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ABSTRACT
Traditionally, clustering of multivariate data aims at grouping ob-
jects described with multiple heterogeneous attributes based on a
suitable similarity (conversely, distance) function. One of the main
challenges is due to the fact that it is not straightforward to directly
apply mathematical operations (e.g., sum, average) to the feature
values, as they stem from heterogeneous contexts.

In this work we take the challenge a step further and tackle
the problem of clustering multivariate datasets based on jointly
considering: (a) similarity among a subset of the attributes; and
(b) distance-based diversity among another subset of the attributes.
Specifically, we focus on astrophysics data, where the snapshots
of the stellar evolution for different stars contain over 40 distinct
attributes corresponding to various physical and categorical (e.g.,
‘black hole’) attributes. We present CSD-CAMD – a prototype
system for Coupling Similarity and Diversity for Clustering As-
trophysics Multivariate Datasets. It provides a flexibility for the
users to select their preferred subsets of attributes; assign weight
(to reflect their relative importance on the clustering); and select
whether the impact should be in terms of proximity or distance.
In addition, CSD-CAMD allows for selecting a clustring algorithm
and enables visualization of the outcome of clustering.

CCS CONCEPTS
• Information systems→Data management systems; •Com-
puting methodologies → Modeling and simulation.

KEYWORDS
Stellar Evolution, Clustering, Diversity

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’21, November 2–5, 2021, Beijing, China
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8664-7/21/11.
https://doi.org/10.1145/3474717.3483989

ACM Reference Format:
Xu Teng1, Thomas Beckler1, Bradley Gannon1, Benjamin Huinker1, Gabriel
Huinker1, Koushhik Kumar1, Christina Marquez1, Jacob Spooner1, Goce
Trajcevski1, Prabin Giri1, andAaronDotter2, JeffAndrews2, Scott Coughlin2,
Ying Qin2,4, Juan Gabriel Serra2, Nam Tran3,, Jaime Roman Garja3, Kon-
stantinos Kovlakas3, Emmanouil Zapartas3,, Simone S. Bavera3, Devina
Misra3, Tassos Fragos3 . 2021. CSD-CMAD: Coupling Similarity and Diver-
sity for Clustering Multivariate Astrophysics Data. In 29th International
Conference on Advances in Geographic Information Systems (SIGSPATIAL
’21), November 2–5, 2021, Beijing, China. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3474717.3483989

1 INTRODUCTION AND MOTIVATION
Clustering is considered a canonical problem in data analysis and its
main objective is to partition a given set into subsets, in a manner
that will ensure that the objects in given subset are “more similar”
(modulo certain distance function) to each other than to the objects
in the rest of the subsets [10].

In its rich history, many variants to the basic approaches (e.g.,
K-means [6]; DBSCAN [3]) have been considered. Shortly after
tackling the issues due to the high dimensionality of the data were
recognized [5], researchers have addressed settings in which pecu-
liar challenges arise due to the heterogeneity of the data. Namely, the
elements of the set in question may not only have > 1 dimension,
but those dimensions may be incompatible due to their physical
properties (i.e., the domain of the attributes) [1, 2]. Another comple-
mentary extension was incorporating the diversity in the clustering
process, which wasmore recently considered for improving ranking
in recommendation systems [4].

Complementary to this, the scientific discipline of astrophysics
studies the properties (and relationships) of various astronomical
objects, such as stars, galaxies, interstellar medium, etc. [7]. The
advances in optical and other sensing technologies along with the
increase of computational and storage capabilities have enabled the
creation of large repositories of observational data like, for example,
Sloan Digital Sky Survey1. Often times, to evaluate the proposed
theoretical models against observational data, astrophysicists resort

1https://www.sdss.org
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to simulation models, relying on tools such as MESA (Modules for
Experiments in Stellar Astrophysics) [8].

Our POSYDON2 project also relies on MESA based data and has
generated large datasets (5 ∼ 10 GB) of stellar evolution. As part of
the project, we have already developed a database for storing and
querying the stars’ trajectories via web-based User Interface (UI).
In addition to the sheer volume, the data (which can be perceived
as multivariate time series) is also characterized by a large number
of attributes pertaining to different physical phenomena, such as
mass, luminosity, He-concentration, temperature, etc.

What motivates this work is the observation that, for the pur-
pose of testing models and hypotheses, the domain scientists may
be interested in clustering the instances of the stellar evolution
trajectories in a manner that would:

• Favor certain attributes more than the others (i.e., their im-
pact on clustering is stronger).

• Insist on diversity for the values of other attributes (i.e., stars
within a particular cluster should differ in each of those
attributes by a predefined threshold).

As an example, one may want to cluster all the stars that end up
in black holes with a stronger influence of mass and temperature
(than the other attributes) and with at least 30% of a difference
between the corresponding metalicity values.

Towards that end, the main contribution of the CSD-CMAD sys-
tem prototype is that it enables scientists to focus on a targeted
dataset and, once uploaded in the database, provide them with the
opportunity to select the corresponding parameters for both classes
of preferred attributes (i.e., stronger proximity as well as diversity
via separability) – and visualize the outcome of applying a cluster-
ing algorithm. In the rest of this paper, in Section 2 we describe the
basic architecture of CSD-CMAD and the way we modify the tradi-
tionally used distance functions to cater to the two complementary
requests for the subsets of attributes. Section 3 lists the steps of the
actual demo scenario that the attendees will be able to experience,
and Section 4 offers concluding remarks.

2 SYSTEM ASPECTS
Wenow describe the system architecture of CSD-CMAD and discuss
the details of our distance function implementation.

Figure 1: Overview of system architecture

2https://www.POSYDON.org

2.1 System Architecture
From a broad perspective, the architecture of CSD-CMAD is the
one of a client-server type3. An illustration of the main components
is provided in Figure 1.

2.1.1 Backend. As shown, we have a web server in the backend,
running on an Ubuntu VM, hosted on Iowa State Cloud. In the
VM, the primary systems are nginx, Gunicorn, PostgreSQL, and
Memcached.

(1) nginx is our primary web server, and is our initial interaction
to incoming requests on port 80.

(2) Gunicorn reacts whenever nginx spawns new processes, to
run a WSGI server for the Django instance.

(3) The Django instance houses the logic and functionality of
our project, as well as the algorithms that interpret the data.
It also interacts with a PostgreSQL database for data storage,
as well as a Memcached cache for caching of data to speed
up response times.

Since an adjustable metric for the distance function (as well as
diversity) was required, we relied on the PyClustering package
for implementation of the clustering algorithms. In addition, in
order to provide a better user experience with the large files for
datasets, the asynchronous package Celery was used, along with
it’s asynchronous service provider RabbitMQ. Lastly, we note that
the job of rendering the graphs to be displayed to the users shifted
from the client to the backend to reduce data transmission, and we
used Matplotlib.

2.1.2 Frontend. Our client side consists of a website that provides
the following main categories of functionalities for the users:

• Select a dataset – either an existing one from the database,
or a datasets generated by a new simulation (in .csv format)
which will firstly be pre-processed with the corresponding
scripts to become a new database table (cf. Figure 2). An
existing dataset can also be removed.

• Display the attributes of the dataset, and select the ones
desired for proximity as well as diversity (cf. Figure 3).

• View the graphs displaying the outcome of the clustering
algorithm.

For the sake of the visual appeal of the UI, we set up and styled the
wireframe, and the corresponding Django forms and JS-controlled
forms. The UI was built with three main parts in mind: a data
view/selection part; a distance function selection and an attributes
weight section; and the visualization of the clustering outcome
– corresponding to the main functionalities. We provide a more
detailed description of the UI parts in Section 3.

We close this section with a remark that one of our aims during
the design of the CSD-CMAD system was to enable easy extensions
in terms of augmenting its functionality with other clustering algo-
rithms – which was part of the reason for selecting PyClustering.
Also, we note that the code of our implementation is publicly avail-
able at https://github.com/sdmay21-31.

3For more detailed discussion, including design-decisions, technology consider-
ation, testing (user/integration/acceptance) etc. – please see the publicly available
report at https://sdmay21-31.sd.ece.iastate.edu/docs/DesignDocumentFinal.pdf
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2.2 Distance Functions
Since at the core of every clustering algorithm is a calculation of
a distance function, and we are attempting at providing clustering
capabilities for data with (multiple) heterogeneous attributes, we
applied the following pre-processing steps.

(1) For each attribute 𝑎 𝑗 in the database, we detected the max-
imal (𝑎max

𝑗
) and minimal (𝑎min

𝑗
) values across the entire

dataset of stars (at corresponding time instant).
(2) For an attribute 𝑎 𝑗 corresponding to a particular star 𝑆𝑖 , we

relativized its value 𝑆𝑖 .𝑎 by scaling it with respect to 𝑎max
𝑗

and 𝑎min
𝑗

, obtaining 𝑆 ′
𝑖
.𝑎 𝑗 = (𝑆𝑖 .𝑎 𝑗 − 𝑎min

𝑗
)/(𝑎max

𝑗
− 𝑎min

𝑗
).

(3) In addition to the numerical scaling (which generates values
in the range [0,1]), the ratio also eliminated the different
physical dimensions and therefore we can now proceed with
using the traditional Euclidean-based calculation of the dis-
tances between two points (i.e., stars). Assuming a total of 𝑛
attributes, the distance between two stars 𝑆𝑖 and 𝑆𝑘 becomes
a numerical quantity:

dist(𝑆𝑖 , 𝑆𝑘 ) =

√√√ 𝑛∑
𝑗=1

(𝑆 ′
𝑖
.𝑎 𝑗 − 𝑆 ′

𝑘
.𝑎 𝑗 )2

If more weight is desired for a particular attribute 𝑎𝑚 (i.e., in-
crease the impact of 𝑎𝑚 on the clustering result), the user is allowed
to select a desired weight value𝑤𝑚 . In the current implementation
of CSD-CMAD , the values are integers. However, in terms of above
equation for distances, the implication is that its reciprocal is used
to multiply the respective attribute (i.e., (1/𝑤𝑚) × (𝑆 ′

𝑖
.𝑎 𝑗 − 𝑆 ′

𝑘
.𝑎 𝑗 )2)

when calculating the sum. This has the effect to to decrease the
impact on the distance for the chosen attribute – i.e., to “bring” the
objects closer in the dimension of that particular attributes. The
selection of values for𝑤𝑚 ’s is part of the UI.

Now, to incorporate diversity with respect to a desired attribute
𝑎𝑑 , in CSD-CMAD we take the following approach:

(1) We let the user select a percentage portion (i.e., a value
between 0 and 1) 𝛼 .

(2) If the difference |𝑆𝑖 .𝑎𝑑 − 𝑆𝑘 .𝑎𝑑 | is smaller then 𝛼 × (𝑎max
𝑑

−
𝑎min
𝑑

), we set the value of that difference to a large constant
(e.g., 100). That way, since all the other addends in the sum
in the equation for dist(𝑆 𝑗 , 𝑆𝑘 ) are ≤ 1, the pair (𝑆 𝑗 , 𝑆𝑘 ) is
guaranteed to have a large enough value of dist(𝑆 𝑗 , 𝑆𝑘 ) so
that it is not considered close enough for the respective
clustering algorithm.

3 DEMONSTRATION SCENARIO
We now present the details of the demonstration scenarios that
the attendees can experience, essentially providing a step-by-step
illustration of the functionalities of CSD-CMAD .

We note that in addition to the publicly available source code of
the implementation of CSD-CMAD , we also have a video illustrat-
ing the functionalities, publicly available at:
https://sdmay21-31.sd.ece.iastate.edu/med/demo.mp4.

(1) Opening Menu As shown in Figure 2, the landing page
offers the option to add a new dataset, or use one of the exist-
ing ones (or even edit it). In addition, the opening menu has
the option to provide the “User Manual” type of help, as well

Figure 2: Opening menu of CSD-CMAD

Figure 3: Weights Selection

as administrative privileges (e.g., add a new user) – provided
the user currently logged on is a designated administrator.
We will show how to create a new dataset.

(2) Attributes Selection Subsequently (i.e., after selecting an
existing one, or creating a new dataset), the user will be able
to select (via check-box) the attributes that should be con-
sidered for the chosen clustering algorithm (at this version,
CSD-CMAD only has K-means and DBSCAN).

https://sdmay21-31.sd.ece.iastate.edu/med/demo.mp4
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Figure 4: 2D Visualization of Clustering

(3) Weights Selection Once the attributes to participate in the
calculation of distance have been selected, as shown in Fig-
ure 3, the user can (cf. Section 2.2):
• Select the values for the weight for the attributes that
should have heavier impact.

• Select the threshold for exclusion of a particular pair from
clustering, on the grounds of not being diverse enough in
the values of selected attribute(s).

(4) Visualization The user is expected to provide a time instant
(from the interval of the evolution of the stars) and, upon
clicking the “Process” button, CSD-CMAD will start the exe-
cution of the processing algorithm. When the algorithm is
completed, the 2D or 3D graph will be displayed, showing
the clusters (and their centroids), as illustrated in Figures 4
and 5.

Figure 5: 3D Visualization of Clustering

Duration: We expect that completing a run of the scenario in an
interactive demonstration of the features of CSD-CMAD should
be completed within 4 ∼ 5 minutes, with additional 2 minutes to
illustrate the help/user manual aspects, as well as the administrative
features of the main menu.

4 CONCLUSION AND FUTUREWORK
We presented CSD-CMAD , a system for context-aware clustering
of multivariate astrophysics data of stellar evolution tracks. The
heterogeneity of the data stems from the fact that the attributes
correspond to different physical phenomena. The context awareness
comes into play because we allow to select: (1) favorite attributes –
i.e., the ones for which the proximity should have greater impact
(compared to the rest of the attributes); and diversity attributes –
i.e., the ones for which it is of interest that the pair of stars has a
distance larger than a certain threshold. As mentioned, the code
for implementing CSD-CMAD and extended documentation are
publicly available.

There are several extensions to CSD-CMAD that we plan to ad-
dress in our future work. Firstly, we plan to incorporate additional
clustering algorithms and provide a context-aware quality assess-
ment (i.e., which algorithms are better suited for which subsets of
attributes). We would also like to add a “spatio”-temporal aspect –
i.e., consider the coupling of similarity and diversity over the entire
trajectory of stellar evolution[9]. From a broader perspective, we
will also work on developing an implementation of CSD-CMAD in
distributed environments, that will cater to even larger datasets.
Acknowledgments: The work on this project was supported by
the Gordon and Betty Moore Foundation grant GBMF8477 and the
Swiss National Science Foundation Professorship grant (project
number PP00P2_176868).
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