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Toward Discriminating and Synthesizing Motion
Traces Using Deep Probabilistic Generative Models

Fan Zhou ,Member, IEEE, Xin Liu, Kunpeng Zhang, and Goce Trajcevski,Member, IEEE

Abstract— Mining knowledge from human mobility, such as
discriminating motion traces left by different anonymous users,
also known as the trajectory-user linking (TUL) problem, is an
important task in many applications requiring location-based
services (LBSs). However, it inevitably raises an issue that may
be aggravated by TUL, i.e., how to defend against location
attacks (e.g., deanonymization and location recovery). In this
work, we present a Semisupervised Trajectory- User Linking
model with Interpretable representation and Gaussian mixture
prior (STULIG)—a novel deep probabilistic framework for
jointly learning disentangled representation of user trajectories
in a semisupervised manner and tackling the location recovery
problem. STULIG characterizes multiple latent aspects of human
trajectories and their labels into separate latent variables, which
can be then used to interpret user check-in styles and improve
the performance of trace classification. It can also generate
synthetic yet plausible trajectories, thus protecting users’ actual
locations while preserving the meaningful mobility information
for various machine learning tasks. We analyze and evaluate
STULIG’s ability to learn disentangled representations, discrim-
inating human traces and generating realistic motions on several
real-world mobility data sets. As demonstrated by extensive
experimental evaluations, in addition to outperforming the state-
of-the-art methods, our method provides intuitive explanations
of the classification and generation and sheds lights on the
interpretable mobility mining.

Index Terms— Disentangled representation, location privacy,
trace discrimination, variational autoencoder (VAE).

NOMENCLATURE
U Set of users.
ci,u ith check-in by useru.
Tu Trajectory generated by useru.
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T Unlabeled trajectory.
T Set of unlabeled trajectories.
θandφ Parameters of decoder and encoder.
zandpθ(z) Latent factor and its prior.
L(∗) Evidence lower bound (ELBO).
p(T|z) Generative networks (decoder).
q(z|T) Inference networks (encoder).
q(u|T) Classifier needs to estimated.
p(z1)∼N(0,I) Unimodal Gaussian.
p(z2|z1) Mixture of Gaussians.

I. INTRODUCTION

RECORDING large volumes of geotagged behavioral data
enabled by location-based social networks (LBSNs),

e.g., Foursquare, Yelp, and Instagram, has recently spurred
research activities on uncovering user check-in preference and
moving patterns, which are important for many downstream
applications, such as venue recommendation [1], next location
prediction [2], [3], social link/circle prediction [4], and human
trace classification [5], [6]. Recently, an important human
mobility task called trajectory-user linking (TUL) [5], [6]
has received increased research attention. The objective of
TUL is to discriminate and classify the unknown motion
footprints to known users in LBSN. This is crucial for a
variety of downstream practical tasks, ranging from iden-
tifying the suspects/criminals and recommending personal-
ized items to spatial event detection and epidemic trend
prediction.
At the core of human mobility pattern mining are various
machine learning models depending on the data modeling and
representation. For example, for data representing continuous
check-ins, classical time series models [e.g., Markov chain,
hidden Markov model (HMM), and recurrent neural networks
(RNNs)] are widely used to mine the dependences among
spatiotemporal data samples [7]. If the data are structured
as a matrix and the target problem is recommendation, col-
laborative filtering techniques, such as matrix factorization
and its many variants, are thede factoframework [8], [9].
Recently, deep learning-based models have readdressed many
spatiotemporal prediction tasks providing improvements over
the state-of-the-art models in many aspects. For example,
the RNN-based models, such as LSTM [10] and GRU [11],
have been recently adapted for modeling the human mobil-
ity [3], [12], largely due to their flexibility in capturing
longer term dependences among locations. RNN-based mod-
els were also proposed for improving point-of-interest (POI)
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recommendation performance [13], inferring the social com-
munity each user belongs to by exploiting their check-in
behavior in trajectories [4]. Other deep learning techniques,
such as attention mechanism and generative models, have
also been exploited to improve the mobility learning perfor-
mance [6], [14].
From a broad perspective, the existing methods usually

capture the sequential check-in patterns with recurrent units
combined with various attention mechanisms and make pre-
dictions based on the hidden states of recurrent layers. While
outperforming traditional mobility modeling methods based on
Markov chain (MC), they still have several limitations.
L1 (Interpretability):Lack of disentangled representation of
the latent factors governing human mobility patterns.
L2 (Unlabeled Data):While generating a large amount of

geotagged data, LBSNs usually do not allow the leakage of
data labels, e.g., the user name and profile information, due
to privacy issues, which renders a vast number of unlabeled
data unusable.
L3 (Structural and Periodical Mobility):Existing models
usually focus on learning transition regularities of users’
trajectories, ignoring the fact that human movements may
exhibit multilevel periodicity.
L4 (Efficiency):RNN models are often more delicate to

tune and more brittle to train, accompanied by significant
computational burden compared with standard feedforward
architectures.
L5 (Privacy):Due to the sensitivity of location data, using

real LBSN data raises privacy concerns (i.e., exposing sensitive
personal information) which may be worsened by the TUL
enabling user deanonymization and location recovery attacks.
In this work, we propose a methodology for tackling the

TUL problem in a manner that enables overcoming the limi-
tations discussed earlier. Specifically, we focus on interpreting
the trajectory generating process by analyzing the disentangled
latent space of the trajectory data. Toward addressing the
critical limitations, we propose a Semisupervised Trajectory-
User Linking model with Interpretable representation and
Gaussian mixture prior (STULIG).
STULIG tackles L1 (Interpretability) by using a variational

autoencoder (VAE) model with a mixture of Gaussians (MoG)
as the prior of the latent variables. This allows us to encode
distinct aspects of human trajectories into separate latent
variables and infer latent distributions where a trajectory is
generated. By incorporating the unlabeled trajectories into the
supervised TUL task under such a semisupervised framework,
STULIG is capable of addressing L2 through encoding tra-
jectory labels (e.g., users) as one of the disentangled latent
variables. This is also helpful in interpreting the user-generated
trajectories from multiple angles—we may understand user
identities from one latent variable while their movement
patterns from other(s).
For L3 and L4, we propose to learn the human mobility

with feedforward architectures, such as convolutional neural
networks (CNNs) that are able to capture the structural and
periodical patterns of human mobility and can significantly
improve the learning efficiency. Empirically, we demonstrate
that STULIG, combined with carefully tuned semisupervised

Bayesian networks, exhibit comparable performance with the
existing RNN-based models.
Lastly but more importantly, STULIG is a deep generative
model that can generate synthetic but realistic trajectories for
individual users, which could preserve the real traces and yet
enable machine learning tasks using only generated data. This
property of STULIG allows us to release fake samples for
research/commercial usage without sacrificing location privacy
(see L5)—enabling compliance with data-privacy regulations
such as the European General Data Protection Regulation
(GDPR).
In sum, the main contributions of this work are given in the
following:

1) a novel semisupervised human mobility learning model
which utilizes spatiotemporal features of POIs and rich
unlabeled data to improvethe TUL performance and
training efficiency;

2) a disentangled latent factor learning model for capturing
human mobility patterns that can interpret the trajectory
generation in LBSNs and can be used for synthesizing
plausible mobility patterns;

3) extensive experimental evaluations illustrating the
improvements enabled by STULIG over existing models
on model interpretation, trace discrimination, and realis-
tic trajectory generation, using publicly available LBSN
data sets.

The remainder of this article is organized as follows. We dis-
cuss the related work in Section II and introduce the problem
and provide the necessary background in Section III. The
details of the proposed method are presented in Section IV,
followed by the report on comprehensive experimental obser-
vations against baselines in Section V. We conclude this article
and point some future work remarks in Section VI.

II. RELATEDWORK

We now position STULIG with respect to the related
literature, categorized in three main bodies of works.

A. Mobility Pattern Mining

Unveiling the governing properties of mobility behavior has
been a trending research topic in AI [5], [12], [15]–[17],
GIS [4], [18], and venue recommendation systems [1]. Tra-
ditionally, human trajectories are modeled via MCs, which
can typically capture short-term dependence of user check-
ins [19]. In recent years, RNNs become a popular paradigm for
modeling sequential data and have achieved great performance
in many NLP tasks. Not surprisingly, RNNs have been adopted
and widely used to model (human) mobility due to their flex-
ibility in capturing longer term dependence among check-in
locations. Numerous works have been proposed to learn
human mobility and check-in preferences with various RNN
models, including prediction of next check-in location [2],
[12], venue recommendation [13], and identifying the users
of the trajectories [6]. However, these RNN-based supervised
trajectory models suffer from the lack of interpretability of
the latent factors governing motion, as well as the efficiency.
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In other words, RNN is well known to be difficult to train and
computationally expensive.
In this work, we tackle the TUL problem with a novel

model that is capable of learning latent factors governing user
trajectories and is more efficient than the existing approaches,
by utilizing feedforward networks (and without sacrificing
effectiveness in comparison with related works).

B. Deep Generative Models

Deep generative models, such as VAE [20], provides a
general framework for learning representation of data by fitting
a latent variable and allowing inference of the learned latent
representation. The latent encoding can also serve as a com-
pressed representation for various downstream tasks, such as
image generation [20], [21], text classification [22], [23], and
trajectory identification [6]. However, an individual dimension
of the latent representation does not necessarily encode any
particular semantically meaningful variation [as would the
classical principal component analysis (PCA)] and, in general,
is not directly amenable to human interpretation [21]. These
issues motivated many recent articles to introduce mecha-
nisms for encoding disentangled latent variables [21], [24]
for alleviating the problem of poor reconstruction quality in
VAEs [25], [26].
In this spirit, the most relevant recent work TULVAE

[6]—which extends [5]—usesa generative model to capture
latent factors. However, the model follows regular VAEs
without encoding disentangled representation of trajectories
and, consequently, is not sufficient for interpreting complex
trajectories generation. In addition, both [5] and [6] suffer
computational overheads due to their RNN-based encoder–
decoder.
The STULIG model is inspired by recent advances in

improving interpretability of VAEs [27], [28]. While MoG
prior is also used in [27], the work focuses on unsuper-
vised clustering of data with VAE. Complementary to this,
although [28] is a semisupervised VAE-based model, it is
limited to importance weight-based data reconstruction and
thus makes the posterior inference intractable. Hence, STULIG
differs from this body of earlier works because it tack-
les the disentangled representation learning and latent vari-
able inference problem in human mobility trajectories, learns
both sequential and periodical semantics of human check-in
sequences, incorporates the unlabeled data for both discrim-
inating individual mobility pattern and encoding supervised
data for some subset of the variables, and introduces a new
Evidence Lower BOund (ELBO), tailored for addressing the
TUL problem.

C. Generating Plausible Traces

There is a growing interest in releasing data sets for research
and commercial usage. Privacy policies of data holders, how-
ever, prevent them from sharing their sensitive data [29].
A possible way of tackling this paradox is to allow researchers
to access the synthetic data records rather than the real data.
Therefore, a major open problem is how to generate synthetic
data with provable privacy and to achieve promising utility in

various machine learning settings. In this aspect, a privacy-
preserving generative model to synthesize location traces by
generating consistent lifestyles, meaningful mobilities, and
geographical similar traces was presented in [30]. However,
their models require the full semantics of the traces (e.g.,
the categories of locations) as the seeds and suffer computa-
tional complexity for preserving high-order semantic features.
Another recent work [31] synthesizes trajectory by directly
leveraging Wasserstein GAN with gradient penalty [32], which
is problematic due to the unstable training and bias loss when
applying GANs to discrete data [33].

III. PRELIMINARIES

We now introduce the basic notations and the problem
definition, along with the background on VAE and semi-VAE.
LetTu={c1,u,...,cn,u}denote a trajectory generated by
the useruduring a given time interval, whereci,u(i∈[1,n])
is aith check-in for the useru, associated with a check-in time
ci,u·t=tiand geolocationci,u·g= ci,u·lo,ci,u·la,where
loandlacorrespond to a longitude and latitude. A trajectory
Tfor which we do not know the user who generated it is
called unlinked. The frequently used notations in this article
are given in the Nomenclature.

A. Trajectory-User Linking (See [5])

Suppose that we have a number of unlinked trajectoriesT=
{T1,...,TM}produced by a set of usersU={u1,...,uN}
(M N). The TUL problem is to learn a classifying function
that links unlinked trajectories to users:T→ U.

B. Trajectory Generative Model

Given a data set consisting of pairs
(Tu1,u1),...,(Tum,um), with theith trajectoryTui∈Tand
the corresponding user (label)ui∈U, we assume that the
observed trajectoryTuiis generated by a latent variablezi.
We omit the indexiwhenever it is clear that we are referring
to terms associated with a single data point, i.e., a trajectory.
We aim at maximizing the probability of each trajectory
Tin the training set under the generative model, according
topθ(T)= zpθ(T|z)pθ(z)dz,wherepθ(T|z)refers to a
generative model or decoder,pθ(z)is the prior distribution
of the random latent variablez, e.g., an isotropic multivariate
Gaussian:pθ(z)=N(0,I)(Iis the identity matrix), andθis
the generative parameters of the model.

C. Variational Autoencoders (See [20])

Typically, to estimate the generative parameters θ,
the ELBO—denoted asL(T)—on the marginal likelihood of
a single trajectory is used as the objective.

logpθ(T)≥logpθ(T)−KL[qφ(z|T) pθ(z|T)] L(T)

=Eqφ(z|T)[logpθ(T|z)]−KL[qφ(z|T)||pθ(z)]

(1)

where qφ(z|T)is an approximation to the true posterior
pθ(z|T)(also known as recognition model or encoder) para-
meterized byφ.KL[qφ(z|T)||pθ(z)]is the Kullback–Leibler
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divergence between the learned latent posterior distribution
q(z|T)and the priorp(z)(for brevity, we will omit the
parametersφandθin the subsequent formulas). Since the
objective is to minimize the KL divergence betweenq(z|T)
and the true distributionp(z|T), we can alternatively maximize
ELBOL(T)of logp(T,u)with respect to bothθandφ,
which are jointly trained with separate neural networks such
as multilayer perceptrons.

IV. PROPOSEDSTULIG APPROACH

In this section, we focus on the fundamental aspects of our
proposed STULIG model.
From a high-level overview perspective, STULIG is a deep

Bayesian generative model proposed for mining human mobil-
ity data. It consists of three main components: 1) contextual
POI embedding, which learns the POI representation in a
fully unsupervised manner; 2) latent factor learning model is
a mobility generative model, which extends VAE with more
interpretable multimodal Gaussian posterior approximation;
and 3) semisupervised mobility classification, which aims at
combining the learned latent factors to classify human trajec-
tories in a semisupervised learning manner. In the rest of this
section, we describe each of these components in greater detail
and conclude with a discussion on implementation aspects.

A. Contextual POI Embedding

We use a simple yet effective embedding layer to incor-
porate contextual factors to represent the check-ins. Specif-
ically, we embed each check-incias a low-dimensional
vectorvsi∈R

diusing any distributed representation method,
such as word2vec [34]. Here, we follow previous works [3],
[12] using the CBOW architecture to embed the check-in
ids, which is to predict this check-in given its contexts in
a trajectory. We trained the check-in id embedding on all
available trajectories. Since the check-in timeci·tcan be
quantized into discrete time intervals, we denote eachci·tas
a 24-D one-hot vectorvti. The geographical location of each
check-in representation is obtained by transforming its dense
representation (i.e.,ci·lo,ci·la) to a low-dimensional vector
v
g
ithrough a simple fully connected network with nonlinear
transformation. Finally, we concatenate(⊕)the three vectors
asvi=[v

s
i⊕v

t
i⊕v

g
i]∈R

dto represent the contextual
information associated with each check-in.
Typically, the trajectories of a given useruiare generated

across multiple days. Previous research suggests segment-
ing the trajectory dataTintokconsecutive subsequences
T1,...,Tk,wherekis the number of days on which a user
uihas check-in activities. In this work, we consider two
additional contexts when splitting an individual trajectory in
a daily frequency: 1) temporal—an individual trajectoryTjis

split intoT
j
1,T

j
2,...,T

j
mformdistinct periods within a given

day [following [5], in our experimentsm=4 (i.e., 6-h inter-

vals)] and 2) spatial—we further split a subtrajectoryT
j
linto

T
j
l,1,T

j
l,2,...,T

j
l,swhenever the corresponding distance (e.g.,

Euclidian, road network, and travel time) between the last POI
inT

j
l,iand the first POI inT

j
l,i+1exceeds a certain threshold.

For instance, in [35], it is reported that transition distances

Fig. 1. Probabilistic graphical models of STULIG. (a) Generative model.
(b) Inference model.

are usually less than 50 km. After the above preprocessing,
a trajectory is embedded into a2-D latent matrix, which can
be treated as an image.

B. Interpretable Latent Factor Models

We now develop a more interpretable representation of
mobility data and explain its generative and inference model.
When learning the human mobility behavior, one confronts
the challenges of data scarcity and limited labeled data [1],
[6]. We are interested in leveraging abundant unlabeled data
to improve the performance of the supervised tasks, such as
TUL. However, there are variations in the mobility that are
easy to understand, e.g., identity and spatiotemporal features,
and other variations that are less explainable, such as the
moving patterns and trajectory semantics. Thus, it is desirable
to partially specify the explicit variation from which we can
extract supervision signals for disentangled representation with
probabilistic graphical models while leaving the rest to be in
an entangled manner that can be learned with deep generative
models.
To enable semisupervised learning and disentangled mobil-
ity representation, we consider a more general class of prob-
abilistic graphical models in which the trajectory data are
generated hierarchically and the approximate posterior can be
conditioned on different distributions depending on the latent
factors we can partially specify.
1) Generative Model:Previous VAE-based works usually
rely on an isotropic Gaussian as the prior of the latent
variable [6], [22], [36]. This, however, is limited because the
learned representation is unimodal and does not allow for
interpretability. A number of works have tackled this limi-
tation. One group of ELBO extensions [25], [26] focused on
improving the quality of latent representation by introducing
more sophisticated regularization of the ELBO. Other recent
works have suggested that one should improve the priors
rather than paying attention only to the reconstruction part
(see [37], [38]).
In STULIG, we choose an MoG as the prior, which
results in a structural trajectory generative model [as shown
in Fig. 1(a)]

p(T,u,z1,z2)=p(u)p(z1)p(z2|z1)p(T|u,z1,z2) (2)

where the prior p(u)is a multinomial distribution, treated
as the latent variable if the class label (e.g., the user) is
unavailable; the latent factorz1is an unimodal Gaussian
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p(z1)= N(0,I),p(T|u,z1,z2)can be considered as a
trajectory reconstruction from the latent space, andz2is an
MoG parameterized by a neural network

p(z2|z1)=

K

k=1

πkN z2|µk(z1),diagσ
2
k(z1) (3)

p(T|u,z1,z2)=N T|µλ(u,z1,z2),diagσ
2
λ(u,z1,z2).

(4)

In (3),Kis the number of components in the mixture and
πkis the mixture weight representing the prior probability of
thekth component such that kπk=1. In our implemen-
tation, we setπk=1/Kto make it uniformly distributed.
As a hierarchical VAE, a data sampleTis generated from
a nonlinear transformationp(T|u,z1,z2)conditioned on the
latent variables, i.e., the partially observed labelu,z1,and
MoG z2. These latent variables are marginally independent
and allow us, in the case of trajectory generation for example,
to disentangle the generating user from the moving patterns
of a particular trajectory. This MoG prior not only provides
rich and multimodal interpretation of the latent variables—
and correspondingly disentangles the factors governing human
mobility from the trajectory semantics—but also prevents
the KL term from pulling individual posteriors toward a
simple prior, also known as the inactive stochastic units
problem [27], [38].
2) Inference Model:In a fully unsupervised learning gener-

ative model, there is generallyno guarantee that the inference
on a mobility data set withN users will actually recover
the trajectories belonging toNdifferent individuals because
of the unknown factors governing human mobility patterns.
For example, the trajectories vary both in terms of users
(whom each belongs to) and spatiotemporal patterns (where
and when the trajectory is produced). This argument also holds
for images, e.g., the images of handwritten digits vary both in
terms of content (which digit is present) and style (how the
digit is written) [28]. In recent studies [39], [40], researchers
have demonstrated that purely unsupervised disentangled rep-
resentation learning methodsare brittle. In contrast, a few
number of labeled trajectories makes the data inference sig-
nificantly easier [41], and, more importantly, one can specify
a disentangled factor governing the data generation. As the
mobility data estimation of the unsupervised data is exactly
the same as the conventional VAE [see (1)], we focus on the
case where the user labeluis observed.
Specifically, we use a two-layered inference model in

STULIG

q(u,z1,z2|T)=q(z2|T,u,z1)q(z1|T)q(u|T) (5)

whereq(u|T)indicates the probability that trajectoryTis
generated by useruand acts as a classifier for TUL task
that should be estimated; bothq(z1|T)andq(z2|T,u,z1)are
conditional distributions thatperform approximate inference
and are parameterized by neural networks

q(z1|T)=N z1|µψ(T),diagσ
2
ψ(T)

q(z2|T,u,z1)=N z2|µξ(T,u,z1),diagσ
2
ξ(T,u,z1).

(6)

Note that the inference model explicitly indicates a con-
ditional dependence among the latent variables, which disen-
tangles the partially observed identityufrom the trajectory
patternsz2, as shown in Fig. 1(b).
3) Objective:The generative model and the inference model
act as decoder and encoder, respectively, and together define
a probabilistic autoencoder. Therefore, our STULIG model is
fit by maximizing on labeled mobility data

logp(T,u)=log q(z1,z2|T,u)
p(T,u,z1,z2)

q(z1,z2|T,u)
dz1dz2

≥Eq(z1,z2|T,u)log
p(T,u,z1,z2)

q(z1,z2|T,u)
(7)

=Ez1∼q(z1|T),z2∼q(z2|T,u,z1)log
p(T,u,z1,z2)

q(z1,z2|T,u)
(8)

which is obtained via Jensen inequality for multiple
variables [42]. We note that in (7), the factoriza-
tionq(z1,z2|T,u) = q(z1|T)q(z2|T,u,z1)is implicitly
assumed—however, it can be easily verified based on the
inference network depicted by the graphical model in Fig. 1(b).
Now, we can derive the ELBOLlforlabeleddata in

STULIG as

Ll=Ez1,z2 log
p(T,u,z1,z2)

q(z2|T,u,z1)
−logq(z1|T)

=Ez1,z2[logp(T|u,z1,z2)+logp(u)+logp(z1)

+logp(z2|z1)−logq(z2|T,u,z1)−logq(z1|T)]

=Ez1,z2[logp(T|u,z1,z2)]+logp(u)

−KL[q(z1|T)||p(z1)]−KL[q(z2|T,u,z1)||p(z2|z1)]

(9)

where the first term is the reconstruction cost, encouraging the
model to encode the trajectory data into a set of latent variables
z1andz2, combined with partially observed identityu,which
can efficiently reconstruct the data, and the two KL terms are
regularizers that encourage the inferred latent factors [see (6)]
to match the two priors—isotropic multivariate Gaussian and
MoG, respectively.
As for the unlabeled mobility data, the user identity is
predicted by performing posterior inference with the classifier
q(u|T), that is, we consideruas a latent factor and have the
following ELBO:

logp(T)≥Ez1∼q(z1|T),z2∼q(z2,u|T,z1)

×[logp(T|u,z1,z2)+logp(u)+logp(z1)

+logp(z2|z1)−logq(z2,u|T,z1)

−logq(z1|T)] (10)

=Ez1∼q(z1|T),z2∼q(z2|T,u,z1)

×(q(u|T)Ll−q(u|T)logq(u|T)) (11)

=
u

q(u|T)Ll+S(q(u|T)) Lu (12)

where (11) is obtained with the factorizationq(z2,u|T,z1)=
q(z2|T,u,z1)q(u|T),andS(q(u|T))is the information
entropy ofq(u|T). The loss of the classifierq(u|T)during
training is measured byL2reconstruction error between the
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predicted identity and the pseudolabel. Here, we need to eval-
uate the generative likelihood for each class during training,
meaning that we assume a pseudolabel (e.g., a particular user,
in this case) and calculate itsloss in each iteration. We repeat
this process for all classes, similar to the semi-VAE-based
image [36] and text classification [22].
Finally, we have the ELBOLSTULIGon the entire data set

LSTULIG=−

(T,u)∼Dl

(Ll+αlogq(u|T))−
T∼Du

Lu (13)

where the first RHS term includes an additional classification
loss of classifierq(u|T)when learning from the labeled
data, and hyperparameterαcontrols the relative strength of
the labeled data. Therefore, instead of directly performing
maximum likelihood estimation on the intractable marginal
log-likelihood, training is done by maximizing the tractable
ELBOLSTULIG.

C. Semisupervised Trace Discriminating

1) Efficiency Issues:Note that the extra probabilityq(u|T)
in the labeled data [see (13)] is similar to previous semi-
VAE-based models [6], [22], [36]. However, training classifier
q(u|T)only onDu(unlabeled data) is biased and cannot be
accurately verified without the labels. In contrast, the clas-
sification loss is easily estimated with the labeled data and,
therefore, can be leveraged to construct the best knowledge of
the classifier through the entire data set if the distribution of
labeled data and unlabeled data is consistent, i.e., the learned
classifier on labeled data can be generalized to data without
labels.
In the previous works [6], [22], [36], a classifierq(u|T)is

trained to predict the labels of unlabeled dataDu.However,
since one cannot directly evaluate the loss onDu, the predicted
label probabilities are employed as the (normalized) weight
to label the data and iteratively compare them with the
pseudolabels. More specifically, letu∈R1×N be the user
vector, and itsith valueui=1 indicates that the (predicted)
label for a trajectoryTisui. Then, one can predict its
label with a softmax function and obtain the probabilities
of label distributionp= p1,...,pN, meaning thatThas
pjprobability generated by useruj. Thus, it is easy to
calculate the loss between the predicted label distributionp
and the pseudolabels to train the unlabeled data as in (12).
The major drawbacks of this evaluation on unlabeled data
are that the computational overhead is expensive, especially
for a larger number of labelsN. For example, it requires
N×Mevaluations forMtrajectories in a single epoch during
training.
2) Geographical Regularization:In this work, we present

a simple but efficient method to overcome the limitations
of previous semi-VAE models. The motivation is that if the
numberNof labels can be largely reduced in each epoch,
we can significantly reduce the training time—since the num-
berMof trajectories is constant. Fortunately, this goal can be
achieved by leveraging the geographical distribution of human
trajectories. In fact, it has been observed that users’ mobility
preference is constrained by geographical distance [43], [44],

i.e., users prefer to visit nearby POIs and the activity of most
(if not all) users is within a small number of regions, which
is also observed in our experiments—the detailed description
and discussions can be found in Section V.
More specifically, for each user u∈U,wefirstcluster
his/her trajectories (labeled) intoRregions based on their
locations using DBSCAN [45], whereRvaries from user
to user. Then, we can build an index table for all unlabeled
trajectoriesTsuch that eachT∈Tis (at most) associated
withQusers, who have labeled historical trajectories located
within the region thatTbelongs to—which can be simply
calculated based on the distance between the center of the
region and the center of the trajectory. Therefore, we incorpo-
rate the prior knowledge of such geographical distribution to
limit the possible labelsQof each unknown trajectory such
thatQ N. As we will show in Section V, our model can
not only save considerable training time but also alleviates the
biased estimation of unlabeledtrajectories by leveraging the
geographical features of human mobility.

D. Implementation Issues

We now discuss the implementation details of the STULIG
model and its variant STUL.
1) Trajectory Convolution:Instead of using RNNs as most
previous work in modeling human mobility [2], [5], [6], [12],
[13], [46], [47], we use CNNs as the implementation of
encoder–decoder. Recall that we segment each trajectory every
6 h and treat it as a 2-D matrix where, as a consequence,
the temporal periodicity has been embedded into the matrix.
In this way, it is easy for our model to capture the multilevel
periodic patterns of human mobility with the convolutional
operations. This choice is motivated by the fact that a growing
number of works have successfully replaced RNNs, partially
or entirely, with CNNs in some important tasks where RNNs
were dominant for a long while. For example, convolutional
seq2seq [48] explored CNNs to encode/decode sentences and
achieves remarkable results on machine translation. In this
spirit, recent work [49], [50] shows empirically and theoret-
ically that there is an equivalence between recurrent models
and feedforward architectures. Another reason for this choice
is that RNN models are often more delicate to tune and more
brittle to train, accompanied with significant computational
burden, in comparison with the standard feedforward archi-
tectures such as CNNs.
2) Variant:We also consider a variant of STULIG, called
semisupervised TUL (STUL), which is similar to STULIG
except that it only uses an isotropic Gaussian as the prior
oflatent variablez. The reason for considering this variant
is to investigate: 1) the disentangled representation ability of
STULIG and 2) the advantage of our models, in terms of both
effectiveness (the TUL performance) and learning efficiency
(compared to previous RNN-based methods).
3) Attention:In order to investigate the performance of
STULIG, we add a deterministic attention mechanism [51]
into our two models. Note that the existing works have found
that the attention mechanism itself is powerful enough to
capture sequence information and thus results in a useless
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TABLE I

DATADESCRIPTION

variational latent space [52]. However, we surprisingly observe
that the attention mechanism only affects STUL but has little
effects on the performance of STULIG—which empirically
demonstrates, at least to some extent, the capabilities of the
structural disentangled representation of STULIG.
4) Generating Synthetic Trajectories:We adapted the VAE
to human mobility learning by using convolutional seq2seq for
the encoder and the decoder, essentially forming a sequence
autoencoder with the MoG prior acting as a regularizer on
the hidden factors. The decoder, therefore, serves as a special
trajectory generator model, conditioned on the hidden factors.
We will show that the proposed generative model has the
potential to model the human-mobility generating distribution.
Besides, it allows us to train a generative model on the original
data and only publish the synthetic data, so as to preserve the
location privacy of users.

V. EXPERIMENTALEVA L UAT I O N

We now present the results of our experiments using three
real-world data sets regarding the ability to discriminate
motion traces, learn disentangled representations, as well as
generate plausible synthetic traces. To ease the reproducibility
of our results, we have made the source code publicly avail-
able.1

Data Sets:We conduct all the experiments on three pub-
licly available LBSN data sets: Gowalla,2Foursquare,3and
Brightkite.4We prepare the data set for our needs in two
phases. We first randomly select|U|users and their corre-
sponding trajectories from the data sets for evaluation. Subse-
quently, for each data set, we select two different sets of users
(i.e., the labels of trajectories) for model robustness check.
For each user, we randomly select half of her trajectories for
training and the rest for testing. When training the semisuper-
vised models, the testing data are treated as unlabeled data.
Table I shows the basic statistics of the data sets, where|U|is
the number of users,|Tn|/|Te|is the number of trajectories for
training/testing,|C|is number of check-ins,Ris the average
length of trajectories (before splitting), andTrdenotes the
range of the trajectory length (after splitting).

A. Motion Discrimination and Interpretability

TUL Baselines:We compare STUL and STULIG with sev-
eral state-of-the-art approaches from the field of RNN-based

1https://github.com/gcooq/STULIG
2http://snap.stanford.edu/data/loc-gowalla.html
3https://sites.google.com/site/yangdingqi/home
4http://snap.stanford.edu/data/loc-brightkite.html

TABLE II

ARCHITECTURES OFENCODER AND DECODER.CONV:CONVOLUTION.
MP: MAXPOOLING.FC:FULLYCONNECTED

human-mobility classification and prediction. We omit the
comparison to traditional trajectory classification methods
such as SVM, decision tree, and long common subse-
quence (LCSS) that have been demonstrated inferior to
TULERs [5] and TULVAE [6]. The baselines can be broadly
grouped as follows.

1)RNN-Based TUL:Including HTULER-L, TULER-GRU,
TULER-LSTM-S, TULER-GRU-S, and Bi-TULER pro-
posed in [5]—the first set of methods for TUL.

2)Hierarchical RNN-Based TUL: Including TULER-
LSTM, HTULER-G, HTULER-B, TULER-GRU-S, and
Bi-TULER proposed in [6], respectively, implemented
with the hierarchical LSTM, GRU and Bi-LSTM.

3)TULVAE [6]:The state-of-the-art TUL method using
bidirectional LSTM as the encoder–decoder and
isotropic multivariate Gaussian as the prior of latent
space.

Model Parameters:The learning rate of all models is initial-
ized with 0.001 and decays with a rate of 0.9. The activation
function for all methods is ReLU, and the dropout rate is set
to 0.5, while the batch size is 64 for all RNN-based models
(following [6]) and 32 for STUL and STULIG. We embed each
POI id into a 250-D vector. We represent the geographical
location of each POI as a 50-D vector after mapping its
longitude and latitude value through an FCN, and use a
24-D one-hot vector to embed the timestamps. Therefore, each
POI is represented as a 324-D vector. Furthermore, we use
300 neuron units for the classifier and 512 units for both
encoders and decoders for all the models. The dimensions of
z1andz2of STULIG are 128 and 50, respectively, and the
dimensions ofzin STUL and TULVAE is 256, which ensures
that the size of the input in all decoders is the same across the
three models. The parametersKandαfor STULIG are set to
15 and 0.3, respectively, unless otherwise specified. For STUL
and STULIG, both the encoder and the decoder are three-layer
CNN architectures, as described in Table II.
TUL Metrics:We use the standard ACC@K (K =1, 5),
macro-P, macro-R, and macro-F1 to evaluate TUL perfor-
mance for all methods, following the previous works [5], [6].

1) Performance Comparison:Table III summarizes the
performance comparisons among the proposed methods and
all the baselines on three data sets. The improvements of
STULIG over the compared algorithms all passed the paired
t-tests with a significance valuep<0.01. One can observe
that STULIG consistently outperforms all the baselines (as
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TABLE III

TUL PERFORMANCECOMPARISONAMONGDIFFERENTMETHODS ONTHREEDATASETS.THEBESTMETHODISSHOWN INBOLD,
AND THESECONDBESTISSHOWN ASUNDERLINED.∗INDICATES THESTATI S TI CALSIGNIFICANCEP<0.001 COMPARED

WITH THEBESTBASELINEMETHODBASED ON THEPAIRED T-TEST

well as STUL) for all metrics in all data sets. These results
imply that the proposed CNN-based semisupervised model
with structural MoG is more effective than the state-of-the-
art RNN-based human-mobility learning models, as well as the
regular VAE-based models. We note that the improvement over
RNN-based encoder–decoder methods and regular VAE-based
models (e.g., TULVAE and STUL) is less significant, espe-
cially for the smaller size of data sets (e.g.,|U| =34 in
Brightkite). This, in a sense, explains the “bypassing” problem
of attention-based encoder–decoder models, i.e., variational
latent space does not need to learn much as the attention
mechanism alone can capture enough sequence information.
However, when examining the discrepancy between our two
models, we can quantitatively obtain the TUL performance
gain of the proposed disentangled representation learning
model, which demonstrates the ability of the STULIG model
for addressing the bypassing issue.
If we inspect the performance between STUL—a simpli-
fied version of STULIG withoutdisentangled latent space—
versus TULVAE, we can observe that they achieve almost
the same performance (usually exhibiting the second-best
performance). This confirms our motivation that CNN-like
feedforward methods can achieve comparable performance on
the TUL task with RNN-based models. While RNN is slightly

better on sequential pattern learning, CNN is more effective
on learning periodical patterns (quantitative investigation of
the two different mobility patterns is still an open question
and is part of the future work). We utilized the convolutional
seq2seq model instead of the autoregressive encoder–decoder
in TULVAE. This choice enables our models, to some extent,
avoiding the “posterior collapse” problem, i.e., the model can
ignore the latent variables if autoregressive encoder–decoder is
expressive enough to model the data density, resulting in a triv-
ial posterior that collapses to the prior [51], [53]. To overcome
this problem, the existing methods either introduce annealing
factor to weaken the KL terms in (1) [51], [52] or augment the
objective, so it does not only maximize the likelihood of the
data [53], [54], both of which are often challenging to tune and
highly sensitive to hyperparameters. This problem would be
aggravated by incorporating attention mechanism [52], which,
however, has not been observed in our models—albeit the
attention mechanism plays less important role on improving
the TUL performance of STULIG.
As part of our work, we investigated the interpretability
of mobile traces learning and the explicit independence of
disentangled representation of our models. Fig. 2(a) shows the
latent space of our STULIG model, which clearly displays the
learnedz2as MoG. In contrast, Fig. 2(b) shows the learnedz
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Fig. 2. Latent space visualization using t-SNE (|U|=112 in Gowalla).
(a) Learned latent space of STULIGz2 ∼ q(z2|T,u,z1)(K = 15),
colored components indicating normal distributions. (b) Learned latent space
of TULVAE.

of TULVAE which is isotropic Gaussian prior based. These
results demonstrate the capability of our STULIG model on
learning multimodal and complex representations. Although
the learned latent space is more distinct and expressible, it does
not mean that the trajectories of the same user are clustered
together. Instead, we conjecture that the trajectories sharing
similar motion patterns should be closely clustered. However,
we, respectively, note that such“conceptual” motion patterns
are highly subjective and they even lack qualitative measures—
unlike image and natural language settings, where one can
directly apply visual or linguistic-based understanding. There-
fore, we recognize as open research question left as our future
work how to explain the representations of human-mobility
data captured by the latent factor models.
STULIG achieves the disentangled embedding with the

prior knowledge of spatiotemporal features of user mobility
and partially specified data labels (users) rather than the
unsupervised disentangled learning in previous works [24],
[55]. Interestingly, our results are coincident with a very
recent comprehensive study [39], which has theoretically and
empirically proved that unsupervised learning of disentangled
representations is fundamentally impossible without inductive
biases. In contrast, introducing a few of supervision can
reliably learn disentangled representations of data [41]. Fur-
thermore, although in STULIG we do not explicitly distinguish
the spatial and temporal factors, which are tightly coupled
in human mobilities, it can be easily extended to incorporate
additional latent factor(s) for each axis, as many existing works
have done [24], [28].
2) Efficiency Notes:Another advantage of the proposed
methods is the model efficiency, which benefits from two parts:
RNN-free trajectory modeling and leveraging geographical
distribution for unlabeled data. In this context, CNN-based
methods (STUL and STULIG) require significantly less train-
ing time compared with TULVAE, an RNN-based TUL
method. This is demonstrated by the results shown in Fig. 3(a),
where we report the time of the first 20 training epochs for the
four models—with a note that we omit the other RNN-based
methods due to their similar performances to TULVAE. Appar-
ently, STULIG incurs a slightly larger overhead on structural
mixture Gaussians approximation compared with the isotropic
Gaussian prior-based method STUL. This figure also illustrates

Fig. 3. Efficiency comparison on theGowalla data. (a) Time (20 epochs).
(b) Training convergence.

the efficiency improvement in constraining the possible users
for unlabeled data, where the variant STULIG-F was imple-
mented by replacing the semi-VAE training in STULIG with
the complete iterations with allNusers as in TULVAE.
Complementary to the time per epoch, Fig. 3(b) plots the
training process of three models, which clearly shows that our
methods converge faster than RNN-based TULVAE. One can
alternate the convolutional seq2seq model in STULIG with
fully attentional feedforward architectures, such as the trans-
former model [56]. However, due to that the data used in the
experiments are relatively small and are very sparse, we were
unable to reap significant gains using the self-attention mech-
anism in our experiments. Another possible improvement on
larger LBSN data sets is to pretrain a model for embedding the
locations considering both forward and backward semantics
using the masked encoder–decoder architecture such as the
remarkable language representation model BERT [57], which
is beyond the scope of this work.
3) Parameter Sensitivity:We investigated the impact of
two important parameters of STULIG:Kandα, respectively,
denoting the number of mixture components ofz2and the
weight of classifierq(u|T). Intuitively, more components (i.e.,
larger value ofK) may increase the ability of STULIG
to approximate more complex distribution ofz2.However,
beyond a certain threshold [e.g., 15 in Fig. 4(a)], increasing
K results in overfitting problem. Theoretically,αplays an
important role in balancing the weight of learning from labeled
data and unlabeled data, whichis empirically decided in our
implementation. However, it seems that the performance of
STULIG is not sensitive toαwhen the value is in the range of
[0.1,1], as shown in Fig. 4(b). This is because the trajectory
distribution of each user is relatively stable—recall that we
randomly select 50% trajectory for testing. This result also
implies that our assumption is reasonable, i.e., the classifier
qφ(u|T)learned from labeled data can be used for constructing
the knowledge of unlabeled data if the data distribution is
nearly consistent [see (13)].

B. On Generating Plausible Traces

We also designed experiments to quantitatively validate
our models in terms of generating plausible trajectories and
quantify the privacy-preserving impact.
1) Quantitative Evaluation:Toward quantifying the genera-
tion, we conduct experiments to compare STULIG with several
trajectory synthesis methods, including the following.
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Fig. 4. Impact of parameters.|U|=112 in Gowalla data. (a) Impact ofK.
(b) Impact ofα.

1)MC:A stochastic model describing a sequence of loca-
tions in which the probability of each location depends
only on the state attained in the previous location, which
has been used for trajectory generation in [58].

2)HMM:A classical dynamic Bayesian network in which
the system being modeled is assumed to be a Markov
process with unobserved hidden states, which has been
used for generating human traces in [59].

3)Deep Transport (DTran) [60]:An LSTM-based mobil-
ity generation model maximizing the log-likelihood of
location transition in a trajectory.

4)T-WGAN [31]:A most recent nonparametric trajectory
synthesis method using Wasserstein GAN with gradient
penalty [32]. The trajectories are embedded into a 2-D
matrix, where each cell of the matrix corresponds to
one POI and contains information about the time and
duration of visiting.

5)TULVAE [6]:As a deep generative model, TULVAE
is capable of generating synthetic mobility traces, and
the main difference from STULIG is the learned latent
factors.

Note that we omit the comparison to the trajectory synthesis
method in [30] because it requires the semantics of the
check-ins (e.g., categorical information) which are missing
in our data sets. Following [31], we evaluate the generation
quality of models by the Jensen–Shannon divergence (JSD)
between the aggregate realRand generatedG trajectory
distribution:

JSD(R||G)=
1

2
KL(R||M)+

1

2
KL(G||M) (14)

whereM = (R+G)/2, and trajectory distributionRand
Gare marginal distributions measured by either one of the
two different metrics [31]: 1)p(c)—which measures the
probability of a check-inci,uat timeti, implying the personal
check-in preference (both spatial and temporal) of useruand
2)p(c,d)— which measures the probability of visiting a
locationci,ufor a durationd, reflecting the staying patterns
and interests of useruin difference places.
As the previous experiments, we used 50% of the trajec-

tories of each user for training and another 50% as the test
data. In addition, we generated the same number and the same
length of synthetic trajectories for each user and measured
the mean JSD between the generated trajectories and the real
trajectories in test data. Fig. 5 shows the convergence of the
JSD measure on three data sets.

Fig. 5. JSD convergence with respect to the training epochs. (a) Brightkite.
(b) Foursquare. (c) Gowalla.

TABLE IV

JSDRESULTS ONTHREEDATASETS,WHERE THEp(c)/p(c,d)

MEASURESAREREPORTED

The comparison results are shown in Table IV. Obviously,
STULIG has a significant advantage on generating plausible
trajectories compared with baselines. Unsurprisingly, Bayesian
models, e.g., TULVAE and STULIG, achieve better results
than GAN-based model W-TGAN since its training procedure
relies on backpropagation through the discriminator into the
generator, which is not applicable for discrete data, such
as trajectories and languages. Although the gradient can be
estimated with an alternative approach such as REINFORCE
policy, GAN training combined with deep reinforcement learn-
ing has proved to be problematic, e.g., unstable and largely
biased. This result is coincident with recent observations [33]
that GAN-based generative models usually perform worse
even than maximum likelihood estimation models, such as
LSTM and MC on sequential data.

2) STULIG and Privacy:JSDmeasure alone may be mis-
leading due to the dilemma between data sharing and privacy
preserving: while collected data can be used to offer important
social, economic, and democratic services and facilitate much
needed research, sharing realdata records carries privacy
risks. To demonstrate that STULIG can generate plausible
trajectories while preserving mobility patterns of user traces,
we generated the same number of synthetic trajectories for
each person using the STULIG model and then evaluated its
TUL performance on mixed data sets (see Table V).

1)T1 (Fully Synthetic Trajectories):We replace the train-
ing and testing data (realtraces) with the generated
trajectories.

2)T2 (Infusion of Synthetic Data):We inject the same
number of synthetic data into original training/testing
set.

3)T3 (Augmenting Training Set With Synthetic Data):We
augment the training data with synthetic trajectories, but
still use the real traces for testing.
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TABLE V

RESULTS ONPRIVACY-PRESERVINGTRAJECTORYDATA.THE
TWONUMBERS INPARENTHESESARE THEPERCENTAGES
OFINCREASES/DECREASESCOMPAREDWITH THERESULTS

OFSTULANDTULVAE, RESPECTIVELY.HERE,
|U|=92,270,201FORBRIGHTKITE,FOURSQUARE,

ANDGOWALLA,RESPECTIVELY

While looking similar, the three experiments reflect different
aspects/levels of preserving the privacy of user locations.
Table V shows that the TUL performance slightly decreases
in most metrics on Brightkite and Foursquare but increases
on Gowalla to a certain extent for T1. This result is man-
agerially attractive because it allows researchers to access the
full synthetic data, rather than some limited set of statistics
such as certain counting queries or histograms, for achieving
acceptable utility in various analytics and downstream machine
learning tasks [30], [61]. In other words, the results on T2
and T3 imply that the performance of machine learning task,
such as TUL, could be maintained at the same level when
the real traces are obfuscated with well-generated synthetic
data. We note that there is a subtle difference between T2 and
T3. while both augmenting the training data with synthetic
samples, T3 validates the trained model only on real data. This
makes it particularly appealing for collaboratively building a
machine learning model (e.g., crowdsourced) without sharing
the sensitive validation data. Another potential application of
the presented generative model is to augment the training (and
testing) data set with the generated data, especially for those
very sparse data in LBSN that we used (e.g., the density of
check-ins from Foursquare and Gowalla are usually around
0.1% [6]).
However, these results raise another security problem; while

the generative models, including our STULIG, are capable
of generating plausible trajectories to camouflage the real
locations of users, they do not promise the data anonymiza-
tion. In fact, as models that can discriminate the human
traces, STULIG, as well as STUL, would increase the risk of
deanonymization attack. To ensure the privacy preserving of
user identity, rather than location privacy, one should rely on
more sophisticated approaches tosanitize sensitive information
associated with the data sets. In this spirit, differential pri-
vacy [62] and its many applications, such as differentially pri-
vate SGD [63] and plausible deniability [29], are worthwhile
to be investigated for protecting against recovering private
information from the published (synthetic) data. More broadly,

Fig. 6. Visualization of trajectory generation. Red and yellow flags in
(a) and (b) denote the locations from the real and generated trajectories,
respectively (to avoid clutter, we did not draw all the sequential line- segments
traveled). In (c), (d), and (e), the color codes represent the check-in frequency,
i.e., the darker the color, the more check-ins in that POI (with accompanying
normalized numerical values with respect to the maximal visits for a given
hour). (a) and (d) STULIG. (b) and (e) TULVAE. (c) Ground truth.

it is of interest to investigate the performance of other mobility
learning problem in addition to TUL, such as POI recom-
mendation/prediction, by (partially) leveraging the synthetic
data, e.g., aiming at fine-grained location recommendations
with differential privacy protection [64].

3) Qualitative Samples:We randomly selected a user in
the Gowalla data set to visualize the impact of the generated
results. The particular user has 134 real trajectory records, and
we generated the same number of synthetic trajectories for this
user. Fig. 6(a) and (b) shows the trajectories by STULIG and
TULVAE, respectively. The bottom part of Fig. 6 shows the
time distribution of check-ins. Specifically, Fig. 6(c) shows
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the true check-in time distribution, whereas Fig. 6(d) and
(e) shows the time distribution of check-ins for the trajectories
generated using STULIG and TULVAE, respectively.

a) Geographic distribution:We observe that most of the
real trajectories of this user—red ones in Fig. 6(a) and (b)—
are distributed in six states in USA. We then manipulate the
latent variables to generate trajectories with the same length
as the real trajectories obtained via STULIG and TULVAE,
respectively. This is achieved by fixing the value of the
generative factoruwhile randomly sampling another latent
factor—z2for STULIG andzfor TULVAE. In general, there
would be less variance between the generated samples and
the real ones, if the latent factor captures more meaningful
spatial distributions. Fig. 6(a) and (b) shows the generated
spatial distribution (yellow) of each respective model. As for
the quality of generation, we observe that STULIG generates
the trajectories around the real trajectory distribution of this
user, whereas the trajectories generated by TULVAE are rather
sparse and further away from his/her real traces. It is also
interesting to observe that the same latent factorz2of STULIG
may generate trajectories around a local area, e.g., those
trajectories in Austin, Kansas City, and so on [see Fig. 6(a)].

b) Temporal distribution:In addition, Fig. 6(c) shows
the ground truth of the check-in times of this user, which
explicitly represents his/her temporal check-in preferences in
POIs in terms of the hour of a day, and with respect to his/her
entire history (over one year). Fig. 6(d) and (e) shows the
time distribution of the trajectories generated by STULIG and
TULVAE. Apparently, STULIG is also better in capturing and
approximating the real check-in time than TULVAE, which
generates a lot of unreasonable check-in time. As a specific
example, looking at the time interval between 2:00A.M.
and 13:00PM[see Fig. 6(e)], one can observe that much
fewer check-ins are actually made by the user. These results
further illustrate the benefits of the disentangled representation
of identity and sequential check-in preference captured by
our STULIG model—while variableucarries the identity
information, latent factorz2encodes the mobility patterns, e.g.,
spatial and temporal features of a particular user.
The qualitative results suggest that STULIG can be used to

generate plausible trajectories of some individuals with consis-
tent lifestyles and meaningful mobilities while protecting the
privacy and preventing them from location inference attacks—
i.e., camouflaging user’s actual location with fakes (a popular
obfuscation technique for protecting location privacy [30]).

C. Discussion

We have shown that STULIG outperforms baselines on
human trace classification whilebeing able to generate plau-
sible synthesis mobility data. Closer investigation reveals that
the proposed hierarchical latent factor model captures more
flexible multimodel posterior of the latent variables.
As a simple CNN architecture for matrix-style trajectory

convolutions used in our model, it becomes nontrivial to cap-
ture the long-term check-in dependences. For example, without
the compensation of MoG approximation, STUL sometimes
shows inferior performancecompared with the RNN-based

model TULVAE. Possible solutions include exploiting deeper
CNN architectures such as ResNet [65], while broadening the
receptive field of filters with dilated convolution [66] may be
necessary for long-range traces.
We only considered MoG latent variables and note that high
computational cost may arise in evaluating posterior expecta-
tions as the number of componentsKincreases. In addition,
the bottleneck of multimodal Gaussian approximation is evi-
dent for a larger value ofK[see Fig. 4(a)]. To overcome this
issue, more flexible and exact density estimation methods, such
as normalizing flows [67], are desirable.

VI. CONCLUSION

We presented STULIG, a semisupervised generative model
to mine human-mobility patterns and learn their interpretable
latent factors. STULIG achieves a significant performance
improvement for the TUL task in comparison to existing
methods and is capable of learning disentangled representation
of human traces. In addition, we demonstrated that STULIG
can be used to generate plausible synthetic human traces,
assisting machine learning tasks, while enabling a form of
location privacy of the users.
As for our future work, we are interested in augmenting
STULIG to discriminate different factors, for example, cou-
pling spatial and temporal with other contexts related to POIs
(e.g., restaurant, theater, and ATM) as well as the impact
of mobility patterns (e.g., driving and walking). We believe
that these may benefit many downstream applications, such as
mobility knowledge transfer by reusing latent representations
and mobility inference (e.g., predicting duration in next check-
in) by combining learned latent factors. In addition, we will
investigate the options for improving the accuracy via tighter
ELBO bounds, as well as the broader challenge of how to
provide privacy assurance to each mobile individual with deep
generative models.
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