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Fluctuating hydrodynamics of chiral active fluids
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Active materials are characterized by continuous injection of energy at the microscopic level and typically cannot be adequately
described by equilibrium thermodynamics. Here we study a class of active fluids in which equilibrium-like properties emerge
when fluctuating and activated degrees of freedom are statistically decoupled, such that their mutual information is negligible.
We analyse three paradigmatic systems: chiral active fluids composed of spinning frictional particles that are free to trans-
late, oscillating granular gases and active Brownian rollers. In all of these systems, a single effective temperature generated
by activity parameterizes both the equation of state and the emergent Boltzmann statistics. The same effective temperature,
renormalized by velocity correlations, relates viscosities to steady-state stress fluctuations via a Green-Kubo relation. To ratio-
nalize these observations, we develop a theory for the fluctuating hydrodynamics of these non-equilibrium fluids and validate
it through large-scale molecular dynamics simulations. Our work sheds light on the microscopic origin of odd viscosities and

stress fluctuations characteristic of parity-violating fluids, in which mirror symmetry and detailed balance are broken.

and statistical physicists alike'’. Here, we consider a class

of non-equilibrium fluids exemplified by frictional grains
constantly spinning in a plane. Typically, two grains of sand would
only lose energy by friction when they collide. By contrast, spinning
particles can also gain energy after a collision, if their rotation speed
is rapidly reset to a constant value by microscopic torques or exter-
nal fields. A collection of many such particles, all spinning in the
same direction (clockwise or anticlockwise), is often referred to as
a chiral active fluid*". Experimental realizations include colloidal
particles*'"', robots'” and even living systems'>'°. In this article, we
use non-equilibrium statistical mechanics to develop a fluctuating
hydrodynamic theory for chiral active fluids: a continuum theory
that describes both the macroscopic behaviour of the fluid and
its fluctuations in one go. This allows us to describe phenomena
ranging from steady-state velocity fluctuations to non-linear shock
propagation.

Despite being driven and dissipative, chiral active fluids share
several aspects with equilibrium fluids when their spinning speed
is nearly constant and uniform. They display a Maxwell-Boltzmann
probability distribution and an equation of state, and their viscous
response satisfies a fluctuation-response relation. The same vis-
cous response bears signatures of their non-equilibrium character
through the existence of so-called odd viscosities that can only occur
when detailed balance is broken. These equilibrium-like behaviours
occur when the activated and fluctuating degrees of freedoms are
statistically decoupled, a feature that we shall see extends beyond
chiral active fluids to other systems such as oscillating granular
gases'’"" and active Brownian rollers***..

{ i ranular media have long been a playground for children

Microscopic model of a chiral active fluid

We start by considering a simplified microscopic model of a
two-dimensional chiral active fluid (Fig. la and Supplementary
Videos S1-S3) composed of athermal frictional particles all spin-
ning in the same direction*®'°"2, In order to impart a fixed chirality
to the system, we incorporate active torques into a standard model
of granular disks (see Methods and ref.??). The positions x; of the

particles and their angular velocities ; then follow the equations
of motion

mki = > fj (1)

IQ,‘:TI‘—F Z rjj Xfij (2)
je NG
in which m is the mass of the particles and I their moment of inertia.

Each particle i interacts with its neighbours j& N(i) closer than its
diameter d through a force

fj = —k(d — 1)t + y(—vij + Qi X 1y) 3)

C nc
£ £

in which the central force ;i models a soft repulsion between the disks
while the non-central force f,fc models interparticle friction (Fig. 1a).
Particles i and j are separated by a vector r;; = X; — Xj = r;; £yj, the dif-
ference between their velocities v = X is v;=v,—v;, and the average
rotation speed of a pair of particles is Q;; = z (€; + Q;)/2. In addi-
tion, each particle experiences an active torque 7; =y, (Q — )z
that tends to maintain a constant angular velocity €,~Q. When y,,
is large, Q; relaxes to Q faster than other time scales in the system,
allowing the rotational degrees of freedom (that we call ‘activated’)
to act as an effective bath for the translational ones (that we call fluc-
tuating’). Hence, one can replace Q;; — Q Z in equation (1) while
eliminating equation (2). Crucially, the non-central force f;j* vio-
lates parity: equation (1) is not invariant under the mirror reflection
X,y = —x,y when Q#0 (the system is chiral).

Effective temperature

We conduct molecular dynamics simulations of the chiral active
fluid described by equation (1) in this limit. Despite being athermal
and driven, the active fluid exhibits a single effective temperature
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Fig. 1| Steady-state and linear response of a chiral active fluid. a, Schematic of a granular gas. We simulate a 2D granular gas composed of frictional

particles with diameter d, which are powered by an active torque 7, to self-spin at a constant speed Q. During collision, two self-spinning particles slide
with respect to each other. The resultant interparticle friction causes transverse motion of the particles upon separation (Supplementary Video S1).

At = v/m/k is a proxy for the average collision duration. b, Velocity distribution. The x-component of translational velocity follows a Gaussian distribution
P(v,) at various spinning speeds Q. An effective temperature T, is defined using the variance of v,. The dependence of T, on Q is shown on the right.

cd, Equations of state. At steady state, this system acquires an effective pressure P that satisfies the ideal gas law, P=nk;T., where n is particle density.
Unlike thermal systems, it also acquires a non-vanishing torque density 7 that satisfies the relation 7~ Qn?. e, Schematic of rheological measurements.

We perturb the system with a velocity gradient &, = dpui and measure the stress g; to infer the viscosity tensor ;.. The stress is calculated in the bulk
from particle trajectory and interactions using the Irving-Kirkwood formula (7). This method can be applied to either simulation or experimental data. In
the dilute limit, the kinetic part of the Irving-Kirkwood formula dominates, so the stress tensor can be determined purely from movies of particle motion,
without knowledge of microscopic interactions. f, Odd and shear viscosities. A pure shear induces shear stress s, (®) via odd viscosity 5° and shear stress
s, (@) via shear viscosity 7. g. Compression-rotation and bulk viscosities. A dilation/compression alters the torque density 7 (@) via a compression-
rotation viscosity #* and the pressure P (®) via the bulk viscosity ¢. h, Rotation-compression and rotation-rotation viscosities. A rotation changes the
pressure P (@) via a rotation-compression viscosity #? and the torque density 7 (@) via a rotation-rotation viscosity #*. The coefficient I'=7/Q is plotted
for comparison. The dependences of all the viscosities on spinning speed Q are shown in f-h. The diagonal terms 7, £ and #® in equation (6) are even in Q,
while n*, 7 and 5° are odd in Q. Besides, 7 (Q) = —»?(—€). All the viscosities 7, = 1,/nq are in units of n,=m/dAt. We define vo=d/At, e,=md*/ At? and
Po=m/[dAt?]. Unless otherwise specified, the number density is nd>=0.254. Error bars denote standard errors.

T.; that controls three properties typically associated with thermal
equilibrium: (i) a Maxwell distribution of particle velocities (Fig.
1b), (ii) a nearly Boltzmann distribution of particle concentration

in the presence of an external potential (Supplementary Figs. S1-
S$3) and (iii) an ideal gas equation of state (Fig. 1c). Similar proper-
ties emerge in oscillating granular gases (in which z translations are
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activated while (x, y) translations are fluctuating; Methods, Extended
Fig. E1 and Supplementary Videos S4 and S5) and fluids of active
Brownian rollers (in which translations are activated and rotations
are fluctuating; Extended Fig. E2 and Supplementary Videos S6 and
S7). In both cases, an effective thermodynamic description emerges
when the corresponding activated and fluctuating degrees of free-
dom are statistically decoupled.

The emergence of an effective temperature in the chiral active
fluid can be captured by a mean-field approximation. As the inter-
particle vector & is random, the term Q; x t;; in equation (1) can
be replaced by a white noise whose temperature is determined
self-consistently (Supplementary Sect. II). As a result, the fluid fol-
lows a Langevin dynamics similar to a thermal fluid

Dt —revi+ &) (4)

JEN()

mi,- =

in which T,; can be seen as the temperature of the effective
bath. We show in Supplementary Sect. II that yg=nad’y and
(E.DEN)) = 27 otk TetGapS(t — t')  (see also  Supplementary
Fig. S4). In the chiral active fluid, the thermal exchange with a bath is
replaced with an exchange of kinetic energy between rotational and
translational degrees of freedom during collisions (Fig. 1a). Once a
collision is over, the rotational speed ; of each spinning particle is
rapidly restored to Q by the active torques ;. This process leads to a
net gain or loss of energy until the translational degrees of freedom
reach the effective temperature T,(Q2) at which gain and loss are bal-
anced on average. We show in Supplementary Sect. II that, in this case,
T.zx ||, where a is a non-universal exponent depending on f;; with
4/3 < a < 2. Consistent with this prediction, simulations with a con-
tact potential reveal a power-law behaviour T.gox |Q["%%%2 over two
decades. We emphasize that the mean-field approximation in equation
(4) only captures single-particle properties controlled by T but not
the breaking of detailed balance. Hence, equation (1) is still needed to
fully account for the transport properties, such as viscosities, that are
affected by the parity-violating nature of collisions illustrated in Fig. 2.

Chiral hydrodynamics
The evolution of the velocity field u of the chiral active fluid is
described by the Navier-Stokes equation

pDu =V -6+ g (5)

in which D,=0,+ u,0, is the material derivative, o is the stress ten-
sor, f,, are external body forces and p=nm is the mass density (n
is the number density). The stress tensor ¢ in equation (5) is com-
posed of a steady-state part 6* present even in the absence of any
velocity gradient, and a viscous part 6 = 7,4 Oatie, Where 7,4
is the viscosity tensor of the fluid. The viscous stress &5 describes
surface forces between fluid layers that arise in response to velocity
gradients. It is convenient to express the stress o,, and the unsym-
metrized strain rate é,; = 941 as two vectors o, and ég, respectively,
so that #,,,, can be represented as a matrix #,, (see Methods and
refs.”***). For an isotropic two-dimensional fluid, the constitutive

relation between stress and strain rate reads

8 _P (A R D
|-t m n |
@~ + noome e (6)
® -n° n
g, 0:5 naB éﬁ

The velocity gradients ez are decomposed into dilation [, rota-
tion © and two pure shears ~and 7 at 45° of each other, while the
stress o, is decomposed into pressure @, torque @ and two shear
stresses @ and ® (see Methods for explicit expressions).
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We performed large-scale molecular dynamics simulations
to determine both the equations of state of the chiral active fluid
in the steady state and its viscous response to velocity gradients
(Fig. Le). In the simulations, the stress tensor 6 is determined using
the Irving-Kirkwood formula®

1 1
o=~ Z mvivy + 3 Zf;rz (7)
i

i#

that expresses the stress tensor o in terms of the trajectories of the
individual particles and their microscopic interactions. Here, A is
the total area of the system, i, j label particles and a, b label spatial
directions. The first term in equation (7) is called the kinetic part,
while the second is called the virial part. We find that, in addition to
a standard isotropic pressure P following the ideal gas law P=nk,T,;
(Fig. 1c), the steady-state stress tensor 6* exhibits an anti-symmetric
part (odd stress) corresponding to the net torque density 7=1I"(n)
Q with a density-dependent rotational friction coefficient I'(#) ~ n*
(Fig. 1d and Extended Fig. E3). This anti-symmetric stress would
not arise from purely radial pairwise interactions between the par-
ticles, even if they were subject to microscopic torques™. Instead, it
is a hydrodynamic manifestation of the transverse part of the force
f; in equation (3). To see this, let us compute from equation (7) the
anti-symmetric part of the Irving-Kirkwood stress (corresponding
to the second line in equation (6))

1
Oab — Obg = €qp ﬂ Zrij X fl] (8)
iZj

in which only the virial part contributes as v*v? = v/+¢. This shows
that pairwise interactions can only contribute to the anti-symmetric
part of the stress when they are not central (that is, when r; x f;#0).
The force f; in equation (3) is short-ranged, so it affects the system
only during collisions. Since the collision rate scales with the square
of the density n, the cumulative effect of the gear-like frictional
forces results in the observed I'(n) ~ n2.

Linear response with parity-violating viscosities
All the entries of the viscosity matrix were determined by deform-
ing the simulation box at constant strain rate using the SLLOD
algorithm?. The results (Fig. 1f-h and Supplementary Figs. S5-S7)
are consistent with the general form in equation (6) imposed by
isotropy. In addition to the standard shear and bulk viscosities #
and (, we observe additional viscosity coefficients allowed by the
broken time reversal and parity. First, a coefficient #° known as odd
(or Hall) viscosity”'"***% couples the two shear stresses. The ratio
n°/n, of order 1, is directly related to the angle & defined in Fig. 2.
This angle characterizes the average chirality of the collisions, which
arises from the parity-violating interaction f; in equation (1). In
addition, we find other parity-violating viscosities #* and #® that
couple compression and rotation, and have smaller but non-zero
magnitudes. Besides, there is a viscous contribution 7* to the
anti-symmetric stress, where @ = is the vorticity. In an equilib-
rium fluid, we would have #® = —T" (refs. 2**°), but this is not the case
here (Fig. 1h). As they lead to an anti-symmetric stress, the coeffi-
cients 7%, n® and I can only come from the virial contribution to the
Irving-Kirkwood stress (equation (8)). In a dilute gas, this contribu-
tion is usually small compared with the kinetic part since collisions
are rare. In contrast, the shear viscosities are typically dominated by
the kinetic part of the stress in dilute gases, and essentially indepen-
dent of the density, consistent with our findings (Figs. 1f-h and 2e
and Supplementary Fig. S8).

Comparing the linear response of chiral active fluids with oppo-
site ©, we find that (up to numerical uncertainty) #°, #* and #® are
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Fig. 2 | Parity-violating collisions and microscopic origin of odd viscosity. Transport coefficients of our dilute granular gas such as its viscosity are mainly
determined by the two-particle collision kernel. a, Consider a collision between two particles 1and 2. In the centre-of-mass reference frame, they have
incoming velocities +v;, and outgoing velocities +v,,. The scattering angle is defined as §=angle(v,, v,,). b, As the particles are identical, we can always
assume that +v,,- +v,, > 0. We then introduce the velocity change Avs=v_, — v, and the angle @ =angle(v,, Av*), which are directly related to the
momentum exchanged between the particles during the collision. ¢, The non-central interaction between two active spinners with surface friction breaks
the symmetry between 6 and —0 (see also Supplementary Video S1), or equivalently between a and —a. For positive (negative) self-spinning speeds, the
particle coming from the left turns slightly downward (upward). In other words, the collisions are chiral. This can be seen by comparing a given collision
(®) with the time-reversed collision (v — —v, see ®). We can use isotropy to fix the direction of v,,. The rotated time-reversed collision ® differs from the
original one @. d. This is quantitatively measured by the scattering angle distributions P(8). The scattering angle distribution at self-spinning speed Q, is
therefore different from the distribution at —Q,. However, it is identical to the time reverse of the angle distributions at —€,. This suggests that, at steady
state, the time-reversed dynamics is statistically equivalent to the dynamics with reversed self-spinning speed. e, Contribution of the virial and kinetic
stresses to odd viscosity #° (equation (7)). The kinetic part dominates in our dilute granular gas. The number density is nd?=0.254. f, Distribution of the
symmetrized velocity change P(Av®). When the particles are frictionless (f;" set to zero), collisions do not break parity. When the particles are frictional,
the collisions are chiral and P(Av®) displays a chiral distortion with a characteristic twisting angle @ defined as the average of the angle « in b. This twisting
angle gives a measure of the parity-violating nature of the collisions. g, The odd viscosity ratio #°/1 is proportional to the twisting angle @. (A similar direct

quantitative relation does not exist for the average scattering angle.) Error bars denote standard errors.

odd functions of Q while #, { and #® are even functions (Fig. 1f-h).
Moreover, 7*(Q) ~ —i®(—Q) (Fig. 1g,h). These relations imply (but
are not equivalent to) #,,,4(€2) =1,,,.(—Q). These results are remi-
niscent of Onsager—Casimir reciprocity relations that would occur
in an equilibrium fluid***. The existence of these relations can be
understood from the statistical properties of interparticle colli-
sion and symmetry considerations (Supplementary Sect. VI). First,
the breaking of parity is parameterized by Q. The system at —Q is
equivalent to the one at Q under a mirror reflection P, = diag(—1,1),
which changes the sign of the parity-violating viscosities including
n*, n® and 7° but does not affect the remaining viscosities. Second,
although each individual collision is not time-reversal invariant,
the time-reversed collisions at Q are on average equivalent to the
collisions at —€ (Fig. 2d). This indicates that, near steady state,
there is a correspondence between the time-reversed dynamics at
Q and the time-forward dynamics at —€, in the statistical sense.
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From this, we can show that the relations 7,,,,(€2) =7,,.(—) hold
(Supplementary Sect. VI).

We also find that odd viscosity follows the relation 7° ~ T,(Q) Q
(Fig. 1f), while the shear viscosity 7(T,;) depends on Q only through
the effective temperature (Supplementary Fig. S6). In Extended
Fig. E4, we present the results of large-scale molecular dynamics
simulations of a non-linear compression shock: the transverse mac-
roscopic flow induced by odd stress and odd viscosity is directly vis-
ible (Supplementary Video S8). Quantitative comparison between
numerics and theory corroborates our hydrodynamic description of
this chiral active fluid (see also Supplementary Figs. S9-S11).

Fluctuating hydrodynamics

We now turn to the fluctuating hydrodynamics of the chiral active
fluid. Standard fluid mechanics is deterministic. However, fluctua-
tions of the hydrodynamic variables must be taken into account
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in situations such as the onset of phase transitions and hydrody-
namic instabilities, and in turbulent flows. They also determine the
correlation functions of the fluid, which in turn control physical
properties such as light scattering®*. To describe these fluctua-
tions, let us go back to the Navier-Stokes equation (5) and add to
the stress tensor o6 a fluctuating component 6® with zero mean in
addition to the steady-state and viscous components in equation
(6). In our chiral active fluid, we find that the correlations of the
random stress are of the form

(0% (1,0) 6 (0,0)) = 2kaTegr3(x) [n570() + nf ()] (9)

in which n;’;m(ami) is the symmetric (anti-symmetric) part of

the matrix # under index exchange a < f, 6(f) =5(—t) is a sym-
metric function of time peaked at =0 and &(t)=—&(—t) is an
anti-symmetric function peaked near t=0* (Supplementary Sect.
VI), and () denotes an ensemble average at steady state. In stan-
dard fluctuating hydrodynamics* ¥, only the term proportional
to 5(t) is included. Here, the second term has to be added to account
for the effect of broken time-reversal invariance. The precise form
of the functions 6(f) and &(¢) depends on the microscopic model.
As shown in Fig. 3a,b and Supplementary Sect. VI, the breaking of
time-reversal invariance leads to qualitative changes in the stress
correlations computed from molecular dynamics simulations: the
imaginary parts of the correlation function in Fig. 3a would vanish
identically in a time-reversal invariant system.

Experimentally, it is easier to access the velocity correlation
functions

Cap(r, 1) = (ua(r, t)uy(0,0)) (10)

than the stress correlation functions. The Green’s function of the
(linearized) Navier-Stokes equation (5) allows us to compute the
velocity correlations in equation (10) from the stress correlations in
equation (9) (Supplementary Sect. VI). In Fig. 3c-f and Extended
Fig. E5, we compare the correlation functions obtained directly
from the simulations with our theoretical predictions. In the hydro-
dynamic regime (wavevector k— 0), there is excellent agreement
even when we assume no further information on the fluid than its
viscosity coefficients. This corresponds to taking & to the limit of
a Dirac distribution (and similarly for £) in equation (9) (Fig. 3e,
black curve). A discrepancy occurs at higher wavevectors, in which
the microscopic time and length scales contained in the noise
become relevant. Good agreement between equation (10) and the
simulation results is recovered by using the measured stress correla-
tions (Fig. 3d and red curve in Fig. 3e).

Green-Kubo relations
At equilibrium, correlation functions of the fluctuating stress yield
the viscosities of a fluid. This relation, known as the Green-Kubo
formula, is a manifestation of the fluctuation-dissipation theorem,
whose validity is not guaranteed out of equilibrium'®'>*-,

Can the Green-Kubo relations survive in our active fluids? The
answer is, in fact, already contained in the fluctuating hydrody-
namic theory in equations (5)-(9). The Green-Kubo relations

A R R
”“ﬂ_m/o (R (H)0% (0)) dt (1)

can be derived by integrating equations (5)-(9) over space and
time (A is the area of the 2D system). The second term on the
right-hand side of equation (9), which is an anti-symmetric func-
tion of time, yields the anti-symmetric part of the viscosity matrix
11,5 (containing, for example, the odd viscosity 7°). We numerically
evaluate the right-hand side of equation (11), focusing on the two
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fluctuating shear stresses s, =®and s,=® (Fig. 4), and compare it
with the viscosities obtained from the linear response to finite per-
turbations. The auto-correlation function (s,(£)s,(0)) = (s,(t)s,(0))
yields the shear viscosity # while the cross-correlation function
(5:(1)5,(0)) = — (s,(t)5,(0)) yields the odd viscosity 5° (Fig. 4a). The
latter relation manifestly shows that 7°#0 violates time-reversal
symmetry. As shown in Fig. 4b, the values of # and #° computed
from the Green-Kubo formula agree well with the values we
obtained using the direct hydrodynamic measurements reported in
Fig. 1. We verified that the long-time tails associated with the break-
down of 2D hydrodynamics are too small to impact the viscosity
prediction (Supplementary Fig. S12).

In Supplementary Sect. VI, we derive both the fluctuating hydro-
dynamic equations (5)-(9) and the Green-Kubo relations (11) from
first principles, without invoking the Onsager regression hypothesis
assumed in previous studies’**. By extending the Mori-Zwanzig
projection operator formalism* to handle the presence of dissipa-
tive interactions, we derive the Green-Kubo relation and pinpoint
the conditions of its validity. We show that an equilibrium-like
Green-Kubo relation for the shear viscosity tensor holds near the
steady state of any isotropic active fluid satisfying the following
three conditions: (i) the activated and fluctuating degrees of free-
dom are statistically decoupled, (ii) the steady state is stable under
small perturbations and (iii) the ensemble-averaged (microscopic)
velocity-velocity correlations c,,(r)=(v(0)-v(r)) (Supplementary
Figs. S13 and S14) decay faster than r~° (where D is the dimension
of the system).

In order to take into account correlations between the particle
velocities (see Methods), the normalization factor k; T, in equations
(9) and (11) should in general be replaced with

kBT:ff = kpTex + P Ew(k — 0)/D (12)
For our chiral active fluids with a contact frictional interaction,
Cw(r) is both small and local, causing a small but detectable cor-
rection that matches our predictions (Fig. 4b, red line). In wet
active fluids, additional modifications of the Green-Kubo relation
(11) are required because the hydrodynamic interactions can be
non-reciprocal (Supplementary Sect. VI).

Stress fluctuations and rheology

The behaviour of the spatially averaged fluctuating shear stresses of
a chiral active fluid can be understood visually from the following
observation: the random trajectories of the collective variables (®)-
and (®)r in shear-stress space plotted in Fig. 4c are random, con-
fined and have a tendency towards rotation (Supplementary Video
S9). Here, (), is an instantaneous spatial average (not the ensemble
average (). To account for these properties, we introduce a mini-
mal model based on the following Langevin equation (see discus-

@) nomY' (@) w,

o)==l ) =)
sions in Supplementary Sect. VII and Fig. S18): where w, and w, are
two independent white noise components, the prefactors C, =
(@)30). A/kp Tz and Cy = (@R /ATks Tz - /(i + ).
When the odd viscosity #° vanishes, equation (13) simply describes
the evolution of an overdamped random walker with Cartesian
coordinates ((®)x, (®):) moving in a harmonic trap. In the presence
of a non-vanishing n°, the random walker experiences an additional
azimuthal force proportional to its distance from the origin that
makes it rotate as shown in Fig. 4c. (This is formally equivalent to
the odd elastic springs of ref.” with addition of a random noise.)
This chiral motion again shows the breaking of time-reversal sym-
metry caused by 7°.

(13)
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Fig. 3 | Fluctuating hydrodynamics of chiral active fluids. Stress-stress and velocity-velocity correlations obtained from direct measurements in molecular
dynamics simulations, compared with the predictions of the fluctuating hydrodynamic theory, as well as the excitation spectrum of the system as a function
of frequency w and wave mode k=|k|. ab, Stress-stress correlation functions. The purely imaginary combination 2ilm (s;s3) (a) is anti-symmetric under
time reversal (TR) and is associated with odd viscosity °. The purely real component (ss7) 4 (s2s3) (b) is TR symmetric and is associated with shear
viscosity 7. ¢,d, Velocity-velocity correlation functions, comparing the correlation function ¢y (k, @) = (ux(k, w)u; (k, @)) measured in particle-based
simulation (¢) with that predicted using our fluctuating hydrodynamic theory (d) using the measured stress-stress correlations in a,b. The real part
corresponds to the effects of 57, whereas the imaginary part corresponds to 7°. In ¢ and d, the imaginary parts are magnified five times for readability. e, The
radially averaged velocity correlation function Im [cx (k, w)], comparing the simulation data (orange points) with (i) an analytical solution (black dashed
line) obtained from the linearized fluctuating hydrodynamic theory in which all time scales in the stress correlations are neglected by replacing 6(t) in
equation (9) with a Dirac distribution (and similarly for £) and (ii) an empirical solution (red solid line) obtained from the measured momentum-dependent
viscosity and stress-stress correlation functions (Supplementary Figs. S16 and S17). The simplified analytical solution (i) assumes a constant viscosity
tensor and applies only in the hydrodynamic limit: it indeed captures the first peak at k;=0.015z/d of the velocity correlation function in e. The empirical
estimation (ii) also captures the second peak at k,=0.047z/d, which was completely missed by the linear theory. The first and second peaks are marked
with black and blue arrows, respectively. a-e correspond to a fixed excitation (wave) frequency @ =w,=0.055z/At (but different wavevectors k). f, Power
spectrum of Im[cyy (k, @)]. Our theoretical prediction on the position of the first peak (black dashed line) applies to a wide range of frequencies w. We also
find that the second peak is associated with the dispersion relation of the fluid @ =ck (cyan dashed line).

In Supplementary Sect. VII, we solve equation (13) analytically
and find closed-form expressions for the stress—stress correlation
functions (Fig. 4a, continuous lines) that match well with the molec-
ular dynamics simulation measurements (Fig. 4a, dots). By Fourier
transforming these analytically derived correlation functions, we can
predict the viscous response to an oscillatory shear with frequency
f- The complex shear viscosity (f) = n'(f) — in"(f) is related to the
dynamic (complex) shear modulus G(f) = G'(f) + i G”(f) through
n' = G"/[2zf] and 5" = G'/[2xf] (ref. *°). Here, G’ is the storage
modulus describing the elastic response and G” is the loss modulus
describing the viscous response. Similarly, a complex odd viscosity
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7°(f) = n° (f) — in®”(f) can be related to an odd dynamic modulus
G°(f) =n°(f)/[27if]. See also ref.” for a discussion of odd viscoelas-
tic materials. As illustrated in Fig. 4d,e, the predicted #(f) and 7°(f)
are in excellent agreement with numerical data. This provides a
finite-frequency extension of the Green-Kubo formula.

Statistical decoupling and mutual information

Is the presence of an equilibrium-like Green-Kubo relation
restricted to chiral active fluids? To investigate this question, we per-
formed extensive simulations of active Brownian rollers and oscil-
lating granular gases (Fig. 5). In both cases, the non-equilibrium
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Fig. 4 | Green-Kubo relations and rheology in chiral active fluids. a, Stress-stress correlation functions. The time correlation functions of the two

global shear stresses (@) and (®): are plotted. The shear viscosity # leads to the auto-correlations (green), whereas the odd viscosity 5° gives rise to the
cross-correlations (red), as summarized in the top schematic. The correlation functions predicted by our theory using equation (13) are compared with
the values measured in simulations. The correlation time is set by the tumbling time of a particle Atymple = (At + Atcy) - V/Av required for a particle to
randomize its direction, where At is the collision duration, At is the time between collisions, ¥ is the mean velocity of the particle and Av is the average
velocity change after a collision. We find that At,,.... & 100At in this case. b, Green-Kubo relation. The shear viscosities under constant shear are related to
the integrated stress-stress correlations through the so-called direct-current (DC) Green-Kubo relation. The measured odd viscosity #° is compared with
the Green-Kubo prediction for a wide range of spinning speeds Q. Inset: comparison between the predicted and measured shear viscosity 7. The Green-
Kubo predictions with T4 and the renormalized T7, are marked as dashed and solid lines, respectively. ¢, Time evolution of the shear stress vector (D),
(@)-) at spinning speed Q=25.3/At. At steady state of the chiral active fluid, the shear stress vector traces out a 2D random walk in the stress space (grey
curve in background), which is loosely confined and rotates around the origin preferentially in a clockwise fashion over time (curve with gradient colouring).
d.e. Green-Kubo relation in frequency domain. The frequency-dependent coefficients of the viscous response to an oscillatory shear with frequency f can
be estimated using the Fourier transform of the stress-stress correlation functions. This is the so-called alternating-current (AC) Green-Kubo relation.
Comparisons between the Green-Kubo predictions and the simulation measurements are presented for both odd viscosity (d) and shear viscosity (e) at
various shear frequencies f. Error bars denote standard errors.

steady state follows an approximate Boltzmann distribution We trace the validity of the Green-Kubo relation in all these sys-
(Fig. 5e,h), parameterized by an effective temperature T,; controlled  tems to the statistical decoupling between activated and fluctuating
by the respective sources of activity. In addition, Fig. 5fi shows that  degrees of freedom. Energy is passed from the environment to the
a Green-Kubo relation also applies to the shear viscosity of oscil-  fluctuating degrees of freedom through the activated ones. Yet, the
lating granular gases and the drag coefficient of active Brownian activated and fluctuating degrees of freedom can still be almost
rollers with the same T values measured in Fig. 5e,h. statistically independent. This is evidenced by Fig. 6, in which we
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Fig. 5 | Effective thermodynamics in a chiral active fluid, oscillating granular gas and active Brownian rollers. We consider three examples of active fluids
in which the degrees of freedom are split into (i) activated degrees of freedom that are directly powered by energy consumption but whose dynamics
reduces to a constraint on the relevant time scales and (ii) fluctuating degrees of freedom that are powered through the activated ones (a,d,g). We find that
the fluctuating degrees of freedom follow a Boltzmann distribution (b,e,h) and satisfy a Green-Kubo relation (c,f,i) when they are statistically decoupled
from the activated degrees of freedom (Fig. 6). a-c. Chiral active fluid. In this system, the active rotation of the particles powers their translational motion
during collisions. The induced translational velocity displays a Boltzmann distribution parameterized by an effective temperature Te; = m(v2)/kg. The
shear viscosity 7 satisfies the Green-Kubo relation associated with a renormalized temperature T%, which quantifies the collective velocity fluctuations of
a particle with its neighbours. d-f, Active oscillators. The particles oscillate in the z-direction at a constant frequency f with random initial phases. During
collision, their vertical oscillation causes translations in the x-y plane. This induced horizontal translation displays a Boltzmann distribution as well as a
Green-Kubo relation. See Extended Fig. E1 for more details. g-i, Active Brownian rollers. Active Brownian particles (green) hinged with a dumbbell (blue)
self-propel at a constant speed v. During collision, this active translation causes a random rotation of the dumbbells, the angular velocity Q of which follows
a Boltzmann distribution. The rotational drag coefficient y,, measured via the linear response follows a Green-Kubo relation at high activity v but exhibits
significant deviations from the Green-Kubo value at low activity v (i). The damping coefficient y,, characterizes the relaxation of the rotation of individual
particles (unlike the shear viscosity 5 that describes the relaxation of collective hydrodynamic variables). Hence, the effective temperature T, =1(Q?)/2k;
(where lis the moment of inertia) entering the Green-Kubo relation includes no correction from correlations (contrary to the two other systems in which

the renormalized temperature T

appears). See Extended Fig. E2 for more details. We define v,=d/At. The number density is nd?*=

0.254 in both the chiral

active fluid and oscillating granular gas, whereas nd?>=0.076 in the system of active Brownian rollers. Error bars denote standard errors.

plot the mutual information between the activated and fluctuating
degrees of freedom, defined as the Kullback-Leibler divergence*

between the post-collision joint distribution of the random vari-
ables X* and X' associated with the activated and fluctuating
degrees of freedom and the products of their marginal distribu-
tions (Supplementary Sect. VIII). To allow comparison between
different systems, we normalize the mutual information I®” by the
joint entropy H*" between X* and X. The factorization of the joint
distributions (or lack thereof) is illustrated in Fig. 6. Crucially, the

] dx*dxt (14)
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deviation from the Green-Kubo relation for active Brownian roll-
ers in Fig. 6j coincides with a sharp increase of the mutual infor-
mation. The Green-Kubo formula for the fluctuating rotational
degrees of freedom is valid in the limit of large self-propulsion
speed (or high drag coefficient; see Extended Fig. E2¢ and d,
respectively), where the drive wipes out most correlations with
the activated translational degrees of freedom. In contrast, the
mutual information is approximately constant in Fig. 6b,f. Here,
the Green-Kubo relation is always valid for the range of param-
eters we explored.

Our fluctuating hydrodynamic theory of active fluids offers a
probe of their anomalous transport coefficients and paves the way
for studies of chiral active turbulence.
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Fig. 6 | Mutual information in a chiral active fluid, oscillating granular gas and active Brownian rollers. We quantify the statistical interdependence
between the activated and fluctuating degrees of freedom (DoFs) during collision by computing the mutual information I®? (defined in equation (14))
between them. We first identify the key random variables for the activated and fluctuating DoFs during collision, which are marked in red and blue,
respectively, in a,e,i. By performing simulations of scattering events, we then sample the joint probability distributions of those random variables, which
allows us to further calculate /4. In b fj, we compare the mutual information I@? normalized by the joint entropy H®®" and the deviation from the Green-
Kubo relation for a wide range of activity. a-d. Chiral active fluid. We select the initial orientation of the two spinners (¢;, ¢,) as the random variables

for active rotations, and the velocity change upon collision Av=(Av,, Av,) as the random variable for fluctuating translations (a). Due to the isotropic
nature of the spinners, the collision should not depend on particle orientations. Indeed, the normalized mutual information I¢0/H®® between (¢,, ¢,) and
(Av, Av,) is negligible, suggesting that the activated and fluctuating DoFs are statistically decoupled (b). The small, non-zero residue in [*°/H®" is caused
by the noise in the probability distribution sampled from simulations. Consistently, the relative difference between the measured shear viscosity and the
Kubo prediction, An/n=(1—nww.)/1n. is negligible. To further demonstrate the statistical independence, we plot the joint distribution P(¢,, Av,) (¢) and the
products of marginal distributions P(¢,)P(Av,) (d) at both the lowest and highest activities (first and last points in b). The results show that the probability
distribution of the activated and fluctuating DoFs can indeed be factorized. e-h. Active oscillators. Selecting the initial phases of the two oscillators (¢, ¢,)
and the velocity change Av=(Av, Av)) as the key random variables, these results show that these activated and fluctuating DoFs are also statistically
decoupled. i-l. Active Brownian rollers. We select the impact parameter b and the incident angle @ as the random variables for active translations and the
change in the rotation velocity AQ as the key random variable for the linear response in fluctuating rotations. The normalized mutual information /@?/H@D
and the deviation from the Kubo relation quantified as Ay,/7.ot = Jrot — Zrot-kube)/ 7rot Simultaneously decrease with activity (j).

Online content 4. Grzybowski, B. A,, Stone, H. A. & Whitesides, G. M. Dynamic self-assembly
Any methods, additional references, Nature Research report- of magnetized, millimetre-sized objects rotating at a liquid-air interface.
. . . Nature 405, 1033-1036 (2000).
ing summaries, source data, extended data, supplementary infor- 5 oy ¢ Ve, . Rodriguez, J., Gollub, J. P. & Lubensky, T. A chiral granular
mation, acknowledgements, peer review information; details of gas. Phys. Rev. Lett. 94, 214301 (2005).
author contributions and competing interests; and statements of 6. Fiirthauer, S., Strempel, M., Grill, S. W. & Jiilicher, F. Active chiral fluids. Eur.
data and code availability are available at https://doi.org/10.1038/ Phys. 35, 1-13 (2012).
§41567-021-01360-7. 7. Nguyen, N. H., Klotsa, D., Engel, M. & Glotzer, S. C. Emergent collective
phenomena in a mixture of hard shapes through active rotation. Phys. Rev.
Lett. 112, 075701 (2014).
Received: 17 April 2020; Accepted: 16 August 2021; 8. van Zuiden, B. C,, Paulose, J., Irvine, W. T. M., Bartolo, D. & Vitelli, V.
Published online: 8 November 2021 Spatiotemporal order and emergent edge currents in active spinner materials.
Proc. Natl Acad. Sci. USA 113, 12919-12924 (2016).
9. Banerjee, D., Souslov, A., Abanov, A. G. & Vitelli, V. Odd viscosity in chiral
References active fluids. Nat. Commun. 8, 1573 (2017).
1. Kadanoff, L. P. Built upon sand: theoretical ideas inspired by granular flows. 10. Scholz, C., Engel, M. & Poschel, T. Rotating robots move collectively and
Rev. Mod. Phys. 71, 435-444 (1999). self-organize. Nat. Commun. 9, 931 (2018).
2. de Gennes, P. G. Granular matter: a tentative view. Rev. Mod. Phys. 71, 11. Soni, V. et al. The odd free surface flows of a colloidal chiral fluid. Nat. Phys.
$374-S382 (1999). 15, 1188-1194 (2019).
3. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and 12. Yeo, K., Lushi, E. & Vlahovska, P. M. Collective dynamics in a binary mixture
gases. Rev. Mod. Phys. 68, 1259-1273 (1996). of hydrodynamically coupled microrotors. Phys. Rev. Lett. 114, 188301 (2015).

1268 NATURE PHYSICS | VOL 17 | NOVEMBER 2021 | 1260-1269 | www.nature.com/naturephysics



NATURE PHYSICS

ARTICLES

13.

14.

15.

16.

17.

18.

19.

20.

2

—

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

Markovich, T., Tjhung, E. & Cates, M. E. Chiral active matter: microscopic
‘torque dipoles’” have more than one hydrodynamic description. New J. Phys.
21, 112001 (2019).

Oppenheimer, N., Stein, D. B. & Shelley, M. J. Rotating membrane inclusions
crystallize through hydrodynamic and steric interactions. Phys. Rev. Lett. 123,
148101 (2019).

Riedel, I. H., Kruse, K. & Howard, J. A self-organized vortex array of
hydrodynamically entrained sperm cells. Science 309, 300-303 (2005).
Petroff, A. P,, Wu, X.-L. & Libchaber, A. Fast-moving bacteria self-organize
into active two-dimensional crystals of rotating cells. Phys. Rev. Lett. 114,
158102 (2015).

Rouyer, F. & Menon, N. Velocity fluctuations in a homogeneous 2D granular
gas in steady state. Phys. Rev. Lett. 85, 3676-3679 (2000).

D’Anna, G., Mayor, P, Barrat, A., Loreto, V. & Nori, E. Observing Brownian
motion in vibration-fluidized granular matter. Nature 424, 909-912 (2003).
Ojha, R,, Lemieux, P-A., Dixon, P, Liu, A. & Durian, D. Statistical mechanics
of a gas-fluidized particle. Nature 427, 521 (2004).

Romanczuk, P, Bir, M., Ebeling, W., Lindner, B. & Schimansky-Geier, L.
Active Brownian particles. Eur. Phys. J.: Spec. Top. 202, 1-162 (2012).

. Cates, M. E. & Tailleur, ]. Motility-induced phase separation. Annu. Rev.

Condens. Matter Phys. 6, 219-244 (2015).

Luding, S. Cohesive, frictional powders: contact models for tension. Granul.
Matter 10, 235-246 (2008).

Scheibner, C. et al. Odd elasticity. Nat. Phys. 16, 475-480 (2020).

Avron, J. Odd viscosity. J. Stat. Phys. 92, 543-557 (1998).

Irving, J. & Kirkwood, J. G. The statistical mechanical theory of transport
processes. IV. the equations of hydrodynamics. J. Chem. Phys. 18,

817-829 (1950).

Condiff, D. W. & Dahler, J. S. Fluid mechanical aspects of antisymmetric
stress. Phys. Fluids 7, 842 (1964).

Evans, D. J. & Morriss, G. Statistical Mechanics of Nonequilibrium Liquids
(Cambridge Univ. Press, 2008).

Souslov, A., Dasbiswas, K., Fruchart, M., Vaikuntanathan, S. & Vitelli, V.
Topological waves in fluids with odd viscosity. Phys. Rev. Lett. 122,

128001 (2019).

Epstein, J. M. & Mandadapu, K. Time reversal symmetry breaking in
two-dimensional non-equilibrium viscous fluids. Preprint at https://arxiv.org/
abs/1907.10041 (2019).

Korving, J., Hulsman, H., Knaap, H. & Beenakker, J. Transverse momentum
transport in viscous flow of diatomic gases in a magnetic field. Phys. Lett. 21,
5-7 (1966).

Wiegmann, P. & Abanov, A. G. Anomalous hydrodynamics of
two-dimensional vortex fluids. Phys. Rev. Lett. 113, 034501 (2014).
Markovich, T & Lubensky, T. C. Odd viscosity in active matter: microscopic
origin and 3d effects. Preprint at https://arxiv.org/abs/2006.05662 (2020).

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.
44.

45.

46.

47.

48.

49.

50.

51.

52.

Berdyugin, A. I. et al. Measuring Hall viscosity of graphene as electron fluid.
Science 364, 162-165 (2019).

Bradlyn, B., Goldstein, M. & Read, N. Kubo formulas for viscosity: Hall
viscosity, Ward identities, and the relation with conductivity. Phys. Rev. B 86,
245309 (2012).

Hoyos, C. & Son, D. T. Hall viscosity and electromagnetic response. Phys.
Rev. Lett. 108, 066805 (2012).

De Groot, S. R. & Mazur, P. Non-equilibrium Thermodynamics (Courier
Corporation, 2013).

Casimir, H. B. G. On Onsager’s principle of microscopic reversibility. Rev.
Mod. Phys. 17, 343 (1945).

Geigenmiiller, U, Titulaer, U. & Felderhof, B. The approximate nature of the
Onsager—Casimir reciprocal relations. Phys. A 119, 53-66 (1983).

Landau, L. et al. Statistical Physics, Part 2: Theory of the Condensed State,
Course of Theoretical Physics, Vol. 9 (Elsevier Science, 1980).

de Zarate, J. M. O. & Sengers, J. V. Hydrodynamic Fluctuations in Fluids and
Fluid Mixtures (Elsevier, 2006).

Kurchan, J. In and out of equilibrium. Nature 433, 222-225 (2005).
Ciliberto, S., Joubaud, S. & Petrosyan, A. Fluctuations in out-of-equilibrium
systems: from theory to experiment. Theory Exp. 2010, P12003 (2010).
Cugliandolo, L. F. The effective temperature. J. Phys. A 44, 483001 (2011).
Loi, D., Mossa, S. & Cugliandolo, L. F. Effective temperature of active matter.
Phys. Rev. E 77, 051111 (2008).

Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular
machines. Rep. Prog. Phys. 75, 126001 (2012).

Shokef, Y., Bunin, G. & Levine, D. Fluctuation-dissipation relations in driven
dissipative systems. Phys. Rev. E 73, 046132 (2006).

Makse, H. A. & Kurchan, J. Testing the thermodynamic approach to
granular matter with a numerical model of a decisive experiment. Nature 415,
614-617 (2002).

Kubo, R., Yokota, M. & Nakajima, S. Statistical-mechanical theory of
irreversible processes. II. Response to thermal disturbance. J. Phys. Soc. Jpn
12, 1203-1211 (1957).

Zwanzig, R. Nonequilibrium Statistical Mechanics, 3rd edn (Oxford Univ.
Press, 2001).

Oswald, P. Rheophysics - The Deformation and Flow of Matter (Cambridge
Univ. Press, 2014).

Banerjee, D., Vitelli, V., Jiilicher, F. & Suréwka, P. Active viscoelasticity of odd
materials. Phys. Rev. Lett. 126, 138001 (2021).

MacKay, D. J. C. Information Theory, Inference and Learning Algorithms
(Cambridge Univ. Press, 2003).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

NATURE PHYSICS | VOL 17 | NOVEMBER 2021 1260-1269 | www.nature.com/naturephysics

1269


https://arxiv.org/abs/1907.10041
https://arxiv.org/abs/1907.10041
https://arxiv.org/abs/2006.05662
http://www.nature.com/naturephysics

ARTICLES

NATURE PHYSICS

Methods
Models and simulations. Chiral active fluid. We study the behaviour of a quasi-2D
chiral active fluid composed of spinning components®”'*!>1¢*-%_The microscopic

model is presented in the main text (equations (1) and (2)). This model is
adapted from standard models of frictional granular disks (see ref.” as well as the
documentation of the LAMMPS package”* (pair granular) and references
therein). Compared with these standard granular models*>*"*%, here we make
the following simplifications: (i) rolling friction is ignored and (ii) the frictional
coefficients in the normal (radial) and tangential directions take the same value y.
To prevent complete interpenetration between the particles, we add a
non-linearity to the repulsion f, with a distance-dependent Hookean coefficient
that diverges at r,=0:

(M.1)

Regarding ;' in equation (3), we emphasize that this interaction is not central,
and not invariant under spatial transformations that change orientation (such as
reflections). Hence, this granular gas is an example of a broader class of systems
called parity-violating fluids”**** that includes driven granular gases*, rotating
colloids'"'#*-*!, polyatomic gases in magnetic fields™, vortex fluids*' and electronic
fluids®>*.

The model defined by equations (1) and (2) is analysed through particle-based
simulations using a customized version of the LAMMPS package™ . We choose
the area fraction of the system to be ¢=0.2 and set y,,,=3md*/t,, y=0.015m/t,,

k = m/tt and a=0.3, where m is the particle mass, #, is the unit of time of the
simulation and d is the unit of length of the simulation. The interaction timescale
At = V'm/k is then At=t,. To focus on the viscous effects emergent from particle
interactions, a frictionless background is used. All the simulations are initialized
with a random velocity distribution. The results are collected after the system
reaches steady state. In Supplementary Sect. I, we detail specific procedures for
investigating the effective thermodynamics*"*>****¢-% (including anti-symmetric
stress?>®"~"!), kinetics, linear response, Green-Kubo relation®*>*63¢¢72-62 and
hydrodynamics.

Active oscillators. Consider a quasi-2D granular gas composed of the same particles
as the chiral fluid. Instead of self-spinning, all the particles oscillate in the z
direction at a constant frequency f. In particular, each particle is driven to move in
the range z € [—A, A] with a target velocity profile

vo(t) = 2nwA sin(wt + ¢), M.2)
where w = 2nfis the angular frequency and ¢ is a random initial phase of the
oscillation. To ensure that all particles stay roughly in the same horizontal plane
(z=0), a linear restoring force f = —k.z Z is added. The microscopic dynamics of
the system can be summarized as

mi; = Z S (M.3)
JEN(D)
mii= > fip (M.4)
JEN()
mz; = ca vio(t) = vie] = kz+ Y fio (M.5)

JEN()

where ¢, is a large drag coefficient that forces the particle velocity v, to quickly
relax to v,,(¢). The conservative part of the interaction f; is the same as before (see
equation (3)). The dissipative interaction here takes the form

fre _ —yvij, 1 < d,
1)
/ 0 ry > d.

(M.6)

Upon collision, the z-directional oscillations of the particles induce random
motions in the x-y plane.

All the simulations are performed at an area fraction ¢)=0.2. We set the
parameters A=d and c,= 100m/t, for the oscillation, y=0.015m/t,, k = m/t; and
a=0.3 for the particle interaction.

To confirm the Boltzmann statistics, we measure the probability distribution of
the induced horizontal velocity at various oscillating frequencies f&€ [0.03/At,0.6/
At]. We measure the effective temperature as Tei = m (v2)/kp. In addition, we also
measure the density profile of the system when exposed to an external potential
well of magnitude —0.5k; T,

Finally, we study the Green-Kubo relation for the shear viscosity (equation (11)
with @=p=2 or 3, see the following section for the notations) for f€[0.03/At,0.6/
At], by comparing the value directly measured from linear response under shear
flow with the Kubo prediction at steady state. The detailed procedure is identical to
that described for the chiral active fluid in Supplementary Sect. I.

Active Brownian rollers. Consider a 2D system composed of active Brownian
rollers. Each roller contains a core particle of mass m. and diameter d. as well
as two dumbbell particles of mass m, and diameter d,, which are away from

the roller centre by s, hinged to the core particle by a rigid bond and free to
rotate about it (Extended Fig. E2). The core particle self-propels at a constant
speed v in its own orientation & = (cos 6, sin @), where @ is the tilt angle of the
orientation director against the x axis. The excluded-volume effects of both the
core and dumbbell particles are modelled by the conservative interaction f;; in
equation (3). However, no dissipative interaction is included. During collision,
the self-propulsion of two active Brownian rollers could cause random rotation
of their dumbbells, which is quantified by the rotation speed Q. The microscopic
dynamics of the system is described as

meX; = cq [vé&; — vi] + Z fii + &.(0) (M.7)
JEN(i)

10 = —Teb; + &, (t) (M.8)

LQ; = Z Tjj (M.9)

JEN(D)

where ¢, and I', are the translational and rotational drag coefficients for

the core particle, € () is the white noise for translational motion satisfying
(Ega(Ep (1)) = 2c4kpTy6(t — t'), £,(t) is the white noise for the reorientation
of the director & satisfying (£,(£)&,(¢')) = 2T'ckgTyS(t — '), and I. and I, are

the moments of inertia for the core and dumbbell particles, respectively. 7; is the
total torque exerted on the dumbbell of particle i by particle j, as a consequence of
both the core-dumbbell and dumbbell-dumbbell interactions. These interparticle
collisions lead to an effective drag coefficient y,,, for the rotation of the dumbbell.

All the simulations are performed at an area fraction ¢»=0.06. We set the
parameters m =m, d.=d and I.=0.1md> for the core particle, d,=0.2d, m,=m,
I,=0.728md? and s=0.6d for the dumbbell, ¢,=100m/t, and k,T, =0 for active
translation, I, = c,d> and kg Ty = 10~ >md?/t; for the director reorientation, and
finally k = m/£, and a=0.3 for particle interactions.

To validate the Boltzmann statistics, we measure the probability distribution of
the dumbbell rotation speed Q at various self-propulsion speed v € [0.06d/At,0.8d/
At]. From the measured probability distribution P(Q), we can quantify the effective
temperature T,,=1({Q%)/kg.

We also study the Green-Kubo relation of the effective rotational drag
coefficient y,,, for a wide range of self-propulsion speed v € [0.06d/At,0.8d/At] at
a constant ¢;=100md/ At as well as a wide range of drag coefficient ¢; € [0.1md/
At,10°md/At] at a constant v=0.3d/At. In particular, we directly measure y,,, by
investigating the linear response of single-particle rotation towards a small external
torque 7., € [10~*md?*/ At?, 10~ md*/ At*], and further compared it with the Kubo
prediction

1

= — M.10
ot = 7 Tefr ( )

/0 T {e(02(0)) d,

where 7(t) is the fluctuating random torque experienced by a given particle due to
collision with its neighbours at steady state.

Viscosity: notations and symmetry considerations. In this section, we introduce
the notation used in equation (6) of the main text and discuss how various physical
symmetries restrict the form of the viscosity tensor. The viscous stress tensor is
linearly related to velocity gradients by the viscosity tensor through the equation

Oor = Nabed Eci> (M.11)

where ¢/ is the viscous stress tensor, ¢,y = gt is the (unsymmetrized) velocity
gradient tensor and 7, is the viscosity tensor.
Following refs. >**, we introduce the following basis for rank-2 tensors in two

dimensions:
. 10 . 0 —1
Tap = Tap =
01 10
) 10 N 01
Tap = Tab = .
0 —1 10

These are irreducible tensors with respect to the orthogonal group O(2). More
precisely, we consider the representation of O(2) on rank-2 tensors (by which a
tensor T, is transformed into g,/ g;s T, for g€ O(2)) and decompose it in
irreducible representations (IRs): two 1D IRs (scalar, corresponding to the basis
tensor 7%, and pseudoscalar, corresponding to 7') and a 2D IR (with basis tensors 72
and 7°). (See, for example, ref. **» 37! for the IR of O(2). With the notations of this
reference, we have used r' X r' >~ ' + >+ 12.)

(M.12)
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We use the 7J;, to decompose the stress and velocity gradient tensors into
irreducible components via the following definitions:

1
CE 57&00,5 = (04w + Oyy)/2 (M.13a)
1

©4 573,,%,7 = (Oye — Ouy)/2 (M.13b)

1
@ é 5 31;0'(1,1) = (UTT - U'yy)/Q (1\4130)

1
@ £ 5’7'21)0'@1, = (Ury + Jyz)/2 (NLlSd)
and

T2 79 €0p = €an + €4y (M.14a

NA Sl g 3
= Tab€ab = €yx — Eay

(M.14b

A2 . . .
= Tap€ab = €xz — Eyy (M.14c

)
)
)
T2 By = €y + €y (M.14d)

Furthermore, we define the 4 X 4 matrix

ap

1
=g o Nabea Ty (M.15)

in which there is a sum on repeated indices. With these definitions, equation
(M.11) can be written as

@ vis n00 01 o2 03 J
© plo il iz s "

= M.16
® ”,20 7)?1 n?2 7]?3 ( )
® 730 Bl P2 s

where the superscript ‘vis’ denotes the viscous stresses. Certain physical
assumptions restrict the form of 7*. For example, in an isotropic system (without
any other constraint), 7 takes the form

¢ "0 0

; ™t o 0
= M.17
n 00 g 1 (M.17)

00 —n°ny

The Cartesian tensors are reconstructed using
a _a . 1 .a _a
Oap = 6" Ty, and &y, = 5 e" 1y, (M.18)
as well as

Nabea = 1 75 0 (M.19)

Here, we attribute no meaning to the position (subscript or superscript) of the
indices (so, for instance, ,,; and #* mean exactly the same thing).
In standard tensor notation, equation (M.17) reads

Nabed = §0apbea — ”Agablscd - nBéahecd + nRgabecd

+1 (8acOpd + 8adBpc — SabSea) + 1°Eapeds

(M.20)

where §,, and €, denote the Kronecker delta and Levi-Civita tensors (note that
€ap = Tj,), respectively, and

1
Eopea = 3 (€acOpa + €adOpc + €padac + €pcBad)- (M.21)

(Equivalently, E,, ;= €,.0,4+ €,40,..)
When the viscosity coefficients do not depend on space, the Navier-Stokes
equation

pDu = V - 0, thatis, pDiu, = dpo4p (M.22)
takes in isotropic chiral active fluids the general form
pDu =V - 6% 4 { grad (diva) + 7 Au+5° € - Au
—n* € - grad (divu) + 7® grad (rot u) (M.23)

—n® e - grad (rotu),
where rot u=e¢,,0,u, and
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0 1
€= (M.24)
—-10
is the matrix for rotation by —/2.

Derivation of the fluctuating hydrodynamic theory with the Mori-Zwanzig
formalism. Here, we derive the fluctuating hydrodynamic theory for chiral active
fluids, by using the Mori-Zwanzig formalism*"**-*, This formalism provides a
systematic coarse-graining procedure to decompose the microscopic dynamics of a
many-body system into a hydrodynamic linear response and fluctuations induced
by random stresses. Here, we give key steps of the derivation and refer the reader to
Supplementary Sect. VI for more details.

We also direct the reader to refs.*”** and references therein for similar
applications of the Mori-Zwanzig formalism in different contexts, and to refs. *>*
for experimental investigations of the Green-Kubo relation for viscosities in dusty
plasma and ref.* for an analysis of the density-vorticity correlations in chiral
active fluids with odd viscosities.

Slow variables for momentum transfer. The dynamics of a classical many-body
system can be described by its state trajectory I'= (p", q") in phase space, where

N is the number of particles, and p,=mv, and q,=r, are the momentum and
position of a given particle i. For common fluids, this microscopic dynamics can
be decomposed into a slow hydrodynamic behaviour plus fast fluctuations around
it. The slow hydrodynamic variables are typically conserved quantities (mass,
momentum, etc.) and their conservation laws, such as the Navier-Stokes equations,
describe the macroscopic dynamics of the system. Fluctuating hydrodynamics
accounts for the fast fluctuations through the addition of a random stress in the
Navier-Stokes equation for linear momentum®< Xl These fluctuations are ignored
in usual fluid mechanics, but can become important for example at the onset of
hydrodynamic instabilities and in turbulent flows. Here, we extend this treatment
to the class of active fluids. Similar to conventional hydrodynamic theory, we
choose momentum density as the relevant slow variable to capture momentum
transfer in active fluids. In particular, we define the wavevector-dependent
(reciprocal-space) momentum density of the system as

N
Ju() £ mvi(t)e O, (M.25)

Taking the time derivative of both sides, we obtain the governing equation of Ji(t):

() = ik a(o), (M26)
where 6y (t) is the wavevector-dependent stress
& 2 - 1 —ik-r,
s =D [ mvivi+ 3 > | e (M.27)

i JAi

which consistently is also the Fourier transform of the Irving-Kirkwood formula
(7).

Following the same procedure, we can also define the wavevector-dependent
mass density

N
pi(t) £ mem om0, (M.28)
i

and derive its governing equation:

Pt = ik (D). (M.29)

Steady-state ensemble. The active fluids considered here reach and sustain steady
state by balancing energy injection and dissipation at the microscopic level. As
illustrated in Fig. 1 and Extended Figs. E1 and E2, the passive degrees of freedom
are in contact with an effective bath powered by the active degrees of freedom.
This gives rise to a steady-state ensemble with a stationary distribution f,(I') in the
phase space.

Any observable of the system (such as the momentum density Ji) corresponds
to a function defined on phase space. These phase-space functions form a Hilbert
space, which we denote as 7% (T). Using the probability measure f,(I'), we can
define the following inner product on the space 5#(T):

(A,B) = (A(T)B"(I)) £ / dr A(T)B"(T) fo(T), (M.30)

where A(T') and B(I') are two arbitrary phase-space functions, asterisk denotes
complex conjugate and the notation ( ) defined in equation (M.30) denotes the
ensemble average over f,(I'). This inner product measures the similarity between
two observables under the steady-state ensemble, and will allow us to separate
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slow and fast variables on .7 (T') by defining an orthogonal projection. Given two
vectors of phase-space functions A and B with components A, and B, we also
define the matrix (A ® B) with matrix elements

(A ®B),, = (A, By). (M.31)
This is an outer product of the vectors combined with an inner product of the
phase-space functions.
. Letus consider the slow Varlable Ji which is in fact a vector-valued function
(@) = (i (D), .. ,]kD(I‘)) where D is the dimension of the system. Its
different components generate a subspace .} (T), and the projection operator
PXT) £ X@J) - (k@) (M.32)
performs an orthogonal projection on this subspace. We also define the projection
operator to the orthogonal subspace:

Qk=1-"Pr (M.33)

In equation (M.32), the normalization matrix (ik ® jk) quantifies the
correlations between different components of the momentum density at steady
state, with the form

kB off

O @) = m’N | =7 4 nCy (k)| , (M.34)

where 7 is a DX D identity matrix, # is the number density of the particles and
Cyv (k) is the Fourier transform of the velocity—velocity correlation matrix
Co(r) = (v(r) v(0)). (M.35)
In common fluids, interactions between fluid particles are conservative
and only depend on interparticle distance. This allows the factorization of the
Boltzmann distribution into momentum and position parts:
P(F) ~ e—z‘mvf/ZkBT x EiE‘JU(ru)/kBT. (M.36)
Hence, the velocities of different particles are independent, and Cyy (k) vanishes.
However, this is not generally the case for non-equilibrium fluids related to
velocity-dependent interactions, including our chiral active fluid. By assuming the

isotropy of the system and a fast decaying correlation function |Cyy(r)| < O(r~—P),
we show that

Ok ® Jx) = Nm (ks Teit + Bw) Z, (M.37)
in which
B 2 hlimo [ (v v0) € *7dr (M39)
v
For convenience, we define
T = Tet + Bw/ks. (M.39)

Mori-Zwanzig formalism. Now we can use the projection operators Py and Qy to
decompose the evolution of the momentum density Jy. into a slow dynamics within
the subspace 7, (T') and fast fluctuations orthogonal to it. This is the main idea of
the Mori-Zwanzig formalism.

One can show that the governing equation (M.26) is also a Liouvillian
equation:

J(t) = 1£T(0), (M.40)
where

oA D

w_r-a—r (M.41)

denotes the Liouville operator. Using the Mori-Zwanzig formalism, we decompose
the above equation as

. t
() = Bl(t) + B () - / K() it - 7) do, (M.42)
0
where
El(t) £ Py Li(T), (M.43)
Fio (1) £ 29519 i L] (D), (M.44)

K(r) £ (i (1) @ K (0) - (ke @ T) ™ (M.45)
Here, Fl! (T, t) and F- (T, t) are the components of the generalized force i L]y (t)
parallel and orthogonal to the subspace %}, (T), and K(z) is a kernel function
characterizing the linear response of the fluid towards external disturbances on

jk. Note that K(z) involves the calculation of time correlation functions, which
requires performing ensemble averages at different time points. For systems

with deterministic microscopic dynamics, we can generalize equation (M.30) to
calculate the time correlation function with equal-time probability f,(I'):

(A(#), B(0)) = (A(T:)B" (Iv))
= [ dT Qa(T, HA(T) - B() - fo(T)

(M.46)

where Q4 (T, t) is the propagator of the phase-space function A and we have used
I'=T, to represent the phase space at the initial state t=0. In the case of equation
(M.45), A = B = FF, Q4 (T, t) = e<i~!,
Extra care must be taken when applying the formalism to active fluids. A

crucial step in the derivation of equation (M.42) is

(iLF (1) ® Ji) = —(F (7) ® i LJ). (M.47)
A key insight is that this relation still holds near any non-equilibrium steady state,
even when detailed balance is broken. At steady state, the probability distribution
does not change over time, thus

d 9 .
—fo(T) = —=(Tfo(T)) = 0. M.48
—H(D) = == (Eh(D) (M.48)
Given the assumption of the existence of a steady state, one can prove equation
(M.47) elementwise using integration by parts:

(LFE (2) @ i), + (B (1) @ i),

X N ) (M.49)
= — [ dTF (L, )i, (1) - 53 (T(T)) =
In this case, the Liouvillian is Hermitian with respect to the inner product defined
by f, and the decomposition given by equation (M.42) still holds.

Generalized forces. To make use of the Mori-Zwanzig formalism, we must derive
the explicit form of F Il Fi- and K.
For active fluids, the generalized force contains three components:

iLh = ik-ac= ik (0 + 6" + 5" ), (M.50)
with
o k'" £ Z mviv; e K (M.51)
A Zf*’“ rje ¥, (M.52)
A —— Zf“‘ rje (M.53)
where " is the kinetic stress, 67" is the virial stress only involving the

position- dependent interactions f P2 and 6,/ is the virial stress caused by

velocity-dependent interactions, which is unlque to non-equilibrium fluids. Here
we assume that the velocity-dependent interactions come from interparticle
friction, taking a general form f; = —y(ry) vy
The presence of the interparticle friction as well as the resultant velocity—
velocity correlations poses a major challenge in our derivation, making it different
from the textbook derivation of the Green-Kubo relation for viscosity using the
Mori-Zwanzig formalism®. By assuming that the three-body (and higher-order)
correlations are negligible, we can derive the explicit form of the generalized forces:
B =

—73.Jx(0), (M.54)

Fi (1) = 7 Ju(t) + ik 61 (D), (M.55)
where 5 = n(7(0) — 7(k))/m denotes the wavevector-dependent effective
damping parameter for Jy. Here, 7(k) = J[yr(ne” kr § r denotes the Fourier
transform of the interparticle frictional kernel y(r). With that, we can also derive
the form of the response kernel:
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K(r) = =72 ((r) @ J(0)) - Gk @ Ji) ™"
(M.56)

+(ik- 6(0) @ ik 6x(0) - (ke @)~
Detailed derivation steps are provided in Supplementary Sect. VL.
Green-Kubo relation. For a system in non-equilibrium steady state, the noise term

Fi- vanishes in equation (M.42) under an ensemble average. Thus, in an average
sense, the governing equation (M.26) reads

Ju(H) =Bl (1) — / dr K(z) - u(t — 7). (M.57)
0

By plugging the explicit form of Flﬂ and K and taking Laplace transform, we can
obtain the following equation:

(ik - o (s) ® ik - 6(0)) TJi(s)

sJk(s) — Ju(0) = — Nk T
eff

. (M.58)

Note that the right-hand side of the above equation is a linear response
in momentum density Ji. Given the wavevector-dependent strain rate
Ek,cd = ikdfkc/nm, we find that equation (M.58) in fact corresponds to a
hydrodynamic linear response

Tia(8) = Ja(0) = 1K Ty e () Eiaa (5) (M.59)

with viscosity coefficients

Tieapea (S) £ (G ()84 (0))- (M.60)

1
kp T2 V
Here, we switched to index notation and used the Einstein summation rule for the
indices. In the hydrodynamic limit, equation (M.60) becomes the equilibrium-like
Green-Kubo relation for the viscosity

\4

oo
Habed = UM o Ty g (5) = T / (oap(t)0ca(0)) dt,
s=>0 B eff 0

(M.61)
which is equivalent to equation (11) in terms of the irreducible representations of
stress. Note that, in the above formula, we have used the global stress 6(t) = [,6(r, )
dr/V.

Hydrodynamic equations. Our previous derivation was performed near steady state
with a vanishing background flow field u(r) =0 everywhere. Here we extend our
theory to the hydrodynamic behaviour with non-zero background flow field. Let us
first define the density, momentum and stress fields:

N
p(r) = ms(r—r), (M.62)
N
J(r) = > mvid(r — 1), (M.63)
N 1 N—1
o(r) = =37 [mvivi+ 5 > fjry| 6(r — ). (M.64)
i i

Note that these are also the inverse Fourier transforms of py, Ji and &, defined
above. In addition, the flow field is defined as

(M.65)

In a common fluid, the fluid elements stay near local thermal equilibrium.
Similarly, we assume that the particles in an active fluid stay close to local steady
state. Under these assumptions, we can decompose the particle velocity as

v=u(rt) + Av, (M.66)
where u(r, t) is the local flow field and Av is the velocity fluctuation on top of it.
These two terms satisfy

(Av) =0, (u(r,t) Av) =0. (M.67)
The interaction of a particle with its neighbours depends on their relative rather
than average velocity. Thus, we assume that, by subtracting the local flow field u(r),
the local ensemble is the same as the global one at steady state. This allows us to

decompose the stress field 6(r) as
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0= —puu + o, (M.68)
where puu is the dynamical pressure due to fluid flow and 6'¥ is the Irving-
Kirkwood stress,

. N .
o (r)=— Z mAv;Av; + 3 Z fijr;i| o(r — ;). (M.69)

i i

The Irving-Kirkwood stress can be further decomposed into three parts: (i) the
isotropic steady-state stress given by the equations of state

« { —P S, + 7€, in2D

Oy = (M.70)

—PSy, in 3D

(in 3D, the presence of an anti-symmetric steady-state stress is prohibited by
isotropy), (ii) the viscous stress due to hydrodynamic linear response

(’;bis = MNaped Ecd> (M.71)

and (iii) the random stress arising from the orthogonal generalized force satisfying
the relation

. Al
ik o'klfah = F, (M.72)

With that, we can then get the hydrodynamic equations by performing the

inverse Fourier transform of equations (M.26) and (M.29), giving

Dip=—pV -u, (M.73a)

Du=V-(¢®+ ™+, (M.73b)
p.

where D,=0,+ u- V is the material derivative.

Random stress. To complete our fluctuating hydrodynamic theory, we need
to derive the form of the random stress 6*. Recall that the explicit form of the
orthogonal generalized force is

i (6) = 73Ji(t) + ik - &1c(0). (M.74)

Using the homogeneity of the system at steady state, we show that F- is indeed a
random force with zero mean

(Fhy =o. (M.75)
We also find that
Vi, = yr((1 —e ) dr 76
= [Z [ r(nrtdr] K + oK)
Therefore, we can drop the first term in the calculation of the two-point
correlations and get
(Figa (D) Fie"(0)) & Ky (Swap (1) 65cca(0)) k- M.77)
Given relation (M.60), one can further show that
(Fiea(5) Ficl (0)) = kTl Viliapea (s) Koka: (M.78)

Note that s is the parameter for Laplace transforms. Hence, we should construct the
random stress 6* as

(Gi) =0, (M.79)

(B (5) B (0)) = K Tlir Ty g (5)- (M.80)

In the hydrodynamic limit, the correlation time and length of the random stress
become negligible compared with that of the hydrodynamic flow. In this case, the
above requirements can also be written as

(og (5 1))

(045 (1,)0, (0,0)) = 2ks T35y 5(r) [338(H) + nipeaé(D)]

=0
(M.81)

anti

where 105 = (Napea + Neaqy)/2 20 g = (Mapea — Meaas)/2 are the symmetric
and anti-symmetric parts of the viscosity tensor under the exchange of major
indices, that is, ab <> cd. In practice, the Dirac distribution in equation (M.81) has a
finite width 7 and can be represented, for instance, by a Gaussian function
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A 1 2
(t) = ——e 2. M.82
® V2t ¢ ( )
Similarly, £(¢) stands in equation (M.81) for a function & (¢) defined as
At _2
)= — 22, M.
XOEECL (M.83)

This is an odd function, satisfying the relations
£(t) = ~£(—1),2 / £ de=1.
0

Upon decomposition of the stresses into their irreducible representations, equation
(M.81) becomes equation (9) in the main text. By integrating equation (M.81) in
both space and time, we get the Green-Kubo relation:

[T af o (oh080.0)) = boTirnae
0 v

We emphasize that the term 7% &(#) changes sign when ¢ — —t. This is crucial

to obtain the anti-symmetric part of the viscosity tensor in the Green-Kubo relation,
and consistent with intuitions from the usual Onsager-Casimir relations. For
common fluids, the random stress is often chosen as a white noise in the conventional
fluctuating hydrodynamic theory. However, for non-equilibrium fluids, especially
chiral active fluids, extra care must be taken: the construction of the random stress
should reflect the time-reversal symmetry/anti-symmetry of the system.

(M.84)
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org/10.5281/zenodo.5138328. Source data are provided with this paper.
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Extended Data Fig. 1| Thermodynamics of an oscillating granular gas. a. Schematic of the system setup. We simulate a quasi-2D granular gas composed
of frictional particles, which are forced to oscillate vertically at a constant frequency f but free to move horizontally. Interparticle collision between two
oscillating particles could lead to their translational motions in the xy-plane. In the middle is a zoomed-in, top view of this many-body system. Horizontal
translation of a particle is denoted by its tail, whereas its vertical oscillation is color-coded in the tail: gradient from a dark end to a bright front means
the particle is moving towards the xy-plane, vice versa; purple denotes z< O whereas red denotes z> 0. At denotes the averaged collision duration. b.
Maxwell distribution. The x-component of translational velocity displays a Gaussian distribution P(v,) at various oscillating frequency f. An effective
temperature T is defined using the halfwidth of P(v,). Dependence of T on f is shown on the right. €. Boltzmann distribution. We put the system in a
potential well U(r) = —0.5kgTess [1 4 cos (ar/R)] for r <R, where r denotes the distance from the center of the system. The resultant spatial distribution
of the particles turns out to follow the Boltzmann statistics n(—r) oc exp [—U(r)/ks Tes] (purple curve) as well. d. Green-Kubo relation. Shear viscosity
of this many-body system can be either directly measured using linear response towards an applied shear or indirectly inferred from the Green-Kubo
relation by calculating the integral of the stress-stress correlation function, known as the Green-Kubo relation. The predicted and measured shear
viscosity 77 is compared at a wide range of frequencies f. The Kubo predictions with T, and renormalized T are marked as the dashed and solid lines,
respectively. We have defined f,=1/At.
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Extended Data Fig. 2 | Thermodynamics of an active Brownian system. a. Schematic of the system setup. We simulate a 2D system composed of active
Brownian rollers. Each particle contains a core (in green) that self-propels nearly at a constant speed v meanwhile undergoes rotational diffusion as well as
a dumbbell (in blue) that is hinged at the core center and free to rotate about it. In particular, the core of particle i is powered by an active force F? = cqvi;
(n; is the orientation of the core) meanwhile experiences a drag force by the substrate Fl.d = —cqV;, where { denotes the substrate friction coefficient.
Note that the particle dumbbell is lifted away from the substrate thus does not experience any friction; moreover, the dumbbell rotation does not reorient
the self-propulsion of the core. When two particles collide, the translational motion of the cores could result in the rotational motion of the dumbbells. At
denotes the averaged collision duration. b. Maxwell distribution. The angular velocity of the dumbbells displays a Gaussian distribution P(Q) at various
self-propulsion speed v. An effective temperature T is defined using the halfwidth of P(€2). Dependence of T on Q is shown on the right. c-d. Green-Kubo
relation. The rotational drag coefficient of the dumbbell can be either measured through linear response by measuring the terminal angular velocity under
an applied torque, or predicted using the Green-Kubo relation by evaluating the integral of the torque-torque correlation function. The measured and
predicted drag coefficient y,., is compared at a wide range of self-propulsion speed v (¢) as well as substrate friction coefficient ¢, (d). However, when
either self-propulsion speed v or substrate friction coefficient ¢, is increased, the relative significance of particle interaction compared to self-propulsion
gets reduced. As a consequence, we see that the Green-Kubo relation is restored at either large v or ¢,. We have defined v,=d/At and c,=m/At.
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Extended Data Fig. 3 | Microscopic origin of anti-symmetric stress. a. Schematic of orbital angular momentum change during collision. When two
frictional active spinners collide, the angular momentum of self-spinning can be interchanged with the angular momentum of orbital motion around their
center-of-mass, L=mv, b, where v, is the relative moving speed of the particles and b is the impact parameter. The resultant change in the orbital angular
momentum AL=L,,—L,, gives rise to effective anti-symmetric stress exerted onto the chiral active fluid at the macroscopic level. In the Supplementary
Sec. Ill, we provide a simple kinetic theory to derive the linear relation between anti-symmetric stress = and the average orbital angular momentum change
AL during collision, 7 = +/ kg Tef/m - dn? - AL. b. Validation of our kinetic theory. We measure the average orbital angular momentum change AL by
performing scattering simulations and then use it to predict the anti-symmetric stress = based upon the kinetic theory. The prediction on = from AL agrees
well with the simulation measurement of a many-body system at the steady state.
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Extended Data Fig. 4 | Transverse mode in a shock wave. a. Shock wave. A piston moving at speed U=1.9d/ At (faster than the speed of sound
c=1.4d/ At) generates a shock wave accompanied with transverse flows, which is characterized by the vertical flow velocity u, (gradient coloring). The
particles self-spin counter-clockwise at speed Q=25.3/At and have an initial global density n,=0.125d-2. According to the viscid Burgers' equation

0tu + udyu = vadZu, the width of this shock is approximately 4, = 4v/U, where v=1/n,m is the kinematic viscosity. Hydrodynamic profiles are quantified
near the wave front. Also see Supplementary Mov. S8. b. Density profile n(x). The simulation results are compared with continuum hydrodynamic theory
(solid line), which employs parameters measured in a separate homogeneous microscopic systems of number density n, (dashed line). Thus, theoretical
predictions would break down at extreme densities (shaded region). ¢. Horizontal flow velocity u,(x). d. Vertical flow velocity u,(x). The same color coding
as panel A is applied here. Predictions using continuum hydrodynamic theory are plotted as solid lines.
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Extended Data Fig. 5 | Power spectra of the velocity-velocity correlation functions (ua(k, w)u; (k, @)). Here we compare the measured velocity-velocity
correlation functions with the empirical prediction using fluctuating hydrodynamic theory. a. Correlation functions directly measured in the particle-based
simulations of our chiral active fluid. b. Correlation functions predicted using the fluctuating hydrodynamic theory with the measured stress-stress
correlation functions and viscosity tensor. The empirical prediction matches with the simulation results expect at very high k-modes, where the linear
response approximation is no longer valid. Although the comparison is made at a given wave frequency w,=0.055x/At, the consistency between direct
measurements in simulations and predictions using fluctuating hydrodynamic theory generally holds at all wave frequencies.
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