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Abstract

Mixtures of biological macromolecules are inherently difficult to study using struc-

tural methods, as increasing complexity presents new challenges for data analysis.

Recently, there has been growing interest in studying evolving mixtures using small-

angle X-ray scattering (SAXS) in conjunction with time-resolved, high-throughput,

or chromatography-coupled setups. Deconvolution and interpretation of the resulting

datasets, however, are nontrivial when neither the scattering components nor the way

in which they evolve are known a priori. To address this issue, we introduce the RE-

GALS method (REGularized Alternating Least Squares), which incorporates simple

expectations about the data as prior knowledge and utilizes parameterization and
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regularization to provide robust deconvolution solutions. The restraints used by RE-

GALS are general properties such as smoothness of profiles and maximum dimensions

of species, which makes it well-suited for exploring datasets with unknown species.

Here we apply REGALS to analyze experimental data from four types of SAXS exper-

iment: anion-exchange (AEX) coupled SAXS, ligand titration, time-resolved mixing,

and time-resolved temperature jump. Based on its performance with these challenging

datasets, we anticipate that REGALS will be a valuable addition to the SAXS analysis

toolkit and enable new experiments. The software is implemented in both MATLAB

and python and is available freely as an open-source software package.

1. Introduction

Small angle X-ray scattering (SAXS) is a widely used technique for obtaining struc-

tural information from macromolecules in solution (Putnam et al., 2007). Increasingly,

SAXS is applied to evolving mixtures of different molecules or conformational states

(Vestergaard & Sayers, 2014; Meisburger et al., 2017) during titrations (Brosey &

Tainer, 2019), chromatographic separation (Pérez & Vachette, 2017), or time-resolved

experiments (Kathuria et al., 2011; Neutze & Moffat, 2012; Kirby & Cowieson, 2014).

However, because of the fundamental limitations in the information content of the

SAXS signal (Moore, 1980), multiple structures in a mixture cannot be resolved from

each profile in an unambiguous manner. This inherent ambiguity can be mitigated by

combining multiple measurements and carefully incorporating prior knowledge. The in-

dividual components can then be separated mathematically by analyzing the dataset

as a whole using a physicochemical model for how the mixture evolves (Williamson

et al., 2008; Cho et al., 2010; Minh & Makowski, 2013) or known scattering curves

of each component (Konarev et al., 2003). Often, however, both the scattering curves

and physicochemical model are unknown before the experiment is performed and must
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be inferred from the data itself. In such cases, the challenge is to identify appropriate

mathematical tools to incorporate more general, physically motivated restraints that

lead to a reliable and accurate model-free separation.

In dilute solution, SAXS intensities from non-interacting components combine lin-

early in proportion to their relative concentrations. A SAXS dataset from a mix-

ture can therefore be described as the convolution of the concentration and SAXS

profiles, and deconvolution can be performed using matrix factorization techniques

such as singular value decomposition (SVD) (Henry & Hofrichter, 1992; Hendler &

Shrager, 1994). However, to recover the scattering from each component, the basis

vectors from SVD must be recombined using prior knowledge about what constitutes

a physically valid solution. The field of chemometrics has developed a number of al-

gorithms for solving this problem, known as multivariate curve resolution or MCR

(de Juan & Tauler, 2003; Jaumot et al., 2004). When a physicochemical model is

available, the alternating least squares (MCR-ALS) algorithm can perform deconvolu-

tion using the model as a hard restraint (Jaumot et al., 2004). In the context of SAXS,

deconvolution with hard restraints has been applied to time-resolved experiments (Cho

et al., 2010; Chen et al., 1998; Segel et al., 1998; Akiyama et al., 2002), equilibrium

titrations (Williamson et al., 2008; Blobel et al., 2009; Minh & Makowski, 2013; Ci-

chocki & Zdunek, 2007), unfolding experiments (Chen et al., 1996; Ayuso-Tejedor

et al., 2011), protein-micelle interactions (Lipfert et al., 2007), and fibril formation

(Herranz-Trillo et al., 2017). Interestingly, MCR can be performed without assuming

a hard model by imposing soft restraints such as positivity, unimodality, and local

rank (Jaumot et al., 2004). Such model-free deconvolution is seldom applied to SAXS

data because soft restraints are rarely sufficient to provide a robust and unique solu-

tion on their own (de Juan & Tauler, 2003). One exception is SAXS data collected

with in-line size-exclusion chromatography (SEC-SAXS), where MCR-ALS has been
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combined with evolving factor analysis (EFA) (Maeder, 1987) to separate overlapping

elution peaks (Meisburger et al., 2016; Hopkins et al., 2017).

Although SVD and MCR algorithms are well suited to certain SAXS experiments,

they are a poor fit for other more challenging datasets. A notable example is SAXS

data collected with in-line anion exchange chromatography (AEX) (Hutin et al., 2016).

AEX separates according to charge by applying the sample to cationic media and elut-

ing with a salt gradient. In SAXS, the salt gradient produces a changing background

scattering that must be accounted for. Because this changing background violates cer-

tain assumptions of the EFA method, model-free deconvolution of AEX-SAXS data

is not possible with EFA. We previously encountered this issue when analyzing AEX-

SAXS data from the large subunit of B. subtilis ribonucleotide reductase (BsRNR)

(Parker et al., 2018). To overcome this challenge, we incorporated a simple assump-

tion as additional prior information: namely, that the background scattering must

change gradually over time. Using the ALS algorithm with smoothness regularization

applied to the concentration of background scattering components, we achieved a clean

separation of multiple protein and buffer components (Parker et al., 2018).

Here, we examine the generality of this strategy for the model-free deconvolution of

other complex types of SAXS data where traditional “soft” restraints are insufficient.

We describe the REGALS (REGularized ALS) toolset and demonstrate its application

to a wide variety of SAXS experiments from evolving mixtures. Unlike most deconvo-

lution methods that impose a physicochemical model, REGALS relies on very general

parametric models for the SAXS profiles and concentration curves. The models include

two types of restraint: smoothness and compact support. In AEX-SAXS, for example,

each elution peak is assumed to be non-zero over a particular range (compact support),

and the background components are assumed to be smooth. For the BsRNR dataset,

we find this is sufficient to deconvolve the protein scattering peaks. In other cases,
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such as equilibrium titration and time-resolved SAXS, where concentrations are typ-

ically non-zero in all (or nearly all) data frames, the assumption that concentrations

have compact support is insufficient. However, compact support can be applied to the

SAXS profiles in real space by imposing a maximum particle dimension. We show that

compact support in real space, as well as boundary conditions applied to the concen-

tration basis functions, provide sufficient information for successful deconvolution of

such data. Finally, we introduce the REGALS software package, which is adaptable

by design, freely available, and open source.

2. Theory

2.1. Background

A dilute, evolving mixture of K components scatters X-rays according to the fol-

lowing linear model:

Icalc.(q, x) =
K∑
k=1

yk(q)ck(x), (1)

where yk(q) are the individual SAXS profiles and ck(x) are the relative concentrations.

The SAXS profiles depend on the scattering vector magnitude q = (4π/λ) sin θ, where

λ is the X-ray wavelength and 2θ is the scattering angle. The concentration profiles

depend on an independent variable x (representing time, ligand concentration, etc).

Since intensities are measured at discrete values of q and x, Equation 1 can be written

in matrix form as follows:

Icalc. =
∑
k

yk ⊗ ck

=

 | | |
y1 y2 ... yK

| | |



− c1 −
− c2 −

...
− cK −

 = YCT (2)

where Icalc. contains scattering profiles arranged side-by-side as column vectors. Here

and throughout this section, the intensity matrix has dimensions of M ×N (N scat-
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tering profiles with M discrete values of q). Hence, Y is M ×K and C is N ×K.

Our aim is to determine Y and C given the measured intensity Imeas., which contains

noise. This is accomplished by minimizing the least-squares error between data and

model:

χ2 =
∑
ij

σ−2ij

(
[Imeas.]ij − [Icalc.]ij

)2
, (3)

where σij are the standard errors of the measured intensity. In the following, we assume

that the experimental errors depend only on q, so that Equation 3 can be written as

a Frobenius norm of the error-weighted residual:

χ2 =
∥∥∥Σ−1 (Imeas. − Icalc.)

∥∥∥2
F
, (4)

where Σ is a diagonal matrix with Σii = N−1
∑N

j=1 σij . This simplifying assumption

is approximately correct for the datasets considered here.

In general, minimizing χ2 is not sufficient to determine Y and C uniquely. The

main issue is that basis vectors can be mixed (or “rotated”) without changing χ2: for

any non-singular K × K matrix Ω, replacing Y → YΩ and C → CΩ−T leaves the

product YCT unchanged. Thus, the primary challenge of deconvolution is to impose

appropriate restraints that provide a unique and physically meaningful solution.

Deconvolution problems resembling Equation 2 arise in many experimental contexts.

A common approach is to apply SVD (Henry & Hofrichter, 1992; Hendler & Shrager,

1994), by which an error-weighted data matrix is decomposed as follows:

USVT = Σ−1Imeas., (5)

where U has the left singular vectors as columns, V contains the right singular vectors

as columns, and S contains the singular values along the diagonal in decreasing order.

The uniqueness of the decomposition results from the fact that the singular vectors

are an orthonormal basis.
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The singular values sj = Sjj are positive and indicate the importance, or weight,

for each pair of left and right singular vectors. When the number of observations (N)

is much larger than the number of independent components in the signal (which is

generally the case for examples studied here), most of the singular values will be small

and represent the noise in the data, while a few large singular values correspond to

the signal of interest. To detect significant singular values, it is useful to calculate a

normalized singular value, as follows:

s′j =
(
sj −

√
M
)
/
√
N, (6)

whereM and N are the number of rows and columns of the data matrix. If no signal is

present, random matrix theory shows that s′j < 1 in the limit where the data matrix is

large (see (Vershynin, 2012) and references therein). Thus, components corresponding

to signal above the noise are expected to have s′j > 1.

By retaining only the K most important singular vectors (U → UK , etc.), one

obtains an approximate (reduced rank) representation of the data. Thus, a solution

for Y and C can be constructed from SVD as follows:

YSVD = ΣUKS
1/2
K , CSVD = VKS

1/2
K . (7)

Here, the singular value weights have been distributed evenly between the SAXS and

concentration basis vectors, but other choices could be made depending on the nor-

malization conditions.

Although SVD provides a unique low-rank decomposition of the data, the orthonor-

mality of the singular vectors often produces non-physical results. For instance, the

component SAXS profiles or concentrations might have negative values. It is therefore

often necessary to further unmix (or “rotate”) the SVD basis vectors by applying phys-

ical restraints (Chen et al., 1996; Lipfert et al., 2007; Segel et al., 1998; Williamson
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et al., 2008). In traditional MCR techniques, physical restraints are imposed using

“hard” or “soft” models, whose applicability depends on the type of experiment per-

formed and prior knowledge. Alternatively, prior information can be imposed through

Tikhonov-Miller regularization, where additional functions are minimized at the same

time as χ2 (Tikhonov & Arsenin, 1977; Miller, 1970). As described above, in an AEX-

SAXS experiment, the expectation that background scattering varies gradually over

time can be enforced using a regularization function that penalizes large oscillations

(Parker et al., 2018).

Regularization is also used in conventional SAXS data analysis to infer the pair

distance distribution function, or P (r), from the measured intensity (Hansen & Ped-

ersen, 1991). Essentially, P (r) represents the probability of two electrons having a

distance r in the sample, and it is related to the scattering intensity by a Fourier

transform:

I(q) = 4π

∫ dmax

0
P (r)

sin(qr)

qr
dr, (8)

where the integral terminates at the maximum particle dimension, dmax (since P (r) =

0 for r > dmax). Although Equation 8 can be inverted analytically, in practice the

intensity is measured over a finite q-range, and thus, inversion is an ill-posed problem.

Since the Fourier transform is a linear operator, Tikhonov-Miller regularization can be

applied. P (r) is discretized as a vector u of length R, which samples values of P (r) on

a uniform grid with spacing ∆r. Equation 8 can then be written as

Icalc. = Au (9)

where Icalc is a vector of length M , and A is an M ×R matrix with elements

Aij = 4π∆r
sin(qirj)

qirj
. (10)

The standard indirect Fourier transform (IFT) method for SAXS data minimizes the
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χ2 between Icalc. and Imeas. plus a regularization term:

û = arg min
u

[∣∣∣Σ−1 (Imeas −Au)
∣∣∣2 + λ |Bu|2

]
, (11)

Typically, the matrix B performs a discrete approximation of the second derivative

(Hansen, 2012; Press, 2007), which enforces smoothness by penalizing wildly oscillating

solutions. The regularization parameter (or Lagrange multiplier) λ controls the tradeoff

between minimizing χ2 and minimizing the regularization function. The optimization

problem is solved by the method of normal equations, with the (formal) result:

û =
(
ATΣ−2A + λBTB

)−1
ATΣ−2Imeas. (12)

In this study, we describe a general method for deconvolving SAXS data from mix-

tures that applies regularization to both the concentration and SAXS profile basis

vectors. We first formulate the deconvolution problem (Equation 2) using a para-

metric representation of the basis vectors, similar to the IFT example above. This

parametric form allows the SAXS profiles to be represented in the real-space (P (r))

basis if desired. Then, we describe the REGALS algorithm for minimizing the sum of

χ2 (Equation 3) and regularization terms.

2.2. Deconvolution by regularized least squares

In order to deconvolve SAXS data from evolving mixtures, we introduce a method

to impose mathematical constraints that embody prior information (or general ex-

pectations) about a SAXS experiment. The first way that constraints are imposed is

through a parameterization of the basis vectors:

yk = Akuk ck = A′kvk, (13)

where uk and vk are the parameter vectors for the SAXS profile and concentration

bases respectively. Here and in the following equations, primed functions or matrices
IUCr macros version 2.1.11: 2020/04/29
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refer to the concentration basis, in order to distinguish them from the SAXS profile

basis. We implemented three types of basis vector: simple, smooth, and real-space

(Figure 1a). In a simple basis vector, Ak is the identity matrix and the parameter

vector encodes the basis vector directly. In a smooth basis vector, Ak performs a linear

interpolation from a uniform grid of control points to the experimental grid, which need

not be uniform. Finally, in a real-space basis vector (which applies exclusively to SAXS

profiles), uk samples P (r) on a uniform grid and Ak is given by Equation 10. Crucially,

the global model can contain a mixture of different parameterizations. This model was

implemented using a flexible object hierarchy (Figure 1b) as described in Methods.

The second way constraints are imposed is through regularization. The regulariza-

tion functions B embody prior information (or expectations) about the data, such as

smoothness in data or parameter space, and are minimized along with χ2:

{û, v̂} = arg min
u,v

[
χ2(u,v) + B(u) + B′(v)

]
, (14)

Here, u and v refer to global parameter vectors that are constructed by concatenating

parameter vectors for the individual basis functions (for example, u is u1, . . . ,uK

placed end to end), and χ2 is calculated from Equations 4 and 13 as follows:

χ2(u,v) =

∥∥∥∥∥Σ−1
(

Imeas. −
∑
k

Akukv
T
k (A′k)T

)∥∥∥∥∥
2

F

. (15)

The regularization functions are a sum of quadratic regularizers acting on each com-

ponent’s parameter vector:

B(u) =
∑
k

λk |Bkuk|2 B′(v) =
∑
k

λ′k
∣∣B′kvk

∣∣2 , (16)

The regularization parameters λk and λ′k control the tradeoff between minimizing

χ2 and each regularizing function. For smoothness regularization, Bk is a discrete

approximation of the second derivative (Press, 2007). Zero boundary conditions are

optionally imposed by removing the parameters on the boundary and deleting the

corresponding rows of Ak and Bk (Press, 2007).
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2.3. REGALS algorithm

The optimization problem described in the previous section (Equations 14, 15, and

16) is nonlinear, and therefore does not afford a straightforward solution. We chose

to adapt the alternating least squares (ALS) algorithm, which is often used in classic

MCR (Jaumot et al., 2015; Jaumot et al., 2004; de Juan & Tauler, 2003). ALS replaces

the single nonlinear optimization problem with two linear problems that are solved in

an alternating fashion over many iterations: beginning with an initial guess, one set

of basis functions is optimized (e.g. the concentrations) with the other held fixed, and

then the other basis functions are optimized. This is repeated until the change in

basis vectors from one iteration to the next is smaller than a certain tolerance or the

maximum number of iterations has been reached.

The REGALS algorithm solves Equation 14 iteratively using ALS with regulariza-

tion (Figure 1c). First, an initial guess is made for the concentration basis parameters

(v̂). This can be supplied by the user or generated automatically based on the param-

eterization type and boundary conditions. In the first least-squares step, the SAXS

basis functions are optimized while the concentrations are held fixed:

û := arg min
u

[
χ2(u, v̂) + B(u)

]
. (17)

Then, the profiles are normalized according to a their parameterization type; for simple

and smooth types, the parameters are divided by the root-mean-squared value, while

for the real-space type, parameters are normalized by the scattering intensity at q = 0

calculated from the area under the P (r) curve (see Equation 8). In the second least-

squares step, the concentration basis functions are optimized while the SAXS profiles

are held fixed:

v̂ := arg min
v

[
χ2(û,v) + B′(v)

]
. (18)

Statistics are calculated at this stage, including the change in the basis vector from the
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previous iteration (sum of the absolute value of the difference) as well as the χ2 for the

current model (Equation 3). Finally, the cycle is repeated until a reaching convergence

according to user-specified termination conditions. Further details about parameter

estimation, error analysis, and implementation can be found in Methods.

3. Results and Discussion

3.1. REGALS deconvolution of AEX-SAXS data

During an AEX separation, sample bound to the column is eluted by flowing buffer

with increasing salt concentrations. The main challenge in deconvolving AEX-SAXS

data is to account for the changing background scattering from the buffer. We analyzed

a dataset previously reported for the large subunit of BsRNR (Parker et al., 2018),

which eluted from the column in two main peaks during a linear gradient of 100 to

400 mM NaCl (Figure 2a). The salt gradient produced a rising background intensity

during elution, seen clearly in a plot of the total intensity per frame (Figure 2b, top

panel).

First, we performed SVD to estimate the number of scattering components associ-

ated with the protein and background signals. SVD of the entire dataset yields four

significant singular values (Figure 2b, bottom panel, black circles). To determine which

of these four correspond to buffer vs. protein, we repeated SVD on a truncated dataset

consisting of the first 700 frames, collected before the protein elution (Figure 2b, top

panel, blue region). Interestingly, this region alone produces two significant singular

values (Figure 2b, bottom panel, blue circles), suggesting that two components are

needed to describe the background, and that the remaining two correspond to pro-

tein. Inspection of the basis vectors obtained from SVD of the full dataset (Equation

7) further confirms this assignment. A rising background signal is present in two of

the concentration profiles (Figure 2c, left panel, orange and blue curves). However,
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it is also evident in the concentration profiles that protein peaks appear in all four

components, mixing with the background in two cases, and that the corresponding

SAXS profiles (Figure 2c, right panel) are similarly non-physical, containing negative

intensities. The fact that many of the concentration and SAXS profiles oscillate around

zero is expected given the orthonormality restraint imposed on the SVD basis vectors.

Thus, although SVD provides useful information on the number and types of scatter-

ing components, different restraints are needed in the deconvolution process to obtain

a physically meaningful interpretation.

With initial insight from SVD, we next constructed a Mixture model (Figure 1b)

that takes into account basic expectations about the data. The simplest assumption is

that each peak in the chromatogram corresponds to a different protein component and

that the concentrations of the background components should evolve smoothly over

the course of elution. Each protein component (C1 and C2) was thus parameterized

using a smooth concentration basis vector with a region of support encompassing each

peak. In order to arrive at a unique deconvolution, the two background components

must be differentiated in some way within the model. Because SVD revealed that one

of the background-containing components is close to zero for the first ∼ 200 frames

(Figure 2c, left panel, orange curve), we modeled one of the background components

(B1) to span the full range of frames, while the other (B2) had a region of support

beginning at frame 200 with a zero boundary condition there. We implemented this

model again using smooth concentration basis vectors for B1 and B2.

Finally, we refined the model using regularization to enforce smoothness of the back-

ground components. The SAXS profiles were not parameterized (simple basis vectors

were used). To ensure that each protein concentration model fully encompassed the

peak for each component but was not larger than necessary, we performed several trial

refinements with REGALS while varying the region of support and inspecting a plot of
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residual χ2 vs. frame number (not shown). The model parameters are summarized in

Supplementary Table S1. Finally, REGALS was run for 50 iterations, at which point

it was well-converged. The overall reduced χ2 was 1.011, suggesting that the refined

model accounted for most of the signal.

The results obtained by REGALS are shown in Figure 2d. The concentrations of the

background components (B1 and B2) rise in an approximately linear fashion during

elution (Figure 2d, left panel, green and red), reflecting the influence of the smoothness

regularizer on these components. The corresponding SAXS profiles show that B1 is

associated with an increase in scattering at high-q, while B2 is primarily a low-q feature

(Figure 2d, right panel, green vs. red). The protein components (C1 and C2) have

compact peaks with positive concentrations and corresponding SAXS profiles that

appear well-subtracted (Figure 2d, blue and orange). We previously showed that these

protein components were in excellent agreement with models of the monomeric and

dimeric forms derived from crystal structures (Parker et al., 2018).

Although SVD had suggested that two background components were needed to

describe the data, we asked whether two components were strictly necessary for de-

convolving the protein peaks. To test this, we removed the minor component from

the model (B2) and performed the deconvolution using REGALS. As expected, the

quality of fit was noticeably worse when the background was modeled with one com-

ponent compared with two (Figure 3a, bottom vs. top). Interestingly, the fit of the

one-background model is worse in the buffer-only region of the data, but it achieves

a near-perfect fit (χ2 ∼ 1) in the region where the proteins elute. This observation

suggests that the protein components absorbed the background subtraction error. In-

deed, a comparison of the extracted SAXS profiles for C1 shows a significant deviation

from expected shape in the low-q region if only one background is used (Figure 3b).

These results indicate that the buffer scattering in AEX-SAXS can be complex and

IUCr macros version 2.1.11: 2020/04/29



15

must be modeled well to achieve well-subtracted SAXS profiles. Furthermore, they

underscore the importance of collecting the full buffer scattering before and after the

peak in AEX-SAXS experiments, as this information is effectively used to extrapolate

the complex behavior underneath the elution peaks.

3.2. REGALS deconvolution with real-space SAXS restraints

In SAXS datasets from time-resolved or ligand titration experiments, it is common

for components to have non-zero concentrations in most or all of the measurements, and

a compact support cannot be assumed in the concentration basis, as in the AEX-SAXS

example above. To robustly deconvolve such datasets, it is necessary to incorporate

additional prior information. Within REGALS, this can be done in two ways: (1) by

imposing boundary conditions on the concentration basis vectors, and (2) by limiting

the maximum dimension of certain components through real-space parameterization

of the SAXS basis vectors.

3.2.1. Equilibrium titrations. As a first test of real-space restraints, we examined a

challenging ligand titration dataset of phenylalanine hydroxylase (PheH) (Meisburger

et al., 2016). The tetrameric enzyme undergoes a conformational change upon binding

its allosterically-activating ligand, L-phenyalanine (L-phe). In SAXS, the signature of

this conformational change is an oscillating mid-q feature that appears at physiological

concentrations of L-phe (Figure 4a, 0-1 mM L-phe). At higher concentrations of ligand,

the mid-q feature does not change further, but an increase in scattering at low-q is

observed (Figure 4a, 3-80 mM L-phe), indicating an increase in the average molecular

weight. This larger oligomer or aggregate is likely non-physiological, and therefore

previous analysis focused on the 0-1 mM concentration range. However, SEC-SAXS

experiments at 0 and 1 mM L-phe revealed the presence of a small amount of aggregate,
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indicating that all of the SAXS curves in the titration were corrupted by aggregation

to some extent, inflating estimates of size and molecular weight even at low L-phe

concentrations. The presence of a small population of aggregates is extremely common

in SAXS, and thus, a direct method to deconvolve it from other components is of

particular interest.

To deconvolve the PheH titration dataset, we constructed a REGALS model with

three components: resting tetramer, activated tetramer, and aggregate. The SAXS

profiles for each component were modeled using the real-space parameterization (P (r)).

The resting and activated tetramers were estimated to have a maximum dimension

of 130Å based on previous studies (Meisburger et al., 2016), and the aggregate was

assigned a maximum dimension of 300Å, the largest dimension that could be measured

based on the Shannon limit for this dataset (dmax < π/qmin). Boundary conditions of

P (r) = 0 were imposed at both r = 0 and r = dmax. We also imposed prior information

on the concentration basis vectors using a smooth parameterization. According to

the equilibrium model for this system (Meisburger et al., 2016), the concentration of

activated tetramer is negligible at 0 mM L-phe, so a zero boundary condition was

imposed. For the resting tetramer, we limited the range of the basis vector to 0-3 mM

and imposed a zero boundary condition at 3 mM based on the observation that the mid-

q feature saturates above this concentration. No limits or boundary conditions were

imposed on the aggregate concentration. The independent variable x was calculated as

the logarithm of [L-phe], reflecting the higher density of samples at low [L-phe] and the

standard practice of visualizing titration data on a logarithmic scale. Regularization

was used to enforce smoothness of the concentration profiles and the P (r) functions.

The model parameters are summarized in Supplementary Table S2. The basis vectors

were optimized using the REGALS algorithm, which converged after 50 iterations with

an overall reduced χ2 of 1.41.
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One advantage of using the real-space parameterization is that P (r) functions are

obtained directly from the deconvolution and provide immediate insight into particle

shape. For the resting and activated PheH tetramers, we find that the P (r) functions

decay to zero smoothly at dmax (Figure 4b, components 1 and 2), as expected for

compact particles. The peak in P (r) shifts toward larger dimensions in the activated

tetramer, indicating that it has a less compact conformation. The P (r) for the aggre-

gated species decays toward zero at dmax in an approximately linear fashion, which is

characteristic of elongated or rod-like shapes (Figure 4b, components 3).

In ligand titration datasets like this one, the concentrations of different components

are often of great interest, since they give insight into the equilibrium behavior of the

system, including cooperativity and binding affinities. The REGALS deconvolution of

the PheH titration produced concentration profiles that appear physically reasonable

(Figure 4c, continuous curves). To verify that smoothness regularization had not overly

biased the result, we also extracted concentration estimates at each point without

regularization (Equation 27) and found that they agree with the regularized curve

(Figure 4c, circles). We find that the aggregate is present under all conditions, staying

at a low level between 0 and 1 mM L-phe, before rising sharply at high concentrations,

in agreement with prior SEC-SAXS experiments (Meisburger et al., 2016). The resting

tetramer converts into the activated tetramer in a manner characteristic of cooperative

two-state transition, as shown previously (Meisburger et al., 2016).

Further analysis of this equilibrium is beyond the scope of this study. However, we

note that the arbitrary concentration scale of Figure 4c can be transformed readily

into the fraction of resting and activated species, which can be fit using an equilib-

rium model. The REGALS results are normalized by the area under P (r) (equal to

I(q → 0)), and this quantity is expected to be the same for components with the same

molecular weight. Thus, in this case the tetramer concentrations in Figure 4c differ
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from the true concentrations (e.g. in mg/mL) by the same scale factor.

One assumption in the REGALS model was that the aggregate did not change in

size or shape as a function of [L-phe], which may not be the case, particularly since its

shape appears to be rod-like and therefore its growth might be non-terminating. To

check whether this assumption was supported by the data, we examined the reduced

χ2 of the model at each [L-phe] concentration. Interestingly, χ2 at the highest [L-phe]

concentration is 3.4, which is significantly larger than at other concentrations (1.3

on average). Thus, it seems likely that the scattering profile of the aggregate does

change, at least at very high L-phe concentrations. If this is the case and the aggregate

was improperly modeled by REGALS, another technique such as SEC-SAXS might

be necessary to obtain reliable scattering curves for the tetramers. Nonetheless, the

tetramer SAXS curves extracted from the REGALS deconvolution are in excellent

agreement with those obtained by SEC-SAXS (Figure 4d), suggesting that inaccuracy

of the aggregation model had a minimal effect on deconvolution.

3.2.2. Time-resolved SAXS. Based on the successful application of real-space REGALS

to the challenging PheH titration dataset, we asked whether similar models might be

applied to time-resolved SAXS. Time-resolved experiments can be performed with two

different techniques: mixing and pump-probe. In mixing experiments, a rapid change

in solution conditions (such as by rapid dilution, addition of denaturant, allosteric

ligand, or reactant) is followed by SAXS measurements after some time has elapsed.

This technique is well-suited to irreversible reactions or those that cannot be initiated

except by mixing. In contrast, pump-probe experiments are usually initiated by a

laser pulse, and followed after a time delay by the X-ray measurement. Compared

with mixing, pump-probe measurements can access very short time scales if fast lasers

and pulsed X-ray sources are used. Pump-probe datasets are also special in that very
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small changes can be measured by examining difference profiles (laser on minus laser

off), which removes systematic error. Given these differences, we chose to evaluate

REGALS with both mixing and pump-probe datasets, as described below.

First, we chose to analyze a stopped-flow mixing dataset from the soluble nucleotide

binding domains (NBDs) of the membrane transport protein MsbA, which was recently

published and deposited in a public database (Josts et al., 2020). In the experiment, a

solution with nucleotide-free NBD monomers was rapidly mixed with ATP, resulting

in ligand binding and dimerization, followed by ATP hydrolysis and dissociation back

to the monomeric state. This transient increase in average size can be observed in a

Kratky plot (q2I(q) vs. q), where the main peak shifts to the left (lower q) and then to

the right (Figure 5a). In the original publication, the relative concentrations of NBD

monomer and dimer at each time point were fit using calculated scattering profiles from

known crystal structures. However, in time-resolved experiments generally, it is often

the case that atomically detailed structures are not available, either because they have

not been characterized at high resolution or because they are dynamic. Therefore,

we asked whether REGALS could deconvolve the MsbA dataset using only general

properties of the molecules.

The REGALS model consisted of two components representing NBD monomer and

dimer. The parameterization was similar to the PheH titration example above: the

smooth parameterization was used for concentrations, and real-space for SAXS profiles.

Based on the full-length structure of dimeric MsbA (PDB ID: 3b60), we estimated the

dmax of the dimeric and monomeric forms of the NBD portions to be 70Å and 62Å

respectively. Reflecting the prior observation that NBDs relax to a fully dimeric state

after ATP hydrolysis, we applied a zero boundary condition to the dimer concentration

at the final time point (approximately 2 minutes after mixing). The model parameters

are summarized in Supplementary Table S3. REGALS was run for 100 iterations,
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resulting in an overall reduced χ2 of 0.335. The fact that χ2 < 1 here suggests that

the reported experimental errors were overestimated, so χ2 is not a reliable statistic

for quality of fit. However, the quality of fit was confirmed by examining the residual

(not shown).

The deconvolved concentration profiles show a rise and fall of the dimer compo-

nent, with a concomitant dip in the monomer, which resembles the profiles obtained

by fitting scattering from crystal structure models in the original publication (Josts

et al., 2020). The P (r) functions are also physically reasonable, with single peaks

that decay smoothly to zero as r approaches the maximum dimension. Using the RE-

GALS deconvolution, we extracted the SAXS profiles (Equation 27 in Methods) for

the monomer and dimer and compared them with models derived from crystallography

(Figure 5d). The excellent agreement suggests that the atomistic models accurately re-

flect the structures of the NBDs in solution. Although the analysis presented here used

estimates for the maximum dimension based on a crystal structure, no assumptions

were made about the shape of the individual components.

For a pump-probe dataset, we chose a temperature-jump SAXS/WAXS experiment

which was performed on the protein CypA (Thompson et al., 2019). These experi-

ments involved rapidly heating the sample by approximately 10 ◦C with an infrared

laser pulse of several nanoseconds duration, followed by a synchrotron X-ray pulse of

approximately 500 ns duration after a delay of 562 ns to 1ms. Following the methods

in the original publication (Thompson et al., 2019), difference profiles were constructed

(laser on minus laser off) for both the protein and buffer blanks, and these were scaled

together in the WAXS regime and subtracted. The remaining signal, attributed to the

effect of the rapid temperature change, is most significant in the SAXS regime (Figure

6a), and it evolves non-trivially as a function of the time delay (Figure 6a, inset).

Note that the difference profiles are negative, and this is thought to result from the
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differential thermal expansion coefficients of protein and water, which would reduce

scattering contrast at high temperature (Thompson et al., 2019).

Previously, the biphasic appearance of the mean intensity (Figure 6a, inset) was

interpreted as a fast transition to excited states of the molecule followed by a slow re-

laxation toward equilibrium (Thompson et al., 2019). Although SVD analysis revealed

3 significant components, no kinetic or structural interpretation of the basis vectors

was reported. We asked whether a real-space REGALS deconvolution might offer ad-

ditional insight. Based on the SVD result, we chose to model three components (C1,

C2, and C3). For all three, a smooth parameterization was used for the concentration

basis, and real-space for the SAXS profile basis. The first component (C1) was assigned

to represent the transient process following T-jump, with a concentration of zero at

both end points. No constraints were applied to the concentrations of the other two

components. In real space, C2 was assigned a maximum dimension of 46Å estimated

from a crystal structure of CypA (PDB ID: 3k0n). Lacking further information with

which to restrain the model, the maximum dimensions for C1 and C3 were adjusted by

trial and error based on quality of fit and subjective appearance of the P (r) functions.

The final model parameters are summarized in Supplementary Table S4. Note that

since difference intensities are fit, this parameterization represents the difference P (r)

function, ∆P = Pon − Poff, and dmax represents the maximum dimension over which

changes to P (r) occur after heating.

The REGALS algorithm was run for 400 iterations, converging to an overall reduced

χ2 of 1.667. Although the difference intensities are negative (Figure 6a), the decon-

volved ∆P (r) functions are all positive (Figure 6b) because the REGALS algorithm

normalizes SAXS basis functions by the integral of P (r). Consequently, some of the

concentrations are negative (Figure 6c). Negative concentrations (or SAXS curves) are

a necessary feature when analyzing difference intensities, and they can be a challenge
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to conceptualize. However, two immediate observations can be made. First, the con-

centration of C3 is approximately constant for the first ∼ 4µs after T-jump, and the

change on those timescales is captured by C1 and C2. According to the ∆P (r) func-

tions for C1 and C2, we conclude that the fast processes occur on length scales up

to ∼ 60Å, somewhat larger than the size of the CypA monomer. Changes on longer

timescales additionally involve C3, which has a much longer range of 150Å and likely

involve interparticle interactions because the experiments were done at a relatively

high protein concentration of 50 mg/mL.

To gain a more intuitive picture of the changes following T-jump, we used the reg-

ularized basis functions to reconstruct the time evolution of ∆P (r). This removes, to

some extent, the influence of choices made during the REGALS parameterization, and

resolves the sign ambiguity. Since the signal is dominated by the contrast decrease (not

shown), we subtracted the first time point to obtain ∆∆P (r, t) ≡ ∆P (r, t)−∆P (r, t =

561 ns), which tracks the change in signal after T-jump (Figure 6d). This reconstructed

signal reveals a clear positive feature with a peak at r ∼ 35Å that appears at fast time

scales, followed by a negative feature with a peak at r ∼ 60Å on slower time scales.

The physical explanation is not entirely clear, but one hypothesis might be transient

partial unfolding followed by an increase in inter-particle repulsion (or a decrease in

attraction). As experiments which rely on difference intensities are often performed at

high protein concentrations, further investigations of inter-particle interactions are of

great interest.

4. Conclusions

In this work, we introduced REGALS as a robust, generally applicable technique to de-

convolve challenging SAXS datasets from evolving mixtures. The strategy implemented

in REGALS has several key advantages. Most notably, prior knowledge is taken into
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account without having to impose a physicochemical “hard” model or known scatter-

ing curves. Having flexible restraints is important in cases where such models are not

available, or when SAXS is to be used for cross-validation. Second, the method is

readily adapted to a range of experiments. As we demonstrated, AEX-SAXS, ligand

titrations, time-resolved mixing, and time-resolved pump-probe datasets can all be

analyzed successfully by REGALS. Finally, REGALS is not a black box; the model

assumptions are physically motivated, easily explained, and completely specified by

the user. Because deconvolution can be ambiguous and strongly influenced by model

assumptions, this transparency is essential when communicating scientific results.

The flexibility of the REGALS method is reflected in our software implementation

(see Methods). The model is specified using object-oriented code, which facilitates

mixing and matching parameterizations to suit the experiment. In order to provide

feedback to the user and support customization, the code is run using a live notebook

that performs data import, model definition, optimization, and visualization. Exam-

ple notebooks are provided for each of the datasets described here. Since SAXS is

a rapidly-developing technique, we designed REGALS with future changes in mind.

Its hierarchical object structure allows for new linear parameterizations and quadratic

regularizers to be added with minimal changes to the existing code. Finally, to facili-

tate future development and adoption by the community, we provided two functionally

equivalent implementations of REGALS in MATLAB and python. The code is version-

controlled, open source, and free to use.

Future work will focus on augmenting the REGALS toolkit to further expand the

range of applications. Here, we found that two simple restraints, smoothness and com-

pact support, proved powerful for expressing prior knowledge. However, many other

types of restraint are possible within the REGALS framework. Examples of particular

interest to SAXS include sparseness and non-negativity (Cichocki & Zdunek, 2007),
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hard restraints on certain components with known scattering curves, and fixed non-zero

or derivative boundary conditions. In addition, REGALS could be applied to datasets

with more than one independent variable using methods from MCR of multi-way data

(de Juan & Tauler, 2003). For example, the CypA time series analyzed here was one

among several conducted at different initial temperatures (Thompson et al., 2019), and

thus, the entire dataset might be analyzed using a multi-way REGALS decomposition.

Furthermore, the assumption of dilute solution can also be relaxed by adding extra

components to represent terms in the Taylor expansion of the structure factor (Lipfert

et al., 2007), which may be of particular interest for time-resolved experiments that re-

quire high protein concentrations. Finally, certain parameter choices in REGALS may

be automated by leveraging the Bayesian interpretation of regularized linear regres-

sion (MacKay, 1992; MacKay, 1996), much as the regularization parameter and dmax

are determined automatically in Bayesian IFT (Hansen, 2012). We anticipate that the

REGALS method described here, and future developments, will be a valuable addition

to the SAXS data analysis toolset and enable new applications.

5. Methods

5.1. Computational details

5.1.1. Least-squares optimization in each REGALS iteration. The two regularized lin-

ear least squares problems within each REGALS iteration (Equations 17 and 18) are

solved using the method of normal equations. For the SAXS profile basis (Equation

17), the best-fit parameters satisfy K sets of linear equations (with k = 1, 2, . . . ,K):

λkB
T
k Bkuk +

K∑
l=1

Mklul = bk, (19)
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where

Mkl = (ck · cl)(AT
k Σ−2Al) (20)

bk = AT
k Σ−2Imeas.ck (21)

Note that these equations can be combined and written in the form (M + H)u = b,

making them straightforward to solve using standard numerical methods. Similarly,

the parameters for the concentration basis (Equation 18) are found by solving the K

sets of linear equations:

λ′k(B
′
k)TB′kvk +

K∑
l=1

M′
klvl = b′k, (22)

where

M′
kl = (yk ·Σ−2yl)((A

′
k)TA′l) (23)

b′k = (Imeas.A
′
k)TΣ−2yk. (24)

5.1.2. Extracting scattering curves and error estimates. After fitting a dataset with a

REGALS model for Y and C, the results are typically smooth versions of the con-

centrations and SAXS profiles. However, for further analysis (such as fitting atomistic

models to the SAXS data), it is desirable to extract curves resembling experimental

data with properly estimated errors. Previously, we applied a projection algorithm

which uses the pseudoinverse of the concentration matrix to generate SAXS profiles

and associated error bars (Meisburger et al., 2016). For the datasets examined here,

we found that the pseudoinverse method amplifies noise in certain cases. Therefore,

we developed an alternate method which makes use of the regularized basis vectors to

overcome this issue. In order to extract a particular component, a residual data matrix
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is reconstructed by subtracting the model with component k excluded:

D
(k)
resid. = Imeas. −

∑
j 6=k

yj ⊗ cj , (25)

The unregularized basis functions y and c are extracted by minimizing

∥∥∥Σ−1 (D(k)
resid. − y ⊗ c

)∥∥∥2
F

(26)

with either scattering profile or concentration held fixed. The solutions can be written

as weighted averages of the residual data matrix, as follows:

y
(k)
extract = D

(k)
residmk, c

(k)
extract =

(
D

(k)
resid

)T
m′k, (27)

with coefficients

mk =
ck

ck · ck
, m′k =

Σ−2yk

yk ·Σ−2yk
. (28)

The uncertainties are estimated by standard propagation of experimental errors:

[
∆y

(k)
extract

]
i

=

∑
j

σ2
ij [mk]2j

 1
2

[
∆c

(k)
extract

]
j

=

(∑
i

σ2
ij

[
m′k
]2
i

) 1
2

. (29)

5.1.3. Regularization parameter estimation. The regularization parameters λk and λ′k

reflect prior information about the smoothness of the parameters. They are not known

in advance, so initial values must be chosen by the user and further adjusted if REGALS

fails to converge. However, the regularization parameter is not an intuitive quantity,

and it depends in a complicated fashion on the noise level in the data and the particular

regularizer chosen. To assist the user in selecting initial values, we provide the option

of specifying a more intuitive parameter: the “number of good parameters,” or nk.

This parameter comes from the Bayesian interpretation of regularized linear regression

(MacKay, 1992; MacKay, 1996), and it estimates how many parameters are effectively
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determined by the data (as opposed to the regularizer). The number of good parameters

determined for uk (SAXS basis) is as follows:

nk =
∑
j

(dk)j
(dk)j + λk

, (30)

where dk is the vector of generalized eigenvalues of the matrices Mkk (which depends

on |ck|, see Equation 20) and Hk = BT
k Bk . To determine λk given nk, Equation 30

is solved numerically using the initial guess for ck. Strictly speaking, nk should be

determined using the final value of ck (after REGALS has converged), however we

have found that initial estimates of nk are usually close to the final values. Similarly,

regularization parameters for the concentration basis are found by solving Equation 30

where dk are the generalized eigenvalues of M′
kk (Equation 23) and H′k = (B′k)TB′k .

5.1.4. Software implementation. The REGALS method was developed in MATLAB

and subsequently translated into python. The two implementations have similar orga-

nization and produce equivalent results. Both versions are available for the convenience

of future users and developers.

The code is organized using a hierarchy of classes to facilitate mixing-and-matching

basis vector types (Figure 1b). At the lowest level are Concentration and Profile classes

for each type (simple, smooth, and real-space), which share a common interface and

are responsible for calculating the Ak and Bk matrices (Equations 13 and 16) given

parameters such as boundary conditions, number of samples and extent. At an in-

termediate level is the Component class, which represents a single component in the

mixture and contains one Concentration object and one Profile object. At the top

level is the Mixture class, which contains an array of Component objects as well as the

parameter vectors and regularization parameters. Methods are included to compute

the terms appearing in the normal equations (Equations 19 and 22), estimate regu-

larization parameters (inversion of Equation 30), and extract basis vectors (Equations
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27 and 29). Finally, the REGALS class implements alternating least-squares, and it

includes a high-level method (REGALS.run) that controls flow through the algorithm

with user-specified termination conditions.

The process of setting up, running, and analyzing a REGALS calculation is per-

formed by writing scripts to interact with the objects. We have included example

scripts in the form of live notebooks (Jupyter notebooks in Python) for each of the

application examples presented here. Source code, documentation, and examples are

available at https://github.com/ando-lab/regals. The release associated with this

publication has been tagged as v1.0.

5.2. Example data

5.2.1. AEX-SAXS of BsRNR large subunit. The collection and preprocessing of AEX-

SAXS from the large subunit of B. subtilis ribonucleotide reductase (BsRNR) was de-

scribed in the original publication (Parker et al., 2018). Briefly, the as-isolated protein

was eluted from a MonoQ column using a linear gradient of 100 to 500 mM NaCl

directly into a SAXS flow cell. Scattering images were recorded continously during

elution (q-range of 0.008 to 0.700Å−1). After integration, each profile was normalized

by the transmitted beam intensity, and buffer-only curves collected before the start

of the gradient were averaged and subtracted from the remaining curves. A set of

1737 frames was retained for further analysis, beginning just after the start of the

linear gradient and ending before the gradient completed, when the NaCl concentra-

tion had reached approximately 400 mM. These preprocessed data are available in

NrdE_mix_AEX.mat (a MATLAB-formatted hdf5 file).

5.2.2. Equilibrium titration of PheH. A SAXS titration of phenylalanine hydroxylase

(PheH) with phenylalanine (L-phe) was performed previously (Meisburger et al., 2016).
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In the original publication, SAXS curves from PheH at 25 µM (monomer concentra-

tion) were processed to produce 16 background-subtracted scattering curves, each with

a different amount of L-phe (0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 1, 3, 6, 10, 20,

40, and 80 mM). The same amount of L-phe was present in the buffer-only samples

used for subtraction. The q-range was 0.01 to 0.96Å−1, and the scattering was nor-

malized by the transmitted beam intensity. These preprocessed data are available in

PheH_titration.mat (a MATLAB-formatted hdf5 file).

5.2.3. Time-resolved mixing of MsbA NBD with ATP. As a first example of time-

resolved SAXS data, we chose a recently published stopped-flow mixing dataset (Josts

et al., 2020). In the experiment, a soluble nucleotide binding domain (NBD) construct

(residues 330-581 of the ATP-binding cassette transporter MsbA) was mixed with

Mg2+-ATP in a 1:1 (v/v) ratio (final concentrations 500µM NBD and 450µM ATP).

One X-ray exposure of 35 ms was acquired per shot after a variable time delay of 20

ms to 120 s.

The time-resolved MsbA NBD dataset consisting of 23 buffer-subtracted scattering

curves (0.01 < q < 0.5Å−1) was downloaded from a public database (https://www.

sasbdb.org/data/SASDGV5/), minimally reformatted, and saved as MsbA_time_resolved.mat

(a MATLAB-formatted hdf5 file). Minor preprocessing was performed before running

REGALS. Upon inspection, we noted a strong negative-going feature at low-q suggest-

ing a background subtraction error. We therefore truncated the low-q at 0.015Å−1. In

addition, we found that the average intensity displayed a slight random jitter shot-to-

shot. We corrected for this by applying a scale factor to each curve, which was found

by fitting a 5th-order polynomial to the mean intensity vs. log10(time). The resulting

scale factors were close to 1 (standard deviation of 0.013).
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5.2.4. Time-resolved temperature-jump of CypA. As an example of a pump-probe time-

resolved experiment, we chose recently reported T-jump SAXS/WAXS data collected

on the cis-proline isomerase CypA (Thompson et al., 2019). Here we analyze one par-

ticular set of experiments corresponding to the wild type CypA protein and buffer

blanks following T-jump to 29.9 ± 0.1 ◦C. After downloading the raw T-jump data

(Fraser et al., 2019), we repeated the published data reduction protocol (Thompson

et al., 2019) using a custom MATLAB script (available upon request). Briefly, differ-

ence scattering curves (∆I = Ion−Ioff) were calculated for both the protein and buffer

blanks, and a series of scaling operations was performed to correct for shot-to-shot

variations, most crucially the scaling of buffer difference profiles in order to minimize

∆Iprotein −∆Ibuffer in the WAXS regime, where solvent scattering predominates. This

produced a set of 28 difference profiles: 27 logarithmically distributed time points after

T-jump and one control where the laser was off prior to X-ray exposure. The control

profile was close to zero, indicating that the data processing had not introduced errors,

and the remaining profiles resembled those reported in the original publication. After

initial data reduction, the WAXS data were discarded and the SAXS portion of the

curves (0.025 ≤ q < 1Å−1) was saved as CypA_Tjump.mat (a MATLAB-formatted

hdf5 file).

6. Acknowledgments

We thank M.B. Watkins and W.C. Thomas for critical reading of the paper. The

authors declare no conflicts of interest.

7. Funding information

This work was supported by the National Science Foundation (NSF) grant MCB-

1942668, the National Institutes of Health (NIH) grant GM124847, and start-up funds
IUCr macros version 2.1.11: 2020/04/29



31

from Cornell University to N.A.

References

Akiyama, S., Takahashi, S., Kimura, T., Ishimori, K., Morishima, I., Nishikawa, Y. & Fujisawa,
T. (2002). Proc. Natl. Acad. Sci. U. S. A. 99(3), 1329–1334.

Ayuso-Tejedor, S., García-Fandiño, R., Orozco, M., Sancho, J. & Bernadó, P. (2011). J. Mol.
Biol. 406(4), 604–619.

Blobel, J., Bernadó, P., Svergun, D. I., Tauler, R. & Pons, M. (2009). J. Am. Chem. Soc.
131(12), 4378–4386.

Brosey, C. A. & Tainer, J. A. (2019). Curr. Opin. Struct. Biol. 58, 197–213.
Chen, L., Hodgson, K. O. & Doniach, S. (1996). J. Mol. Biol. 261(5), 658–671.
Chen, L., Wildegger, G., Kiefhaber, T., Hodgson, K. O. & Doniach, S. (1998). J. Mol. Biol.

276(1), 225–237.
Cho, H. S., Dashdorj, N., Schotte, F., Graber, T., Henning, R. & Anfinrud, P. (2010). Proc.

Natl. Acad. Sci. U. S. A. 107(16), 7281–7286.
Cichocki, A. & Zdunek, R. (2007). In Advances in Neural Networks – ISNN 2007, edited by

D. Liu, S. Fei, Z. Hou, H. Zhang & C. Sun, pp. 793–802. Springer Berlin Heidelberg.
Fraser, J., Anfinrud, P. & Thompson, M., (2019). X-ray scattering curves (saxs/waxs) used

for the analysis described in ‘temperature-jump solution x-ray scattering reveals distinct
motions in a dynamic enzyme’.
URL: doi.org/10.35092/yhjc.9177143.v1

Hansen, S. (2012). In Bayesian Methods in Structural Bioinformatics, edited by T. Hamelryck,
K. Mardia & J. Ferkinghoff-Borg, Statistics for Biology and Health, pp. 313–342. Springer
Berlin Heidelberg.

Hansen, S. & Pedersen, J. S. (1991). J. Appl. Crystallogr. 24(5), 541–548.
Hendler, R. W. & Shrager, R. I. (1994). J. Biochem. Biophys. Methods, 28(1), 1–33.
Henry, E. & Hofrichter, J. (1992). In Numerical Computer Methods, vol. 210 of Methods in

Enzymology, pp. 129 – 192. Academic Press.
Herranz-Trillo, F., Groenning, M., van Maarschalkerweerd, A., Tauler, R., Vestergaard, B. &

Bernadó, P. (2017). Structure, 25(1), 5–15.
Hopkins, J. B., Gillilan, R. E. & Skou, S. (2017). J. Appl. Crystallogr. 50(Pt 5), 1545–1553.
Hutin, S., Brennich, M., Maillot, B. & Round, A. (2016). Acta Crystallogr., Sect. D: Struct.

Biol. 72(Pt 10), 1090–1099.
Jaumot, J., de Juan, A. & Tauler, R. (2015). Chemom. Intell. Lab. Syst. 140, 1–12.
Jaumot, J., Vives, M. & Gargallo, R. (2004). Anal. Biochem. 327(1), 1–13.
Josts, I., Gao, Y., Monteiro, D. C. F., Niebling, S., Nitsche, J., Veith, K., Gräwert, T. W.,

Blanchet, C. E., Schroer, M. A., Huse, N., Pearson, A. R., Svergun, D. I. & Tidow, H.
(2020). Structure, 28(3), 348–354.e3.

de Juan, A. & Tauler, R. (2003). Anal. Chim. Acta, 500(1), 195–210.
Kathuria, S. V., Guo, L., Graceffa, R., Barrea, R., Nobrega, R. P., Matthews, C. R., Irving,

T. C. & Bilsel, O. (2011). Biopolymers, 95(8), 550–558.
Kirby, N. M. & Cowieson, N. P. (2014). Curr. Opin. Struct. Biol. 28, 41–46.
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. (2003). J.

Appl. Crystallogr. 36(5), 1277–1282.
Lipfert, J., Columbus, L., Chu, V. B. & Doniach, S. (2007). J. Appl. Crystallogr. 40(s1),

s235–s239.
MacKay, D. J. C. (1992). Neural Computation, 4(3), 415–447.
MacKay, D. J. C. (1996). In Models of neural networks III, pp. 211–254. Springer.
Maeder, M. (1987). Anal. Chem. 59(3), 527–530.

IUCr macros version 2.1.11: 2020/04/29



32

Meisburger, S. P., Taylor, A. B., Khan, C. A., Zhang, S., Fitzpatrick, P. F. & Ando, N. (2016).
J. Am. Chem. Soc. 138(20), 6506–6516.

Meisburger, S. P., Thomas, W. C., Watkins, M. B. & Ando, N. (2017). Chem. Rev. 117(12),
7615–7672.

Miller, K. (1970). SIAM J. Math. Anal. 1(1), 52–74.
Minh, D. D. L. & Makowski, L. (2013). Biophys. J. 104(4), 873–883.
Moore, P. B. (1980). J. Appl. Crystallogr. 13(2), 168–175.
Neutze, R. & Moffat, K. (2012). Curr. Opin. Struct. Biol. 22(5), 651–659.
Parker, M. J., Maggiolo, A. O., Thomas, W. C., Kim, A., Meisburger, S. P., Ando, N., Boal,

A. K. & Stubbe, J. (2018). Proc. Natl. Acad. Sci. U. S. A. 115(20), E4594–E4603.
Pérez, J. & Vachette, P. (2017). In Biological Small Angle Scattering: Techniques, Strategies

and Tips, edited by B. Chaudhuri, I. G. Muñoz, S. Qian & V. S. Urban, Advances in
Experimental Medicine and Biology, pp. 183–199. Singapore: Springer.

Press, W. H. (2007). Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cam-
bridge University Press.

Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. (2007). Q. Rev. Biophys. 40(03),
191–285.

Segel, D. J., Fink, A. L., Hodgson, K. O. & Doniach, S. (1998). Biochemistry, 37(36), 12443–
12451.

Thompson, M. C., Barad, B. A., Wolff, A. M., Sun Cho, H., Schotte, F., Schwarz, D. M. C.,
Anfinrud, P. & Fraser, J. S. (2019). Nat. Chem. 11(11), 1058–1066.

Tikhonov, A. N. & Arsenin, V. Y. (1977). Solutions of Ill-posed Problems. Winston.
Vershynin, R. (2012). In Compressed Sensing: Theory and Applications, edited by G. Kutyniok

& Y. C. Eldar, pp. 210–268. Cambridge: Cambridge University Press.
Vestergaard, B. & Sayers, Z. (2014). IUCrJ, 1(6), 523–529.
Williamson, T. E., Craig, B. A., Kondrashkina, E., Bailey-Kellogg, C. & Friedman, A. M.

(2008). Biophys. J. 94(12), 4906–4923.

Fig. 1. Overview of the REGALS method. (a) Parametric basis vectors representing
concentrations (top panel) and SAXS profiles (bottom panel). In simple vectors, each
sample (q or x) is given an independent parameter (black dots). A smooth vector
represents the data by linear interpolation between control points (blue circles) over
the region of support (xmin and xmax, top panel). A real-space vector samples the
P (r) function (orange circles) up to the maximum particle dimension (dmax), and
corresponding SAXS intensities (orange curve) are calculated by Fourier transform
(Equation 8). (b) Experimental restraints are expressed in software by mixing and
matching basis vector types using a flexible object hierarchy. The basis vectors
representing SAXS profiles (u) and concentrations (v) are refined by methods in
the high-level REGALS class. (c) Refinement algorithm based on regularized ALS.
At each iteration, regularized linear least-squares fits are performed on the SAXS
profiles (Equation 17) and concentrations (Equation 18) in an alternating fashion
until a user-specified convergence test is satisfied.
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Fig. 2. REGALS deconvolution of an AEX-SAXS dataset with a changing background.
(a) The scattering intensities obtained in a previously reported AEX-SAXS exper-
iment on the large subunit of BsRNR (Parker et al., 2018) plotted as a function
of frame number. (b) In the top panel, the integrated intensities across the elution
display two prominent peaks over a rising background. SVD of the full dataset shows
four significant singular values above the noise level (gray circles above the dashed
line in bottom panel, see Equation 6). SVD of only those scattering profiles prior
to the protein peaks (blue region between dashed lines in top panel) shows two sig-
nificant singular values (blue filled circles in bottom panel), indicating the presence
of two background components. (c) The deconvolution derived from SVD of the
full dataset (Equation 7) is non-physical. On the left are the concentration profiles
(right singular vectors), and on the right, the corresponding scattering profiles (left
singular vectors). (d) REGALS gives physical concentration profiles (left panel) and
scattering profiles (right panel).

Fig. 3. The changing background in AEX-SAXS can be complex. (a) Comparison
of χ2 values from the REGALS deconvolution of AEX-SAXS dataset in Figure
2 with two background components (top panel, blue) versus one (bottom panel,
orange). The former is relatively uniform around the expected value of 1, whereas
the latter shows unevenness throughout the elution (black curves: smoothed χ2

values shown as trend lines), indicating that dataset is better described with two
background components. (b) Because the background scattering includes significant
low-q features, failing to properly account for the changes in the background can
lead to artifacts in the extracted protein scattering profiles. Here, the use of only
one background component in the analysis leads to a downturn in the low-q region
of the component 1 scattering, which will lead to underestimation of protein size.
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Fig. 4. Separation of aggregation from ligand-induced conformational changes in a
titration dataset with real space regularization in REGALS. (a) Scattering profiles
from a previously reported phenylalanine (L-phe) titration experiment on PheH
(Meisburger et al., 2016). Up to 1 mM L-phe (red to cyan), the change in scat-
tering mainly occurs at mid-q, corresponding to internal conformational changes.
At [L-phe] greater than 1 mM (blue to magenta), an increase at low-q can be ob-
served, indicative of aggregation. The two sets of profiles are offset for clarity. (b)
Regularized P (r) functions from REGALS deconvolution. Different cutoffs for P (r)
functions differentiate aggregation (green) from normal conformations (blue and or-
ange). (c) Concentration profiles from REGALS deconvolution (continuous curves)
are consistent with observation from panel a, with conformational switching oc-
curring below 1 mM L-phe and aggregation gradually becoming dominant above 1
mM L-phe. Circles show unregularized concentrations (Equation 27). (d) Extracted
profiles for components 1 and 2 agree with the scattering profiles of inactive and ac-
tivated PheH, respectively. Here, the black curves are the P (r) regularized scattering
profiles from SEC-SAXS (Meisburger et al., 2016).

Fig. 5. Model-free deconvolution of a time-resolved mixing dataset in REGALS. (a)
Scattering profiles from a previously reported time-resolved mixing experiment with
MsbA NBD and ATP (Josts et al., 2020) shown as Kratky plots (red to blue). The
peak position shifts to q ∼ 0.07Å−1 before returning to q ∼ 0.08Å−1 (denoted by
curved arrow), indicating a transient increase in size. (b) Regularized P (r) functions
of dimer (blue) and monomer (orange) components have well-defined shapes with
dmax estimates based on the crystal structure of full-length dimeric MsbA (PDB:
3B60). (c) Concentration profiles from REGALS deconvolution (continuous curves)
and unregularized concentrations (circles) show transient formation of the NBD
dimer. (d) The extracted scattering profiles of components 1 and 2 agree with pre-
dictions using the NBD dimer and monomer from the full-length crystal structure
(black curves: CRYSOL fits).
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Fig. 6. Separation of changes at different length scales in a time-resolved T-jump
dataset in REGALS. (a) Difference scattering from a previously reported time-
resolved T-jump experiment on CypA (Thompson et al., 2019) as a function of time
delay (violet to red). Inset: the mean intensity ∆I over q = 0.03−0.05Å−1 increases
before decreasing. (b) Regularized ∆P (r) functions from REGALS deconvolution.
Three cutoffs were chosen to separate change at different length scales: the equilib-
rium CypA structure (49Å, orange), thermally-excited intermediate (59Å, blue),
and large length scale change (150Å, green). (c) Concentration profiles from RE-
GALS deconvolution (continuous curves) and unregularized concentrations (circles)
show different kinetics for conformational changes at different length scales. (d) Re-
constructed ∆P (r, t) from deconvolved components display two distinct processes
occurring at small and large length scales.

Synopsis

We introduce a method to deconvolve SAXS datasets from evolving mixtures, such as those
produced by time-resolved, T-jump, ligand titration, and chromatography-coupled setups. The
method incorporates general restraints using regularized alternating least squares (REGALS),
enabling physically-meaningful deconvolution without the need for a hard physicochemical or
structural model.
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