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G
ranular media have long been a playground for children 
and statistical physicists alike1–3. Here, we consider a class 
of non-equilibrium fluids exemplified by frictional grains 

constantly spinning in a plane. Typically, two grains of sand would 
only lose energy by friction when they collide. By contrast, spinning 
particles can also gain energy after a collision, if their rotation speed 
is rapidly reset to a constant value by microscopic torques or exter-
nal fields. A collection of many such particles, all spinning in the 
same direction (clockwise or anticlockwise), is often referred to as 
a chiral active fluid4–13. Experimental realizations include colloidal 
particles4,11,14, robots10 and even living systems15,16. In this article, we 
use non-equilibrium statistical mechanics to develop a fluctuating 
hydrodynamic theory for chiral active fluids: a continuum theory 
that describes both the macroscopic behaviour of the fluid and 
its fluctuations in one go. This allows us to describe phenomena 
ranging from steady-state velocity fluctuations to non-linear shock 
propagation.

Despite being driven and dissipative, chiral active fluids share 
several aspects with equilibrium fluids when their spinning speed 
is nearly constant and uniform. They display a Maxwell–Boltzmann 
probability distribution and an equation of state, and their viscous 
response satisfies a fluctuation–response relation. The same vis-
cous response bears signatures of their non-equilibrium character 
through the existence of so-called odd viscosities that can only occur 
when detailed balance is broken. These equilibrium-like behaviours 
occur when the activated and fluctuating degrees of freedoms are 
statistically decoupled, a feature that we shall see extends beyond 
chiral active fluids to other systems such as oscillating granular 
gases17–19 and active Brownian rollers20,21.

Microscopic model of a chiral active fluid
We start by considering a simplified microscopic model of a 
two-dimensional chiral active fluid (Fig. 1a and Supplementary 
Videos S1–S3) composed of athermal frictional particles all spin-
ning in the same direction4–8,10–12. In order to impart a fixed chirality 
to the system, we incorporate active torques into a standard model 
of granular disks (see Methods and ref. 22). The positions xi of the 

particles and their angular velocities Ωi then follow the equations 
of motion
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in which m is the mass of the particles and I their moment of inertia. 
Each particle i interacts with its neighbours j ∈ N(i) closer than its 
diameter d through a force
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in which the central force f c
ij

 models a soft repulsion between the disks 
while the non-central force f nc

ij

 models interparticle friction (Fig. 1a). 
Particles i and j are separated by a vector r
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rotation speed of a pair of particles is Ω
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)/2. In addi-
tion, each particle experiences an active torque τ
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= γ
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i

)ẑ 
that tends to maintain a constant angular velocity Ωi ≈ Ω. When γrot 
is large, Ωi relaxes to Ω faster than other time scales in the system, 
allowing the rotational degrees of freedom (that we call ‘activated’) 
to act as an effective bath for the translational ones (that we call ‘fluc-
tuating’). Hence, one can replace Ω

ij

→ Ω ẑ in equation (1) while 
eliminating equation (2). Crucially, the non-central force f nc

ij

 vio-
lates parity: equation (1) is not invariant under the mirror reflection 
x, y → − x, y when Ω ≠ 0 (the system is chiral).

Effective temperature
We conduct molecular dynamics simulations of the chiral active 
fluid described by equation (1) in this limit. Despite being athermal 
and driven, the active fluid exhibits a single effective temperature 
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activated while (x, y) translations are fluctuating; Methods, Extended 
Fig. E1 and Supplementary Videos S4 and S5) and fluids of active 
Brownian rollers (in which translations are activated and rotations 
are fluctuating; Extended Fig. E2 and Supplementary Videos S6 and 
S7). In both cases, an effective thermodynamic description emerges 
when the corresponding activated and fluctuating degrees of free-
dom are statistically decoupled.

The emergence of an effective temperature in the chiral active 
fluid can be captured by a mean-field approximation. As the inter-
particle vector r̂

ij

 is random, the term Ω
ij

× r̂

ij

 in equation (1) can 
be replaced by a white noise whose temperature is determined 
self-consistently (Supplementary Sect. II). As a result, the fluid fol-
lows a Langevin dynamics similar to a thermal fluid
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in which Teff can be seen as the temperature of the effective 
bath. We show in Supplementary Sect. II that γeff = nπd2γ and 
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′) (see also Supplementary  
Fig. S4). In the chiral active fluid, the thermal exchange with a bath is 
replaced with an exchange of kinetic energy between rotational and 
translational degrees of freedom during collisions (Fig. 1a). Once a 
collision is over, the rotational speed Ωi of each spinning particle is 
rapidly restored to Ω by the active torques τi. This process leads to a 
net gain or loss of energy until the translational degrees of freedom 
reach the effective temperature Teff(Ω) at which gain and loss are bal-
anced on average. We show in Supplementary Sect. II that, in this case, 
Teff ∝ ∣Ω∣α, where α is a non-universal exponent depending on f c

ij

 with 
4/3 ≤ α ≤ 2. Consistent with this prediction, simulations with a con-
tact potential reveal a power-law behaviour Teff ∝ ∣Ω∣1.54±0.02 over two 
decades. We emphasize that the mean-field approximation in equation 
(4) only captures single-particle properties controlled by Teff, but not 
the breaking of detailed balance. Hence, equation (1) is still needed to 
fully account for the transport properties, such as viscosities, that are 
affected by the parity-violating nature of collisions illustrated in Fig. 2.

Chiral hydrodynamics
The evolution of the velocity field u of the chiral active fluid is 
described by the Navier–Stokes equation
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t
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in which Dt = ∂t + ua∂a is the material derivative, σ is the stress ten-
sor, fvol are external body forces and ρ = nm is the mass density (n 
is the number density). The stress tensor σ in equation (5) is com-
posed of a steady-state part σss present even in the absence of any 
velocity gradient, and a viscous part σ
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, where ηabcd 
is the viscosity tensor of the fluid. The viscous stress σ vis

ab

 describes 
surface forces between fluid layers that arise in response to velocity 
gradients. It is convenient to express the stress σab and the unsym-
metrized strain rate ė

cd

= ∂

d

u

c

 as two vectors σα and ė
β

, respectively, 
so that ηabcd can be represented as a matrix ηαβ (see Methods and 
refs. 23,24). For an isotropic two-dimensional fluid, the constitutive 
relation between stress and strain rate reads 

The velocity gradients ė
β

 are decomposed into dilation , rota-
tion  and two pure shears  and  at 45∘ of each other, while the 
stress σα is decomposed into pressure , torque  and two shear 
stresses  and  (see Methods for explicit expressions).

We performed large-scale molecular dynamics simulations 
to determine both the equations of state of the chiral active fluid 
in the steady state and its viscous response to velocity gradients  
(Fig. 1e). In the simulations, the stress tensor σ is determined using 
the Irving–Kirkwood formula25
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that expresses the stress tensor σ in terms of the trajectories of the 
individual particles and their microscopic interactions. Here, A is 
the total area of the system, i, j label particles and a, b label spatial 
directions. The first term in equation (7) is called the kinetic part, 
while the second is called the virial part. We find that, in addition to 
a standard isotropic pressure P following the ideal gas law P = nkBTeff 
(Fig. 1c), the steady-state stress tensor σss exhibits an anti-symmetric 
part (odd stress) corresponding to the net torque density τ = Γ(n)
Ω with a density-dependent rotational friction coefficient Γ(n) ~ n2 
(Fig. 1d and Extended Fig. E3). This anti-symmetric stress would 
not arise from purely radial pairwise interactions between the par-
ticles, even if they were subject to microscopic torques26. Instead, it 
is a hydrodynamic manifestation of the transverse part of the force 
fij in equation (3). To see this, let us compute from equation (7) the 
anti-symmetric part of the Irving–Kirkwood stress (corresponding 
to the second line in equation (6))
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. This shows 
that pairwise interactions can only contribute to the anti-symmetric 
part of the stress when they are not central (that is, when rij × fij ≠ 0). 
The force fij in equation (3) is short-ranged, so it affects the system 
only during collisions. Since the collision rate scales with the square 
of the density n, the cumulative effect of the gear-like frictional 
forces results in the observed Γ(n) ~ n2.

Linear response with parity-violating viscosities
All the entries of the viscosity matrix were determined by deform-
ing the simulation box at constant strain rate using the SLLOD 
algorithm27. The results (Fig. 1f–h and Supplementary Figs. S5–S7) 
are consistent with the general form in equation (6) imposed by 
isotropy. In addition to the standard shear and bulk viscosities η 
and ζ, we observe additional viscosity coefficients allowed by the 
broken time reversal and parity. First, a coefficient ηo known as odd 
(or Hall) viscosity9,11,24,28–35 couples the two shear stresses. The ratio 
ηo/η, of order 1, is directly related to the angle α  defined in Fig. 2. 
This angle characterizes the average chirality of the collisions, which 
arises from the parity-violating interaction f nc

ij

 in equation (1). In 
addition, we find other parity-violating viscosities ηA and ηB that 
couple compression and rotation, and have smaller but non-zero 
magnitudes. Besides, there is a viscous contribution ηRω to the 
anti-symmetric stress, where ω =  is the vorticity. In an equilib-
rium fluid, we would have ηR = − Γ (refs. 26,36), but this is not the case 
here (Fig. 1h). As they lead to an anti-symmetric stress, the coeffi-
cients ηA, ηR and Γ can only come from the virial contribution to the 
Irving–Kirkwood stress (equation (8)). In a dilute gas, this contribu-
tion is usually small compared with the kinetic part since collisions 
are rare. In contrast, the shear viscosities are typically dominated by 
the kinetic part of the stress in dilute gases, and essentially indepen-
dent of the density, consistent with our findings (Figs. 1f–h and 2e 
and Supplementary Fig. S8).

Comparing the linear response of chiral active fluids with oppo-
site Ω, we find that (up to numerical uncertainty) ηo, ηA and ηB are 
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in situations such as the onset of phase transitions and hydrody-
namic instabilities, and in turbulent flows. They also determine the 
correlation functions of the fluid, which in turn control physical 
properties such as light scattering39,40. To describe these fluctua-
tions, let us go back to the Navier–Stokes equation (5) and add to 
the stress tensor σ a fluctuating component σR with zero mean in 
addition to the steady-state and viscous components in equation 
(6). In our chiral active fluid, we find that the correlations of the 
random stress are of the form
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in which η

sym(anti)

αβ

 is the symmetric (anti-symmetric) part of 
the matrix η under index exchange α ↔ β, δ(t) = δ(−t) is a sym-
metric function of time peaked at t = 0 and ξ(t) = −ξ(−t) is an 
anti-symmetric function peaked near t = 0± (Supplementary Sect. 
VI), and 〈 〉 denotes an ensemble average at steady state. In stan-
dard fluctuating hydrodynamics39,ch. IX], only the term proportional 
to δ(t) is included. Here, the second term has to be added to account 
for the effect of broken time-reversal invariance. The precise form 
of the functions δ(t) and ξ(t) depends on the microscopic model. 
As shown in Fig. 3a,b and Supplementary Sect. VI, the breaking of 
time-reversal invariance leads to qualitative changes in the stress 
correlations computed from molecular dynamics simulations: the 
imaginary parts of the correlation function in Fig. 3a would vanish 
identically in a time-reversal invariant system.

Experimentally, it is easier to access the velocity correlation 
functions

c

ab

(r, t) = ⟨u
a

(r, t)u
b

(0, 0)⟩ (10)

than the stress correlation functions. The Green’s function of the 
(linearized) Navier–Stokes equation (5) allows us to compute the 
velocity correlations in equation (10) from the stress correlations in 
equation (9) (Supplementary Sect. VI). In Fig. 3c–f and Extended 
Fig. E5, we compare the correlation functions obtained directly 
from the simulations with our theoretical predictions. In the hydro-
dynamic regime (wavevector k → 0), there is excellent agreement 
even when we assume no further information on the fluid than its 
viscosity coefficients. This corresponds to taking δ to the limit of 
a Dirac distribution (and similarly for ξ) in equation (9) (Fig. 3e, 
black curve). A discrepancy occurs at higher wavevectors, in which 
the microscopic time and length scales contained in the noise 
become relevant. Good agreement between equation (10) and the 
simulation results is recovered by using the measured stress correla-
tions (Fig. 3d and red curve in Fig. 3e).

Green–Kubo relations
At equilibrium, correlation functions of the fluctuating stress yield 
the viscosities of a fluid. This relation, known as the Green–Kubo 
formula, is a manifestation of the fluctuation–dissipation theorem, 
whose validity is not guaranteed out of equilibrium18,19,41–47.

Can the Green–Kubo relations survive in our active fluids? The 
answer is, in fact, already contained in the fluctuating hydrody-
namic theory in equations (5)–(9). The Green–Kubo relations
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can be derived by integrating equations (5)–(9) over space and 
time (A is the area of the 2D system). The second term on the 
right-hand side of equation (9), which is an anti-symmetric func-
tion of time, yields the anti-symmetric part of the viscosity matrix 
ηαβ (containing, for example, the odd viscosity ηo). We numerically 
evaluate the right-hand side of equation (11), focusing on the two 

fluctuating shear stresses s1 =  and s2 =  (Fig. 4), and compare it 
with the viscosities obtained from the linear response to finite per-
turbations. The auto-correlation function 〈s1(t)s1(0)〉 = 〈s2(t)s2(0)〉 
yields the shear viscosity η while the cross-correlation function 
〈s1(t)s2(0)〉 = − 〈s2(t)s1(0)〉 yields the odd viscosity ηo (Fig. 4a). The 
latter relation manifestly shows that ηo ≠ 0 violates time-reversal 
symmetry. As shown in Fig. 4b, the values of η and ηo computed 
from the Green–Kubo formula agree well with the values we 
obtained using the direct hydrodynamic measurements reported in 
Fig. 1. We verified that the long-time tails associated with the break-
down of 2D hydrodynamics are too small to impact the viscosity 
prediction (Supplementary Fig. S12).

In Supplementary Sect. VI, we derive both the fluctuating hydro-
dynamic equations (5)–(9) and the Green–Kubo relations (11) from 
first principles, without invoking the Onsager regression hypothesis 
assumed in previous studies29,48. By extending the Mori–Zwanzig 
projection operator formalism49 to handle the presence of dissipa-
tive interactions, we derive the Green–Kubo relation and pinpoint 
the conditions of its validity. We show that an equilibrium-like 
Green–Kubo relation for the shear viscosity tensor holds near the 
steady state of any isotropic active fluid satisfying the following 
three conditions: (i) the activated and fluctuating degrees of free-
dom are statistically decoupled, (ii) the steady state is stable under 
small perturbations and (iii) the ensemble-averaged (microscopic) 
velocity–velocity correlations cvv(r) = 〈v(0) ⋅ v(r)〉 (Supplementary 
Figs. S13 and S14) decay faster than r−D (where D is the dimension 
of the system).

In order to take into account correlations between the particle 
velocities (see Methods), the normalization factor kBTeff in equations 
(9) and (11) should in general be replaced with

k

B

T

∗

eff

= k

B

T

eff

+ ρ ĉ

vv

(k → 0)/D. (12)

For our chiral active fluids with a contact frictional interaction, 
cvv(r) is both small and local, causing a small but detectable cor-
rection that matches our predictions (Fig. 4b, red line). In wet 
active fluids, additional modifications of the Green–Kubo relation 
(11) are required because the hydrodynamic interactions can be 
non-reciprocal (Supplementary Sect. VI).

Stress fluctuations and rheology
The behaviour of the spatially averaged fluctuating shear stresses of 
a chiral active fluid can be understood visually from the following 
observation: the random trajectories of the collective variables  
and  in shear–stress space plotted in Fig. 4c are random, con-
fined and have a tendency towards rotation (Supplementary Video 
S9). Here, 〈 〉r is an instantaneous spatial average (not the ensemble 
average 〈 〉). To account for these properties, we introduce a mini-
mal model based on the following Langevin equation (see discus-

sions in Supplementary Sect. VII and Fig. S18): where w1 and w2 are 
two independent white noise components, the prefactors Cη = 

 ·A/k
B

T

∗

eff

 and CR = ·

√

A/k

B

T

∗

eff

· η/(η2 + η

o2). 
When the odd viscosity ηo vanishes, equation (13) simply describes 
the evolution of an overdamped random walker with Cartesian 
coordinates ( , ) moving in a harmonic trap. In the presence 
of a non-vanishing ηo, the random walker experiences an additional 
azimuthal force proportional to its distance from the origin that 
makes it rotate as shown in Fig. 4c. (This is formally equivalent to 
the odd elastic springs of ref. 23 with addition of a random noise.) 
This chiral motion again shows the breaking of time-reversal sym-
metry caused by ηo.
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steady state follows an approximate Boltzmann distribution  
(Fig. 5e,h), parameterized by an effective temperature Teff controlled 
by the respective sources of activity. In addition, Fig. 5f,i shows that 
a Green–Kubo relation also applies to the shear viscosity of oscil-
lating granular gases and the drag coefficient of active Brownian 
rollers with the same Teff values measured in Fig. 5e,h.

We trace the validity of the Green–Kubo relation in all these sys-
tems to the statistical decoupling between activated and fluctuating  
degrees of freedom. Energy is passed from the environment to the 
fluctuating degrees of freedom through the activated ones. Yet, the 
activated and fluctuating degrees of freedom can still be almost 
statistically independent. This is evidenced by Fig. 6, in which we 
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Fig. 4 | Green–Kubo relations and rheology in chiral active fluids. a, Stress–stress correlation functions. The time correlation functions of the two 

global shear stresses  and  are plotted. The shear viscosity η leads to the auto-correlations (green), whereas the odd viscosity ηo gives rise to the 

cross-correlations (red), as summarized in the top schematic. The correlation functions predicted by our theory using equation (13) are compared with 

the values measured in simulations. The correlation time is set by the tumbling time of a particle Δt

tumble

= (Δt+ Δt

col

) · v/Δv  required for a particle to 

randomize its direction, where Δt is the collision duration, Δtcol is the time between collisions, v  is the mean velocity of the particle and Δv  is the average 

velocity change after a collision. We find that Δttumble ≈ 100Δt in this case. b, Green–Kubo relation. The shear viscosities under constant shear are related to 

the integrated stress–stress correlations through the so-called direct-current (DC) Green–Kubo relation. The measured odd viscosity ηo is compared with 

the Green–Kubo prediction for a wide range of spinning speeds Ω. Inset: comparison between the predicted and measured shear viscosity η. The Green–

Kubo predictions with Teff and the renormalized T∗
eff

 are marked as dashed and solid lines, respectively. c, Time evolution of the shear stress vector ( , 

) at spinning speed Ω = 25.3/Δt. At steady state of the chiral active fluid, the shear stress vector traces out a 2D random walk in the stress space (grey 

curve in background), which is loosely confined and rotates around the origin preferentially in a clockwise fashion over time (curve with gradient colouring). 

d,e. Green–Kubo relation in frequency domain. The frequency-dependent coefficients of the viscous response to an oscillatory shear with frequency f can 

be estimated using the Fourier transform of the stress–stress correlation functions. This is the so-called alternating-current (AC) Green–Kubo relation. 

Comparisons between the Green–Kubo predictions and the simulation measurements are presented for both odd viscosity (d) and shear viscosity (e) at 

various shear frequencies f. Error bars denote standard errors.
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Methods
Models and simulations. Chiral active fluid. We study the behaviour of a quasi-2D 
chiral active fluid composed of spinning components5–7,10,13,16,53–56. The microscopic 
model is presented in the main text (equations (1) and (2)). This model is 
adapted from standard models of frictional granular disks (see ref. 22 as well as the 
documentation of the LAMMPS package57,58 (pair_granular) and references 
therein). Compared with these standard granular models22,57,58, here we make 
the following simplifications: (i) rolling friction is ignored and (ii) the frictional 
coefficients in the normal (radial) and tangential directions take the same value γ.

To prevent complete interpenetration between the particles, we add a 
non-linearity to the repulsion fc, with a distance-dependent Hookean coefficient 
that diverges at rij = 0:

k(r
ij

) = k

(

1 + α

d

r

ij

)

. (M.1)

Regarding f nc
ij

 in equation (3), we emphasize that this interaction is not central, 
and not invariant under spatial transformations that change orientation (such as 
reflections). Hence, this granular gas is an example of a broader class of systems 
called parity-violating fluids9,24,35 that includes driven granular gases5,8, rotating 
colloids11,12,59–61, polyatomic gases in magnetic fields30, vortex fluids31 and electronic 
fluids33,34.

The model defined by equations (1) and (2) is analysed through particle-based 
simulations using a customized version of the LAMMPS package57,58. We choose 
the area fraction of the system to be ϕ = 0.2 and set γrot = 3md2/t0, γ = 0.015m/t0, 
k = m/t

2

0

 and α = 0.3, where m is the particle mass, t0 is the unit of time of the 
simulation and d is the unit of length of the simulation. The interaction timescale 
Δt =

√

m/k is then Δt = t0. To focus on the viscous effects emergent from particle 
interactions, a frictionless background is used. All the simulations are initialized 
with a random velocity distribution. The results are collected after the system 
reaches steady state. In Supplementary Sect. I, we detail specific procedures for 
investigating the effective thermodynamics41,43,44,59,62–66 (including anti-symmetric 
stress26,67–71), kinetics, linear response, Green–Kubo relation41,42,45,63,66,72–82 and 
hydrodynamics.

Active oscillators. Consider a quasi-2D granular gas composed of the same particles 
as the chiral fluid. Instead of self-spinning, all the particles oscillate in the z 
direction at a constant frequency f. In particular, each particle is driven to move in 
the range z ∈ [−A, A] with a target velocity profile

v

0

(t) = 2πωA sin(ωt + ϕ), (M.2)

where ω = 2πf is the angular frequency and ϕ is a random initial phase of the 
oscillation. To ensure that all particles stay roughly in the same horizontal plane 
(z = 0), a linear restoring force f = −k

z

z ẑ is added. The microscopic dynamics of 
the system can be summarized as

mẍ

i

=

∑

j∈N(i)

f

ij,x

, (M.3)

mÿ

i

=

∑

j∈N(i)

f

ij,y

, (M.4)

mz̈

i

= c

d

[v
i,0

(t) − v

i,z

] − k

z

z +
∑

j∈N(i)

f

ij,z

, (M.5)

where cd is a large drag coefficient that forces the particle velocity vi,z to quickly 
relax to vi,0(t). The conservative part of the interaction f c

ij

 is the same as before (see 
equation (3)). The dissipative interaction here takes the form

f

nc

ij

=

{

−γv

ij

, r

ij

< d,

0 r

ij

≥ d.

(M.6)

Upon collision, the z-directional oscillations of the particles induce random 
motions in the x–y plane.

All the simulations are performed at an area fraction ϕ = 0.2. We set the 
parameters A = d and cd = 100m/t0 for the oscillation, γ = 0.015m/t0, k = m/t

2

0

 and 
α = 0.3 for the particle interaction.

To confirm the Boltzmann statistics, we measure the probability distribution of 
the induced horizontal velocity at various oscillating frequencies f ∈ [0.03/Δt, 0.6/
Δt]. We measure the effective temperature as T

eff

= m⟨v2
x

⟩/k
B

. In addition, we also 
measure the density profile of the system when exposed to an external potential 
well of magnitude −0.5kBTeff.

Finally, we study the Green–Kubo relation for the shear viscosity (equation (11) 
with α = β = 2 or 3, see the following section for the notations) for f ∈ [0.03/Δt, 0.6/
Δt], by comparing the value directly measured from linear response under shear 
flow with the Kubo prediction at steady state. The detailed procedure is identical to 
that described for the chiral active fluid in Supplementary Sect. I.

Active Brownian rollers. Consider a 2D system composed of active Brownian 
rollers. Each roller contains a core particle of mass mc and diameter dc as well 
as two dumbbell particles of mass mr and diameter dr, which are away from 
the roller centre by s, hinged to the core particle by a rigid bond and free to 
rotate about it (Extended Fig. E2). The core particle self-propels at a constant 
speed v in its own orientation ê = (cos θ, sin θ), where θ is the tilt angle of the 
orientation director against the x axis. The excluded-volume effects of both the 
core and dumbbell particles are modelled by the conservative interaction f c

ij

 in 
equation (3). However, no dissipative interaction is included. During collision, 
the self-propulsion of two active Brownian rollers could cause random rotation 
of their dumbbells, which is quantified by the rotation speed Ω. The microscopic 
dynamics of the system is described as

m

c

ẍ

i

= c

d

[vê
i

− v

i

] +
∑

j∈N(i)

f

ij

+ ξ

x

(t) (M.7)

I

c

θ̈

i

= −Γ

c

θ̇

i

+ ξ

θ

(t) (M.8)

I

r

Ω̇

i

=

∑

j∈N(i)

τ

ij

(M.9)

where cd and Γc are the translational and rotational drag coefficients for 
the core particle, ξx(t) is the white noise for translational motion satisfying 
⟨ξ

x,a

(t)ξ

x,b

(t′)⟩ = 2c

d

k

B

T

x

δ(t − t

′), ξθ(t) is the white noise for the reorientation 
of the director ê satisfying ⟨ξ

θ

(t)ξ

θ

(t′)⟩ = 2Γ

c

k

B

T

θ

δ(t − t

′), and Ic and Ir are 
the moments of inertia for the core and dumbbell particles, respectively. τij is the 
total torque exerted on the dumbbell of particle i by particle j, as a consequence of 
both the core–dumbbell and dumbbell–dumbbell interactions. These interparticle 
collisions lead to an effective drag coefficient γrot for the rotation of the dumbbell.

All the simulations are performed at an area fraction ϕ = 0.06. We set the 
parameters mc = m, dc = d and Ic = 0.1md2 for the core particle, dr = 0.2d, mr = m, 
Ir = 0.728md2 and s = 0.6d for the dumbbell, cd = 100m/t0 and kBTx = 0 for active 
translation, Γc = cdd

2 and k
B

T

θ

= 10

−3

md

2

/t

2

0

 for the director reorientation, and 
finally k = m/t

2

0

, and α = 0.3 for particle interactions.
To validate the Boltzmann statistics, we measure the probability distribution of 

the dumbbell rotation speed Ω at various self-propulsion speed v ∈ [0.06d/Δt, 0.8d/
Δt]. From the measured probability distribution P(Ω), we can quantify the effective 
temperature Teff = Ir〈Ω2〉/kB.

We also study the Green–Kubo relation of the effective rotational drag 
coefficient γrot for a wide range of self-propulsion speed v ∈ [0.06d/Δt, 0.8d/Δt] at 
a constant cd = 100md/Δt as well as a wide range of drag coefficient cd ∈ [0.1md/
Δt, 103md/Δt] at a constant v = 0.3d/Δt. In particular, we directly measure γrot by 
investigating the linear response of single-particle rotation towards a small external 
torque τext ∈ [10−4md2/Δt2, 10−3md2/Δt2], and further compared it with the Kubo 
prediction

γ

rot

=
1

k

B

T

eff

∫
∞

0

⟨τ(t)τ(0)⟩ dt, (M.10)

where τ(t) is the fluctuating random torque experienced by a given particle due to 
collision with its neighbours at steady state.

Viscosity: notations and symmetry considerations. In this section, we introduce 
the notation used in equation (6) of the main text and discuss how various physical 
symmetries restrict the form of the viscosity tensor. The viscous stress tensor is 
linearly related to velocity gradients by the viscosity tensor through the equation

σ

vis

ab

= η

abcd

ė

cd

, (M.11)

where σ vis

ab

 is the viscous stress tensor, ė
cd

= ∂

d

u

c

 is the (unsymmetrized) velocity 
gradient tensor and ηabcd is the viscosity tensor.

Following refs. 23,24, we introduce the following basis for rank-2 tensors in two 
dimensions:

τ

0

ab

=

(

1 0

0 1

)

τ

1

ab

=

(

0 −1

1 0

)

τ

2

ab

=

(

1 0

0 −1

)

τ

3

ab

=

(

0 1

1 0

)

.

(M.12)

These are irreducible tensors with respect to the orthogonal group O(2). More 
precisely, we consider the representation of O(2) on rank-2 tensors (by which a 
tensor Tab is transformed into g

aa

′ g
bb

′ T
a

′
b

′ for g ∈ O(2)) and decompose it in 
irreducible representations (IRs): two 1D IRs (scalar, corresponding to the basis 
tensor τ0, and pseudoscalar, corresponding to τ1) and a 2D IR (with basis tensors τ2 
and τ3). (See, for example, ref. 83,p. 376] for the IR of O(2). With the notations of this 
reference, we have used r1 × r1 ≃ φ1 + φ2 + r2.)
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We use the τα

ab

 to decompose the stress and velocity gradient tensors into 
irreducible components via the following definitions:

and

Furthermore, we define the 4 × 4 matrix

η

αβ

=

1

4

τ

α

ab

η

abcd

τ

β

cd

(M.15)

in which there is a sum on repeated indices. With these definitions, equation 
(M.11) can be written as

where the superscript ‘vis’ denotes the viscous stresses. Certain physical 
assumptions restrict the form of ηαβ. For example, in an isotropic system (without 
any other constraint), ηαβ takes the form23

η

αβ

=



















ζ η

B

0 0

η

A

η

R

0 0

0 0 η η

o

0 0 −η

o

η



















. (M.17)

The Cartesian tensors are reconstructed using

σ

ab

= σ

α

τ

α

ab

and ė

ab

=
1

2

ė

α

τ

α

ab

(M.18)

as well as

η

abcd

= η

αβ

τ

α

ab

τ

β

cd

. (M.19)

Here, we attribute no meaning to the position (subscript or superscript) of the 
indices (so, for instance, ηαβ and ηαβ mean exactly the same thing).

In standard tensor notation, equation (M.17) reads

η

abcd

= ζ δ

ab

δ

cd

− η

A

ϵ

ab

δ

cd

− η

B

δ

ab

ϵ

cd

+ η

R

ϵ

ab

ϵ

cd

+η (δ

ac

δ

bd

+ δ

ad

δ

bc

− δ

ab

δ

cd

) + η

o

E

abcd

,

(M.20)

where δab and ϵcd denote the Kronecker delta and Levi–Civita tensors (note that 
ϵ

ab

= τ

1

ba

), respectively, and

E

abcd

=
1

2

(ϵ

ac

δ

bd

+ ϵ

ad

δ

bc

+ ϵ

bd

δ

ac

+ ϵ

bc

δ

ad

). (M.21)

(Equivalently, Eabcd = ϵacδbd + ϵbdδac.)
When the viscosity coefficients do not depend on space, the Navier–Stokes 

equation

ρD

t

u = ∇ · σ, that is, ρD

t

u

a

= ∂

b

σ

ab

(M.22)

takes in isotropic chiral active fluids the general form

ρD

t

u = ∇ · σ
ss + ζ grad (div u) + η Δu + η

o

ϵ · Δu

−η

A

ϵ · grad (div u) + η

B

grad (rot u)

−η

R

ϵ · grad (rot u),

(M.23)

where rot u = ϵab∂aub and

ϵ =

(

0 1

−1 0

)

(M.24)

is the matrix for rotation by −π/2.

Derivation of the fluctuating hydrodynamic theory with the Mori–Zwanzig 
formalism. Here, we derive the fluctuating hydrodynamic theory for chiral active 
fluids, by using the Mori–Zwanzig formalism49,84–86. This formalism provides a 
systematic coarse-graining procedure to decompose the microscopic dynamics of a 
many-body system into a hydrodynamic linear response and fluctuations induced 
by random stresses. Here, we give key steps of the derivation and refer the reader to 
Supplementary Sect. VI for more details.

We also direct the reader to refs. 87,88 and references therein for similar 
applications of the Mori–Zwanzig formalism in different contexts, and to refs. 89,90 
for experimental investigations of the Green–Kubo relation for viscosities in dusty 
plasma and ref. 91 for an analysis of the density–vorticity correlations in chiral 
active fluids with odd viscosities.

Slow variables for momentum transfer. The dynamics of a classical many-body 
system can be described by its state trajectory Γ = (pN, qN) in phase space, where 
N is the number of particles, and pi = mvi and qi = ri are the momentum and 
position of a given particle i. For common fluids, this microscopic dynamics can 
be decomposed into a slow hydrodynamic behaviour plus fast fluctuations around 
it. The slow hydrodynamic variables are typically conserved quantities (mass, 
momentum, etc.) and their conservation laws, such as the Navier–Stokes equations, 
describe the macroscopic dynamics of the system. Fluctuating hydrodynamics 
accounts for the fast fluctuations through the addition of a random stress in the 
Navier–Stokes equation for linear momentum39,ch. IX]. These fluctuations are ignored 
in usual fluid mechanics, but can become important for example at the onset of 
hydrodynamic instabilities and in turbulent flows. Here, we extend this treatment 
to the class of active fluids. Similar to conventional hydrodynamic theory, we 
choose momentum density as the relevant slow variable to capture momentum 
transfer in active fluids. In particular, we define the wavevector-dependent 
(reciprocal-space) momentum density of the system as

Ĵ

k

(t) �

N∑

i

mv

i

(t)e
−ik·r

i

(t)
. (M.25)

Taking the time derivative of both sides, we obtain the governing equation of Ĵ
k

(t):

˙̂
J

k

(t) = i k · σ̂
k

(t), (M.26)

where σ̂
k

(t) is the wavevector-dependent stress

σ̂

k

� −

N

∑

i





mv

i

v

i

+
1

2

N−1

∑

j̸=i

f

ij

r

ij





e

−ik·r
i

, (M.27)

which consistently is also the Fourier transform of the Irving–Kirkwood formula 
(7).

Following the same procedure, we can also define the wavevector-dependent 
mass density

ρ

k

(t) �

N∑

i

me

−ik·r
i

(t)
, (M.28)

and derive its governing equation:

ρ̇

k

(t) = i k · Ĵ
k

(t). (M.29)

Steady-state ensemble. The active fluids considered here reach and sustain steady 
state by balancing energy injection and dissipation at the microscopic level. As 
illustrated in Fig. 1 and Extended Figs. E1 and E2, the passive degrees of freedom 
are in contact with an effective bath powered by the active degrees of freedom. 
This gives rise to a steady-state ensemble with a stationary distribution f0(Γ) in the 
phase space.

Any observable of the system (such as the momentum density Ĵ
k

) corresponds 
to a function defined on phase space. These phase-space functions form a Hilbert 
space, which we denote as H (Γ). Using the probability measure f0(Γ), we can 
define the following inner product on the space H (Γ):

(A, B) = ⟨A(Γ)B
∗

(Γ)⟩ �

∫
dΓ A(Γ)B

∗

(Γ) f
0

(Γ), (M.30)

where A(Γ) and B(Γ) are two arbitrary phase-space functions, asterisk denotes 
complex conjugate and the notation 〈 〉 defined in equation (M.30) denotes the 
ensemble average over f0(Γ). This inner product measures the similarity between 
two observables under the steady-state ensemble, and will allow us to separate 
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slow and fast variables on H (Γ) by defining an orthogonal projection. Given two 
vectors of phase-space functions A and B with components Ap and Bp, we also 
define the matrix (A ⊗ B) with matrix elements

(A ⊗ B)
pq

= (A
p

, B

q

). (M.31)

This is an outer product of the vectors combined with an inner product of the 
phase-space functions.

Let us consider the slow variable Ĵ
k

, which is in fact a vector-valued function 
Ĵ

k

(Γ) = (Ĵ
k,1

(Γ), …, Ĵ

k,D

(Γ))
T

, where D is the dimension of the system. Its 
different components generate a subspace S

Ĵ

k

(Γ), and the projection operator

P
k

X(Γ) � (X ⊗ Ĵ

k

) · (̂J
k

⊗ Ĵ

k

)
−1

· Ĵ
k

(M.32)

performs an orthogonal projection on this subspace. We also define the projection 
operator to the orthogonal subspace:

Q
k

= 1 − P
k

. (M.33)

In equation (M.32), the normalization matrix (̂J
k

⊗ Ĵ

k

) quantifies the 
correlations between different components of the momentum density at steady 
state, with the form

(̂J
k

⊗ Ĵ

k

) = m

2

N

[

k

B

T

eff

m

I + nĈ
vv

(k)

]

, (M.34)

where I  is a D × D identity matrix, n is the number density of the particles and 
Ĉ
vv

(k) is the Fourier transform of the velocity–velocity correlation matrix

Ĉ
vv

(r) = ⟨v(r) v(0)⟩. (M.35)

In common fluids, interactions between fluid particles are conservative 
and only depend on interparticle distance. This allows the factorization of the 
Boltzmann distribution into momentum and position parts:

P(Γ) ∝ e

−

∑
i

mv

2

i

/2k

B

T

× e

−

∑
ij

U(r
ij

)/k
B

T

. (M.36)

Hence, the velocities of different particles are independent, and Ĉ
vv

(k) vanishes.
However, this is not generally the case for non-equilibrium fluids related to 

velocity-dependent interactions, including our chiral active fluid. By assuming the 
isotropy of the system and a fast decaying correlation function |Ĉ

vv

(r)| < O(r−D), 
we show that

(̂J
k

⊗ Ĵ

k

) ≈ Nm (k
B

T

eff

+ B

vv

) I, (M.37)

in which

B

vv

�
nm

D

lim

k→0

∫
V

⟨v(r) · v(0)⟩ e
−ik·r

d r. (M.38)

For convenience, we define

T

∗

eff

= T

eff

+ B

vv

/k

B

. (M.39)

Mori–Zwanzig formalism. Now we can use the projection operators P
k

 and Q
k

 to 
decompose the evolution of the momentum density Ĵ

k

 into a slow dynamics within 
the subspace S

Ĵ

k

(Γ) and fast fluctuations orthogonal to it. This is the main idea of 
the Mori–Zwanzig formalism.

One can show that the governing equation (M.26) is also a Liouvillian 
equation:

˙̂
J

k

(t) = iLĴ
k

(t), (M.40)

where

iL � Γ̇ ·
∂

∂Γ

(M.41)

denotes the Liouville operator. Using the Mori–Zwanzig formalism, we decompose 
the above equation as

˙̂
J

k

(t) = F

∥

k

(t) + F

⊥
k

(t) −

∫
t

0

K(τ) · Ĵ
k

(t − τ) d τ, (M.42)

where

F

∥

k

(t) � e

iLt

P
k

iLĴ
k

(Γ), (M.43)

F

⊥

k

(t) � e

Q
k

iLt

Q
k

iLĴ
k

(Γ), (M.44)

K(τ) � (F
⊥

k

(τ) ⊗ F

⊥

k

(0)) · (̂J
k

⊗ Ĵ

k

)
−1

. (M.45)

Here, F∥

k

(Γ, t) and F⊥

k

(Γ, t) are the components of the generalized force iLĴ
k

(t) 
parallel and orthogonal to the subspace S

Ĵ

k

(Γ), and K(τ) is a kernel function 
characterizing the linear response of the fluid towards external disturbances on 
Ĵ

k

. Note that K(τ) involves the calculation of time correlation functions, which 
requires performing ensemble averages at different time points. For systems 
with deterministic microscopic dynamics, we can generalize equation (M.30) to 
calculate the time correlation function with equal-time probability f0(Γ):

(A(t), B(0)) = ⟨A(Γ
t

)B∗(Γ
0

)⟩

=
∫

d Γ Q
A

(Γ, t)A(Γ) · B(Γ) · f
0

(Γ),
(M.46)

where Q
A

(Γ, t) is the propagator of the phase-space function A and we have used 
Γ = Γ0 to represent the phase space at the initial state t = 0. In the case of equation 
(M.45), A = B = F

⊥

k

, Q
A

(Γ, t) = e

Q
k

iLt.
Extra care must be taken when applying the formalism to active fluids. A 

crucial step in the derivation of equation (M.42) is

( iLF
⊥

k

(τ) ⊗ Ĵ

k

) = −(F
⊥

k

(τ) ⊗ iLĴ
k

). (M.47)

A key insight is that this relation still holds near any non-equilibrium steady state, 
even when detailed balance is broken. At steady state, the probability distribution 
does not change over time, thus

d

d t

f

0

(Γ) =
∂

∂Γ

(Γ̇f
0

(Γ)) = 0. (M.48)

Given the assumption of the existence of a steady state, one can prove equation 
(M.47) elementwise using integration by parts:

(iLF⊥

k

(τ) ⊗ Ĵ

k

)
ab

+ (F⊥

k

(τ) ⊗ iLĴ
k

)
ab

= −
∫

d ΓF

⊥

k,a

(Γ, τ)Ĵ
∗

k,b

(Γ) · ∂

∂Γ

(Γ̇f
0

(Γ)) = 0.

(M.49)

In this case, the Liouvillian is Hermitian with respect to the inner product defined 
by f0 and the decomposition given by equation (M.42) still holds.

Generalized forces. To make use of the Mori–Zwanzig formalism, we must derive 
the explicit form of F∥

k

, F⊥

k

 and K.
For active fluids, the generalized force contains three components:

iLĴ
k

= i k · σ̂
k

= i k ·

(

σ̂

kin

k

+ σ̂

pos

k

+ σ̂

vel

k

)

, (M.50)

with

σ̂

kin

k

� −

N∑

i

mv

i

v

i

e

−ik·r
i

(M.51)

σ̂

pos

k

� −

1

2

N

2∑

ij

f

pos

ij

r

ij

e

−ik·r
i

, (M.52)

σ̂

vel

k

� −

1

2

N

2∑

ij

f

vel

ij

r

ij

e

−ik·r
i

, (M.53)

where σ̂ kin

k

 is the kinetic stress, σ̂ pos

k

 is the virial stress only involving the 
position-dependent interactions f pos

ij

 and σ̂ vel

k

 is the virial stress caused by 
velocity-dependent interactions, which is unique to non-equilibrium fluids. Here 
we assume that the velocity-dependent interactions come from interparticle 
friction, taking a general form f vel

ij

= −γ(r
ij

) v
ij

.
The presence of the interparticle friction as well as the resultant velocity–

velocity correlations poses a major challenge in our derivation, making it different 
from the textbook derivation of the Green–Kubo relation for viscosity using the 
Mori–Zwanzig formalism86. By assuming that the three-body (and higher-order) 
correlations are negligible, we can derive the explicit form of the generalized forces:

F

∥

k

(t) = −γ

Ĵ

k

Ĵ

k

(t), (M.54)

F

⊥

k

(t) ≈ γ

Ĵ

k

Ĵ

k

(t) + i k · σ̂
k

(t), (M.55)

where γ
Ĵ

k

= n(γ̂(0) − γ̂(k))/m denotes the wavevector-dependent effective 
damping parameter for Ĵ

k

. Here, γ̂(k) =
∫

V

γ(r)e−ik·r

d r denotes the Fourier 
transform of the interparticle frictional kernel γ(r). With that, we can also derive 
the form of the response kernel:
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K(τ) = −γ

2

Ĵ

k

(

Ĵ

k

(τ) ⊗ Ĵ

k

(0)
)

· (̂J
k

⊗ Ĵ

k

)
−1

+( i k · σ̂
k

(τ) ⊗ i k · σ̂
k

(0)) · (̂J
k

⊗ Ĵ

k

)
−1

.

(M.56)

Detailed derivation steps are provided in Supplementary Sect. VI.

Green–Kubo relation. For a system in non-equilibrium steady state, the noise term 
F

⊥

k

 vanishes in equation (M.42) under an ensemble average. Thus, in an average 
sense, the governing equation (M.26) reads

˙̂
J

k

(t) = F

∥

k

(t) −

∫
t

0

dτ K(τ) · Ĵ
k

(t − τ). (M.57)

By plugging the explicit form of F∥

k

 and K and taking Laplace transform, we can 
obtain the following equation:

s̃J

k

(s) − Ĵ

k

(0) = −

(
i k · σ̃

k

(s) ⊗ i k · σ̂
k

(0)
)
· J̃

k

(s)

Nmk

B

T

∗

eff

. (M.58)

Note that the right-hand side of the above equation is a linear response 
in momentum density Ĵ

k

. Given the wavevector-dependent strain rate 
ˆ̇
e

k,cd

= i k

d

Ĵ

k,c

/nm, we find that equation (M.58) in fact corresponds to a 
hydrodynamic linear response

s̃J

k,a

(s) − Ĵ

k,a

(0) = i k

b

η̃

k,abcd

(s) ˜̇e
k,cd

(s) (M.59)

with viscosity coefficients

η̃

k,abcd

(s) �
1

k

B

T

∗

eff

V

⟨σ̃

k,ab

(s)σ̂

∗

k,cd

(0)⟩. (M.60)

Here, we switched to index notation and used the Einstein summation rule for the 
indices. In the hydrodynamic limit, equation (M.60) becomes the equilibrium-like 
Green–Kubo relation for the viscosity

η

abcd

= lim

k→0

s→0

η̃

k,abcd

(s) =
V

k

B

T

∗

eff

∫
∞

0

⟨σ

ab

(t)σ

cd

(0)⟩ dt, (M.61)

which is equivalent to equation (11) in terms of the irreducible representations of 
stress. Note that, in the above formula, we have used the global stress σ(t) = ∫Vσ(r, t)
dr/V.

Hydrodynamic equations. Our previous derivation was performed near steady state 
with a vanishing background flow field u(r) = 0 everywhere. Here we extend our 
theory to the hydrodynamic behaviour with non-zero background flow field. Let us 
first define the density, momentum and stress fields:

ρ(r) =

N∑

i

m δ(r − r

i

), (M.62)

J(r) =

N∑

i

mv

i

δ(r − r

i

), (M.63)

σ(r) = −

N

∑

i





mv

i

v

i

+
1

2

N−1

∑

j̸=i

f

ij

r

ij





δ(r − r

i

). (M.64)

Note that these are also the inverse Fourier transforms of ρk, Ĵk and σ̂
k

 defined 
above. In addition, the flow field is defined as

u(r) =
J(r)

ρ(r)
. (M.65)

In a common fluid, the fluid elements stay near local thermal equilibrium. 
Similarly, we assume that the particles in an active fluid stay close to local steady 
state. Under these assumptions, we can decompose the particle velocity as

v = u(r, t) + Δv, (M.66)

where u(r, t) is the local flow field and Δv is the velocity fluctuation on top of it. 
These two terms satisfy

⟨Δv⟩ = 0, ⟨u(r, t) Δv⟩ = 0. (M.67)

The interaction of a particle with its neighbours depends on their relative rather 
than average velocity. Thus, we assume that, by subtracting the local flow field u(r), 
the local ensemble is the same as the global one at steady state. This allows us to 
decompose the stress field σ(r) as

σ = −ρuu + σ

IK

, (M.68)

where ρuu is the dynamical pressure due to fluid flow and σIK is the Irving–
Kirkwood stress,

σ

IK

(r) � −

N

∑

i





mΔv

i

Δv

i

+
1

2

N−1

∑

j̸=i

f

ij

r

ij





δ(r − r

i

). (M.69)

The Irving–Kirkwood stress can be further decomposed into three parts: (i) the 
isotropic steady-state stress given by the equations of state

σ

ss

ab

=

{

−P δ

ab

+ τ ϵ

ab

, in 2D

−P δ

ab

, in 3D

(M.70)

(in 3D, the presence of an anti-symmetric steady-state stress is prohibited by 
isotropy), (ii) the viscous stress due to hydrodynamic linear response

σ

vis

ab

= η

abcd

ė

cd

, (M.71)

and (iii) the random stress arising from the orthogonal generalized force satisfying 
the relation

i k

b

σ̂

R

k,ab

= F̂

⊥

k,a

. (M.72)

With that, we can then get the hydrodynamic equations by performing the 
inverse Fourier transform of equations (M.26) and (M.29), giving

D

t

ρ = −ρ∇ · u, (M.73a)

ρD

t

u = ∇ ·

(

σ

ss

+ σ

vis

+ σ

R

)

, (M.73b)

where Dt = ∂t + u ⋅ ∇ is the material derivative.

Random stress. To complete our fluctuating hydrodynamic theory, we need 
to derive the form of the random stress σR. Recall that the explicit form of the 
orthogonal generalized force is

F

⊥

k

(t) ≈ γ

Ĵ

k

Ĵ

k

(t) + i k · σ̂
k

(t). (M.74)

Using the homogeneity of the system at steady state, we show that F⊥

k

 is indeed a 
random force with zero mean

⟨F
⊥

k

⟩ = 0. (M.75)

We also find that

γ

Ĵ

k

= n

m

∫

V

γ(r)(1 − e

−ik·r) dr

=
[

2πn

3m

∫

∞

0

γ(r)r4dr
]

k

2 + O(k3).
(M.76)

Therefore, we can drop the first term in the calculation of the two-point 
correlations and get

⟨F
⊥

k,a

(t) F
⊥∗

k,c

(0)⟩ ≈ k

b

⟨σ̂

k,ab

(t) σ̂

∗

k,cd

(0)⟩k
d

. (M.77)

Given relation (M.60), one can further show that

⟨F̃
⊥

k,a

(s) F
⊥∗

k,c

(0)⟩ = k

B

T

∗

eff

V η̃

k,abcd

(s) k
b

k

d

. (M.78)

Note that s is the parameter for Laplace transforms. Hence, we should construct the 
random stress σR as

⟨σ̂

R

k,ab

⟩ = 0, (M.79)

⟨σ̂

R

k,ab

(s) σ̂

R ∗

k,cd

(0)⟩ = k

B

T

∗

eff

η̃

k,abcd

(s). (M.80)

In the hydrodynamic limit, the correlation time and length of the random stress 
become negligible compared with that of the hydrodynamic flow. In this case, the 
above requirements can also be written as

⟨σ

R

ab

(r, t)⟩ = 0

⟨σ

R

ab

(r, t)σ

R

cd

(0, 0)⟩ = 2k

B

T

∗

eff

δ(r)
[

η

sym

abcd

δ(t) + η

anti

abcd

ξ(t)
]

,

(M.81)

where η sym

abcd

= (η

abcd

+ η

cdab

)/2 and η anti

abcd

= (η

abcd

− η

cdab

)/2 are the symmetric 
and anti-symmetric parts of the viscosity tensor under the exchange of major 
indices, that is, ab ↔ cd. In practice, the Dirac distribution in equation (M.81) has a 
finite width τ and can be represented, for instance, by a Gaussian function
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δ

τ

(t) �
1

√

2π τ

e

−

t

2

2τ

2

. (M.82)

Similarly, ξ(t) stands in equation (M.81) for a function ξτ(t) defined as

ξ

τ

(t) �
t

2τ

2

e

−

t

2

2τ

2

. (M.83)

This is an odd function, satisfying the relations

ξ(t) = −ξ(−t), 2

∫
∞

0

ξ(t) dt = 1.

Upon decomposition of the stresses into their irreducible representations, equation 
(M.81) becomes equation (9) in the main text. By integrating equation (M.81) in 
both space and time, we get the Green–Kubo relation:

∫

∞

0

dt

∫

V

dr

⟨

σ

R

ab

(r, t)σ

R

cd

(0, 0)
⟩

= k

B

T

∗

eff

η

abcd

. (M.84)

We emphasize that the term η anti

abcd

ξ(t) changes sign when t → −t. This is crucial 
to obtain the anti-symmetric part of the viscosity tensor in the Green–Kubo relation, 
and consistent with intuitions from the usual Onsager–Casimir relations. For 
common fluids, the random stress is often chosen as a white noise in the conventional 
fluctuating hydrodynamic theory. However, for non-equilibrium fluids, especially 
chiral active fluids, extra care must be taken: the construction of the random stress 
should reflect the time-reversal symmetry/anti-symmetry of the system.
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Extended Data Fig. 1 | thermodynamics of an oscillating granular gas. a. Schematic of the system setup. We simulate a quasi-2D granular gas composed 

of frictional particles, which are forced to oscillate vertically at a constant frequency f but free to move horizontally. Interparticle collision between two 

oscillating particles could lead to their translational motions in the xy-plane. In the middle is a zoomed-in, top view of this many-body system. Horizontal 

translation of a particle is denoted by its tail, whereas its vertical oscillation is color-coded in the tail: gradient from a dark end to a bright front means 

the particle is moving towards the xy-plane, vice versa; purple denotes z < 0 whereas red denotes z > 0. Δt denotes the averaged collision duration. b. 

Maxwell distribution. The x-component of translational velocity displays a Gaussian distribution P(vx) at various oscillating frequency f. An effective 

temperature Teff is defined using the halfwidth of P(vx). Dependence of Teff on f is shown on the right. c. boltzmann distribution. We put the system in a 

potential well U(r) = −0.5k

B

T

eff

[1+ cos (πr/R)] for r < R, where r denotes the distance from the center of the system. The resultant spatial distribution 

of the particles turns out to follow the boltzmann statistics n(−r) ∝ exp [−U(r)/k
B

T

eff

] (purple curve) as well. d. Green–Kubo relation. Shear viscosity 

of this many-body system can be either directly measured using linear response towards an applied shear or indirectly inferred from the Green–Kubo 

relation by calculating the integral of the stress–stress correlation function, known as the Green–Kubo relation. The predicted and measured shear 

viscosity η is compared at a wide range of frequencies f. The Kubo predictions with Teff and renormalized T∗
eff

 are marked as the dashed and solid lines, 

respectively. We have defined f0 = 1/Δt.
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Extended Data Fig. 2 | thermodynamics of an active Brownian system. a. Schematic of the system setup. We simulate a 2D system composed of active 

brownian rollers. Each particle contains a core (in green) that self-propels nearly at a constant speed v meanwhile undergoes rotational diffusion as well as 

a dumbbell (in blue) that is hinged at the core center and free to rotate about it. In particular, the core of particle i is powered by an active force F a

i

= c

d

vn̂

i

 

(n̂
i

 is the orientation of the core) meanwhile experiences a drag force by the substrate F d

i

= −c

d

v

i

, where ζ denotes the substrate friction coefficient. 

Note that the particle dumbbell is lifted away from the substrate thus does not experience any friction; moreover, the dumbbell rotation does not reorient 

the self-propulsion of the core. When two particles collide, the translational motion of the cores could result in the rotational motion of the dumbbells. Δt 

denotes the averaged collision duration. b. Maxwell distribution. The angular velocity of the dumbbells displays a Gaussian distribution P(Ω) at various 

self-propulsion speed v. An effective temperature Teff is defined using the halfwidth of P(Ω). Dependence of Teff on Ω is shown on the right. c-d. Green-Kubo 

relation. The rotational drag coefficient of the dumbbell can be either measured through linear response by measuring the terminal angular velocity under 

an applied torque, or predicted using the Green–Kubo relation by evaluating the integral of the torque–torque correlation function. The measured and 

predicted drag coefficient γrot is compared at a wide range of self-propulsion speed v (c) as well as substrate friction coefficient cd (d). However, when 

either self-propulsion speed v or substrate friction coefficient cd is increased, the relative significance of particle interaction compared to self-propulsion 

gets reduced. As a consequence, we see that the Green–Kubo relation is restored at either large v or cd. We have defined v0 = d/Δt and cd = m/Δt.
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Extended Data Fig. 3 | Microscopic origin of anti-symmetric stress. a. Schematic of orbital angular momentum change during collision. When two 

frictional active spinners collide, the angular momentum of self-spinning can be interchanged with the angular momentum of orbital motion around their 

center-of-mass, L = mvrelb, where vrel is the relative moving speed of the particles and b is the impact parameter. The resultant change in the orbital angular 

momentum ΔL = Lout − Lin gives rise to effective anti-symmetric stress exerted onto the chiral active fluid at the macroscopic level. In the Supplementary 

Sec. III, we provide a simple kinetic theory to derive the linear relation between anti-symmetric stress τ and the average orbital angular momentum change 

ΔL  during collision, τ =

√

πk

B

T

eff

/m · dn
2

· ΔL . b. Validation of our kinetic theory. We measure the average orbital angular momentum change ΔL  by 

performing scattering simulations and then use it to predict the anti-symmetric stress τ based upon the kinetic theory. The prediction on τ from ΔL  agrees 

well with the simulation measurement of a many-body system at the steady state.
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Extended Data Fig. 4 | transverse mode in a shock wave. a. Shock wave. A piston moving at speed U = 1.9d/Δt (faster than the speed of sound 

c = 1.4d/Δt) generates a shock wave accompanied with transverse flows, which is characterized by the vertical flow velocity uy (gradient coloring). The 

particles self-spin counter-clockwise at speed Ω = 25.3/Δt and have an initial global density n0 = 0.125d−2. According to the viscid burgers’ equation 

∂

t

u+ u∂

x

u = ν∂

2

x

u, the width of this shock is approximately λs = 4ν/U, where ν = η/n0m is the kinematic viscosity. Hydrodynamic profiles are quantified 

near the wave front. Also see Supplementary Mov. S8. b. Density profile n(x). The simulation results are compared with continuum hydrodynamic theory 

(solid line), which employs parameters measured in a separate homogeneous microscopic systems of number density n0 (dashed line). Thus, theoretical 

predictions would break down at extreme densities (shaded region). c. Horizontal flow velocity ux(x). d. Vertical flow velocity uy(x). The same color coding 

as panel A is applied here. Predictions using continuum hydrodynamic theory are plotted as solid lines.
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Extended Data Fig. 5 | Power spectra of the velocity–velocity correlation functions ⟨u
a

(k, ω)u∗
b

(k, ω)⟩. Here we compare the measured velocity–velocity 

correlation functions with the empirical prediction using fluctuating hydrodynamic theory. a. Correlation functions directly measured in the particle-based 

simulations of our chiral active fluid. b. Correlation functions predicted using the fluctuating hydrodynamic theory with the measured stress–stress 

correlation functions and viscosity tensor. The empirical prediction matches with the simulation results expect at very high k-modes, where the linear 

response approximation is no longer valid. Although the comparison is made at a given wave frequency ω0 = 0.055π/Δt, the consistency between direct 

measurements in simulations and predictions using fluctuating hydrodynamic theory generally holds at all wave frequencies.
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