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ABSTRACT 

Correlated motions in proteins arising from the collective movements of residues have long been 

proposed to have fundamental importance to key properties of proteins, from allostery and 

catalysis to evolvability. Recent breakthroughs in structural biology have made it possible to 

capture proteins undergoing complex conformational changes, yet intrinsic correlated motions 

within a conformation remain one of the least understood facets of protein structure. For many 

decades, the analysis of total X-ray scattering held the promise of animating crystal structures with 

correlated motions. With recent advances in both X-ray detectors and data interpretation methods, 

this long-held promise can now be met. In this perspective, we will introduce how correlated 

motions are captured in total scattering and provide guidelines on data collection, interpretation, 

and validation. As structural biology continues to push the boundaries, we see an opportunity for 

gaining atomistic insight into correlated motions using total scattering as bridge between theory 

and experiment. 
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Introduction 

The past decade has seen remarkable developments in structural biology that were once simply 

unimaginable. A confluence of hardware and software advances in cryo-electron microscopy 

(cryo-EM) has now made it possible to determine structures that were previously considered 

unattainable1. In the X-ray field, the emergence of 4th generation light sources2,3 has led to a 

renaissance of room-temperature studies at both X-ray free electron lasers (XFELs)4 and 

synchrotrons5. The past year also witnessed a breakthrough in the accuracy of protein structure 

prediction by machine learning algorithms6. On all fronts, structural biology techniques have 

reached a new level of sophistication. We are arguably experiencing the second major watershed 

since the “Big Bang”7 of protein X-ray crystallography. 

The goal of structural biology has always been to relate structure to function. Yet since the 

beginning, it has been known that protein function can be better deduced by visualizing a change 

in structure. The seminal structures of hemoglobin in different states were critical in revealing 

how conformational change can be interpreted as inter-subunit allostery and explain cooperative 

oxygen binding8. Likewise, comparisons of lysozyme structures with and without inhibitor bound 

were the first example in which the active site of an enzyme and its interactions with a ligand 

were deduced with minimal prior knowledge9,10. These foundational studies laid out an extremely 

successful template for structural biology – if multiple structures of a protein can be solved, we 

can deduce much about its specific function by careful inspection of the changes. Today, the 

development of novel approaches to visualize proteins in action is at the forefront of structural 

biology. In crystallography, there has been a concerted effort to probe room-temperature 

dynamics either kinetically in response to a perturbation11–13 or at equilibrium by modeling 

multiple conformers14–16. In cryo-EM, we have seen the development of techniques not only aimed 
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at classification of single particles in different conformations17,18 but also in the estimation of a 

continuous manifold that describes a protein’s structure18–21. We expect these recent advances, 

especially in cryo-EM, to revolutionize structural analyses of large-scale conformational 

changes, such as domain motions. 

What remains to be done? Although much can be learned from observing changes in structure, 

there are collective structural fluctuations within a single conformation, known as correlated 

motions, that are difficult to visualize but are important to understand. In the context of allostery, 

subtle correlated motions are implicated in sensing local changes, such as ligand binding, and 

propagating a signal through the protein to alter its activity. For many proteins, like hemoglobin, 

the outcome of signal propagation is a large-scale conformational change that can be interpreted 

to explain changes in activity22. However, even when high-resolution structures of different 

allosteric states are known, the mechanism by which small-scale changes generate a global 

change is not readily apparent. Moreover, there is a phenomenon known as “dynamic allostery” 

or “fluctuation-induced allostery” which does not invoke any conformational change. First 

described by Cooper and Dryden23, it was argued from statistical mechanics that allosteric 

signaling can occur solely through different movement patterns within a protein without any 

discernible changes to the average structure. To date, various instances of dynamic allostery have 

been identified experimentally, such as inter-subunit communication in catabolite activator 

protein (CAP)24 and tuning of ligand-binding affinity by a peripheral alpha helix in PDZ 

domains25. 

Furthermore, the potential roles of subtle protein motions in catalysis has been one of the greatest 

debates in modern enzymology26–32. For the structural biologist, it is useful to consider how 

motions may contribute to different parts of the rate constant as described by transition-state 
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theory26. In this framework, the reactant and transition state are in a quasi-equilibrium, such that 

the rate constant is proportional to a Boltzmann distribution that has an exponential dependence 

on the activation free energy. The pre-exponential factor in the rate constant includes the 

transmission coefficient, which can account for phenomena such as quantum mechanical 

tunneling in reactions that involve the transfer of light particles. This factor is thought to be 

sensitive to fluctuations in the donor-acceptor distances30. For the best-studied system of 

dihydrofolate reductase (DHFR), a diverse set of experimental and theoretical tools has been 

applied that suggest that a network of residues undergo sub-angstrom to angstrom-scale 

correlated motions that are relevant to catalysis33–37 and that this network is preserved throughout 

evolution33,38,39. Yet it has also been argued that the dominant contribution to enzymatic rate 

enhancements comes from the structure itself, i.e. that the polar environment of the active site is 

pre-organized in a way that water molecules are not40.  

To achieve a physical understanding of the unique properties of proteins, it is clear that 

correlated motions must be investigated in addition to structure (Fig. 1). Thus far, a number of 

computational approaches have been developed to predict networks of residues that may display 

correlated motion22. These include sequence-based methods that infer the coevolution between 

residues from multiple sequence alignments (MSA)41, as well as the physical modeling of 

structural dynamics by elastic network models (ENM)42–44 or molecular dynamics (MD) 

simulations45 and graph-theory analysis based on proximity and bonding between residues in 

protein structures46,47. Direct measurements of correlated motions, on the other hand, are 

challenging, and thus far, largely limited to nuclear magnetic resonance (NMR) spectroscopy, 

where different methods can be applied to cover a wide range of time scales from ps to s48. 
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Figure 1. Combining theoretical and experimental approaches to determine how motions are 

correlated in proteins. Theoretical models include those based on sequence (represented by an 

MSA) and structure (represented by an ENM). Among experimental methods, total X-ray 

scattering from crystals stands out for its ability to measure high-resolution structure and 

correlated motions simultaneously. Shown on the right is a set of residues that was predicted to 

coevolve in DHFR (PDB: 1RX2) by statistical coupling analysis41 (shown in blue). 

In this perspective, we will focus on a new approach to X-ray crystallography that provides a 

direct measure of correlated motions: the analysis of total scattering from protein crystals. The 

total scattering signal contains both Bragg diffraction and diffuse scattering, from which both 

atomic detail and correlated motions can be obtained49. The measurement is unique in that data 

for both the average structure and its fluctuations can be collected in a single experiment on the 

same sample, and thus, the two can be compared directly in a self-consistent manner. 

Furthermore, the total scattering signal provides a powerful restraint for bridging the gap 
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between experiment and theory. Here, we will begin with a brief introduction on how atomic 

displacements are represented in protein crystallography (B-factors) in order to explain how 

information on correlated displacements is contained in diffuse scattering. We will then provide 

guidelines on data collection, processing, and interpretation. Finally, we will discuss grand 

challenges and opportunities, particularly in emerging areas of interest, such as relating 

correlated motions to sequence and evolution. 

Understanding conformational disorder in terms of correlated motions 

In crystallography, structure determination relies on the integrated intensities of the Bragg 

reflections – the bright spots that are captured in diffraction images (Fig. 2A). This dataset, 

which we call “Bragg diffraction,” reports on the mean electron density of the unit cell of the 

crystal, where the average is over time and space. Although the lattice imposes more orderliness 

on proteins than if they were completely free in solution, the inside of a protein crystal is a 

crowded but watery environment with non-covalent contacts between neighboring molecules. As 

a result, individual molecules in a protein crystal sample a conformational ensemble that share 

similarities with the ensemble in solution50. Often, evidence for distinct conformations can be 

seen in the mean electron density and modeled by accounting for their partial occupancies51. In 

addition, apparent fluctuations in atomic positions result in a local blurring of the electron 

density. This blurring is quantified during structure refinement by fitting atomic B-factors that 

specify the width of a Gaussian probability distribution for each atom’s displacement from the 

average position52. 
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Figure 2.  Components of total scattering illustrated using the experimental X-ray structure of 

CAP (PDB: 1g6n53) with dynamics added using ENM simulations54 of one unit cell. (A) The 

simulated diffraction image contains two signals: Bragg peaks (left) that depend on the average 

structure, and diffuse scattering (right) that arises from correlated atomic displacements (in this 

case, vibrations of the ENM). (B) B-factors refined to experimental Bragg data vary along the 

polypeptide chain (blue to red). (C) Normal modes of the ENM seem to explain regions of high 

experimental B-factor. The reality of such collective motions can be verified by diffuse 

scattering analysis. 

Crystallographic B-factors often display a distinct pattern along a polypeptide chain that, for a 

given protein crystal, is largely reproducible from experiment to experiment (Fig. 2B). Thus, 

although Bragg data contain no information about displacement correlations, B-factors can help 

identify potential regions of flexibility and mobility in a protein55,56. In addition, motions may be 

inferred from more sophisticated disorder models applied during crystallographic structure 

refinement, including normal mode57, TLS58, and multi-conformer14 approaches. In computational 
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studies of allostery and correlated motions, B-factors are often used for experimental validation59. 

B-factors are particularly relevant to ENMs, whose normal modes naturally predict Gaussian-

distributed fluctuations that can be compared directly with experiment60–62 (Fig. 2C). B-factors are 

also commonly compared with mean-squared fluctuations in MD simulations, both for validation 

and for benchmarking force fields63.  

However, there are two major limitations to B-factors. First, although B-factors are used to 

restrain dynamical models, they are not a particularly powerful restraint. In fact, very different 

models can account for B-factors equally well, making interpretation ambiguous. For example, it 

has been questioned whether the correlation between B-factors and ENM displacements is 

physically meaningful, or if it merely reflects the tendency for greater disorder on the surface of 

a protein compared with the core64.  Second, B-factors contain contributions from multiple 

sources of disorder, and thus, without accounting for these other sources, they overestimate the 

atomic motions arising from protein motions. As we will describe below, the contribution of 

non-protein dynamics cannot be treated as a constant, and thus, the use of so-called normalized 

B-factor55 is insufficient. 

Fortunately, diffraction images contain a second signal called “diffuse scattering” (Fig. 2A). This 

signal is a direct consequence of disorder: photons lost from the high-resolution Bragg 

reflections are scattered instead, leaving a faint pattern everywhere in the diffraction image, 

between and underneath Bragg peaks. As a result, diffuse scattering is directly related to B-

factors, but the information content differs. While B-factors come from the average electron 

density, diffuse scattering depends intimately on how atomic displacements are correlated with 

each other49. The two are thus complementary. By analyzing the diffuse scattering and Bragg 
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diffraction simultaneously (total scattering analysis), a more complete view of the structural 

fluctuations in a crystal can be gained54. 

Historically, protein diffuse scattering was difficult to measure accurately, especially in the 

vicinity of intense Bragg peaks65. The use of a direct detector recently enabled the first clear 

measurement of the three-dimensional diffuse scattering from a protein crystal, allowing for a 

detailed analysis of the various contributions to the signal (further described below and in Fig. 

3)54. Importantly, intense near-Bragg features were resolved for the first time, which revealed that 

the crystals contained phonon-like displacement waves extending over hundreds of angstroms. A 

key take-away is that lattice disorder resulting from displacement waves accounted for the bulk 

of the B-factors in the most-ordered atoms in the protein. Thus, it was necessary to subtract this 

lattice contribution from the B-factors to reveal the true contribution from protein motions. 

Now that historical limitations have largely been overcome, we expect biological applications of 

total scattering to become increasingly common. Thus, it will be important to establish 

guidelines and best practices to ensure data quality and robust interpretations, as occurred with 

crystallography, small-angle X-ray scattering, and cryo-EM. In the following, we outline the 

issues based on our experience so far, both to guide design of future experiments and to help 

evaluate published results. 

How to measure total scattering 

With modern detectors, total scattering experiments can be measured in much the same way as 

conventional, single-crystal diffraction. It may even be possible to extract diffuse scattering 

patterns from conventional diffraction images deposited in public databases66,67. However, without 

optimizing the experiment, the kind of quantitative, total scattering analysis we describe here 
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will be difficult. One reason is that proper treatment of background is extremely important for 

diffuse scattering as it competes with the signal of interest. Unlike in conventional diffraction 

experiments, total scattering measurements require a separate measurement of the background or 

its effective elimination. Furthermore, most diffraction data are currently collected at 

temperatures of 100 K to mitigate radiation damage. Although cryo-cooled crystals also exhibit 

diffuse scattering66,68, room temperature is preferred for dynamic studies as the conformational 

ensembles best resemble the physiological state15. Additionally, the cryo-cooling process may add 

strain to the crystal lattice69–71, which increases mosaicity and constitutes an additional perturbation 

to be accounted for. As we detail here, high-quality data can be obtained without cryocooling if 

extra care is taken in sample selection and experimental setup. 

The first and most obvious consideration is signal-to-noise ratio. In terms of the number of 

photons recorded, diffuse scattering is actually comparable to Bragg diffraction65. However, the 

diffuse signal is much weaker because those photons are spread over the entire detector, while 

Bragg diffraction is concentrated in sharp peaks. Moreover, much of the diffuse signal is 

isotropic and relatively featureless, with the more informative signal present as small rapidly 

varying features. Crystal scattering also competes with background from other sources that can 

be a challenge to eliminate, such as air in the beam path, liquid on the crystal surface, and other 

mounting materials like loops and capillaries. Finally, if the data are collected at room 

temperature, the total exposure budget is severely limited by susceptibility to radiation damage72,73. 

For all of these reasons, it helps considerably if the crystals are large by current standards. While 

excellent Bragg data may be collected from small (< 50 µm) crystals using cryo- or serial 

crystallography, room-temperature diffuse scattering practically requires larger crystals (smallest 
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dimension > 100 µm). The possibility of using XFELs for total scattering from microcrystals is 

revisited in the final section. 

The second consideration is diffraction quality. It is sometimes assumed that diffuse scattering 

requires poorly diffracting crystals. While the diffuse signal is most obvious when Bragg peaks 

are weak74, the evidence so far is that all protein crystals produce strong diffuse scattering49, even 

those that diffract to exceptionally high resolution54. Poor diffraction quality often results from 

high mosaicity, a kind of macroscopic disorder often described in terms of distortions and 

misalignment of so-called mosaic blocks70, as opposed to the microscopic lattice disorder 

measured by diffuse scattering. Mosaicity broadens both Bragg peaks and diffuse scattering 

features, setting a fundamental limit on how finely the diffuse map can be sampled. Thus, 

although a mosaicity of 1° is sometimes tolerable for Bragg datasets, it would be problematic for 

diffuse scattering. The highly detailed diffuse maps from triclinic lysozyme54 benefited from the 

low apparent mosaicity of ~0.02°. In a similar vein, X-ray sources optimized for high flux often 

have high energy bandwidth and beam divergence and therefore produce a similar broadening 

effect75. 

The final consideration is data collection strategy. The diffuse map results from merging 

individual diffraction images, which represent slices through the 3D reciprocal space in different 

orientations. The merging process is an opportunity to estimate and correct for uncontrolled 

variables in the measurement, such as the volume of the crystal in the X-ray beam and variations 

in response across the detector. As in anomalous diffraction experiments, the best collection 

strategy is to aim for high redundancy76, so that regions of reciprocal space are observed multiple 

times independently. Collecting from several different crystals or tilting the spindle axis also 

helps fill in blind spots in reciprocal space caused by Ewald sphere curvature and physical gaps 
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between detector panels. The background scattering from the diffraction instrument should also 

be measured and subtracted from each image. It may be necessary to collect backgrounds as a 

function of spindle angle if the mounting materials cast a shadow on the detector54. Some 

background scattering can also be removed computationally during merging, as long as it is 

isotropic and present in only some rotation angles54.  

The internal consistency of the data (i.e. 3D diffuse map) can be assessed using metrics 

commonly in use for Bragg data such as CC1/2, the correlation coefficient between random half-

datasets binned by resolution shell77. The map quality sets an upper limit on model-data 

agreement, and this can be calculated from CC1/2 using the CC* estimate54,77. Note that statistics 

such as CC1/2 depend on how finely the map is sampled, which is not an issue for Bragg data, so 

care must be taken to always specify the sampling and to compare datasets sampled on the same 

grid. 

How to interpret total scattering 

As described above, one set of diffraction images produces two datasets: the integrated Bragg 

intensities and the 3D diffuse map. For total scattering analysis, the datasets first need to be 

placed on the same intensity scale relative to each other. Both datasets can then be placed on an 

absolute intensity scale of electron units16,54. The inelastic scattering component, which contains 

no structural information, can then be subtracted from the diffuse map, leaving the elastic 

scattering for the remainder of the analyses (Fig. 3A). 
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Figure 3. Total scattering analysis separates motion into lattice and internal components54. (A) 

Three-dimensional map of diffuse scattering from triclinic lysozyme shown as intersecting 

central slices. A movie showing this volume from multiple perspectives is available online. The 

scattering includes an intense isotropic ring that may be subtracted to better visualize the halo 

and cloudy features. (B) Around Bragg peaks are three-dimensional halos (shown here as 

transparent contours, blue to yellow) attributed to thermally excited lattice vibrations. (C) Cloudy 

features due to short-ranged correlated motion are most visible in sections mid-way between 

Bragg planes. (D) Total motion and correlations are quantified using B-factor (top, PDB 6o2h54) 

and diffuse Patterson maps (bottom), which report electron density fluctuations vs. inter-atomic 

vector, r. A lattice dynamics model fit to diffuse halos accounts for most of the B-factor for well-

ordered atoms (total vs. lattice, top) and the correlated motions at large distances (total vs. lattice, 
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bottom), but underestimates those at short distance (r < 10 Å, dashed circles). An ENM 

describing protein dynamics was fit to the residual B-factors (top right). The simulated diffuse 

Patterson of the protein dynamics model (bottom right) explains the remaining short-ranged 

correlations. 

The resulting diffuse map can be further divided into different components. The most noticeable 

feature is a broad ring-shaped background at ~3 Å resolution (Fig. 3A), which arises from both 

the disordered solvent and from the protein78. Although it is potentially informative and useful for 

evaluating dynamical models, it can be subtracted for visualization purposes. Once the 

background is “turned off,” the fine features become visible. The most intense are typically 

found close to the Bragg peaks and are associated with lattice disorder. With sufficient sampling, 

halos with distinctive three-dimensional shapes can be observed (Fig. 3B). Different physical 

processes produce distinct intensity profiles49. For example, if the intensity decays away from the 

Bragg peak with a power-law exponent of -2, then acoustic phonon-like vibrations are a likely 

source54. Far from the Bragg peaks, it is common to see a cloudy pattern (Fig. 3C), which 

includes the scattering from collective motions of the protein79. After these initial inspections, the 

diffuse map can be interpreted by rigorous comparison with the simulated scattering from 

atomistic simulations. 

Building an accurate model of the lattice disorder is the key to total scattering interpretation. The 

reasons are twofold. First, it allows for the lattice component of the B-factors to be estimated and 

subtracted (Fig. 3D, top). Because lattice dynamics involve rotations (not just translations) of 

molecules80, its contribution to the B-factors cannot be assumed to be a constant value. Second, it 

allows the short-ranged correlations associated with lattice motion to be accounted for when 

analyzing the cloudy pattern. Thankfully, lattice vibration models have relatively few degrees of 
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freedom that can be fit using even just a subset of intense three-dimensional halos54. In contrast to 

previous methods, which relied on cloudy scattering exclusively49,68, refining the lattice model to 

the halos allows for unambiguous separation of lattice motion from internal motion. 

Once the lattice disorder is understood in detail, we can focus on the continuous cloudy pattern, 

which extends throughout reciprocal space and is associated with the correlated motions of 

atoms within the unit cell. Separating the contributions from lattice and internal motion to the 

cloudy pattern in reciprocal space is difficult. However, by calculating the Fourier transform of 

the diffuse scattering intensities, i.e. the “diffuse Patterson map”54, the data are transformed into a 

readily interpretable form (Fig. 3D, bottom left). The diffuse Patterson represents electron 

density fluctuations as a function of pairwise distance between atoms. The part of this map near 

the origin (e.g. smaller than the size of the protein) is affected by correlations that are short-

ranged, while further from the origin, the correlations between unit cells predominate. To reveal 

the correlations from protein dynamics, one option is to simulate the diffuse Patterson from the 

lattice dynamics model (Fig. 3D, bottom center) and subtract it from the experimental Patterson. 

However, this must be done very carefully, as any errors in the model could produce spurious 

signals. A safer approach is to simulate internal motions riding on top of lattice motions (Fig. 

3D, bottom right) and to check whether adding internal motions improves agreement in this 

central region of the Patterson. Importantly, model-data agreement should be checked with both 

datasets, Bragg and diffuse. Thus, the combination of internal and lattice motions should agree 

with the B-factors.  

Fitting a dynamical model to diffuse scattering and B-factors simultaneously is a long-standing 

goal of this field81 that has yet to be realized in a robust way. However, it is generally possible to 

derive several realistic candidate models of protein dynamics from the B-factors corrected for 
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lattice disorder and rank them according to agreement with the diffuse Patterson. Such an 

approach has the additional advantage of illustrating how well the data discriminate between 

candidates. Although there is not yet an unbiased indicator to prevent overfitting that is 

comparable to Rwork/Rfree in conventional crystallographic refinement, we can employ the dynamical 

equivalent of the omit map by testing whether model refinement with certain motions of interest 

suppressed worsens the model-data agreement54. 

As in conventional crystallography, multiple metrics should be used for assessing model 

accuracy. In using model-data correlations (CCs), it is important to note that the intense halos 

will dominate the statistics. One way to put lattice and internal motion on a more equal footing is 

to focus on the central part of the Patterson only for computing CCs54. Although CCs are useful, 

they are normalized by the variance in each resolution shell, and thus it is important to verify that 

the model correctly predicts the signal strength (variance) vs. resolution68. It should be noted that 

diffuse scattering patterns tend to correlate with the molecular transform, and therefore even a 

very crude model can easily obtain CCs of ~0.549. Substantially better agreement is needed to 

establish the accuracy of a model.  

Challenges and Opportunities for the Future 

Over the past several decades, the importance of correlated motions in protein function has 

become increasingly apparent. However, as with all areas of protein science, the information we 

can obtain by examining the properties of one specific protein sequence is limited. In truth, all 

proteins have evolutionarily related counterparts, which may display similar yet divergent 

behaviors. Thus, an emerging trend is to use evolution as an additional dimension to understand 

protein functions by comparing sequences that share the same evolutionary origin82,83. In the 
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context of enzyme catalysis, the utility of this approach is exemplified by studies on DHFR, 

where coupled networks of residues were identified by mixed quantum/classical MD simulations 

of the hydride transfer reaction and correlated with sequence conservation across multiple 

organisms33. In a later study39, a curated MSA of DHFR was constructed in order to identify rare 

events that demark changes from one invariant sequence motif to another. The dynamic pattern 

of the active-site Met20 loop  from one species was engineered into that of another by 

substituting divergent sites with evolutionary significance identified in this way39. Statistical 

coupling analysis (SCA)38 of an MSA of DHFR also revealed coevolving residues that form a 

contiguous network in the structure and show strong correlation with residues identified by NMR 

to be involved in millisecond dynamics during the catalytic cycle35. 

In addition to comparing extant sequences from different organisms, sequences resurrected by 

ancestral sequence reconstruction can be compared with extant homologs to track the 

evolutionary trajectory of correlated motions and their role in protein function84. For example, 

Zou et al.85 utilized MD simulations to compare the dynamics of a β-lactamase specific for 

penicillin degradation with its ancestral counterparts, which show promiscuity but no substantial 

structural differences. They were able to identify regions with altered dynamics and key residues 

that contribute to the difference, signifying the importance of dynamics in the tradeoff between 

activity and specificity in the evolution of β-lactamase. 

Conformational dynamics are also thought to be a key contributor to protein evolvability86,87, 

defined as the ability of proteins to adopt new functions through mutations. According to this 

view, protein fluctuations sample minor conformations that serve as precursors for new 

functions. To test such intriguing proposals, directed evolution of novel enzymes is of particular 

interest, where sequences from different iterations may be compared to elucidate the relationship 
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between correlated motions and changes in traits83,88,89. As an example, variants of artificial retro-

aldolases that were produced by directed evolution90 were later examined by MD89, and a 

population shift toward catalytically competent arrangement of active-site residues was observed 

along the evolutionary pathway, which interestingly, also included distal mutations. With a novel 

algorithm, residues exhibiting correlated motions were also inferred from the MD trajectory 

which further rationalized the conformational conversion. Recently, directed evolution of a 

bifunctional ancestor enzyme was demonstrated using a library of mutants with altered backbone 

dynamics generated by transposon-based random insertions or deletions (indels)91.  

As evident from the examples above, the emerging interest in evolution of correlated motions 

relies heavily on the synergy between computational and experimental methods. We see several 

opportunities for advancing these studies with total scattering analysis. Perhaps the most critical 

area is in improving the accuracy of MD. With the recent advance in measurement, it has 

become clear that all-atom MD is not yet able to accurately predict correlated motions implied 

by diffuse scattering54. A major contributor to this discrepancy is the fact that the predictive 

ability of MD (RMSD of ~0.4 Å for triclinic lysozyme92) cannot match the coordinate precision 

of Bragg diffraction (~0.03 Å for PDB 6o2h93), which has a cascading effect on the ability of MD 

to predict the diffuse signal54. In the future, methods to restrain or otherwise improve MD using 

total scattering data will be of great importance, both for the accuracy of the simulation itself and 

for gaining atomistic insight into correlated networks in proteins. Integration of multiple 

experimental methods will also lead to a deeper understanding of the information contained in 

different types of data. Of particular interest is combining total scattering analysis with solid-

state NMR, which can both be performed on protein crystals94. Finally, the quest to understand 

the link between evolutionary sequence correlations and functional dynamics represents a grand 
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challenge in molecular biophysics (Fig. 4). From sequence analysis, it is clear that selection 

pressure drives certain groups of residues to coevolve and that these groups can highlight areas 

of functional importance in a structure95. In the case of the PDZ domain, a deep double-

mutational library of multiple homologs was experimentally characterized to show that the SCA 

matrix couplings can have thermodynamic interpretation95. However, a general connection 

between co-evolving residues and motion has not been established. Thus, direct comparisons 

between theory and dynamic experiments will play a crucial role in in gaining a precise 

understanding of how correlated motions can be predicted from sequence.  

 

Figure 4. Evolutionary and dynamic perspectives on residue-residue correlations. (Left) 

Evolutionary correlation according to SCA41 applied to an MSA of a hydrolase family that contains 

lysozyme (Pfam PF00062). (Right) Displacement correlations96 in lysozyme according to an ENM 

derived from total scattering analysis (Fig. 3). Establishing the connection between these two 

perspectives is necessary to fully understand protein function and allostery. 

To bring total scattering analysis to a wider audience, several areas of development are of high 

priority. The first is to get around the issue of crystal size for room-temperature studies. 

Although we recommend maximizing signal to noise with large (>100 µm) crystals, inevitably, 

we will need to work with smaller ones in a serial fashion, i.e. by collecting one or a few frames 
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of images from many crystals. We see no fundamental reason why such experiments cannot be 

done at synchrotrons or X-FELs today, however accurate measurement of total scattering has 

special requirements for the X-ray detector, properties of the beam such as divergence and 

energy bandwidth, and sample environment. The primary requirements for a detector are that 

photons are detected directly (i.e. via a semiconductor), that dynamic range is sufficient to 

measure Bragg peaks and diffuse scattering simultaneously, and that any variability in pixel 

response is well-characterized. We must also consider how to minimize background scattering 

and computationally correct for sources that can’t be eliminated. One promising experimental 

approach is to eschew X-ray windows and instead use humidified helium gas to prevent crystal 

dehydration97. Second is the issue of data processing software. As with all structural techniques, 

the availability of user-friendly software packages will be important for bringing total scattering 

analysis to a wide audience. This is contingent on standardization in the field, and we hope that 

our recommendations for data collection, processing, and validation will accelerate this process. 

Finally, we foresee a potential for machine-learning methods in the future, either in data 

processing or in interpretation of total scattering data98. For example, it would be of great interest 

to use machine-learning to classify signals that are from different types of motion. Towards such 

a goal, we as a community must first produce the learning data, namely, a collection of total 

scattering datasets that are fully understood. 

These are exciting times to be a structural biologist. With technical breakthroughs in cryo-EM 

and X-ray diffraction experiments, we have an unprecedented array of tools to address virtually 

any structural question. But perhaps more importantly, these methods give a new window into 

the correlated motions of proteins. We anticipate that in the coming decade, total scattering will 

provide a much-needed bridge between dynamics on short time scales from NMR and MD with 
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highly precise structural measurements required for insight into chemical mechanism. Especially 

when combined with bioinformatic approaches to evolution, structural biology may finally 

answer the question that started the field: how does allostery work? 
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