Packet scheduling with optional client privacy

Andrew Beams
abeams@cis.upenn.edu
University of Pennsylvania

ABSTRACT

Existing network switches implement scheduling disciplines such
as FIFO or deficit round robin that provide good utilization or
fairness across flows, but do so at the expense of leaking a variety
of information via timing side channels. To address this privacy
breach, we propose a new scheduling mechanism for switches called
indifferent-first scheduling (IFS). A salient aspect of IFS is that it
provides privacy (a notion of strong isolation) to clients that opt-in,
while preserving the (good) performance and utilization of FIFO or
round robin for clients that are satisfied with the status quo. Such
a hybrid scheduling mechanism addresses the main drawback of
prior proposals such as time-division multiple access (TDMA) that
provide strong isolation at the cost of low utilization and increased
packet latency for all clients. We identify limitations of modern
programmable switches which inhibit an implementation of IFS
without compromising its privacy guarantees, and show that a
version of IFS with full security can be implemented at line rate in
the recently proposed push-in-first-out (PIFO) queuing architecture.

ACM Reference Format:

Andrew Beams, Sampath Kannan, and Sebastian Angel. 2021. Packet sched-
uling with optional client privacy. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS °21), November
15-19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3460120.3485371

1 INTRODUCTION

Networks, from roads to the Internet, are a scarce resource shared
by all. Sharing is necessary, as the complexity and cost of having
dedicated links or infrastructure between every pair of clients would
be unimaginable. But as we have known for decades in a variety of
contexts [9, 10, 16, 37, 51, 58, 60], sharing—and specifically the lack
of strong isolation—is at odds with privacy. Today’s networks rely
on switches and routers that queue and schedule packets following
policies such as first-in-first-out (FIFO) and priority queuing. These
policies have many desirable properties ranging from fairness to
minimizing average latency, but lack of interference between clients
is not one of them. As a result, a client’s traffic is influenced and
shaped by others’ traffic.

Why is this a problem? Consider situations in which there are
multiple clients that share a network switch: multi-tenant data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS 21, November 15-19, 2021, Virtual Event, Republic of Korea

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8454-4/21/11...$15.00

https://doi.org/10.1145/3460120.3485371

Sampath Kannan
kannan@cis.upenn.edu
University of Pennsylvania

Sebastian Angel
sebastian.angel@cis.upenn.edu
University of Pennsylvania
Microsoft Research

centers, corporate networks, universities, coffee shops, someone’s
home. In these settings, a client (“the victim”) can be in a position
where it sends or receives messages via a shared switch, while
another client (“the attacker”) is also using the same switch and
observing how the victim’s traffic affects its own traffic (if at all)
by the way the switch schedules and queues packets. In other
words, the attacker aims to exploit a timing side channel that leaks
information about the victim’s traffic. Prior works [29, 33, 35, 36]
have shown that this flavor of side channel can reveal which Web
sites a user is visiting or what words are being spoken over a VoIP
application such as Skype or Zoom (even when the communication
is encrypted [15, 27, 45, 57]). This leakage can also be used by data
center tenants as a covert channel to bypass existing isolation and
monitoring mechanisms [28].

Note that timing side channels in networks are far from new: the
anonymity community has bravely fought them for decades in their
quest to build onion routing and mix network systems [11, 14, 17—
20, 22, 23, 25, 40-43, 56]. What is different in our setting is the threat
model: our concern is not a malicious network provider or nation
state actor that tries to deanonymize users. Instead, the focus is on
what one user can learn about another when the network infras-
tructure is reliable and trustworthy. Not only is this a qualitatively
different threat model, it is in many ways a more common one: a
visitor at one’s home could perform measurements to eavesdrop on
a VoIP call taking place in a private room, or a tenant of a public
data center might attempt to infer workload characteristics of a
competitor with whom it shares a switch.

This paper’s contribution. Our work has three goals. First, we
wish to understand if timing side channels are exploitable today.
Prior works [29, 33, 36] offer evidence of these attacks in simulations
or Internet measurements on slow (297 kbps) DSL routers, but it is
unclear whether those observations hold with fast gigabit switches.
We replicate the results of Kadloor et al. [33] when the victim
and the attacker share a traditional WiFi home router. However,
conducting these attacks on a fast data center switch requires more
effort on the part of the attacker. Nevertheless, we demonstrate the
feasibility of leaking some information with fast switches.

Our second goal is to design a scheduler that provably guaran-
tees privacy, which is a notion of strong isolation across clients.
While there is already one scheduling discipline that provides this
guarantee, namely time division multiple access (TDMA) and its
randomized and weighted generalization [36] in which clients are
allocated a window of time on which to send their packets, it has
several drawbacks. Chief among them is that TDMA taxes all clients,
in the sense that even clients who are indifferent about privacy
must still pay the cost of using TDMA. Not only is this bad for
privacy-indifferent clients, it also bad for the collective, as TDMA
is not work conserving and wastes bandwidth when there are idle
clients.

https://doi.org/10.1145/3460120.3485371
https://doi.org/10.1145/3460120.3485371

To address these drawbacks, we introduce a new hybrid schedul-
ing discipline called indifferent-first scheduling (IFS). The key aspect
of IFS is that clients who satisfied with the status quo and do not
require privacy (e.g., tenants in a data center who are not running
sensitive workloads) should continue to receive as good a service
(or even better) than that provided by existing schedulers such as
FIFO. On the other hand, clients who require privacy guarantees
can opt into IFS’s private mode and avoid leaking any information
through the scheduler’s decisions, at the cost of increased latency
for their packets. Furthermore, IFS lets clients toggle between in-
different and private modes (e.g., a client may engage private mode
when it starts a VoIP call). While transitions can be observed by an
attacker and might leak the user’s intent to be private, they do not
leak the user’s workload characteristics.

Our last goal is pragmatic. We ask to what extent we can imple-
ment privacy-preserving scheduling disciplines on programmable
switches. We find that neither TDMA nor IFS are amenable to imple-
mentation in existing architectures, since, among other limitations,
switches do not support pauses or random sampling. If we look
at existing Intel Tofino switches, for example, the best we could
manage is to provide privacy to client’s outgoing packets (e.g., a
client’s request to an HTTP server leaks no information, but the
corresponding response might). This is problematic since responses
can leak just as much or even more information than requests.
However, we show that a recently proposed queuing architecture
for programmable switches called push-in-first-out (PIFO) [55] has
all the building blocks that we need to build IFS and TDMA. We
implement both of these schedulers on a PIFO simulator [4] and
show that IFS achieves the best of both worlds: it provides better
expected packet latency than FIFO or round robin to indifferent
clients, and the same privacy guarantees and better latency than
TDMA for private clients.

In summary, this work makes the following contributions:

e We replicate prior timing attacks on recent hardware and show
that some leakage exists even on fast switches.

e We propose IFS, a new scheduling discipline that guarantees
privacy to clients who want it without burdening those who do
not, and which has many desirable properties.

e We show how to instantiate IFS in switches that support push-
in-first-out (PIFO) [54, 55].

e We evaluate our implementation of IFS and find that its perfor-
mance is better than existing schedulers for both indifferent and
private clients, while simultaneously protecting private clients
from timing side channels.

2 MOTIVATION AND RELATED WORK

This section discusses proposed attacks on schedulers and prior
proposals to address the resulting privacy violations.

2.1 Timing attack on switches and schedulers

Our work is inspired by the observation of Kadloor et al. [33] that
if a client is accessing content on the Internet while traversing a
switch or router that uses a first-in-first-out queuing strategy, an
adversary could issue a series of probes to this switch to determine
when the victim client is sending packets (and their size). The high
level idea is that the switch will enqueue the attacker’s probes

FIFO queue

Service

Victim Attacker

Figure 1: An attacker can learn whether the Victim is send-
ing packets to some service (and potentially which service)
by probing one of the switches used by the victim. Since the
switch has limited resources it must queue the attacker’s
packets whenever there is contention. If the switch uses a
FIFO queuing discipline and the attacker’s packets arrive af-
ter the victim’s, the attacker can observe changes in timing
and infer that the victim is sending packets and the size of
the burst of traffic. This attack was proposed by Kadloor et
al. [33].

and will process them once it has spare cycles (presumably after
it has processed any packets from the victim that arrived before
the attacker’s). The probes could be simple ICMP packets (though
some switches treat ICMP traffic differently), but could also be TCP
or UDP packets sent to a destination that the attacker controls and
that ensures the attacker’s traffic traverses the shared switch. Based
on how long it takes for the attacker’s probes to be processed, the
attacker can infer the number of packets sent by the victim. This
information can allow the attacker to learn which Web sites or
services the victim is accessing, or even what phrases are spoken
over VoIP calls, even if the traffic is encrypted [15, 27, 45, 57]. This
attack can also be conducted within a data center thereby allowing
a tenant to infer the workload characteristics of another tenant that
uses the same network infrastructure. Figure 1 depicts this attack.

Two similar attacks include the work of Gong and Kiyavash [29]
that shows that information leaks when users share a job event
queue, and the work of Ghassami and Kiyavash [28] that shows
how to create a covert channel between two otherwise isolated
processes in a data center. In this latter work, even if the processes
are given their own dedicated hardware, if the underlying physical
network is shared, then one process can send a covert message
to the other via the same strategy described above. The sender
could encode their message by modifying the sizes or timing of
seemingly innocuous Web traffic, after which the recipient could
send probes to the shared switch to retrieve it. This might not
trigger any red flags in a firewall or other monitoring system. In
this way, a malicious actor could take advantage of this covert
channel to leak potentially sensitive data.

The above attacks are actually not limited to FIFO: by using
higher frequency probes, this same technique can be used on any
work conserving scheduler [29, 35]. This motivates the need for
scheduling mechanisms that protect against these types of side
channels while still prioritizing other standard metrics such as
fairness, low latency, etc.

In Section 7.1, we replicate the experiments performed by Kad-
loor et al. [33], first with a typical home router, and then with a
state-of-the-art switch. Our findings are consistent with those of

prior work for the home router, but the high performance of a giga-
bit switch makes this attack more difficult to carry out. Nevertheless,
we show that leakage is still present.

2.2 Existing proposals

In this section we describe prior work on building a scheduler that
provides privacy across requests. Note that these proposals were
not introduced in the context of packet switches, and are therefore
hard to implement in our setting. They also force all clients to have
privacy and pay for it even if some clients are indifferent and could
do without it. Nevertheless, they illustrate the kinds of techniques
that have been proposed to prevent the attacks mentioned in the
prior section.

The work of Kadloor et al. [36] proposes two solutions. The so-
lutions assume that clients send requests that, on a long enough
timescale, follow a well-known distribution (e.g., Poisson distri-
bution with a certain rate). This distribution is assumed to not be
sensitive. What the attacker does not know, however, is the instanta-
neous number of requests being issued by a victim in some arbitrary
time window. Such fine visibility into a victim’s workload could
leak what services a client is accessing, as we described previously.

The first proposal, which the authors denote accumulate-and-
serve, works by alternating between two phases. In the accumula-
tion phase, the scheduler serves no requests, it merely enqueues
them. After some time passes, the queued requests are serviced in
FIFO order. As requests are being serviced, the scheduler begins
to accumulate the next batch. The intuition behind this approach
is that as the accumulation window is lengthened, the number
of requests from each client approaches the number that would
be expected based on their long-term rates from the well-known
distribution, and hence the amount of useful information for the
adversary decreases.

The second approach is a non-work-conserving variant of the
classic Time Division Multiple Access (TDMA) protocol. In (non-
work-conserving) TDMA, each client is assigned a specific time slot;
if a client has a pending packet by the time the scheduler reaches
that client’s time slot, the client’s packet is processed. Otherwise,
the scheduler simply idles until the following time slot when it
processes the packet (if any) of the next client. Since the delays of a
client are independent of the traffic of other clients (as clients have
their own statically allocated slots), an adversary’s probes reveal
no information about any other client in the system. Kadloor et
al. [36] then generalize TDMA to include weights and randomize
the allocation of slots (proportional TDMA).

An entirely different approach to address a related problem is
given in Pacer [48], which prevents network side channels in a
shared data center environment. One major distinction with Pacer
is the location of the privacy mechanism, and its scope of coverage.
Pacer’s isolation mechanism is located at a server, and provides
privacy to clients’ responses from that specific server under two
assumptions: (1) that the size and shape of a client’s requests leak no
information (necessary since Pacer does not touch clients’ requests);
and (2) that the server has a small set of responses which it pre-
registers with Pacer (this requires modifying the server). These
assumptions are reasonable in some settings. For example, within a
data center where client virtual machines access a few file servers

that host a specific set of files. However, our setting is more general:
we support clients that make arbitrary requests to arbitrary services,
without requiring any server modifications.

3 DEFINING PRIVACY

In this section we formalize what it means for a scheduling algo-
rithm to provide privacy. At a high level, our definition of privacy
captures a notion of strong isolation among all clients, in the sense
that one client should not be able to affect the behavior of the pack-
ets of another client. Prior privacy definitions captured this with
notions such as mutual information [33, 35], correlation [34], and
minimum mean squared error [35, 36]. We instead give an indis-
tiguishability-based definition in Section 3.2 that resembles more
traditional cryptographic notions such as semantic security or pseu-
dorandomness. We believe this definition is easier to understand.
We begin with a concrete setting and threat model.

3.1 Setting and threat model

In order to give our formal definition, we abstract away the details
of the switch and network topology, and treat each switch as a
scheduler. Furthermore, we make the simplifying assumption that
clients acquire a certain rate A from the switch’s operator (e.g.,
10 Mbps), and that the switch is provisioned to support this rate.
Clients’ instantaneous number of packets, however, may be sampled
from any distribution with expected value of A (this allows clients
to idle or be bursty). What does it mean for a client to acquire
a rate of A? In WAN settings, it means that clients purchase a
dedicated rate from their ISP, similar to existing service tiers but
with stronger SLOs. In a data center network, this means that the
operator provisions the network in a way that ensures that each
tenant (or their VMs) can achieve their purchased rate; there is
already a vast literature on performance isolation and throughput
guarantees [8, 12, 13, 44, 50] that considers this exact setup (but
note that privacy is a stronger notion than the type of isolation
studied in these works).

Setting and admission control. Clients can join and leave the
system. When a client ¢; joins, it requests a rate A¢, from the sched-
uler. The rate could be given in a standard metric such as bits per
second, but for simplicity we assume that all A¢; have been normal-
ized by the capacity of the scheduler, and are therefore a real number
n [0, 1]. Each scheduler serves some set of active clients C, and
this set changes over time as clients join and leave the system. The
aggregate rate of active clients at the scheduler is A = 3¢, cc Ae;-
In order to reason analytically about the worst-case delay induced
by our proposed scheduling mechanism (§4.4), our scheduler will
maintain an admission threshold L such that A < L < 1. We will
call a client ¢; ¢ C admissible if Ac; + Yc,ec Ac; < L. A client can
join the system only if it is admissible; otherwise, the client must
wait until resources are freed up.

For our analysis we take time to be discrete, and assume that
all requests issued to the scheduler are of uniform size, and that
the scheduler can process one such request per time slot (we relax
these assumptions later).

Threat model. We assume that the network infrastructure is itself
honest. Indeed, our model differs from timing attacks on mix net-
works and anonymity systems in that we do not view the network
or provider as the adversary, but rather an ally who is attempting to
provide privacy to its users. The adversary in our setting controls
any subset of the clients and wishes to learn about one or more vic-
tim clients’ requests through a timing side channel attack (§2.1). We
allow the adversary to adaptively issue requests from its compro-
mised clients at any instantaneous rate it wishes, and to accurately
measure the sending and receiving time of all of its packets. Our
privacy guarantee ensures that the adversary learns nothing about
the traffic of clients who are not compromised.

3.2 Indistinguishability of arrival sequences

For the setting we consider, there is already one definition of privacy
in the literature [29] based on the mutual information between
an adversary’s observations and the times at which the victim
transmits. This definition is cumbersome to work with because one
must condition on what the adversary already knows (for example,
the rate of each victim, the concrete scheduling policy, etc.) and
then compute if there is non-zero mutual information. We propose
an alternate definition below that is simpler and does not require
making the adversary’s prior knowledge explicit.

Let us focus on a particular client ¢ (our analysis is symmetric
for any client). At each time step t, there are n; packets belonging
to c that arrive at the queue. If the discretization is fine enough, we
could imagine that n; is 0 or 1, but more generally we assume that
n; is a non-negative integer. An arrival sequence ST for the packets
of client c is a sequence of integers (ng, n1, . . ., n7—1) that denotes
the number of packets that arrive at the queue at all times less than
T.

Definition 3.1 (Privacy). Let A be an adversary who controls all
but one of the active clients using the shared scheduler. We will say
that A violates the privacy of the remaining client c, if there exist
any two arrival sequences SIT and SZT for ¢ such that A can create
arrival times for packets for the clients that it controls, observe
their arrival and transmission times, and be able to correctly decide
if ¢ has arrival sequence SIT or 52T with probability higher than a
random guess. Letting O denote the set of observable variables for
A and letting A(O) denote A’s guess of ¢’s arrival sequence, we
say that privacy is violated if:

Do =

Pr[A(O) = i|c has arrival sequence SIT] >

where i € {1, 2} and the probability is over the random coins of A
and the scheduling mechanism. Note that this definition is given in
terms of the conditional probability of guessing correctly, which
avoids having to reason about the prior distribution of different
arrival sequences. It is also a definition of statistical indistinguisha-
bility, as it is not based on any computational hardness assumptions.

Summary: Our definition basically states that a switch guarantees
privacy if an adversary, by injecting any number of packets into the
switch at the time slots of its choosing, cannot distinguish between
two possible arrival sequences for a victim client’s packets. This
definition is very strong, essentially stating that the adversary gets

no benefit from probing the switch, thereby eliminating all timing
side channels.

3.3 Prior approaches guarantee privacy

Both TDMA and p-TDMA meet our definition of privacy (§2.2).
To see why, observe that in these schemes the slots assigned to
¢ are independent of ¢’s arrival sequence—they are statically or
randomly allocated. Moreover these slots are either used by ¢ or
“wasted” if ¢ has nothing to transmit. To other clients these two
scenarios are identical since that slot is never made available to
them. Consequently, an adversary cannot distinguish between any
two arrival sequences for c.

4 MAKING PRIVACY OPTIONAL

TDMA and p-TDMA provide the strong isolation that is needed to
prevent the timing side channel discussed in the previous section.
However, they force all clients—even those that do not care about
privacy—to incur higher response times than they would under
other disciplines. In the following subsections we introduce the
idea of indifferent clients, which are clients that do not care about
leaking some or all of their information (essentially the status quo).
We then propose indifferent-first scheduling (IFS), a new scheduling
discipline that provides the same guarantees as TDMA and p-TDMA
for clients who desire privacy, without increasing the expected delay
for indifferent clients.

4.1 Indifferent-first scheduling (IFS)

The high level idea of IFS is to process the packets of indifferent
clients with a work-conserving scheduler, and to give priority to
these packets over the packets of private clients.

In detail, let C = P U I partition the clients into private and
indifferent, respectively. Let I, C I be the subset of indifferent
clients with at least one packet still queued during time slot r. For
each time slot, IFS first determines if the slot will be given to a
private or an indifferent client. If I, # 0 (i.e., there are packets
from an indifferent client in the queue), the slot will be allotted to
an indifferent client. To decide which client is serviced, IFS uses
a work-conserving scheduling policy; in this work we focus on
round robin and FIFO. For round robin, IFS picks a client from
I to service at random using clients’ purchased rates as weights;
IFS then dequeues the first packet from this client. For FIFO, IFS
processes packets from I, in the order they entered the FIFO queue.

If there are no packets from indifferent clients in the queue, IFS
then considers private clients. IFS picks a client randomly among
P—which includes all private clients, even those with no packets
enqueued—using their purchased rates as weights. If the chosen
client has packets enqueued, the first packet of that client is de-
queued and sent. Otherwise, IFS idles until the slot is finished,
thereby wasting the switch’s resources. This wastage is precisely
the price that private clients must pay for privacy (it does not affect
indifferent clients since they always “go first”). Figure 2 gives IFS’s
algorithm.

While conceptually simple, implementing IFS in a real switch is
far from trivial since neither randomized round robin (weighted or
otherwise) nor idling are supported by programmable switches. In
Section 5 we propose approximations and adaptations of this design

function IFS(I, P, r)
if I,- # 0 then
c— WCS(I,)
else
¢ «— RandomSelect(P)

SendPacket(c)

Figure 2: Pseudocode for indifferent-first scheduling. I is the
set of indifferent clients, and P is the set of private clients.
I, C Iis the set of indifferent clients with packets in the
queue as of time slot r. RandomSelect(-) chooses a client from
the set randomly, weighted by clients’ rates. WCS is any
work-conserving scheduling discipline; we focus on FIFO
and randomized Round Robin (RandomSelect). SendPacket(-)
sends the next packet queued for client c, if any, or idles.

to conform to the reality of today’s switches. Below we discuss the
properties of IFS.

4.2 TFS guarantees privacy

IFS guarantees privacy (Definition 3.1) for private clients. The argu-
ment mirrors that of TDMA (§3.3): the slots allocated to a private
client are independent of the arrival sequence of that client, and
depend only on (1) the arrival sequences of the indifferent clients
and (2) the internal randomness of the scheduler. Since indifferent
clients are afforded no privacy, the ability of an adversary to ob-
serve the effect of these clients’ packets on its own packets does
not give the adversary any information about private clients.

4.3 IFS is incentive-compatible

The addition of privacy, unsurprisingly, increases the time it takes
for a packet to be processed. One of our main motivations in de-
signing IFS is to avoid sharing this burden with clients who are
indifferent about privacy. IFS actually guarantees that if such clients
declare themselves as indifferent, they will be better off (in terms of
expected packet delay) than if they declare themselves as private.

We formalize this as follows. Let P and I be the sets of active
private and indifferent clients, respectively. Let ¢ be a client that is
considering whether to declare itself as private or indifferent. IFS
guarantees that for all P and I:

D¢(A¢e, P,1U {c}) < Dc(A¢e, PU {c}, 1)

where D, is the expected delay for ¢’s packets given a rate A., and
a set of private and indifferent clients.

We give the proof of this claim in Appendix B. The intuition is
that IFS can be viewed as a strict priority queue in which packets
from indifferent clients have higher priority than those of private
clients. Hence, being an indifferent client results in lower expected
packet delay.

4.4 TIFS is better for all clients

Since IFS is a scheduling algorithm that provides differentiated
service to two types of clients (private and indifferent), it is natural
to ask whether clients of either type would have preferred a sched-
uling algorithm that treats all clients the same as themselves (i.e.,
either all private if they are private, or all indifferent if they are
indifferent). If the answer is no, then this can be seen as a type of

sharing incentive, meaning that both private and indifferent clients
are happy to share the infrastructure and be serviced by IFS. One
way to do this is to show that the worst-case expected packet delay
under IFS satisfies the following two properties: (1) if a client ¢ is
private, then ¢ does worst when all other clients are private and
are served by p-TDMA; and (2) if ¢ is indifferent, then ¢ does worst
if all other clients are indifferent and are served by a round robin
or FIFO scheduler.
The monotonicity definitions below imply these properties.

Definition 4.1 (Indifferent delay monotonicity). Let P and I be
non-empty sets of private and indifferent clients, and let p € P be
any private client. A scheduler is indifferent delay monotonic if for
all indifferent clients ¢ € I the expected delay for ¢’s packets given
rate A is:

DC(AC5P7 I) S DC(A&P \ {p}71 U {P})

That is, changing a client from private to indifferent does not
benefit any of the former indifferent clients.

Definition 4.2 (Private delay monotonicity). Let P and I be non-
empty sets of private and indifferent clients and let ¢ € I be any
indifferent client. A scheduler is private delay monotonic if for all
private clients p € P, the expected delay for p’s packets assuming
p’s rate is 4, is given by:

Dp(Ap, P, 1) < Dp(Ap, PU{c}, I\ {c})

That is, changing a client from indifferent to private does not
benefit any of the existing private clients.

IFS’s concrete guarantees. To show that IFS is indifferent delay
monotonic (Definition 4.1), recall the following fact from Section 4.1:
the packet delay of indifferent clients is only ever impacted by
other indifferent clients because indifferent clients have a strict
scheduling priority over private clients. As a result, more clients
becoming indifferent necessarily hurts existing indifferent clients,
as packets from new joiners can sometimes be scheduled first. We
give a proof in Appendix C.

Proving that IFS is private delay monotonic (Definition 4.2) is
challenging. The difficulty arises from two competing forces whose
combined effects are hard to model: (1) the fact that indifferent
clients are processed by a work-conserving scheduler and do not
waste slots; and (2) the priority that indifferent clients have over
private clients. In particular, since indifferent clients never waste
slots, if an indifferent client has nothing to send, its slot will be
given to another client (potentially a private one). In contrast, when
an indifferent client becomes private it will never yield its slot,
even when the client has nothing to send. Consequently, a client’s
transition from indifferent to private partially benefits existing
private clients in the sense that there is one fewer client with higher
priority, but it also partially harms them because this client will
occasionally waste its slot without yielding it to others. Depending
on the setting (make up of clients and weights), it is conceivable
that one effect might be stronger than the other.

Nevertheless, we conjecture that private delay monotonicity
holds for IFS. Appendix A shows empirical evidence in support of
it, and Appendix D shows analytic results for several settings. A
full proof that reasons about the interplay between the multiple
schedulers in IFS remains an open question.

Monotonicity and worst case expected delay. If a scheduler
satisfies both private and indifferent delay monotonicity, then the
scheduling policy guarantees that there is an upper bound on the
expected delay for all clients in all settings. In the context of IFS,
this delay is precisely the expected delay of any client ¢ of rate A, in
a scheduler with an admission threshold of L—using p-TDMA if ¢ is
private and round robin or FIFO if ¢ is indifferent. As a result, given
the admission threshold supported by the scheduler, the client’s
rate A, and whether the client is indifferent or private is enough
to bound the worst case expected delay of that client. This holds
regardless of any other clients who may enter or leave the system
in the future. Appendix E discusses this in more detail.

4.5 Private client starvation

An issue with IFS, as presented, is starvation of private clients since
they have lower priority than indifferent clients. As a result, IFS
needs to enforce rate limits on clients to ensure that they do not send
packets in excess of their allocated rates. This can be done through
standard mechanisms such as the use of a token bucket (§6.2). An
interesting question is whether private clients also need to be rate
limited? After all, the point of IFS’s design is that the traffic of a
private client does not impact any other private or indifferent client.

We find that if IFS rate limits both private and indifferent clients,
then privacy (Defintion 3.1), indifferent incentive (§4.3), and indif-
ferent delay monotonicity (§4.4) continue to hold (the proofs are
identical); private delay monotonicity holds if our conjecture holds.
The drawback is that IFS would be giving a suboptimal service to
private clients. In particular, whenever all indifferent clients idle
(or have exhausted their tokens for a given window of time), IFS
grants the slot to a private client (the “else” branch in Figure 2). If
private clients are also rate limited, occasionally a private client
will be chosen by IFS’s RandomSelect but will have no tokens to
send their packet; the scheduler will therefore be forced to idle,
thereby wasting the slot and benefiting no one.!

One the other hand, if IFS rate limits the indifferent clients but
not the private clients, then whenever a private client is chosen by
IFS’s RandomSelect they can send a real packet (if they have one),
improving their service. The drawback is that indifferent incentive
compatibility (§4.3) no longer holds in a handful of pathological
cases. For example, if the switch only has a single client, this client
would be rate limited if it were indifferent, but not if it were private;
and since it is the only private client, it would receive 100% of the
slots under RandomSelect. Hence, even if this client did not care
about privacy, it would choose to be private to avoid the rate limit.

In the rest of this paper we choose to implement rate limits
only for indifferent clients. We conclude that the possibility of
improving service for private clients is worth the existence of a
few pathological cases where indifferent clients might prefer to
label themselves as private. Such mislabeling does not impact the
packet delay of other indifferent clients (because they would have
a higher priority) or the privacy of other private clients; hence, the
arguments against this choice are mostly of theoretical rather than
of practical value.

!RandomSelect cannot be computed on just the subset of private clients with tokens,
nor can the slot be given to another private client because it would leak information:
an adversary can specify two arrival sequences that take into account rate limits and
that violate Definition 3.1.

5 IFS ON PROGRAMMABLE SWITCHES

At a high-level, implementing IFS on a programmable switch re-
quires four operations: (1) queuing packets with different priorities;
(2) idling in response to some condition; (3) selecting randomly
among packets; and (4) equalizing packet sizes. Of these features,
existing switches provide only the first one. This section describes
various ways that allow us to overcome some (though not all) of the
missing features. For the remaining missing features, we leverage a
switch architecture called PIFO [54, 55] that has attracted significant
attention from the networking community, and for which there are
preliminary implementation and approximation efforts [3, 5, 7, 59].
Figure 3 shows the high-level architecture of IFS; we discuss each
component in the next sections.

5.1 Registration

A client decides whether its traffic should be private or not, and
how much rate (upload and download combined) it requires. To
do so, it sends a control plane registration packet to the switch
containing this information. The switch determines whether it can
support this additional bandwidth, and if so, it modifies its queue
mapping and weights to take the new client into account. Later, the
client may choose to modify its rate, change its type (indifferent
or private), or leave the system by sending another control packet
(de-registration can also be done automatically after a timeout).
If IFS is deployed within a data center, registration packets can
be sent by a controller that allocates network capacity to VMs or
servers, as in Oktopus [12]. In the WAN context, these packets can
be issued by the ISP when a new customer is enrolled. In a coffee
shop setting, these packets can be sent by a server when the client
authenticates through a WiFi captive portal.

5.2 Emulating switch idling

IFS and TDMA rely on the switch being able to idle for a time slot in
the event that a private client’s turn is next in the schedule dictated
by RandomSelect and the client has no packets queued (§4.1). Since
switches lack the ability to idle, an alternative is for the switch
to inject a dummy packet into the head of the queue whenever a
private client has nothing to send, and send the dummy instead.
While promising, this approach is also not implementable since
programmable switches cannot generate packets at line rate when-
ever a condition holds (e.g., lack of packets from a particular client).
Instead, we settle for outsourcing the creation of the dummy pack-
ets to private clients, and requiring that they always have a “real”
or a dummy packet queued up in order for them to receive privacy.
This approach raises two challenges.

Challenge 1: Dummy preemption. How does a client know
when to send dummy packets? The easiest option is to send them
at frequent intervals, since it is important that either a real or a
dummy packet be always available in the queue when IFS selects
the client as part of RandomSelect (Figure 2). However, this means
that if the client sends a real packet to the switch after having sent
some dummies (now queued at the switch), the real packet will
be processed after all of the dummies are, significantly increasing
latency. IFS must therefore have a mechanism to preempt dummy
packets.

Ingress pipelines Scheduler/Queues Egress pipelines

Rate limit / Pad [IFS (Fig. 4) H Pipeline

Rate limit / Pad { IFS (Fig.4) || Pipeline;

Rate limit / Pad [IFS (Fig. 4)][Pipeline3

Rate limit / Pad [TDMA (Fig. 4)

Figure 3: Switch architecture with IFS. Ingress pipelines
are used for classifying, rate limiting, and padding packets.
Each egress port is associated with an IFS queue (Figure 4),
though we only show one IFS queue per pipe. A recirculation
egress port is associated with a TDMA or p-TDMA queue and
is used to feed back packets that require more padding (§6.3).

Challenge 2: Response privacy. If clients only need to send out-
going messages, then sending dummies when they have nothing
else to send would mimic the switch idling. However, this is not
the case in practice, since clients also receive responses from the
services with whom they interact. Worryingly, responses (e.g., the
HTML and JavaScript payload in response to an HTTP GET re-
quest) can be just as revealing (and often more so) than requests:
they tend to be larger and contain more diverse fingerprints. If not
handled properly, responses to one private client can impact the
responses for another client, creating yet again a timing side chan-
nel. This creates a challenge, as the client must somehow mask the
absence of responses despite not knowing their size or arrival time
a priori. Note that the server with whom the client communicates
is completely oblivious to the client’s desire for privacy or IFS’s
mechanisms, and will not send dummies.

Proposal: dummy pools and hierarchical queuing. Our idea
to address the above two challenges is to have the switch maintain
a pool of dummy packets for each client ready to use in the event
that a private client’s queue is chosen and has no “real” packets. To
preempt dummies (Challenge 1), we implement dummy pools with
a priority queue where the lower priority is assigned to dummy
packets. This ensures that no dummy packet is ever sent before
a queued real packet belonging to the same client. To deal with
responses (Challenge 2), the switch filters packets based on source
and destination and forwards them to the appropriate queue: all
packets destined to a private client share that client’s incoming
queue and dummy pool, and all packets originating from a private
client share one of the client’s outgoing queues and dummy pools.
We expand on this in Section 6.2.

Note that the introduction of dummy pools into IFS requires
the switch to support a layered scheduling policy, as shown in
Figure 4. The scheduler will first round robin or do FIFO among
indifferent clients (A and B in the figure). If neither client has
packets, the switch will round robin among private clients (C and
D). For each private client, real packets have priority over dummy
packets. Appendix F describes why this approach produces the

FIFO or
Round Robin

Priority Queue

Priority Queue
= AN R rr——
— .
¢ Round Robin
- Priority Queue /Z{:I:E-)
o= [T
M Dummies | TOMA

Figure 4: Concrete instantiation of IFS in PIFO [54, 55] for
a setting with 2 indifferent clients (A and B) and 2 private
clients (C and D). IFS relies on a hierarchy of queues with dif-
ferent scheduling disciplines. The dashed box implements
(p-)TDMA, which IFS uses as a sub-component. Indifferent
clients retain the status quo and can be serviced with FIFO
or round robin.

same observable variables to a probing attacker as a switch capable
of idling.

Unfortunately, existing switches lack support for layered policies:
they can typically be configured to use a layer of deficit round robin
followed by a priority queue, but this is not enough for IFS. We
address these issues with PIFO (§6.2).

5.3 Approximate randomized round robin

So far, we have abstracted the RandomSelect mechanism of Figure 2
as a “randomized weighted round robin”. Since no such scheme is
supported by switches, we replace this mechanism with determin-
istic approximations of weighted fair queuing (WFQ) [24, 49]. These
approximations work by computing an estimated start and finish
time for packets when they arrive, and use these estimates to order
packets. Section 6.4 discusses why approximating RandomSelect is
safe in IFS, but for now we focus on two approximations that we
consider useful in different cases.

Approximate Fair Queueing (AFQ) [53]. AFQ maintains a virtual
start and finish time for each packet, and orders packets based
on ascending virtual finish times. The approximation comes from
various concessions, such as the use of count-min sketches due to
lack of sufficient memory for per-flow state, dealing with a limited
number of queues, and maintaining line rate. AFQ can be used as
the round robin approximation for indifferent clients, but it is not
appropriate for private clients because it combines different clients’
packets in the same queue As a result, a private client’s traffic could
affect others.

Start Time Fair Queueing (STFQ). The second option is to use a
weighted variant of STFQ [30], which schedules packets based on
virtual start time. Unlike AFQ, STFQ does not combine the packets
of different clients into the same queue, which provides the strong
isolation required by private clients at the cost of more queues. And
unlike deficit weighted round robin, which is readily available in ex-
isting programmable switches owing to its constant-time complex-
ity, STFQ provides a better approximation of WFQ. Furthermore,

STFQ can be implemented at line rate in PIFO switches [54, 55],
which we require to guarantee privacy for responses anyway (§5.2).

6 IFS ON PIFO SWITCHES

Push-In-First-Out (PIFO) [54, 55] is an abstraction that aims to sup-
port a variety of scheduling policies while still having a design
that is implementable in hardware and that operates at line rate.
The insight behind this abstraction is that in many policies the
ordering of a packet in the queue depends only on some value
that is calculated at its ingress. Therefore, once a group of packets
are enqueued, their internal ordering does not change. Incoming
packets are inserted into a sorted list and then dequeued uniformly
from the head.

However, PIFO introduces an additional, perhaps more valuable
functionality: the ability to compose multiple queues in a hierarchi-
cal fashion. Specifically, the outputs of lower queues can feed into
upper ones, which gives designers a lot of flexibility. We exploit
this flexibility to design a scheme that supports round robin (STFQ)
between private clients while also ensuring that within each client
queue, no dummy packet is processed before real packets in the
queue. This is the precise hierarchy discussed in Figure 4. Below
we discuss the details of implementing TDMA and IFS in PIFO.

6.1 Implementing TDMA

To implement TDMA and p-TDMA in PIFO, clients send dummies
as described in Section 5.2. On the switch, we utilize a hierarchy
of queues. At the base of this hierarchy, each client will insert its
real and dummy packets into its own priority queue, with dummy
packets having low priority. These priority queues then feed into
a Start Time First Queue (STFQ), which can be implemented in
PIFO as described by Sivaraman et al. [55]. The weights used in
STFQ will be the rates purchased by each client. This scheme is the
dashed box in Figure 4, and to our knowledge, represents the first
implementation of a non-work-conserving scheduler (required to
guarantee privacy) in a programmable switch—albeit leveraging
PIFO and dummy packets.

6.2 Implementing IFS

To implement IFS, we need to introduce support for indifferent
clients which adds three constraints: (1) ensure that every indiffer-
ent client has a higher priority than all private clients, (2) ensure
that packets are enqueued in the appropriate queue, and (3) prevent
starvation of private clients.

To address (1), we add a FIFO or round robin queue for indifferent
clients. FIFO requires one physical queue for all indifferent clients,
whereas for round robin the number of queues needed depends on
whether we use AFQ or STFQ; AFQ’s fairness guarantees are more
approximate but it requires fewer queues. We then add a priority
queue that takes as input packets from the above FIFO or round
robin queue (high priority), and from the TDMA queue of private
clients described in Section 6.1 (low priority). A schematic of this
scheme is given in Figure 4.

To address (2), IFS treats packets based on their type:

o Outgoing: moving from a client to the upstream network.
e Incoming: moving from the upstream network to a client.
o Internal: moving from one client of the switch to another.

At ingress, a packet is categorized into one of these types, and then
forwarded to the appropriate egress pipeline (based on IP or IP/-
port matching). Each egress pipeline has an IFS queue, as depicted
in Figure 3. Packets are then inserted into the queue (internal to
IFS) associated with the sending or receiving client (depending on
whether this is outgoing or incoming packet) as shown in Figure 4.
Internal packets are associated with the queue of the client des-
ignated as private, if there is only one, or with the queue of the
sender if both are private or indifferent. This is safe because privacy
implies no leakage beyond what can be inferred in the absence of
the switch. In other words, if an internal packet is sent from A to B
and enqueued in B’s queue, then B may learn something about A’s
traffic, but B would have learned this regardless.

Finally, to address (3), we implement rate limiting in the ingress
pipelines with a token bucket. For each indifferent client, we use
a stateful register that tracks the number of tokens and the last
time the tokens were refilled, updating this register accordingly,
and dropping packets in the absence of enough tokens. We do not
rate limit private clients since, by construction, they cannot affect
the performance of other private clients (§4.5).

6.3 Dealing with variable-size packets

Since different packet sizes take different amounts of time to be
processed and be written on the wire, an adversary can infer packet
sizes even with IFS. One solution is to limit egress ports to a rate
of MTU/BW per packet, which is the moral equivalent of padding
all packets to be MTU sized. For example, for a 1.5 KB MTU and
100 Gbps link, we would limit the port to 120 ns per packet. However,
this approach also harms indifferent clients, which IFS aims to
avoid. Our approach is to have private clients pad their requests to a
uniform size, and implement logic in the switch to pad the responses
from upstream services that are unaware of clients’ privacy desires.
In particular, we implement padding in the ingress pipeline by
adding custom Ethernet headers to the packet header vector (PHV)
until the frame reaches the MTU. This is safe because the switch
pads only responses to private clients, who are the next hop and
can ignore these headers. One issue is that the PHV has a limited
size (vendor specific), so only a limited amount of padding can be
added per ingress pipeline. To account for the worst case (padding
a small frame to the MTU), the switch might need to recirculate
small frames (i.e., send them back to an ingress port) a few times.
Typically, switches have recirculation ports that are backed by
FIFO queues. In our case, however, this is problematic since FIFO
does not guarantee privacy and an attacker can perform timing
attacks by controlling an upstream service and issuing small re-
sponses that can be delayed by a concurrent victim’s small re-
sponses. To address this we use a p-TDMA queue with the recircu-
lation port. As with IFS, this p-TDMA queue requires each client
to populate and maintain a dummy pool. However, unlike other
ports, the client can just populate the dummy pool once with a few
dummies, and these dummies are automatically recirculated and
reused over and over (this is not possible in other ports because
there the dummies leave the switch). Figure 3 depicts this process.

6.4 Analysis of IFS’s properties

In Section 4 we identified four desirable properties for IFS: privacy,
incentive compatibility, and two monotonicities. The use of STFQ to
order private packets does not affect our privacy guarantee. Once
a private client’s actual packets are combined with that client’s
dummy packets, as long as later scheduling mechanisms do not
differentiate between the two, privacy will be preserved. This was
not possible without PIFO, as we would otherwise have no way
to combine only a private client’s packets together with its own
dummies, and doing this off the switch would not provide response
privacy.

Prioritizing all indifferent packets over private packets provides
incentive compatibility. The use of STFQ might, however, affect our
monotonicity properties (§4.4), as these are directly related to the
“fairness” of the RandomSelect approximation. However, we do not
observe violations to either of the monotonicity properties in our
evaluation (Appendix A).

7 EVALUATION
This section aims to answer the following questions:

e Can the attacks of Section 2.1 be performed against standard
home switches and high performance switches?

e Does IFS provide an effective defense?

e What is IFS’s performance on private and indifferent clients
compared to existing schedulers (FIFO / p-TDMA)?

In addition to the above questions, Appendix A gives empirical
evidence in support of IFS’s monotonicity properties.

Experimental setup. We conduct our experiments using a Mo-
torola Surfboard (“home switch”), an Edgecore Wedge 100BF with
an Intel Tofino programmable chip (“DC switch”), and a PIFO sim-
ulator [4]. We use the home switch only for attacks since it is not
programmable. For the DC switch, we implement IFS as described
in Section 5, without dummy pools (since Tofino lacks the necessary
layered scheduler support). We have six servers with 8-core Intel
Xeon 4110 CPUs and 100 GB of RAM running Ubuntu 16.04; they
connect to the switches with Intel X722 network cards. For the
PIFO simulator, we implement all of IFS as described in Section 6.

7.1 Are timing side channels a real threat?

We begin with two simple hypotheses: (1) the attack described in
Section 2.1 is possible on today’s home and data center hardware,
and (2) client-side traffic shaping (where clients send dummies
without the use of IFS’s other mechanisms) is not enough to pro-
vide privacy. To test these hypotheses, we perform the following
experiments.

Home switch. We connect two machines to the home switch,
with one acting as the victim and the other as the adversary. We
configure the adversary to send repeated pings to the switch, with
inter-ping delays of 10 ms, and capture all sent and received packets
with Wireshark. Meanwhile, the victim runs a headless browser
instrumented to visit one of the Alexa Top 50 sites [1] at random
and then wait for a random amount of time (up to a minute) before
executing again.

3000

’J" —_
g 3
3 S
o (v}
< 2000 &
5 =
Y g
= | £
2 1000 E
c o
= 2
S 0O &

Timestamp (seconds)

Figure 5: Attack on the Home switch. The victim’s Web traf-
fic (red line), has a clear effect on the RTT of the probes sent
by the adversary every 10 ms (blue line). The dashed blue
line shows the average probe delay over the length of the
capture.

Setting Pearson’s r (p-value)
0.829 (<.00001)

Spearman’s p (p-value)
0.854 (<.00001)
0.636 (.00016)

0.658 (<.00001)
0.007 (.83134)

Home switch

DC switch

0.871 (<.00001)

FIFO simulation 0.519 (<.00001)

IFS simulation 0.001 (.96446)

Figure 6: Correlation coefficients between adversarial ping
RTT and victim traffic in a variety of settings. The
corresponding two-sided p-values using the Student’s t-
distribution are given in parenthesis.

Figure 5 gives the result for a representative 10 second snapshot
(the rest of our trace looks similar). Whenever the victim is actively
accessing a Web page (red line spike), there is a noticeable impact on
the adversary’s aggregated ping delays (blue line). Furthermore, the
additional packet delay is impacted by the amount of bytes fetched
by the victim, giving the adversary the ability to infer volume
and not just frequency. While measurements can be noisy, the
duration and magnitude of packet delay stemming from real victim
actions is distinguishable from noise: we compute statistical tests by
averaging the RTTs within 100ms intervals and adding the victim’s
packet sizes within the same intervals. As shown in Figure 6, the
Pearson and Spearman correlation coefficients between adversarial
ping RTTs and victim traffic are over 0.8 (with both two-sided
p-values less than .00001)—implying a strong linear dependence.

DC switch. We then ask whether a similarly simple attack works
on our DC switch. This is not the case: the effect of fetching a
Web page is simply too small to be noticeable. Consequently, we
lower the bar on what constitutes a successful attack and ask in-
stead whether an attacker who controls one or more machines can
distinguish whether a victim is sending traffic or idling. This is
admittedly less informative to the attacker, but even this binary
information can be damaging [9]. To perform this experiment, we
connect four servers to the programmable switch. We assign one of
the servers to be the “recipient”; there is a 10 Gbps link between the
switch and the recipient. One of the servers acts as the victim who
communicates with the recipient, and the remaining two servers
are controlled by the adversary. We then write a P4 data plane
program to forward all packets to egress ports based on destination
MAC address.

G
’51.004 »1.()0%
+ [9)
%‘0.75‘ 0.75 &
o =
5 0.501 050 E
)
& 0.251 o252
F 0.001 2
o

10 15 20 25 30 35
Timestamp (seconds)

Figure 7: Attack on the DC switch. The adversary can ob-
serve the impact of the victim’s traffic (red) on its probe’s
RTTs (blue). The dashed line shows the adversary’s traffic
needed to prime the attack.

The victim uses iPerf3 [2] to generate traffic, and alternates
between sending 3 Gbps of UDP traffic to the recipient and idling.
The adversary sends 8 Gbps of traffic from one of its servers to
the recipient; this creates congestion at the egress port (toward
the recipient) whenever the victim sends traffic. The adversary
uses its other server to measure this congestion by pinging the
recipient with an inter-ping delay of 10 ms. The results are shown in
Figure 7. As with the home switch, we also compute the correlation
coefficients between RTTs and victim traffic and give the results in
Figure 6.

While this attack requires the victim to generate over 2 Gbps
of traffic, an adversary can fine tune, a la binary search, its own
contribution of traffic until it observes signs of congestion for vic-
tims with fewer traffic. It can also use this approach to get a rough
estimate of a victim’s volume.

7.2 Client-side Traffic Shaping

Can a concerned victim prevent the above attack without the
switch’s help with the use of well-timed dummies? To answer this
question we consider two cases: (1) victim alternates between send-
ing unidirectional traffic for a few seconds (UDP traffic that does not
trigger a response) and then idles; and (2) victim alternates between
sending bidirectional traffic for a few seconds (UDP requests that
trigger a response) and then idles. Throughout the experiment, the
adversary probes the switch every 10 ms. Figure 8a shows the result
for case (1) on the home switch. We see that masking idle time with
dummy traffic (dashed red line) is indeed effective—observe the
blue line, which captures the adversary’s observations, remains
unchanged as the client idles. This is expected, as dummy packets
are indistinguishable from real packets.

Figure 8b shows the result for case (2). Unlike the prior case, the
solid red line depicts not only requests but also the contribution of
responses. We find that the adversary’s observation (blue line) is
significantly different when the victim is sending real traffic versus
dummy traffic (which does not trigger a response). For the client
to mask this discrepancy it would need to have a priori knowledge
of the response distribution and timing and somehow fabricate
dummy responses. Such a task is untenable in practice.

7.3 Does IFS hide private clients’ actions?

As Section 7.2 shows, client-side traffic shaping (i.e., the addition
of dummy traffic) on its own is not enough to provide privacy.

FE 108 §3 108
< c g genuine traffic 2
3 o > o
S 8 U g S
4 A 9
<, c8E 3
&= enuine traffic 3 = v £
£ 2 e dummy raffiy | E € :
=1 / =

£ 2 g E
go . 0 250 AR o
> 35 36 37 38 & > 93 94 95 £

Timestamp (seconds) Timestamp (seconds)

(a) Unidirectional traffic (b) Bidirectional traffic
Figure 8: With unidirectional traffic a client can get privacy
by sending dummy packets in lieu of idling. When traffic
is bidirectional, the additional response traffic impacts the
adversary’s pings (blue line), even with the added dummies.
Here the amount of response traffic is the same size as the
outgoing requests, but in general the user will have no way
of forecasting the size or time of a response.

109

o

2]

@ 0.8;
(0]

2 o.eE
©

o (o))

5 045

H# (0]

022

o

| 0.0%

0 200 400 600 800 1000

Slot

Figure 9: Attack under IFS in a PIFO simulator [4]. The black
line shows the delay experienced by adversarial pings (right-
side y-axis), whereas the violet and blue lines show the traf-
fic patterns of private and indifferent clients respectively
(left-side y-axis). We use identical indifferent traffic on both
stages and activate private clients only in the second stage.
The black line is identical in both stages indicating that pri-
vate clients’ actions do no affect the adversary’s probes.

As a result, it becomes necessary to enlist the switch’s help. To
that end, we turn our attention to our implementation of IFS in a
PIFO simulator [4]. Since indifferent clients can be serviced by any
work-conserving scheduler, we use FIFO for them. We have private
clients pre-load their dummy pools before our simulations start.
In each experiment, the switch has a capacity of 100 packets per
time slot and we consider a slot to consist of one phase of insertion
and then a corresponding phase of dequeueing (the current PIFO
simulator works at the granularity of abstract “packets”).

We evaluate a setting with 5 clients: 2 are indifferent, 2 are private,
and one is the attacker. We make the attacker a private client as well
(if we make the attacker indifferent then its packets will have high
priority and will not be affected by the packets of private clients).
Clients send packets following a Poisson process with a rate of
20 packets per slot, whereas the attacker carries out the attack
described in Section 2.1 by sending 18 ping packets every slot. We
simulate two 500-slot stages. In the first stage, we activate only
the indifferent clients (the non-adversary private clients remain
idle). In the second stage we also activate the non-adversary private
clients. To make the results more clear, we fix the random choices
made by the indifferent clients to be the same as those of the first

=
o
S
=
o
S

mm Private |
77 Indifferent|

el |

FIFO PTDMA IFS
Scheduling Policy

N Private
77 Indifferent

©
=}
©
o

-}
=}
o
=}

N
o
N
o

N
=}

|

FIFO PTDMA IFS
Scheduling Policy

o
N
o o

Time spent in queue (ms)
Time spent in queue (ms)

(a) Bursty traffic distribution (b) Steady traffic distribution
Figure 10: Average queuing time across client types and
schedulers. FIFO treats all clients as indifferent and is work-
conserving, whereas p-TDMA treats all clients as private and
wastes slots when clients idle. IFS (using FIFO for indifferent
clients) achieves lower queuing time than FIFO for indiffer-
ent clients and than p-TDMA for private clients. Error bars
show the 99!/-percentile waiting time.

stage so that the incoming indifferent traffic is identical in both
stages.

Figure 9 gives the results. The x-axis gives the simulation’s slots,
the black line (and associated right-hand y-axis) shows the average
waiting time of the adversary’s probes, the blue lines give the
total number of packets sent by indifferent clients, and the violet
lines depict the number of packets sent by private client. As we
expect, IFS ensures that the adversary’s observations are identical
in both stages despite private clients being idle in the first and
active in the second. Indeed, the Pearson and Spearman correlation
coefficients under IFS are close to 0, with p-values indicating that
we cannot disregard the null hypothesis (there is no correlation).
An (insecure) FIFO baseline running on the same simulator with
the same packet distributions has much higher and statistically
significant correlations. The results are in Figure 6.

7.4 How does IFS impact clients?

At the outset, our philosophy was that IFS should preserve the per-
formance of the status quo for indifferent clients, while providing
privacy for those who want it at a cost comparable to prior ap-
proaches. We evaluate this goal with 3 metrics: latency, throughput,
and network overhead for private clients.

Latency. In order to measure the latency impact of IFS on clients
we consider two workloads: a bursty workload (e.g., Web browsing)
and a steady workload.

Bursty workload: we record 150 5-minute packet traces following
a similar idea to Section 7.1: we visit an Alexa top-50, wait a random
amount of time, and then visit another site. We implement FIFO,
p-TDMA, and IFS on the PIFO simulator configured with an slot
interval of 280 ps and 300 Mbps bandwidth (similar to our home
switch). We feed the 150 traces (representing 90 private and 60
indifferent clients) into the PIFO simulator, and measure the mean
and 99" percentile time that packets of each client type spend in
the queue. Figure 10a gives the results.

Since FIFO has no notion of client type and is work conserving, all
clients’ packets achieve reasonably low latency (although without
privacy). On the other hand, p-TDMA treats all clients as private
and uses dummy packets that waste a slot whenever a client idles.
As a result, clients’ packet latency is considerably higher than

in FIFO, which highlights the cost of privacy. Finally, IFS is type-
aware and processes clients’ packets accordingly. Indifferent clients,
owing to their high priority, achieve lower latency than they do
under FIFO due to the sharing incentive implied by indifferent
delay monotonicity (§4.4). And while private clients do worse than
indifferent clients due to their low priority, they are still better off
than under p-TDMA owing to the sharing incentive implied by IFS’s
conjectured private delay monotonicity (§4.4). Specifically, since
indifferent clients yield their slot whenever they idle, these spare
slots are given to private clients, thereby lowering their expected
packet delay when compared to p-TDMA.

Steady workload: we generate the same number of packets as
the bursty workload, but following a Poisson distribution with
exponential packet size. The results are shown in Figure 10b and
are similar to those of the bursty experiment—the main difference
is that all clients enjoy lower latency in this scenario, which is
expected from an arrival pattern with lower variance [39].

Overall, the above experiments demonstrate that IFS can indeed
benefit all types of clients: private clients get privacy, albeit at a
cost, whereas indifferent clients satisfied with the status quo can
do even better than they do today!

Network overhead. We also measure the additional bandwidth
required by the private client for both padding and dummy packets
for one of the 5-minute traces. The original workload contained
19.83 MB of data; padding increases the network communication
to 38.37 MB. Furthermore, submitting the dummies required by IFS
introduces an additional 51.08 MB of network communication.

Throughput. To measure how IFS responds to increasing load, we
carry out several experiments that tease out the effect of clients’
sending rates on private and indifferent client latency and through-
put, and the effect of rate limits. We use the same settings and
traces for the PIFO simulator as the previous experiment, which are
similar to our home switch. A key distinction is that we map the
150 traces to 5 larger clients (rather than dealing with 150 clients)
to increase the range of sending rates for each client.

The experiments are as follows. The first experiment sets the
sending rate of all clients to 24 Mbps, which corresponds to a total
rate of 120Mbps, or 40% of the simulator’s capacity. We disable
all rate-limiting and run the simulator for 5 minutes (1M slots),
measuring the average latency of private and indifferent clients,
and the total throughput. We then increment each client’s rate
by 6 Mbps, repeating the entire process until the throughput has
flattened out. This experiment gives us an idea of how different
clients are impacted in the absence of rate limits.

The second experiment is the same as the first, but rate-limits
indifferent clients to 45 Mbps. The third experiment is the same as
the second but only increments the rates of indifferent clients during
each trial—private clients’ rates are fixed at 42 Mbps (we chose this
value as it was the inflection point at which the latency spiked
for private clients in the second experiment). This last experiment
helps us tease out if private clients are at all negatively impacted
by rate-limited indifferent clients increasing the load in the system
(thereby violating IFS’s sharing incentive properties).

Figure 11 gives the results. Figure 11a shows that as clients’ load
increase, private clients begin to starve early on and experience a
latency spike at around 42 Mbps due to indifferent clients going

g 103 1.0%
= privateflatency ' g
S 5
glo,l throughput 08¢
£ =

3
‘S 10-3 indifferent latency 0.6 2
Q (=]
) B >
v 107> e
£ 0.4
= 20 40 60 80 100 120 140 160

Incoming Rate Per Client (Mbps)

(a) No rate limiting

g
=}

m T —
E 1074 : 8
o d 1S
] 10° ; y G
g private latency throughput 0.8 J
o X
£ 10-2 3
@ _ 0.6 2
2 10-4{ indifferent lat =
9} H o
£ indifferent ! rate limit 0 4|'E
= 20 25 30 35 40 45 50 55 60
Incoming Rate Per Client (Mbps)
(b) Rate-limited indifferent clients

w T 1.0=
£ 1024 | S
) | 1S
3 10°{ pri] s
S private latency r0.8

o | §
-E 1072 i throughput §_
5 ! [0.65
& 107*1 indifferent latency [3
) H =
E indifferent ! rate limit 0 4.‘5

20 25 30 35 40 45 50 55 60
Incoming Rate Per Indifferent Client (Mbps)

(c) Rate-limited indifferent clients with fixed private client rate

Figure 11: Effect of clients’ rates on average private latency
(purple), indifferent latency (blue), and throughput (black).
When applicable, we show the rate limit imposed on indif-
ferent clients (blue dashed).

first. Indifferent clients, on the other hand, only suffer later when
the switch approaches its capacity. This confirms our intuition that
without rate-limiting, indifferent clients are free to consume all of
the available bandwidth and completely starve private clients.

Figure 11b shows that placing a rate limit on indifferent client
is indeed sufficient to prevent the degradation of private clients’
latency while still keeping cumulative throughput high. Note here
throughput flattens at around 80% of the switch’s capacity, in con-
trast to the first experiment. This is not because of dummy packets—
the private queues are congested and so never need to process a
dummy—but rather due to private clients padding their packets
which reduces the system’s goodput.

Lastly, Figure 11c demonstrates that private clients’, whose rate
is fixed, continue to experience the same service even as indiffer-
ent clients increase their load. Likewise, observe that the line for
indifferent clients is nearly identical to that of the second exper-
iment despite the fact that private clients start off sending more
traffic than indifferent ones. This is expected since in IFS, indifferent
clients are not affected by private ones. Note that the cumulative
throughput here is lower because we are not increasing the load

from private clients, and indifferent clients are rate limited, so no
client is using the switch’s spare capacity.

8 DISCUSSION

IFS is a hybrid scheduling discipline that provides privacy to clients
who want it, without burdening clients who are indifferent. While
we are able to build IFS at line rate on switches that support PIFO,
and our evaluation confirms that indifferent clients are as well off
or even better under IFS than they are today, the requirements for
private clients are high.

Main limitations. Private clients need to maintain dummy pools
for all egress ports (Figure 3), which is costly. A compromise is for
them to have dummy pools only for the egress ports they use, at the
risk of potentially leaking the destination of their traffic (although
redundant data center topologies like FatTrees [6], VL2 [31], and
F10 [46] might sufficiently obscure the destination). This limitation
could be addressed with switch extensions. For example, support for
idling or the generation of packets would free clients from having or
stocking dummy pools. Alternatively, if queues could be associated
with multiple ports, some of those ports could be used to recirculate
dummies as we do for padding (§6.3).

IFS also requires the switch to have access to a number of queues
that is linear in the number of clients. Even in a setting where we
treat clients as hosts rather than network flows, this is challenging
to satisfy. One potential idea is to leverage TEA [38], which allows
switches to use external memory to store additional state for lookup
tables. With TEA (or some other similar architecture), IFS could
store buffers off-switch, thereby virtualizing the necessarily large
number of queues.

Potential optimization. In our threat model (§3.1), the attacker
targets a particular switch. As a result, it might be hard for the at-
tacker to “chase” packets deep into the network, as doing so would
require probing all potential switches on all possible paths without
prior knowledge of which service the victim is even accessing. Fur-
thermore, switches deeper in the network aggregate traffic from
many clients, masking the contribution of any one client. Conse-
quently, clients might be able to let dummy packets have small
TTLs so that they are discarded early on in the network to reduce
overhead for other switches. We leave finding the optimal TTL as a
function of network topology, packet aggregation rate, and attacker
capabilities as an interesting open question.

Algorithmic extensions. In modeling clients’ actions and desires,
which were critical to our incentive compatibility argument of
Section 4.3, we made a few assumptions. First, we assumed that
private client’s desire for privacy was absolute: in other words,
private clients accept any additional delay instead of risking a
privacy violation. Second, we assumed that privacy is a binary
notion: either one enjoys privacy or not. Third, we focused only on
packet delay but not on throughput.

Future work could relax these assumptions. For example, we
could allow for “partially private” clients, which are clients willing
to leak a controlled amount of information. The challenge here
is characterizing the leakage of information that results from an
attackers’ observations and devising a mechanism that can enforce

a bound on such leakage. A starting point is to draw inspiration
from differential privacy [26].

Since IFS’s treatment of indifferent clients is work conserving,
it gifts any slack to private clients. As a result, private clients are
actually allocated a bandwidth share higher than the rate they
purchased whenever the switch is underutilized (due to indifferent
clients idling). This might lead an indifferent client who greatly
values bandwidth and who is willing to tolerate a higher latency to
label itself as private to enjoy more bandwidth at a lower financial
cost. We could incorporate this additional variable into clients’
objective functions, and design a variant of IFS that incentivizes
truthfulness in the presence of these other objectives.

Code. Our code is available at https://github.com/eniac/IFS.

Acknowledgments

We thank the SIGCOMM and CCS reviewers for their feedback,
which significantly improved the content and presentation of our
work. We also thank Vincent Liu for invaluable discussions. This
work was funded in part by NSF grants CCF-1733794, CNS-2045861,
CNS-2107147, CNS-2124184; by DARPA contract HR0011-17-C0047;
and by a gift from JP Morgan Chase & Co. Any views or opinions
expressed herein are solely those of the authors listed.

REFERENCES

[1] Alexa - top sites. https://www.alexa.com/topsites.

[2] iperf3. https://iperf.fr, 2015.

[3] pifo-hardware. https://github.com/programmable-scheduling/pifo-hardware,
2015.

[4] C++ reference implementation of a pipeline of Push-In First-Out queues.
https://github.com/programmable- scheduling/pifo-machine, 2016.

[5] Sp-pifo: Approximating push-in first-out behaviors using strict-priority queues.
https://github.com/nsg-ethz/sp-pifo, 2020.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center
network architecture. In Proceedings of the ACM SIGCOMM Conference, 2008.

[7] A.G. Alcoz, A. Dietmiiller, and L. Vanbever. SP-PIFO: Approximating push-in
first-out behaviors using strict-priority queues. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Feb. 2020.

[8] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska. End-to-end

performance isolation through virtual datacenters. In Proceedings of the USENIX

Symposium on Operating Systems Design and Implementation (OSDI), Oct. 2014.

S. Angel, S. Kannan, and Z. Ratliff. Private resource allocators and their

applications. In Proceedings of the IEEE Symposium on Security and Privacy (S&P),

May 2020.

[10] S. Angel, D. Lazar, and I. Tzialla. What’s a little leakage between friends? In

Proceedings of the ACM Workshop on Privacy in the Electronic Society (WPES), Oct.

2018.

S. Angel and S. Setty. Unobservable communication over fully untrusted

infrastructure. In Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), Nov. 2016.

[12] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. Towards predictable

datacenter networks. In Proceedings of the ACM SIGCOMM Conference, 2011.

H. Ballani, K. Jang, T. Karagiannis, C. Kim, D. Gunawardena, and G. O’Shea.

Chatty tenants and the cloud network sharing problem. In Proceedings of the

USENIX Symposium on Networked Systems Design and Implementation (NSDI),

2013.

O. Berthold and H. Langos. Dummy traffic against long term intersection

attacks. In Proceedings of the Workshop on Privacy Enhancing Technologies (PET),

Mar. 2002.

[15] G.D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy vulnerabilities

in encrypted HTTP streams. In Proceedings of the Workshop on Privacy

Enhancing Technologies (PET), 2005.

A. Cabrera Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida Garcia, and N. Tuveri.

Port contention for fun and profit. In Proceedings of the IEEE Symposium on

Security and Privacy (S&P), May 2019.

[17] D.L. Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2), Feb. 1981.
[18] D.L. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1(1), 1988.

[9

=

(11

[13

[14

[16

[19

[42]

[43

[44]

=
i)

[46

(47]

C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. HORNET:
High-speed onion routing at the network layer. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), Oct. 2015.

C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and C. Troncoso.
TARANET: Traffic-analysis resistant anonymity at the network layer. In
Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P),
Apr. 2018.

R. Cooper. Introduction to Queueing Theory. North Holland, 1981.

H. Corrigan-Gibbs and B. Ford. Dissent: Accountable anonymous group
messaging. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), Oct. 2010.

G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: Design of a type III
anonymous remailer protocol. In Proceedings of the IEEE Symposium on Security
and Privacy (S&P), May 2003.

A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In Proceedings of the ACM SIGCOMM Conference, 1989.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation
onion router. In Proceedings of the USENIX Security Symposium, Aug. 2004.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Proceedings of the Theory of Cryptography Conference
(TCC), Mar. 2006.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-Boo, I still see
you: Why efficient traffic analysis countermeasures fail. In Proceedings of the
IEEE Symposium on Security and Privacy (S&P), 2012.

A. Ghassami and N. Kiyavash. A covert queueing channel in FCFS schedulers.
IEEE Transactions on Information Forensics and Security, 13(6), 2018.

X. Gong and N. Kiyavash. Quantifying the information leakage in timing side
channels in deterministic work-conserving schedulers. IEEE/ACM Transactions
on Networking (TON), 24(3), 2016.

P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queueing: A scheduling
algorithm for integrated services packet switching networks. IEEE/ACM
Transactions on Networking, 5(5), Oct. 1997.

A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz,

P. Patel, and S. Sengupta. VL2: a scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM Conference, 2009.

C. R. Heathcote. Preemptive priority queueing. Biometrika, 48(1/2):57-63, 1961.
S. Kadloor, X. Gong, N. Kiyavash, T. Tezcan, and N. Borisov. Low-cost side
channel remote traffic analysis attack in packet networks. In Proceedings of the
IEEE International Conference on Communications (ICC), Aug. 2010.

S. Kadloor, X. Gong, N. Kiyavash, and P. Venkitasubramaniam. Designing router
scheduling policies: A privacy perspective. IEEE Transactions on Signal
Processing, 60(4):2001-2012, 2012.

S. Kadloor and N. Kiyavash. Delay-privacy tradeoff in the design of scheduling
policies. IEEE Transactions on Information Theory, 61(5), 2015.

S. Kadloor, N. Kiyavash, and P. Venkitasubramaniam. Mitigating timing side
channel in shared schedulers. IEEE/ACM Transactions on Networking (TON),
24(3), 2016.

J. Kelsey, B. Schneier, D. Wagner, and C. Hall. Side channel cryptanalysis of
product ciphers. In Proceedings of the European Symposium on Research in
Computer Security (ESORICS), Sept. 1998.

D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Seshan. TEA: Enabling
state-intensive network functions on programmable switches. In Proceedings of
the ACM SIGCOMM Conference, 2020.

J. F. C. Kingman. On queues in heavy traffic. Journal of the Royal Statistical
Society. Series B (Methodological), 24(2):383-392, 1962.

A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford. Atom: Horizontally
scaling strong anonymity. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Oct. 2017.

A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An efficient communication
system with strong anonymity. In Proceedings of the Privacy Enhancing
Technologies Symposium (PETS), July 2016.

S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt. Herd: A
scalable, traffic analysis resistant anonymity network for VoIP systems. In
Proceedings of the ACM SIGCOMM Conference, Aug. 2015.

S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Ballani, and P. Francis.
Towards efficient traffic-analysis resistant anonymity networks. In Proceedings
of the ACM SIGCOMM Conference, Aug. 2013.

J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma.
Application-driven bandwidth guarantees in datacenters. In Proceedings of the
ACM SIGCOMM Conference, 2014.

M. Liberatore and B. N. Levine. Inferring the source of encrypted HT TP
connections. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2006.

V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson. F10: A fault-tolerant
engineered network. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2013.

M. B. Mamoun, J.-M. Fourneau, and N. Pekergin. Analyzing weighted round
robin policies with a stochastic comparison approach. Computers & Operations

https://github.com/eniac/IFS
https://www.alexa.com/topsites
https://iperf.fr
https://github.com/programmable-scheduling/pifo-hardware
https://github.com/programmable-scheduling/pifo-machine
https://github.com/nsg-ethz/sp-pifo

Research, 35(8), 2008.

[48] A.Mehta, M. Alzayat, R. de Viti, B. B. Brandenburg, P. Druschel, and D. Garg.
Pacer: Network side-channel mitigation in the cloud, 2020.

[49] A.K. Parekh and R. G. Gallager. A generalized processor sharing approach to
flow control in integrated services networks: the single-node case. IEEE/ACM
Transactions on Networking, 1(3), June 1993.

[50] L.Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R. Santos.
Elasticswitch: practical work-conserving bandwidth guarantees for cloud
computing. In Proceedings of the ACM SIGCOMM Conference, 2013.

[51] T.Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my

cloud:exploring information leakage inthird-party compute clouds. In

Proceedings of the ACM Conference on Computer and Communications Security

(CCS), 2009.

D. Shah and J. Shin. Randomized scheduling algorithm for queueing networks.

Annals of Applied Probability, 22(1), Feb. 2012.

[53] N.K.Sharma, M. Liu, K. Atreya, and A. Krishnamurthy. Approximating fair
queueing on reconfigurable switches. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2018.

[54] A.Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T. Chuang, T. Edsall,
M. Alizadeh, S. Katti, N. McKeown, and H. Balakrishnan. Towards
programmable packet scheduling. In Proceedings of the ACM Workshop on Hot
Topics in Networks (HotNets), 2015.

[55] A.Sivaraman, S. Subramanian, M. Alizadeh, S. Chole, S.-T. Chuang, A. Agrawal,
H. Balakrishnan, T. Edsall, S. Katti, and N. McKeown. Programmable packet
scheduling at line rate. In Proceedings of the ACM SIGCOMM Conference, 2016.

[56] D.I Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers:
Making strong anonymity scale. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), Oct. 2012.

[57] C.V.Wright, L. K. Ballard, S. E. Coull, F. Monrose, and G. M. Masson.
Uncovering spoken phrases in encrypted voice over IP conversations. ACM
Transactions on Information and System Security, 13(4), 2010.

[58] Z.Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: High-speed covert
channel attacks in the cloud. In Proceedings of the USENIX Security Symposium,
2012.

[59] Z.Yu, C.Hu,]J. Wu, X. Sun, V. Braverman, M. Chowdhury, Z. Liu, and X. Jin.

Programmable packet scheduling with a single queue. In Proceedings of the ACM

SIGCOMM Conference, 2021.

Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter. Homealone: Co-residency

detection in the cloud via side-channel analysis. In Proceedings of the IEEE

Symposium on Security and Privacy (S&P), 2011.

[52

[60

A DELAY AND CLIENT COMPOSITION

IFS is a hybrid scheduling algorithm that treats two types of clients:
private and indifferent. Here, we study the effect that varying the
number of clients of a particular type has on the average delay expe-
rienced by clients of each type. Our experiment is done on the PIFO
simulator [4] and consists of four clients, each with a Poisson ar-
rival rate with mean 0.1 packets/slot. For each trial, we measure the
average waiting time experienced by each client, and then compute
the average of these values for the private and indifferent clients
respectively. We then vary the number of clients that are private
and indifferent. We start with all four clients being private and then
progressively convert one client each trial to become indifferent
until all clients are indifferent. Like our other IFS simulations, we
ensure that each private client has a sufficient amount of dummy
packets already present in the system

Figure 12 gives the results. We make three observations:

e The average delay experienced by private clients is strictly
higher than that of indifferent clients in all configurations.

e The delay of indifferent clients is strictly increasing.

o The delay of private clients is strictly decreasing.

The first observation showcases IFS’s incentive compatibility (§4.3),
whereas the latter two demonstrate IFS’s indifferent and private
delay monotonicity (§4.4). We have also experimented with other
rates and number of clients, and the trends are similar.

—~ 2.5
2
2 private clients
g 2.01
5]
3
o
£1.54
o
£
=
g’ 1.04
=]
©
=
o 0.5
g
9] indiffe.ri‘le‘”ts_.—/._,//‘
>
< 0.0
ccorent ccorent ceorent ceorent ceorent
inaifter jnaiffer inaiffe’ inaiffe’ A inaiffer
4 VAT vt T onatE Ty rvate Ty grivate:

Client Configuration

Figure 12: For each configuration described by the x-axis, the
red point represents the average waiting time of a private
client in that configuration and the blue point represents the
same for an indifferent client. We can see that the red line
is strictly higher, which incentivizes indifferent clients.

B INDIFFERENCE INCENTIVE

Recall from Section 4.3 the definition of indifference incentive. That
is, an indifferent client is incentivized to tell the truth because doing
so is its dominant strategy.

We formalize this as follows. Let P and I be the sets of active
private and indifferent clients, respectively. Let c be a client that is
considering whether to declare itself as private or indifferent. IFS
guarantees that for all P and I:

Dc(A¢, P,I1U {c}) < Dc(A¢, P U {c},])

where D¢ is the expected delay for ¢’s packets given a rate A, and a
set of private and indifferent clients. Note that here we assume that
either no rate limiting is done, or all clients (private and indifferent)
are rate limited. Otherwise, this definition does not always hold as
we discuss in Section 4.5.

PRroOF. Let a scheduler’s client allocation sequence S = cq, cp ...
be defined such that the ith element in S, S; = ¢, if and only if
the scheduler allocates the ith slot to client ¢, i.e. the scheduler
processes a packet from client ¢, in its ith time slot. Note that if
there is at least one private client registered to the scheduler, each
slot will be allocated to one client; In the case of all indifferent
clients, we represent unallocated slots by letting that element of
the sequence be @.

We start with the following simple lemma:

LEMMA B.1. IfS; = ¢4 andc, € P, then at time slot i no indifferent
client can have any packets waiting at the scheduler.

Proor. If there were any indifferent packets queued, IFS would
have processed them before allocating a slot to a private client due
to its strict priority for indifferent clients. O

We can also partition a sequence into subsequences in which the
scheduler allocated slots to indifferent clients and those in which

the scheduler allocated slots to private clients, and if we require
these subsequences to be as long as possible, this partitioning is
unique.

Now we will examine two client allocation sequences S and S’.
The sequence S occurs in a scheduler with private clients P and
indifferent clients I such that there is an indifferent client ¢ € I. §’
describes the allocation that occurs in a nearly identical scheduler
with private clients P’ = PU {c} and indifferent clients I’ = P\ {c}.

Now we will examine a packet p sent by c. Suppose that this
packet was processed at time slot i, so that S; = c. S; falls into an
indifferent partition, and we claim that for any random values cho-
sen by the scheduler, p would have been processed in this partition.
p could not have been processed in a previous partition, because
the immediate preceding partition is private and this contradicts
Lemma B.1. Similarly, p could not have been processed in a later
partition, because the immediate following partition is also private.
We also know that p must have arrived during this same partition.

We will now examine how the partitions of S differ from those of
S’. There are three cases: (1) an indifferent partition in S consisted
entirely of packets produced by c, in which case when ¢ becomes
private this partition becomes private and merges with its two
surrounding partitions, and (2) an indifferent partition in S contains
no packets from ¢, in which case this partition does not change
in S’, and (3) an indifferent partition in S contains packets from
¢ as well as those from clients that are not ¢, in which case the
partition splits in S, with the slots allocated to ¢ merging with the
following, private partition. Finally, we note that in case (1), the
set of packets from ¢ will not be assigned slots earlier than they
were in S (individual packets may fare better, but only by switching
slots with other packets from c) and as well for case (3). Further, if
there is at least one other client in the scheduler, either indifferent
or private, then ¢ will perform worse on expectation. o

C INDIFFERENT DELAY MONOTONIC

First, we state the following. Given four clients, p, g, r, and s:

Dp()'p’ {r’ S}, {p7 q}) < Dp()'p’ {S}, {P’ ‘D r})

In fact, this statement holds not just for the expected delay, but
also for any possible arrival patterns that are compatible with the
clients’ announced rates.

This is trivially true when the indifferent clients use FIFO. When
we use randomized round robin, we can define our random selection
over indifferent clients in the following way: each time slot, we
randomly choose a client from the set {p, g, r}, based on each client’s
purchased rate. If the first client selected is indifferent and has
a packet queued, that client’s packet will be processed this slot.
Otherwise, remove this client from the set, and if r is private and
still in the set, remove r also. Now continue to pick clients from
the set until the selected client has a packet queued—if the set
is empty before this happens, idle this slot. This will yield our
desired selection probabilities, but will allow us to use the same
random selections regardless of the privacy of client r, allowing us
to compare the above situations. It is clear that no packet of p will
benefit from the indifference of r.

Note that both q and s can be either zero-rate clients (identical
to an empty set of clients) or the client obtained by combining

multiple clients’ packet sequences (identical to a set of multiple
clients). Therefore, the above property covers every possible case
claimed by indifferent delay monotonicity.

D PRIVATE DELAY MONOTONIC

Recall from Definition 4.2 in Section 4.4 that private delay mono-
tonicity means that as more clients become private, none of the
existing private processes is better off. As a result, private clients
do not care about the composition of the system (in terms of pri-
vate or indifferent clients). We conjecture that IFS is private delay
monotonic.

We do not have a formal proof for this conjecture, but we have
empirical evidence that supports this (Appendix A). We also prove
it to be true in a special case. We leave it for future work to formally
prove or disprove this conjecture. It requires modeling complex
interactions between multiple scheduling algorithms, which is out-
side the scope of this work.

Evidence in favor. We can show the validity of our conjecture
in the specific case where there are exactly two clients of Poisson
rates present, with some minor stipulations. Notice that in this
situation, our policy reduces to a simple priority queue when one
client chooses to be private and the other indifferent, and p-TDMA
when both are private. We have provided the delay for the latter
case in Appendix E. For the former case, we reference the work of
Heathcote [32] to obtain the waiting time of a second class client
in a preemptive priority queue of M/D/1 form with a fixed service
distribution of 1. Letting p denote our private client and g our
indifferent client, with }Lp, Aq their respective rates and A = Ap +)Lq,
the expected waiting time of client p is:

A
1-3

(1-2g)(1-4)

We can compare this waiting time with that obtained via our
equation for p-TDMA. Our conjecture holds when the waiting time
of p is lower when g is indifferent. If we assume that A, = A4, then
we find that this waiting time is strictly lower than that of p TDMA
on the interval (0, 1), so our conjecture holds throughout.

We will also explore two additional cases in this two-client sit-
uation: We will let A, = % “Aordp = % - A for some positive
integer b. For the first case, we can calculate the expected delay
directly from our p-TDMA equation as

b-1

1
Wprdma(A, b) =1+ =0 * 13

and from the priority queue delay above as

A

W”.O,Lbz_—7
prio%.8) (1-Ena-2

Letting f(4,b) = Wprio(A b) = Wparma(4, b), we can compute
the partial derivative of f with respect to b an find that this is
negative when 0 < A < 1. Because f(A,1) is negative for all A,
f(A,) is negative for the range of values we care about.

In the second case, we can compute the p-TDMA delay when
Ap = % by using the fact that, letting this delay be Wp tmda(As b),

1 b—1.
prtdma(l’ b) + Twptdma(}w b) = Wptdma(/l’ 2)

Using the same method as above, we find that g(4, b) = Wpri0(4, %)—

W ptdma(A, b) and the partial derivative of g with respect to b is
negative when 0 < A < 1and b > 1. This, coupled with the fact that
the limit of g(4, b) approaches —.5 as b goes to infinity, regardless
of A, means that g(4, b) is also negative for the range in which we
are concerned.

While admittedly limited, these two cases, and our inability to
identify counterexamples analytically or empirically, give us hope
that our conjecture (or some slight weakening that perhaps takes
into account the scheduler’s admission threshold L) might be true
for all settings.

E WORST-CASE EXPECTED DELAYS

To calculate the expected delay for a private client ¢, we can use
the following fact, proven by Kadloor et al. [36]: for a proportional
TDMA scheduler with n clients with combined rate A, the average
delay experienced for any packet is:

1 1 n—1
Y-y T1oa

We can find the delay for a client with rational rate that consumes
a/b of the total rate by first calculating the delay of a client with
rate 1/b, using the fact that in p-TDMA regardless of the number
of clients, a client with rate A in a scheduler with combined rate A
will always have the same delay.

To calculate the expected delay for an indifferent client, we first
note that all of the other guarantees of IFS are independent of the
specific flavor of round robin we use, although in Section 4.1 we
have abstracted it away as a random selection. The work of Shah
and Shin [52] provides an analysis of the expected delay of random
scheduling, which is a similar concept to ours but in a different
context, and the work of Mamoun, Fourneau, and Pekergin [47]
provides an analysis of the delay of (deterministic) weighted round
robin. If instead we use FIFO on the indifferent clients, the expected

1

delay is 1 + A=A [21].

F EQUIVALENCE OF DUMMY POOLS

We can show equivalency between a model in which the switch
idles for a time slot where a private client has nothing to send
(“abstract model”), and a model in which the switch leverages a
dummy packet that has been previously enqueued (“actual model”).

We make the simplifying assumption that there is no latency
between the client and the switch. In practice, this just means that
the switch has all of the dummies already present, which can be
ensured by having clients preload their dummy pools and maintain
them populated. First we will fix all of the inputs (clients and corre-
sponding rates, packets departure times and corresponding arrival
times, and internal randomness) for both models.

We will start with the case where all clients are private. Let
s = 0,1,2,... be the sequence of slots over the lifetime of the
scheduler. We can partition s into subsequences over the set of
clients, i.e. sp is the subsequence of s assigned to client p. Because
indifferent clients do not generate dummy packets, the arrival times

for the packets of each indifferent client will be identical in both
models. One consequence of IFS is that private clients cannot affect
the schedule of any indifferent client, so for any indifferent client p;,
the subsequence sp, will also be identical in both models. We know
that any slot not allocated to an indifferent client will be allocated
to a private client, and the selection of which private client depends
only on the reserved rates of the private clients and a sequence of
random selections, both of which we have ensured to be equal in
both models. Therefore, for any client, indifferent or private, p, the
subsequence s, is identical in the two models.

Now we will introduce a function next(i) = min{x|x > i,x €
sp}. In other words, next, (i) returns the next slot allocated to client
p after slot i. We will also let arr(r;) and dep(r;) express the arrival
and departure slots associated with packet i, respectively. We as-
sume that all packets arrive at the end of a slot, after the packet
associated with that slot has left the queue.

LemMma F.1. For two packets of a common client p, r; and its pre-
ceding packetri_1,

dep(ri) = nextp(max(arr(r;), dep(ri-1)))

PRrROOF. Assume towards contradiction that a packet r; actually
departs at a slot dep(r;) which is different from the one our lemma
predicts, dep’(r;).

In both models, for any packet r;, dep(r;) > arr(r;). When r;
arrives at the queue, at slot arr(r;), there are two possibilities for
ri—1. Either it had left the queue on this turn or a previous one
(dep(ri—1) < arr(r;)), or it is still present in the queue. In the latter
case, we know it will be processed before r;, so either way, dep(r;) >
dep(ri-1). We also know that dep(r;) € sp. Combining these three
statements, we have that dep(r;) > dep’(r;).

Now consider what kind of packet is handled at slot dep’(r;).
By definition, dep’(r;) € sp, so it must be a packet associated with
client p. Further, dep(r;) > dep’(r;) > dep(ri—1), so because it
occurs between the departures of two consecutive packets from
client p, it cannot be an actual packet, so it must be a dummy. But
at this slot the subqueue associated with client p contains r;, as
dep(r;) > dep’(r;) > arr(r;). In the case of the abstract model, a
dummy packet for process p will not be created with an actual
packet for client p in the subqueue; for the real model, even if there
is a dummy packet in the subqueue it will not be handled before the
higher priority actual packet (r;). Therefore, no such packet other
than r; can be assigned to slot dep’(r;), which is a contradiction.

We can argue similarly that the first packet ry of each client p will
be allocated to slot nextp(arr(ro)). At this point we have shown that
in both models, each of client p’s packets ro, r1, 72, . . . are assigned
the same departure slots dp = dep(ro), dep(r1), dep(rz), Further,
if we take any slot in s, that is not present in dp, we can show
that at this slot there are no actual packets associated with p in the
queue. Therefore, each such slot is idled (in the abstract model) or
assigned to a dummy packet of p (in the real model). O

	Abstract
	1 Introduction
	2 Motivation and related work
	2.1 Timing attack on switches and schedulers
	2.2 Existing proposals

	3 Defining privacy
	3.1 Setting and threat model
	3.2 Indistinguishability of arrival sequences
	3.3 Prior approaches guarantee privacy

	4 Making privacy optional
	4.1 Indifferent-first scheduling (IFS)
	4.2 IFS guarantees privacy
	4.3 IFS is incentive-compatible
	4.4 IFS is better for all clients
	4.5 Private client starvation

	5 IFS on programmable switches
	5.1 Registration
	5.2 Emulating switch idling
	5.3 Approximate randomized round robin

	6 IFS on PIFO switches
	6.1 Implementing TDMA
	6.2 Implementing IFS
	6.3 Dealing with variable-size packets
	6.4 Analysis of IFS's properties

	7 Evaluation
	7.1 Are timing side channels a real threat?
	7.2 Client-side Traffic Shaping
	7.3 Does IFS hide private clients' actions?
	7.4 How does IFS impact clients?

	8 Discussion
	References
	A Delay and client composition
	B Indifference incentive
	C Indifferent delay monotonic
	D Private delay monotonic
	E Worst-case expected delays
	F Equivalence of dummy pools

