together, these results show how energy biasing can modify
the structure of the fluid. For values of ¥ > 0 when energy is pumped into the tracer-bath interactions, the tracer and bath particles
effectively repel each other more strongly, in agreement with Equation 8. Such enhanced repulsion can potentially favor phase
separation of the sort seen in panel 4.
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For particles evolving according to overdamped Langevin equations of motion with a friction
constant y and a random Gaussian forcing n(z) with (n(#®)n(#)) = 27T58(¢ — t'), a specific functional
form for &(z) can be obtained within the Ito convention (115),

e(t) = ! /t [TV} Vs + (ViVas) - (F)]ds, 7.
Y Jo

where F; is the conservative force acting on particle 7 and Vg is the potential energy stored in the
A-B interactions. de/dz is indeed equal to the rate of change of V;_p averaged over all realizations
of the random noise 7(z) for the above described overdamped Langevin equation of motion (46).
In the unbiased case & = 0, the energy flow vanishes due to the fluctuation dissipation relation
44).

By tuning % positive or negative, trajectories that preferentially cause energy flow into or extract
energy from the system can be generated. Hence, sampling this ensemble of trajectories provides
an indirect, if somewhat contrived, way to assess how energy flows can modify the properties of
interacting many-body systems. Such trajectory biases have been used in other contexts to explore,
for example, dynamical heterogeneities in glassy systems (109-111, 116-119), soliton solutions in
high-dimensional chaotic chains (120, 121), and the clustering of active self-propelled particles
(106, 122). In practice, the configurational steady state obtained by such trajectory biasing tends
to be highly nontrivial for many-body systems (113). However, for the energy biasing in Equation
7, analytical results for the steady state in the limit of weak biasing, # < 1, can be obtained by
following the prescription in Reference 113. Specifically, configurational steady state generated
by energy biasing can be generated using an interparticle interaction force field F; (46):

Fi=—k/yViVag +F 4+ OF). 8.

As a result, the trajectories that consume energy from or release energy into the tracer-bath po-
tential are associated with a physical dynamics in which, at leading order, the A-B interaction
strength is simply renormalized by the bias amplitude, k. The interactions between A-A and B-B
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are unmodified. For a system with purely repulsive interparticle interactions, the effective repul-
sive interactions between A and B can be further enhanced by tuning % and permitting energy
flows into the A-B interactions. Such enhanced repulsions between A and B particles can lead to
clustering of like particles consistent with the features observed in a nonequilibrium experiment
and/or simulation in which the A particles are driven into the B particles by external fields.

In Figure 4b, the effectiveness of this theory is tested (46) by comparing averages generated
from biased ensembles [using the cloning algorithm (120, 123-128), in which desired rare real-
izations are regularly selected and multiplied to efficiently sample the biased ensembles (125)]
with those generated from equilibrium dynamics with Equation 8. There is excellent agreement
between two-point A-B pair-correlation functions obtained using the two approaches even for in-
termediate values of |£| ~ 0.2. This agreement implies that the result of energy biasing can indeed
be anticipated using our theory when the biasing is not strictly in a perturbative regime (46). An
analytical solution can also be obtained in a nonperturbative regime, as shown in Reference 46.
The nonperturbative solution simply has an extra nonlocal term that enhances clustering.

3.2. Controlling Structure and Phase Transitions Using Energy Dissipation

The model calculation reviewed in the previous section shows how biased energy flows can be used
to renormalize interactions. This calculation was inspired by work in References 106 and 108, in
which the authors used the large deviation framework to importance-sample trajectories of model
active-matter systems according to a measure of the microscopic work done by the active forces,
w. The rate of work, w, can be viewed as an analog of ¢(¢) in Equation 7 above, with the caveat
that &(z) can be defined even for time-symmetric dynamics. In some contexts, it can be shown that
the average rate of work, (w), is proportional to the so-called swim pressure (104).

It was demonstrated in References 106 and 108 that commonly observed structural phase tran-
sitions in model active-matter systems can be accessed by importance sampling the statistics of w.
Building on these ideas, in References 46 and 107, it was demonstrated that importance sampling
a biased energy-flow rate can also be used to access flocking-like transitions in model nonequilib-
rium systems (Figure 5). Together, these results suggest that the statistics of dissipation can play
an important role in controlling various collective phenomena and phase transitions in nonequi-
librium systems.

Finally, we end this section by noting that identifying a set of physical dynamical rules that
generate an ensemble of trajectories that exactly resemble those generated by importance sampling
w and other related quantities remains an open question. Nonetheless, it might be possible to
develop intuition for physical dynamics that can generate ensembles statistically resembling those
generated by importance sampling using an optimal control-like framework (129). We discuss this
further in Section 4 below.

4. FUTURE OUTLOOK AND CHALLENGES
4.1. Hydrodynamic Generalizations

In what follows, we envision the future directions for equilibrium growth progress (Sections 4.1
4.5) and organization in driven and active media (Sections 4.6 and 4.7), respectively. In
Equation 6 and its various proposed generalizations, we have assumed that the dominant nonequi-
librium forces are tied to growth. Our approach does not consider other dissipative effects such as
those due to hydrodynamic modes (3) and particle transport, which can be important factors. If the
contributions from such considerations are to be considered, Equation 6 needs to be generalized
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Figure 5

Energy biasing used to modulate steady-state structures. (#) Configurations obtained from sampling the biased dynamics of a system
consisting of aligning self-propelled rods. Simulation details are described in Reference 46. The color-coding describes the orientation
of particles. In the unbiased dynamics (x ~ 0), we observe isotropic and polar states, respectively, at large noise (D, > D7) and small
noise (Dy < D¥). The dynamical bias leads to renormalizing interactions in a controlled manner (as suggested by Equation 8), which
effectively changes the transition threshold, D} — D} (1 + ). As a result, one can stabilize either isotropic or polar states, respectively,
simply by tuning the rate of energy flow using ¥ without modifying the interactions. Panel # adapted from Reference 46. (b) Tuning the
rate of work w in an active media can be used to access either structurally clustered phases or phases exhibiting collective motion. These
results illustrate the ability to trigger or inhibit collective effects in nonequilibrium systems by simply dynamically modulating energy
flows or dissipation rates. Panel » adapted from Reference 107.

so that the entropy production rate includes these effects. Following the theoretical framework
laid out above, the thermodynamic uncertainty relations can potentially be used to obtain a set of
inequalities constraining the fluctuations in various fluxes. Such sets of inequalities can be viewed
as generalizations of the classical linear irreversible thermodynamics approach that is commonly
used to obtain phenomenological equations of motion in near equilibrium settings (71, 81).

4.2. Thermodynamic Constraints for Time-Dependent Driving

As written, the formalism in Equation 6 cannot be applied to an important class of nonequilibrium
self-assembly processes modulated by time-dependent driving. Indeed, time-periodic forcing has
been used to create nonequilibrium states with enhanced order in many contexts (4, 130-134). Re-
cent work (85) has shown how the thermodynamic uncertainty relations can be written down even
for time-dependent nonequilibrium processes. Adapting these relations to the case of nonequilib-
rium growth, future work should explore and develop time-dependent versions of Equation 6.
If successful, such work has the potential to reveal tradeoffs between energy consumption and
organization even in time-dependent nonequilibrium growth processes.
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4.3. Modulating Structure and Phase Transformation Behavior of
Self-Assembled Colloidal Crystals Using Nonequilibrium Forcing

Building on the results in References 42 and 43, we anticipate that this thermodynamic framework
can be used to study the properties of colloidal or nanoscale crystals assembled under nonequi-
librium growth conditions. Indeed, experiments and simulations have shown that nonequilibrium
forcing can potentially modify crystal structures and phase behavior in such setups (135-137). For
example, Reference 137 used computer simulations to study the nonequilibrium phase diagram
of a binary A-B mixture. This work showed that the location of the line separating the body-
centered cubic and close-packed phases shifted if the crystals were grown out of equilibrium.
The nonequilibrium theoretical framework in Equation 6 can potentially reveal how energy land-
scapes different from the equilibrium landscapes or, alternatively, how crystals characteristic of
interaction energies different than the ones encoded physically can be generated by nonequilib-
rium forcing (for example, using §11). Such studies can clarify how the equilibrium phase diagram
and boundaries can be modified by nonequilibrium forcing (137) (Figure 2).

Finally, we anticipate that it might be possible to adapt Equation 6 so that it applies to finite-
time thermodynamic processes (82, 83). Then it might be possible to develop predictive ther-
modynamic frameworks that explain the self-assembly of large complex terminal structures (i.e.,
finite structures as opposed to the nonterminal assemblies considered above) (138) from patchy
nanoparticles (67, 139) and DNA mediated interactions (140).

4.4. Thermodynamic Bounds on Membrane Morphologies
Due to Nonequilibrium Activity

Building on the above described applications of Equation 6 to understand nonequilibrium mor-
phologies of model membranes (embedded in two dimensions), future work should explore
whether similar relations can be written down for more realistic membrane models that are em-
bedded in three dimensions (Figure 35, subpanel #ii) and to include cases in which detailed bal-
ance is broken due to other membrane remodeling events. One important example of this is the
binding and unbinding of curvature-preferring proteins, which are often involved in active mem-
brane remodeling processes such as endocytosis and cell fission (94, 141). Nonequilibrium ther-
modynamic bounds, if derivable in a manner that accounts for the various hydrodynamic flows,
can provide intuition for the microscopic energy requirements to drive such organization. Such
bounds can provide a general far-from-equilibrium framework for controlling membrane material
properties, such as the local surface tension, at the cost of energy consumption.

4.5. Biological Polymerization Reactions

Proofreading mechanisms used during various DNA replication processes provide an illustrative
example of the tradeoffs among dissipation, speed, and error or functionality in biology. We an-
ticipate that connections like those in Equation 6 will further elucidate these tradeoffs. Indeed,
expressions for entropy production for various model replication processes have already been ob-
tained. Such expressions can be used to extend Equation 6 to study the energy-speed-accuracy
tradeoffs in replication and translation processes in biology (75, 79, 80).

Polymerization dynamics also play a very important role in modulating the properties of force
transmitting biological agents such as actin and microtubules. Recent experimental and theoretical
work has found that the speed of actin polymerization influences the statistics with which various
actin bundling proteins bind and bundle the growing actin filaments (142). Adapting Equation 6
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to such cases can reveal how the energy dissipation accompanying actin polymerization can in
turn support a nonzero reorganization cost, {€gis), for changing the makeup of the actin bundles.

4.6. Modulating Material Properties and Phase Transitions Using Activity

Recent work in References 102 and 143 has shown how the flow of energy through the active
nematic material can modify the elastic constants to different degrees and change the mechanics
of the material. By adapting relations like Equation 8 so that they can be applied to materials with
complex anisotropic interactions, future work should explore the extent to which effective interac-
tions in complex media can be tuned at the cost of energy dissipation. Furthermore, future work
should also explore how predictions from Equation 8 (and related identities) can be physically
realized using specific nonequilibrium driving protocols. Reference 129 suggests that an optimal
control-like framework can be used to develop intuition for nonequilibrium driving protocols that
generate ensembles of trajectories closely resembling those generated by importance sampling.

Such progress can help realize the various collective states and regimes predicted in
importance-sampled trajectories using physical dynamics. If successful, such work can provide
a thermodynamic foundation for understanding how biological materials are able to dynamically
modulate their material properties and undergo various complex phase transitions using nonequi-
librium activity (19).

4.7. Controlling Complex Self-Assembly Using Energy Dissipation

Results such as those in Equation 8 and References 46, 107, and 144 could be of potential inter-
est for guiding complex self-assembly far from equilibrium (145). For instance, in settings with
multiple particle types, it might be possible to renormalize interactions between various sets of
particles in a targeted manner by controlling the rates at which energy is dissipated into the inter-
actions. The resultant renormalized interaction-potential landscape might promote spontaneous
self-assembly of various structures—at the cost of energy consumption. Progress again requires
that results such as those in Equation 8 and References 46 and 107, which are based on a large
deviation framework and require the construction of specific biased ensembles, be translated so
that they apply to physically realizable driving protocols. If successful, such work could provide a
thermodynamic basis for explaining complex nonequilibrium self-assembly, such as that in Refer-
ence 101, in which an open Kagome lattice structure was stabilized using nonequilibrium activity.

5. CONCLUSIONS

In this review, we have focused specifically on the extent to which metrics of energy dissipation can
be used to constrain the properties of various nonequilibrium systems. Using ideas from stochastic
thermodynamics and large deviation theories, we have argued that the statistics of energy dissipa-
tion can potentially be used to predict self-assembly properties, correlations, material properties,
and phase transition behavior in many nonequilibrium systems. Biology uses nonequilibrium ac-
tivity to support a variety of novel functional states. We anticipate that the frameworks reviewed
here can provide a starting point to address some of the unique phenomenology seen in biophys-
ical systems and potentially replicate them in synthetic materials.
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