Mycelium: Large-Scale Distributed Graph Queries
with Differential Privacy

Edo Roth

University of Pennsylvania

Ke Zhong

University of Pennsylvania

Karan Newatia
University of Pennsylvania

Sebastian Angel

University of Pennsylvania

Yiping Ma

University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

Microsoft Research

Abstract. This paper introduces Mycelium, the first system
to process differentially private queries over large graphs that
are distributed across millions of user devices. Such graphs
occur, for instance, when tracking the spread of diseases or
malware. Today, the only practical way to query such graphs
is to upload them to a central aggregator, which requires a
great deal of trust from users and rules out certain types of
studies entirely. With Mycelium, users’ private data never
leaves their personal devices unencrypted, and each user
receives strong privacy guarantees. Mycelium does require
the help of a central aggregator with access to a data center,
but the aggregator merely facilitates the computation by pro-
viding bandwidth and computation power; it never learns
the topology of the graph or the underlying data. Mycelium
accomplishes this with a combination of homomorphic en-
cryption, a verifiable secret redistribution scheme, and a mix
network based on telescoping circuits. Our evaluation shows
that Mycelium can answer a range of different questions
from the medical literature with millions of devices.

1 Introduction

Personal devices collect massive amounts of data that can en-
able fascinating applications. For instance, the words typed
by smartphone users could be (and in fact are) used to train
predictive typing models, which allows phones to offer help-
ful word completions to users when they are typing. As
another example, the data collected by contact-tracing ap-
plications (via Apple and Google’s Exposure Notifications
API) could be used to understand how diseases spread, or
what environmental factors play a role. These are instances
of federated analytics (FA), whereby users, each of whom has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SOSP 21, October 26-29, 2021, Virtual Event

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8709-5/21/10...$15.00
https://doi.org/10.1145/3477132.3483585

a device with some data, collaborate with an aggregator in
order to answer questions such as “how often does the word
‘system’ appear after the word ‘operating’?”.

Of course, user data—including infection status and demo-
graphic information—is very sensitive. Without assurances
on who will access their data or what insights will be drawn
from it, many users will not comfortably participate in an FA
system. One approach taken by prior work [17, 38, 42, 80, 81]
is to design the system to provide differential privacy [34], a
strong and mathematically rigorous privacy guarantee. With
differential privacy, FA systems can safely aggregate infor-
mation like the frequency of words from billions of user
devices while preserving the privacy of individuals.

While privacy-preserving FA systems have made consid-
erable progress [80, 81], existing systems lack support for
graph queries such as: “if a device is infected with malware,
how many of their contacts are infected within a week?”.
This is unfortunate, since graph queries can help study the
spread of malware, disease, and misinformation; they could
also test for “filter bubbles” and other social phenomena.

However, supporting graph queries privately is challeng-
ing due to fundamental differences from the queries tradi-
tionally studied in past FA work. In earlier systems, each
device analyzes only its local data (e.g., the words that the lo-
cal user has typed), and the answers are aggregated securely
across devices. But in a graph query, each device needs infor-
mation from other devices before it can provide its answer.
For instance, in the above example, even though each user
may know the identities of their contacts, they would need
to find out which of their contacts have been infected. Such
an operation raises three technical challenges:

e Topology privacy: How can vertices communicate with
other vertices without leaking the sensitive topology of
the graph to the aggregator? This is especially difficult
when the only entity guaranteed to know how to reach all
vertices is the aggregator itself (e.g., a user may know the
IDs or names of their friends, but not their IP addresses).

e Neighbor data privacy: How can vertices collect data
from their neighbors and use it to produce their own
answer without violating the privacy of their neighbors?
For instance, in the above example, how can we prevent
users from learning their friends’ infection status?

https://doi.org/10.1145/3477132.3483585

o Scalability: How can the system support queries across
millions of devices? While it might be possible to build
an FA that operates over graphs using secure multi-party
computation across devices, these approaches do not scale.

To address these challenges, this paper introduces Mycelium,
the first FA system to support queries on massive graphs
distributed across a large number of participants. To address
scalability, Mycelium’s key insight is that, for many graph
queries, we can divide the computation into two steps: (1)
local computations that run in parallel on a small neighbor-
hood of each vertex and output a vector of local results, and
(2) a global aggregation step that combines the vertex-level
results into a single global output. This is analogous to how
frameworks such as Pregel [65] structure their queries, albeit
for different reasons. Mycelium cannot support every Pregel
query because not all of them are differentially private, but
Myecelium’s computation model is still quite general.

To guarantee topology privacy, Mycelium needs to pro-
vide a way for users’ devices to communicate with each
other so that they can obtain the inputs needed to execute
their local computation (vertex program). This is difficult in
many applications without disclosing the existence of the
communication to the aggregator. For example, the COVID-
19 exposure notification systems use pseudonyms for each
device, and there is no obvious way to communicate with the
owner of a pseudonym once it has moved out of Bluetooth
range. Mycelium solves this problem by using the aggregator
as a rendezvous point, while preventing it from learning the
topology of the graph in the process. The key idea is a new
mix network and a telescoping circuit mechanism inspired
by Tor [31] that allows devices to forward their requests via
other devices until the requests reach their destinations (§3).
To guarantee neighbor data privacy, Mycelium uses homo-
morphic encryption to aggregate encrypted histograms that
are sufficient to answer many queries of interest. We will
show several examples of such queries in Figure 2.

A key challenge with Mycelium’s mix network is that
devices are unlikely to all be simultaneously online, so a fast
mixing round could miss some devices—with consequences
for both privacy and accuracy. To compensate, Mycelium
uses long communication rounds (on the order of hours),
so all devices have a chance to contribute their answer; the
aggregator buffers messages as needed. Because of the long
delays, Mycelium is not suitable for interactive queries; it
is intended for longer-term social studies, such as disease
spread, investment patterns, or information propagation.

We have implemented a prototype of Mycelium, and we
use a combination of small-scale benchmarks and extrapo-
lation to show that it can scale to millions of devices. The
cost to the aggregator is well within the means of a typical
data center, and the costs to individual devices are moderate:
for a typical query, each device will incur around 430 MB of
bandwidth and spend 15 minutes of computation. A small,

Figure 1. Millions of participants form a graph. An analyst submits
queries to an aggregator who facilitates computing on the graph.

randomly chosen set of devices will need to spend more, but
the costs are comparable to what prior FA systems [80, 81]
require at similar scales, even though these systems do not
support graphs. In summary, our contributions are:

e A mix network with verifiable telescoping circuits (§3);
e Myecelium: the first FA system to support graphs (§4);

e A prototype implementation (§5) and experimental eval-
uation (§6) of Mycelium.

2 Federated analytics over graphs

We target a setting (illustrated in Figure 1) where there are
a large number of participants, each of whom has a per-
sonal device that contains sensitive information (e.g., finan-
cial records, demographic information, health details). Each
participant is identified by one or more pseudonyms, and
participants may know some of the pseudonyms of other
participants. For instance, in the case of Google and Apple’s
Exposure Notification System (GAEN) [2], the devices are
users’ smartphones; the sensitive information includes users’
infection status, time of diagnosis, and locations visited; the
pseudonyms could be the Rolling Proximity Identifiers (RPIs),
which each phone broadcasts to other nearby phones via
Bluetooth Low Energy, or some fixed identifier. Overall, we
can think of this data as representing a large graph, with
one vertex for each participant and a directed edge (p1, p2)
whenever p; knows at least one of p,’s pseudonyms.

There is also a central aggregator, who wishes to run large-
scale queries over this graph and is willing to coordinate
the necessary computation. Note that these queries are not
real-time queries; at this scale, they may take hours or days
to complete. We assume that the aggregator has substantial
computational and bandwidth resources, perhaps in the form
of a data center. The aggregator works with at least one
analyst, who formulates the queries to be run. In the case
of GAEN, the aggregator could be Google or Apple, or the
government agencies that run the Diagnosis Servers; the
analysts could be some carefully vetted epidemiologists.

We assume that devices are usually (though not always)
online. Devices could be behind NATs or firewalls, or they

Query Application Description

01 [6, 78]

Histogram of the number of infections in an infected participant’s two-hop neighborhood, within 14 days

SELECT HISTO(COUNT(*)) FROM neigh(2) WHERE dest.inf A self.inf

Q2 [28, 68, 73]

Histogram of the amount of time A has spent near B, if A is infected within 5-15 days of contact with B

SELECT HISTO(SUM(edge.duration)) FROM neigh(1) WHERE self.inf A (dest.tInfec[edge.last_contact+5,edge.last_contact+10])

03 [16, 28, 68]

Histogram of the frequency of contact between A and B, if A infected B

SELECT HISTO(SUM(edge.contacts)) FROM neigh(1) WHERE self.inf A dest.tInf A (dest.tInf>self.tInf+2)

Q4 [16]

Secondary attack rate of infected participants if they travelled on the subway

SELECT HISTO(SUM(dest.inf)) FROM neigh(1) WHERE onSubway(edge.location) A self.inf

05 [68]

SELECT HISTO(COUNT(*)) FROM neigh(1) GROUP BY self.age

Histogram of the number of distinct contacts within the last 24 hours, for different age groups

Q6 [28, 52, 68]

Histogram of secondary infections caused by infected participants in different age groups

SELECT HISTO(COUNT(*)) FROM neigh(1) WHERE self.inf A dest.tInf A (dest.tInf>self.tInf+2) GROUP BY self.age

Q7 [16, 48, 68]

Histogram of secondary infections based on type of exposure (such as family, social, work)

SELECT HISTO(COUNT(*)) FROM neigh(1) WHERE self.inf A dest.tInf A (dest.tInf>self.tInf+2) GROUP BY edge.setting

08 [52, 75]

Secondary attack rates in household vs non-household contacts

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE self.inf GROUP BY isHousehold(edge.location)

Q9 [58, 68]

Secondary attack rates within case-contact pairs in the same age group vs different age groups

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE dest.age€[0,100] A self.agec[dest.age-10,dest.age+10]

Q10 [52]

Secondary attack rates at different stages of the disease (incubation period vs illness period)

SELECT GSUM(SUM(dest.inf)/COUNT(*)) FROM neigh(1) WHERE self.inf A (dest.tInf>self.tInf+2) GROUP BY stage(dest.tInf-self.tInf)

Figure 2. Example queries. CLIP commands and histogram bins have been omitted.

could go offline for brief periods of time due to loss of cellular
coverage or whenever they run out of power.

2.1 Example queries

We now provide a few examples of queries that we wish
to support. For concreteness, we focus on queries proposed
in the infectious disease literature, even though Mycelium
is general and can handle graph queries for other domains.
Figure 2 summarizes the queries, along with the motivating
works, and the corresponding SQL-like syntax.

Superspreading is a well-established phenomenon for in-
fectious diseases [37, 62], and there is work that quantifies
the role of superspreaders in pandemics [6, 16, 58, 61]. For
example, two works [6, 78] investigate data containing infor-
mation about chains of transmission or clusters originating
from a primary source. Such queries can be formulated as
which calculate the number of infected individuals in the
N-hop neighborhood of the primary source.

Another line of research analyzes the conditions under
which infections most likely occur [16, 28, 48, 52, 58, 68, 75].
In particular, these works calculate secondary attack rates
(the probability that an infected individual transmits the dis-
ease to an exposed contact) [52, 58] under various conditions.
For example, several works [16, 28, 48, 52, 58, 68, 75] explore
secondary attack rates of infected individuals across sex, age,
household sizes, and epidemic phases; others [16, 48, 68]
explore secondary infections based on exposure type. User
devices provide access to location and demographic data,
which makes such queries possible. Additionally, with tem-
poral data we can answer queries such as Q2 and Q3.

Right now, these queries are answered through manual
tracing; for instance, one study uses data from 391 cases and

1,286 of their close contacts in China [16]. A deployment
in a GAEN-like system could potentially provide access to
larger data sets. Even in cases where data is collected by a
country’s public health system [75], privacy concerns still
exist [33]. A system like Mycelium would allow queries over
sensitive data without violating the privacy of individuals.

Although these queries look different, they are structurally
similar: they (1) look at a small “neighborhood” around each
vertex in the graph, such as the vertices within two hops; (2)
compute something across this neighborhood, such as the
number of infections; and finally (3) compute some aggregate
statistic about these numbers, such as a histogram.

2.2 Threat model and goals

We assume that all parties—the participants, the aggrega-
tor, and the analysts—could be potentially malicious (Byzan-
tine). However, following prior work [80, 81], we use the
OB+MC assumption: we assume (1) the aggregator is honest-
but-curious at the beginning and usually thereafter, but could
be occasionally Byzantine (OB) for brief periods, and (2) most
of the participants are correct (MC), except for perhaps 1-2%.
OB basically models a system compromise or an inside at-
tacker who may control the aggregator arbitrarily, but only
for a short period of time. If the aggregator were malicious all
the time, it could manufacture an unbounded number of col-
luding Sybils, defeating all known defenses. With 100 million
devices, MC still means that there will be 2 million Byzantine
participants. Our goal is to provide the following properties:
e Output privacy: The output of the query should not leak
(much) information about the data of individual users, or
about the presence or absence of particular edges.

e Neighbor data privacy: The computation that is used
to answer the query should not reveal anything about a
given user’s sensitive data to other users.

e Topology privacy: The computation should not reveal
the presence or absence of an edge to the aggregator.

Notice that we do not try to achieve topology privacy be-
tween users; our solution does leak a very small amount of
information about the topology to nearby users, which is the
presence of multiple paths between two users. This is out
of necessity: if we tried to perfectly hide the topology even
from nearby users, we could not avoid double-counting data
from different pseudonyms of the same user, which would
severely limit accuracy. However, users already know, or can
know, most of the information that is being leaked, since
edges are formed through formal relationships or physical
proximity. Another non-goal is that we do not try to protect
the aggregator from itself: if the aggregator tells lies or oth-
erwise misbehaves during one of its Byzantine periods, it
can permanently lose the ability to ask additional queries
and would then have to reinitialize the entire system.

In addition to the above three properties, we are inter-
ested in solutions that can efficiently scale to millions of
participants and do not require additional trusted parties.

2.3 Background: Differential privacy

For output privacy, we adopt differential privacy [34], a for-
mal definition that bounds how much an adversary can learn
about an individual participant from the output of (random-
ized) queries over a database - in our case, the graph. Infor-
mally, a query is differentially private if adding or remov-
ing one participant’s data results in “almost no change” in
the probability distribution of the output. This guarantee is
quantified with a parameter, ¢, that controls how much the
distribution over the output can vary. Formally, a query q is
e-differentially private if, for any graphs d; and d, that differ
in one vertex and the edges connected to that vertex, and any
set of outputs R, Pr[q(d;) € R] < €€ - Pr[q(d;) € R]. That is,
removing one participant results in at most a multiplicative
change of ¢° in the probability of any set of outputs.

A standard method for achieving differential privacy for
numeric queries is the Laplace mechanism [34], which in-
volves two steps: first calculating the sensitivity s of the
query—which is how much the un-noised output can change
based on removing a single user—and second, adding noise
drawn from a Laplace distribution with scale parameter s/e;
this results in e-differential privacy.

In general, differential privacy is difficult to achieve for
graph data because graph properties are highly sensitive to
changes in vertices and edges. For instance, an undirected
linear graph with n vertices has diameter n, but the addition
of a single edge between the first and the last vertex cuts the
diameter to Z. However, the queries in Table 2 are fairly local;

2
they basically count the vertices whose k-hop neighborhood

has a certain property. This type of query tends to have a
low sensitivity bound that can be computed statically (§4.7).

2.4 Strawman solutions

To illustrate the challenges of this scenario, we discuss two
strawman solutions.

Plain text. Participants could upload their data and the
observed pseudonyms to the aggregator, who could answer
queries with standard systems such as GraphX[45] or Graph-
Lab [63]. However, this requires users to trust the aggregator,
since it can learn the data and the edges of all users.

MPC. Multi-party computation (MPC) [87] is a way for mul-
tiple parties to jointly compute a function on their private
data, such that no party learns anything beyond what the
output of the function implies. A large MPC between all
participants that aggregates results and adds noise could
achieve our privacy goals, but we are not aware of any MPC
that can scale beyond a few hundred participants, whereas
our scenario can involve millions.

2.5 Our approach

Our key insight is that scalability can be achieved by split-
ting the computation into two parts: a local part that can
be executed by the devices themselves, by exchanging mes-
sages with other devices that they share an edge with, and a
global part that efficiently aggregates the results of the local
part. We adapt Orchard [81] for the global aggregation (§4.2);
Mycelium’s key contributions are the local computation for
graphs, the communication mechanism between devices, and
eliminating the need to generate new cryptographic keys for
each query. (At the scale of millions of devices, key distribu-
tion is a significant source of overhead and complexity.)

Mycelium executes queries as vertex programs, analogous
to queries in Pregel [65]. Each vertex has some local state,
which is initially the private data of the corresponding par-
ticipant. The computation then proceeds in discrete rounds
that each consist of a communication step and a computa-
tion step. In the communication step, each vertex can send
a message to each of its direct neighbors in the graph; in
the computation step, each vertex can optionally update its
state, based on the messages it has received. After a fixed
number of rounds, each on the order of an hour, each vertex
must set its state to a vector of numbers. These vectors are
then summed up in a final aggregation step, which also adds
the noise that is required for differential privacy and then
outputs the final vector of noisy sums.

The separation into a local and a global part is key to
scalability because it preserves the information about the
graph topology. Recall from Section 2.1 that queries in our
scenario typically examine a small local area around each
vertex (e.g., the two-hop neighborhood). Thus, the data of
each vertex can influence at most a small, constant number
of other vertices. If d is an upper bound on this number,

and N is the number of devices, we can compute the final
result with O(N - d) operations. But if the topology of the
graph is encrypted, the information about which vertices
can influence each other is lost; any vertex could potentially
influence any other vertex. Thus, there is no obvious way to
avoid operations on all possible pairs of vertices, resulting in
O(N?) operations. With millions of vertices, this can make
a difference of several orders of magnitude.

3 Communication

In Mycelium’s local phase, the devices need to be able to
exchange messages with their direct neighbors in the graph,
without giving away details of the topology. This is not
completely straightforward, because (a) the devices only
know their neighbors’ pseudonyms, not their identities or IP
addresses, and (b) since the devices can be behind firewalls
and occasionally go offline, a device and its neighbor may
not be able to establish a direct connection, or may never
even be online at the same time. We solve this problem using
a type of mix network where devices act as mixes and the
aggregator acts as an (untrusted) mediator for all messages.

3.1 Assumptions and goals

Our goal is a primitive seno((hy, my),. .., (hg, my)) that de-
livers a set of messages {my, ..., my} to the holders of pseu-
donyms {hy, ..., hg}, respectively, with high probability. We
make the following assumptions:
1. There is an upper bound d on the degree of each vertex.
2. Devices’ clocks are loosely synchronized.
3. Devices have a key pair (pk;, sk;) for each pseudonym
h;, and pk; is linked to the pseudonym h; (h; = H(pk;)).
4. All devices know (a) a tight upper bound, Np, on the
number of devices, and (b) a bound P on the number of
pseudonyms that a valid device could have generated
within the time period for which a query is valid.
5. There is a public bulletin board (blockchain) that pre-
vents the aggregator from equivocating to the devices.

3.2 High-level approach

At a high level, we use onion routing. A device s sends
a message m to a pseudonym t, by routing m through a
chain of k other devices: s chooses k pseudonyms hy, .. ., h
and then sends Encg, (Encg, (. . ., (Encg, (Encg,(m))))) to
the first hop hy; hy removes a layer of encryption and sends
the result to h,; and so on, until A sends the message m
to the destination t. If k > 1 and at least one device on the
chain is honest, the edge between s and ¢ is hidden.

Since devices cannot communicate directly, Mycelium re-
lays messages through the aggregator, who maintains a “mail-
box” per pseudonym. This must be done with care: if devices
pick up the messages from their mailboxes one at a time, the
aggregator could observe that a message deposited by Alice
is picked up by Bob, and that Bob then deposits a message in
Charlie’s mailbox—revealing the chain. We address this by

proceeding in discrete rounds and ensuring that each device
mixes and forwards different messages in each round. (We
call these C-rounds to distinguish them from rounds of the
vertex program.) Thus, the aggregator can only observe, say,
that Bob picks up several messages, including Alice’s, and
that Bob then deposits messages in several other mailboxes,
including Charlie’s. If each device forwards a batch of b mes-
sages in each C-round, and there are at most ¢ devices on the
chain colluding with the aggregator, then a given message
could be in b¥¢ mailboxes after k C-rounds. For sufficiently
large b and k, and small ¢ in expectation, this makes it hard
for an adversary to link messages.

The above presupposes that devices are always online,
that colluding devices are honest but curious, and that the
aggregator does not drop messages. We discuss how to han-
dle a malicious aggregator later. To handle devices that go
offline or drop messages, it is not sufficient to send a single
copy of a message to a target as the message may never reach
it. To guard against this, each device sends r replicas of each
message over different chains. Additionally, to hide the ver-
tex degrees, each device always sends d different messages;
if it has fewer than d neighbors in the graph, it sends extra
messages to itself, somewhat analogous to Loopix [77].

If every device sends messages to d targets and uses r
replicas of each message, the expected batch sizeis b=r - d.
Since bigger batches lead to better security, we restrict the
choice of hops to a random fraction f of the nodes. This
means that when a device is selected as a routing node, it will
handle more messages but be selected less frequently. This
increases the batch size by a factor 1/f, without increasing
the average workload.

3.3 Initialization

To make the above approach work, devices must be able to
pick random pseudonyms for building their chains, without
giving the aggregator a way to bias the choice towards col-
luding devices. For this purpose, the aggregator creates a
verifiable map M; that maps each integer in [1, Np - P] to
a different pseudonym. Since a malicious aggregator could
omit pseudonyms or include pseudonyms more than once, it
is required to also create a second map M, that can be used
to audit the first map. This works as follows.

When a new query is issued, the aggregator begins by
compiling a list of the P most recent pseudonyms each device
has used. It then randomly assigns each device a unique
device number in the range [1, Np], and each pseudonym a
unique pseudonym number in the range [1, Np - P]. Next, it
creates M; as a binary Merkle hash tree (MHT), whose leaves
are of the form (h;, pk;, d;), where h; is the i-th pseudonym,
pk; is the corresponding public key, and d; is number of the
device that owns the pseudonym. To ensure that the devices
have a consistent view, the aggregator then commits to M;
by posting the root of the MHT to a bulletin board.

Public keys

e ke ppelsel

o] [l | ool | poloeloclee] [pelloeled

H\ g

ACK

Mailboxes ‘ ‘ c2

e
|

=[]] =[]]

[]] []~]

Aggregator [Aggregator] [Aggregator] [Aggregator]

l Aggregator]

|
1
1
I
‘ ‘ ‘ ‘ I
1
|
|
1
1
: 9etPK(D) | /pkD, proof c2

@DD@

Alice Bob Alice Bob

0gd ogdg

|
|
|
|
|
|
PE [kB, o ! ACK =
getPK(E E:\ PKB, proof A(sing, "get wn) | j\ﬂsm ok 0|
|
|
|
|
Ahce : Alice Bob Alice Bob

|

|

™ @ ©)) ®)

|
|
|
)
|
1
|
|
|
|
|
\ 62 = AE(skyg, pkD || proof) | /
|
| D
|
1
|
|
|
1

Aggregator Aggregator

l Aggregator] che l Aggregator]
Pep,

PENc(pkB, skap).

AE(sknp, "are you il?")

0 O @@@

Alice Bob Alice Bob David

g 1ka skao),
AE(KD'a youill?

Alice Alice Bob

(6) (7 ®) 9

Figure 3. Steps for relaying a first message from Alice to David through Bob (so k = 1). Rounds are separated by vertical lines. Steps (1)-(5)
correspond to the first 3 rounds and are for path establishment; Steps (6)-(9) are for forwarding. Alice gets the key for pseudonym B (Bob’s),
directly from the aggregator in Step 1 and then asks B to look up the key for D (David’s) in Step 2. After Bob sends an ACK to A (Step 3), it
waits k rounds, looks up the key for D, and sends it to A (Steps 4-5). Finally, Alice sends her message along the path (Steps 6-9). PEnc is
public key encryption, SEnc is symmetric encryption, and AE is authenticated encryption as discussed in Section 3.5.

Using this information, a device could theoretically look
up the n-th pseudonym and its public key by sending n to
the aggregator. The aggregator could then take a binary
representation of n and walk down M,’s MHT starting from
the root, taking a left on level i if the i-th bit of n is zero,
and a right otherwise. This would take it to the n-th vertex
from the left. The aggregator could then return that vertex’s
information to the device, along with an inclusion proof
(hashes along the path from the leaf to the root), and the
device could verify the response by checking that (a) the
pseudonym matches the public key, and (b) the path in the
inclusion proof matches the path the aggregator should have
taken for n. In practice, such a direct lookup would tell the
aggregator that the device is using the n-th pseudonym in a
chain; we discuss how to fix this in Section 3.4.

To enable the devices to audit Mj, the aggregator also pre-
pares another verifiable map M,, which maps each device
number to a leaf (H(hy),...,H(hp), H(pki),...,H(pkp)),
where the h; are the pseudonyms this device has used and
the pk; are the device’s public keys. The root of this tree is
posted to the bulletin board as well. Each device then per-
forms two checks using M; and M,. First, it looks up its own
pseudonyms in M; and checks the inclusion proofs. Thus, if
the aggregator has omitted an honest device’s pseudonyms,
that device will detect the problem. Second, each device ran-
domly looks up x pseudonyms, extracts the corresponding
device numbers d;, and asks the aggregator to show that one
of the H(pk;) hashes in the d;-th leaf of M, corresponds to
the pseudonym the device has retrieved. If a device submits
a lot more than P pseudonyms, this check will fail with high
probability, since each of M,’s leaves can hold only P entries;
if a device assumes multiple identities, the aggregator will
run out of space in M, which can have only Np leaves.

Starting with the posting of the MHT roots, devices use
their clocks to mark the fixed length of each C-round.

3.4 Path setup

Each device randomly selects r k-hop “paths” for each of the
d messages it will send. Recall that the hops should be picked
from among a fraction f of the devices. The devices select
each hop i from 1 to k by picking a random number x from

[1,Np - P] such that (i—1) - f < Z&B <. £ where H is
a cryptographic hash function, Hy,y is the maximum hash
value, and B is a random bitstring that is chosen collectively
as, e.g., in Honeycrisp [80]. Notice that at this point the
position of each pseudonym in M; is fixed, so a malicious
adversary cannot bias the selection towards its confederates.

So far, the devices know only the index of their desired
hops in M;. However, they need to know the actual pseudo-
nyms and establish a shared (symmetric) key with each hop.
They cannot ask the aggregator for the pseudonyms directly,
since this would give away the intended path. Instead, we
use a variant of the telescoping scheme from Tor [31], which
we describe next (and illustrate in Figure 3). For ease of
exposition, we discuss the protocol in terms of a single device
and a single path hy, .. ., h, but the steps are done in parallel
across all devices’ d - r paths.

In the first C-round, the source device s looks up the pseu-
donym h; and public key pk; for its first hop by commu-
nicating directly with the aggregator. (In this step and all
that follow, the response includes both the leaf and the in-
clusion proof, and the device verifies them in the same way
as in Section 3.3.) This is safe because the aggregator will
be able to observe the connection to the first hop anyway. s
then generates a symmetric key sk, 5, and a random path
id pse>h,, and uses an authenticated encryption scheme (AE)
to encrypt the identity of the next hop, h,, with sksop,; s
encrypts sksop, using public key encryption (PEnc). Finally,
s deposits pson, ||PEnc(pky, skseh,) ||AE(skson,, he) in hy’s
mailbox.

Once all devices have deposited their messages, the ag-
gregator computes (a) a mailbox MHT over the messages
in each mailbox, and then (b) a C-round MHT over all the
inner MHTs. It then commiits the root of the C-round MHT
in the bulletin board, and then proves to each sender that
its messages were included in the MHT. This prevents the
aggregator from dropping messages without detection. If
some devices do not receive the proof from the aggregator,
they post a challenge on the bulletin board. If the aggrega-
tor did receive messages from these devices, it can respond
with the correct proofs; if a challenge is not answered, the

other devices refuse to proceed, and the path setup has to be
restarted without the relevant devices.

Next, hy retrieves the batch of messages from its mailbox,
and asks the aggregator to reveal the MHT for this mailbox
so that it can verify that it has received all the messages. If no
misbehavior is detected, h; looks up all the public keys for the
requested pseudonyms (e.g., h) in a random order. Then, Ay
deposits in §’s mailbox AE(skscp,, pkz), which corresponds
to hy’s public key encrypted under the shared symmetric key
between s and h;. At the end of the C-Round, s checks its
own mailbox and decrypts the message to learn hy’s public
key pkg

During the next C-Round, s generates a fresh symmet-
ric key for hy, sksp,, encrypts it under pk,, and sends to
it psesiy ||AE(sKses s PEnc(pka, sksen,) ||AE(sKsesny, h3)). by
then fetches messages from its mailbox and checks the MHT.
Finally, h; removes the outer layer of encryption of the mes-
sage from s, generates a new path id pp, o ,, locally stores the
map ph,eh, t0 psesh, (to be used in later rounds), and deposits
DPhyoshy || PEnc(pks, sksesn,) ||AE(sksen,, hs) in hy’s mailbox.

This process continues hop by hop: h; looks up the key
for hs, hs the key for hy, and so on, until Ay is finally asked
to look up the key for the destination dst. One issue is that
when hy receives a batch of requests to fetch the public keys
of the final destinations (one of which is dst), h; cannot
proceed right away. This is because a malicious penultimate
hop (hk-1) could drop the final request sent by s where it tells
hi to fetch dst’s key. If hy were to fetch the keys immediately,
the aggregator would observe that dst’s public key is fetched
fewer times than every other device’s, thereby revealing that
a device who had hy_; as a penultimate hop had an edge
to dst—shrinking the anonymity set of dst’s edge from (r -
d/f)kto (r-d/f) k-1 possible sources. To avoid shrinking the
anonymity set, b sends an ACK to all sources through the
reverse paths confirming that it has received their requests
(if a source doesn’t get an ACK it complains). If h; does not
see any complaint in the bulletin board in k rounds (the
number of C-rounds it takes ACKs to get back to sources), A
goes ahead and fetches the public keys in its batch (including
dst’s). If a source complains, then the last hops in all paths
refuse to fetch public keys, and path setup is restarted. On
any reverse path to the source, each honest hop knows the
number of messages it should receive, and also refuses to
proceed if any message is dropped.

At the end, each device knows the pseudonyms and public
keys for all the hops along its chosen paths, and it has estab-
lished a shared symmetric key with each hop. With k hops,
this process requires 2 +4+6+...+ 2k + k = k? + 2k C-rounds.
However, k should normally be small, and the process is
run infrequently in order to let new devices join the system.
With k = 3 and one-hour C-rounds, path setup would take
about half a day, which gives flexibility to devices so they
can participate even if they briefly go offline.

3.5 Message forwarding

Once the paths are set up, communication is as follows. One
communication round of the vertex program requires k+1 C-
rounds. In the first C-round, the devices onion-encrypt their
messages, as described in Section 3.2, and deposit them in
the mailboxes of their first hops with the path ids generated
during the path setup. Then, in each subsequent C-round,
each hop downloads the messages from their mailbox, checks
to make sure the aggregator did not drop any messages,
removes one encryption layer, and mixes them. Finally, they
use the mapping generated during path setup to determine
the appropriate path id for each message, and upload these
with each message to the mailbox of the next hop.

A complication is that the failure of a device could give
away some message paths to the aggregator. For instance,
suppose that, in a previous round, Charlie downloaded mes-
sages from Alice and Bob, and uploaded messages to Doris
and Eliot, but in the current round, the message from Al-
ice is missing. If Charlie were to upload a message only to
Eliot, the aggregator would be able to conclude that Doris
was the next hop after Alice on some path. To counteract
this, each hop uploads a dummy message for the next hop
for which they do not have a valid message. That way, the
communication pattern remains unchanged.

Generating dummies. If messages between a source s and
each hop h; in its path are encrypted with authenticated
encryption (AE), then it is infeasible for a forwarding de-
vice to generate dummies that decrypt properly owing to
AE’s existential unforgeability guarantee. This enables the
following attack. Let the attacker control h;_; and h;,;. The
attacker uses h;_; to drop a message, so h; generates a ran-
dom dummy to mask the missing message, and then the
attacker uses hjy; to detect which of the messages it received
are invalid—thereby learning the relationship between the
input and output path ids of h;. To prevent this, we observe
that we only need ciphertext integrity between s and the
destination dst. Hence, s can construct an onion encryption
where the inner ciphertext (the message to dst) uses an AE
that is indistinguishable from a random message of the same
length. For example, encrypt with a stream cipher, then MAC
with a PRF, and use the monotonically increasing round num-
ber as a nonce (not sent with the ciphertext to avoid known
privacy pitfalls [14]). All other onion layers use a symmetric
cipher that is indistinguishable from random but that lacks a
MAC. This allows h; to generate a random dummy message
which h;;; cannot detect as invalid.

4 Query processing

Mycelium evaluates queries in two stages: first, each vertex
evaluates a local query over its own k-hop neighborhood
(say, to compute the number of infected contacts this vertex
has), and then the results of the local queries are summed
up, noised, and reported to the analyst (say, as a histogram

showing what fraction of users have a certain number of
infected contacts). In the following, we will refer to the vertex
at the “center” of a given local query as the origin vertex.
Myecelium uses a subset of SQL, with two small extensions,
to specify the local queries.

Conceptually, the queries “see” the data as a table neigh (k)
that contains a row for each member of the k-hop neighbor-
hood, including the origin vertex. The columns of this table
are: (a) the private data of the origin vertex (self); (b) the pri-
vate data of the relevant neighbor (dest); and (c) the private
data associated with the first edge on the path from the ori-
gin to the neighbor (edge). Queries can ask for COUNTs and
SUMs over columns; we obviously cannot allow direct queries
for private data. The WHERE predicate can use conjunctions
and disjunctions, as well as arbitrary tests within the same
column group (e.g., a comparison of two self values). It
can also contain inequalities over values from different col-
umn groups (e.g., dest.tInf>self.tInf+2, as in Q3, to
test whether a neighbor was diagnosed more than 2 days
after the origin vertex) as long as both take a finite number of
discrete values. Finally, queries can use GROUP BY over self
columns to report statistics for different attribute values.

One extension to SQL is that queries must choose whether
the outputs of the local queries should simply be summed
up globally (GSUM), perhaps to compute a secondary attack
rate as in Q8, or aggregated into a histogram (HISTO), as
in Q1. Another extension is that GSUM queries must specify
a “clipping range” [a, b]; if the computed value is below or
above this range, it is clipped to a or b, respectively.

4.1 HE encoding

The two biggest challenges with our protocol are (1) how to
implement histograms, and (2) clipping without compromis-
ing output privacy or neighbor data privacy.

Suppose, for instance, that we wanted to compute how
many users have between 0 and 2, between 3 and 5, and
more than 5 infected contacts. Naively, we would use private
comparisons to implement this: each contact encrypts either
0 or 1, depending on whether they are infected, and sends the
ciphertext to the origin vertex, which computes the sum S of
the values and then uses homomorphic encryption (HE) to
compute, say, IF (0<=S<=2) THEN 1 ELSE O for the first
bin of the histogram. However, private comparisons between
ciphertexts and plaintexts are extremely expensive.

Instead, we use the following technique. We rely on the
leveled homomorphic cryptosystem! by Brakerski-Gentry-
Vaikuntanathan (BGV) [20], whose plaintexts are polyno-
mials of degree N with integer coefficients, and we encode
the value a (e.g., 0 or 1 in the above example) as the poly-
nomial x% Then we can use BGV’s homomorphic multi-
plication to add up encoded values: if a device receives
Enc(x®) and Enc(x") from two neighbors, it can compute

1A leveled HE supports additions and a small number of multiplications.

Enc(x®?) = Enc(x?)-Enc(x?). BGV’s homomorphic addition
then becomes a “bin” aggregation: if one receives Enc(x°+x")
and Enc(x° + x?), then summing these ciphertexts produces
Enc(2x° + x! + x?), which is an encrypted polynomial where
the i-th coefficient gives the number of times that bin i was
selected. We can also compute the values in a coarser bin,
say [0, 2], by adding up the coefficients of x°, x!, and x2.

The price to pay is that (1) our encoding cannot support
more bins than the degree N of the polynomial, (2) the num-
ber of local summands cannot exceed the number of multi-
plications BGV can support, and (3) the number of values to
be aggregated cannot exceed the range of the coefficients.
This seems fine in our setting: we use N = 32, 768, which is
far larger than, say, the number of infected friends a given
user can have; for reasonable parameters, BGV can support
dozens of multiplications; and, with a plaintext modulus of
230, we can “bin”-aggregate more than a billion values.

4.2 Aggregation with Orchard

Orchard [81] has the ability to answer a range of non-graph
queries, in an otherwise similar setting to ours. The work-
flow of Orchard also requires a homomorphic encryption
scheme, albeit only a simpler additive one. Devices encrypt
their data and send them to a central aggregator, who sums
up ciphertexts. However, the aggregator does not hold the
keys for decryption—instead, they are secret shared among
a randomly elected committee of 10-20 user devices, which
use MPC to perform key generation and decryption. The ag-
gregator first uses a summation tree to prove to each device
that its data has been included in the sum exactly once; then
it sends the aggregate ciphertext to the committee, which
decrypts it, adds noise for differential privacy, and returns it
back to the aggregator as the final result to the query. This
process can be composed over multiple queries, as long as a
privacy budget is tracked (see Section 4.4).

Mycelium makes two modifications to Orchard. First, it
replaces Orchard’s additively homomorphic cryptosystem
with BGV [20], in order to support both homomorphic addi-
tions and multiplications. Second Mycelium observes that, in
prior FA systems (including Orchard), each time an analyst
wants to run a new query the system must generate and
distribute new cryptographic keys to all devices. For systems
with millions or billions of devices, such key distribution
is both costly and complex. Instead, Mycelium leverages a
verifiable secret redistribution scheme (VSR) [46] to generate
all the cryptographic keys once, distribute them to all de-
vices, and then transfer the corresponding private key from
one committee to another in such a way that members of
different committees cannot collude to recover the key.

In more detail, at the beginning of Mycelium’s operation,
a set of non-colluding parties, which we call the genesis com-
mittee, generates all the necessary public keys (including
relinearization keys which the BGV scheme uses to keep ci-
phertext small after multiplications) and keep secret shares of

the corresponding decryption key such that no non-majority
of parties can reconstruct the decryption key.

The genesis committee will then transfer ownership of the
decryption key shares to the first randomly chosen commit-
tee in Mycelium using VSR. Subsequent rounds of Mycelium
will likewise perform a VSR transfer of the decryption key
from the old committee to a new committee, completely
eliminating the need for Orchard’s expensive key generation
phase. We give more details in Section 5.

4.3 Basic protocol: Single hop

We first give a protocol where a vertex can answer a query
that requires information about its immediate neighbors,
and then generalize to a k-hop neighborhood in Section 4.4.
Processing a query SUM over a particular attribute such as
SUM(dest.inf) consists of the following steps. First, the
origin vertex sends a query ID g to all of its neighbors, so
they know to which query to respond. Second, each neighbor
sends back to the origin vertex a ciphertext Enc(x?). In the
case of a SUM, b is the value of the attribute; in the case
of a COUNT, b is 1 if the predicate applies, and 0 otherwise.
After collecting the ciphertexts from each of the neighboring
vertices, the origin vertex sums up the encoded values by
multiplying the received ciphertexts together, as discussed
in Section 4.1. The result is a ciphertext of the form Enc(x"),
where i represents the result of the local query over the
origin vertex’s local neighborhood.

As we discuss later, all of these ciphertexts are then glob-
ally aggregated using BGV’s additive homomorphism, result-
ing in a final ciphertext of the form Enc(Zﬁgl cix?), where ¢;
is the number of origin vertices that obtained i as the result
of their local query.

4.4 Basic protocol: Multiple hops

We now generalize the above protocol to k-hop neighbor-
hoods. For now we assume queries that do not (1) use GROUP
BY, (2) compute sums over edges, or (3) compare fields from
different column groups. In Table 2, Q1, Q2, and Q4 are of this
type. For simplicity, we will assume that the WHERE predicate
is already in conjunctive normal form.

Flooding. A query over the k-hop neighborhood neigh (k)
proceeds in 2k rounds. As in the single-hop case, in the first
round each origin vertex sends a query ID g to its neigh-
bors. In the following k — 1 rounds, these messages flood to
the k-hop neighborhood as follows. When a node receives
a message with a given query ID, it remembers from which
neighbor it got it. We call this neighbor the upstream neigh-
bor. The message from the upstream neighbor is forwarded
to all other neighbors. Thus, at the end of the k-th round,
each node in the k-hop neighborhood of each origin vertex
(a) has received a message from that vertex, (b) knows its up-
stream neighbor, and (c) knows its distance from the origin
vertex, which is simply the number of the round in which
the message with a given query ID was first received.

Processing: In the k + 1-th round, for each upstream neigh-
bor, each vertex evaluates the arguments of each SUM or
COUNT over its local data; for instance, if the query asks for
a SUM(dest.inf), each node would look up its infection
status, yielding a local result r;. Next, the vertex evaluates
the dest clauses of the WHERE predicate over its local data; if
they all evaluate to true, the vertex computes Enc(x""). If one
of the predicates evaluates to false, it computes Enc(x°).
Finally, each vertex at distance k from the origin takes each
encrypted result and then senps it to the relevant upstream
neighbor. If a node drops off in the middle of a computation,
their value defaults to Enc(x°), and will thus have a neutral
effect on the query’s results. From a privacy perspective, this
leaks no information about the node’s underlying data.

Local aggregation. In round k — i, each vertex at distance
k — i from the origin receives a ciphertext from each of its
neighbors. The vertex evaluates the dest clauses and, if they
all evaluate to true, it multiplies all ciphertexts together,
along with an encryption of its own value. The effect is that
the vertex now holds an encryption of the sum of the encoded
values that have been aggregated so far. Finally, unless the
vertex is the origin vertex, it sends the result to its upstream
neighbor. If a clause evaluates to false, it sends Enc(x°).

Final processing. In round 2k, the origin vertex holds a
ciphertext which contains the aggregated values over the
entire k-hop neighborhood. The origin vertex then evaluates
the self predicates from the WHERE clause; if any evaluate
to false, it replaces the ciphertext with Enc(0). The origin
vertex then contributes the ciphertext for global aggregation.

Global aggregation. The global aggregator receives the ci-
phertexts from all of the origin vertices and sums them all
up. Then, the aggregator gives these ciphertexts to the com-
mittee who has the corresponding decryption key (§4.2). The
committee then decrypts the final ciphertext and adds a cali-
brated amount of noise based on the query before releasing
the result. In particular, let p be the plaintext encoding the
underlying aggregated values. For histogram queries, the
coefficients of p that fall into each bin of the histogram are
summed up, and then, after adding some noise to each bin,
the results are released to the analyst. For GSUM queries with
a clipping range [a, b], the committee clips the range of out-
puts by computing Zib:_alﬂ ipita- (XLop)+0b- (Zf\ib pi)

and then adds noise and releases the sum to the analyst.

Privacy budget. To bound the privacy loss from multiple
queries, the committee maintains a “privacy budget” from
which the e cost of each new query is deducted. This is a
common approach [34, §3] used in prior FA systems. Our
prototype subtracts the full € of each query from the bud-
get, which is safe but conservative. There are several more
sophisticated techniques, such as advanced composition the-
orems [36, §3.5] or sparse-vector techniques [80], that would
stretch the budget further and that can be used instead.

4.5 Special cases

We now discuss how Mycelium handles the special cases
excluded in Section 4.3. If a query contains a GROUP BY, the
origin vertex does not just report a single value, but rather
one for each possible combination of values in the grouped
columns. Our homomorphic cryptosystem is designed such
that all of these values can be packed into a single ciphertext.
Only one of these—the one that corresponds to the origin
vertex’s values in the grouped columns—will represent a
non-zero value; the others will be Enc(0). For instance, for
Q6, a 20-year old will report a value of 0 for all categories
outside of the 18-25 category. Because the parameters of
Mycelium support large ciphertexts (§5), it can support a
fairly large range of possible values in the grouped columns.

If a query compares fields from self and dest columns,
Mycelium does the following. Suppose the comparison is
a clause self .x>dest.y, and the predicate also contains
a BETWEEN clause that limits the values of column y to a
discrete range [a, b]. Then, rather than sending back a single
ciphertext Enc(x™), where m is the value in the y column,
the destination vertex reports a sequence of ciphertexts, one
for each value in [a, b], with Enc(x™) in the position corre-
sponding to m, and Enc(1) in all other positions.

During final processing, the origin vertex sums up the sub-
sequence of size ¢ that corresponds to values greater than
the value of self.x, and then subtracts Enc(f — 1) from the
sum. This means that the final summed value will be Enc(1)
if the destination vertex reported no value (or one outside
of the subsequence). Otherwise, the final value will be ex-
actly Enc(x™). This allows for correct multiplication with the
other neighbors’ ciphertexts. For example, for a subsequence
of length 3, if the neighbor sent Enc(1), Enc(x™), and Enc(1),
the origin vertex will add the ciphertexts received from the
neighbor to get Enc(2 + x™), and then subtract Enc(3 — 1) =
Enc(2) from it to get Enc(2 + x™) — Enc(2) = Enc(x™).

4.6 Malicious nodes

The above protocol returns the correct result if all of the
nodes in a device’s k-hop neighborhood are correct. But
what if some of them are Byzantine? A Byzantine node may
not follow the protocol and instead return ciphertexts with
coefficients larger than 1, or with more than one nonzero
coefficient; the result could be that the aggregator receives a
value larger than B. Even if a device itself is correct, it cannot
prevent this because it cannot tell what it is computing.
We use zero-knowledge proofs (ZKP) [44] to prevent this
attack. When a node sends a ciphertext to its parent, we
say that the ciphertext is well-formed if it is computed as
described above. Each node sends a ZKP to prove to the
aggregator that its ciphertext is well-formed. Additionally,
each origin vertex sends a ZKP to the aggregator proving that
it computed the local aggregation of its k hop neighborhood
correctly by multiplying the ciphertexts from its neighbors.

10

If the ZKP requires a trusted setup (such as Groth16 [47],
which we use in our prototype), this setup is performed by
the genesis committee (§4.2). There are also alternatives that
do not require a trusted setup called transparent zkSNARKs.

4.7 Security analysis

Output privacy. By construction, all queries in our lan-
guage have bounded sensitivity, and this bound can be stati-
cally determined by multiplying the maximum value contri-
bution of any one device by the total number of devices in
their local neighborhood. For GSUM terms, the max contribu-
tion is simply the size of the clipping range; for HISTO terms,
it is always two because, by changing its local contribution,
a vertex can at most decrease the count in one bin by 1 and
increase the count in another, also by 1. Thus, we can simply
use the Laplace mechanism to achieve differential privacy.

Neighbor data privacy. The message flow is independent
of a vertex’s private data—in the aggregation phase, each
vertex sends back Enc(0) if the WHERE predicate evaluates to
false—and all the values are encrypted with HE, under a key
that neither the aggregator nor individual nodes know.

Topology privacy. The flooding phase reveals to each node
(a) the size of its k-hop neighborhood (which is equal to the
number of distinct query IDs that arrive), and (b) the number
of other node(s) within a k-hop radius that can be reached
over more than one directly adjacent edge, and if so, over
which edges (because in that case the same query ID arrives
over each of these edges). Other than that, the nodes learn
nothing about the topology: they only communicate with
their direct neighbors, and the values in the messages they
receive have already been aggregated by the neighbors.

Malicious nodes. If a given k-hop neighborhood contains
some malicious nodes, these nodes can report incorrect par-
tial sums for their own subtrees of the spanning tree, by
encrypting any plausible value (from within 0..B- (d + 1)¢,
where ¢ is their level in the tree) and computing a matching
ZKP, or simply by refusing to send a message to their parent
in the tree. However, they cannot cause the aggregator to
accept a vector with more than one non-zero coefficient or a
vector where the value of the non-zero coefficient is greater
than 1 because the aggregator verifies these properties using
the ZKP and discards data from nodes whose ZKP is invalid.
Thus, a small number of malicious devices cannot have a
disproportionate impact on the overall result. We note that
discarding invalid inputs introduces a bias towards the data
from correct nodes, but (a) the effect should be small, due
to the MC assumption, and (b) it seems hard to avoid since
there is no way to tell what the correct input of a malicious
client would have been.

Traffic analysis. Some mixnets, such as Tor, are vulnerable
to traffic analysis attacks such as intersection and disclosure
attacks [7, 27, 79], in which the adversary observes the traf-
fic in the entire network over some time frame and then

makes inferences about whether or not certain participants
are communicating. These attacks leverage the fact that mix
networks are often sparse—that is, only a fraction of par-
ticipants communicate in any one stage of the protocol. In
Mycelium, every device participates in every mixnet stage,
which renders these types of passive attacks infeasible.

4.8 Limitations

One obvious limitation of our approach is that there are use-
ful queries that cannot be expressed in our query language.
This is not a fundamental limitation—with HE and our com-
munication mechanism from Section 3, it should be possible
to execute any Pregel-like query, as long as the HE scheme
supports enough multiplications and the cost of the addi-
tional communication rounds is acceptable. The key question
is how one would prove differential privacy. Perhaps a query
language such as Fuzz [49] or Duet [70], or even manual
privacy proofs using apRHL [8] or CertiPriv [13] could help.

5 Implementation

For our prototype, we used Orchard’s codebase [81] with
three changes: we (1) replaced Orchard’s HE scheme with
BGV [20], which required reimplementing the MPC for de-
cryption; (2) implemented a mechanism for adding Laplace
noise in the MPC for decryption; and (3) replaced the ZKPs in
Orchard with those of Section 4.6. We implemented our mix
network from Section 3 in C++ using OpenSSL [3] for basic
operations (e.g., encryption and decryption). We instantiated
PEnc using RSA-PKCS1 public key encryption, SEnc using
ChaCha20, and AE using ChaCha20-Poly1305 (nonce is not
included in the message). For redistribution of the secret
key (§4.3), we implemented Extended VSR [46].

Security parameters. For BGV, we set the plaintext mod-
ulus to 2%, the ciphertext modulus to a 550-bit prime, and
polynomial degree N to 32768. This set of parameters gives
over 128 bits of security [9]) and supports 1-hop queries on
over a billion users by encoding values of up to 30 bits.

To reduce computation costs on devices, we defer the relin-
earization for each multiplication to the global aggregation
phase, where the aggregator performs a one-time operation
to reduce ciphertext size before the decryption step.

MPC and secret sharing. We implemented MPC opera-
tions using version 1.7 of SCALE-MAMBA [53], which pro-
vides security against up to L%J malicious parties, and
performs operations in a finite field modulo a configurable
prime p, which helps us support BGV decryption. SCALE-
MAMBA also supports Shamir secret sharing [82]; we share
the secret key among the k committee members such that
any subset of ¢ + 1 members can reconstruct the secret key,
where ¢ > 15‘ At the same time, no ¢’ (where ¢’ < k/2) dishon-
est nodes can learn anything about the key, and ¢ + 1 honest
nodes can detect any errors introduced by dishonest nodes.
Using the initial setup by the genesis committee (§4.2), the

11

Number of devices N 1.1-10°
Onion routing hops k 3
Replicas of each message r 2
Fraction of forwarders f 0.1
Committee size c 10
Degree bound d 10

Figure 4. The parameters we used, unless noted otherwise.

secret key is distributed to the first committee. Every com-
mittee then uses the extended VSR protocol [46] to generate
new shares of the secret key for the subsequent committee.

Zero-knowledge proofs. We use ZoKrates [4], a high-level
language that can be consumed by SNARK compilers to
produce circuits, to express our zZkSNARK statements. These
in turn can be used with many proof systems, some of which
do not need a trusted setup. We use bellman [1] as the
proof system, which implements the Groth16 scheme [47].
We implemented the proofs for encryption and ciphertext
multiplication using this toolbox, and benchmarked the costs
for proof size, proving time, and verification time.

6 Evaluation

This section addresses four questions: (1) How many queries
can Mycelium support? (2) what are the major costs, to nor-
mal users, to committee members, and to the aggregator?, (3)
how well does the onion routing protect topology privacy?,
and (4) how well does Mycelium scale?

6.1 Experimental setup

Since we were not able to deploy a system with millions of
nodes, we benchmark the various components separately,
and extrapolate the costs at scale as done in Orchard [81]. For
the client-side and aggregator-side HE benchmarks, we use a
MacBook Pro with a 2 GHz quad-core processor and 16 GB of
RAM. For our mix net, we run experiments on CloudLab [32]
mb510 machines with 8-core 2GHz processors and 64 GB of
RAM; for the MPC benchmarks, we use 15 Amazon EC2
t2.xlarge instances with 16 GB of RAM. Figure 4 summarizes
the parameters we use, unless specified otherwise.

6.2 Generality

We first examined the range of queries Mycelium can support.
There are two reasons why Mycelium might not support a
given query: (1) it is not expressible in the query language
from Section 4, or (2) the HE scheme in our prototype may
not be able to run enough multiplications to process it.

We tried to implement and run each of the queries in Ta-
ble 2. All queries were expressible, and the query expression
is included in the table. This is not surprising because the
queries we found in the medical literature compute simple
statistics, such as the number of patients for which a par-
ticular predicate is true. We were able to run all the queries

ication
o
o
o
&

0.004

== mal=0.02, r=3
== mal=0.04, r=3

10*

Size of the anonymity set
o o o
o o o
o o o
=B NI v}

Probability of identifi

o
o
S
S

Message success rate

v 35 [Telescoping
}’ I Message forwarding

o
@ 15
Qo

= r=1
r=2
== r=3

3 4
Number of hops in the communication path

0.5 1 2 4
Malice rate (%)

() Size of the anonymity set (b) Probability of identification

1 2 3 4 5 6 7 0

8 2 3 4
Node failure rate (malice + churn) (%) Number of hops in the communication path

(c) Goodput (d) Duration

Figure 5. Performance of Mycelium’s communication layer

except Q1. The latter is a two-hop query that would require
d? = 100 multiplications, which exceeds the noise budget of
the HE scheme we chose. This is not an inherent limitation;
recent HE libraries [5] are close to supporting this number.

This result suggests that Mycelium can already support
many practical queries, which seems encouraging.

6.3 Communication layer

Next, we looked at the performance of Mycelium’s anony-
mous communication layer. Recall that Mycelium onion-
routes each message on r different k-hop paths, and that, at
each hop, each message is mixed with (r-d)/f messages. The
aggregator can observe (a) the sets of encrypted messages
each forwarder downloads and uploads, and (b) anything
that the colluding forwarders saw.

We first focus on topology privacy. Suppose the adversary
wants to learn whether there is an edge (a, b). It can observe
which messages b downloads at the end, so it can reason
about the set of senders that each message could have come
from. Each honest forwarder increases the size of this set by
r/f—the uploaded message could have been in any of the
messages the same forwarder downloaded earlier. Thus, with
k honest hops, the number of possible senders is roughly
(r/f)*. However, the r replicas of a given message would
have come from the same sender, so in some cases, the ad-
versary can intersect the r sets. However, because there are
more total messages in the system, and the probability of
multiple intercepted messages is relatively low, increasing
r still (on expectation) leads to larger anonymity sets. Fig-
ure 5(a) shows how the expected set size changes with r and
k. For our parameters of r = 2 and k = 3, a malicious fraction
of 0.02 still yields an anonymity set of over 7000 devices.

However, a node can be “unlucky” and choose a path that
consists only of malicious nodes. In this case, the adversary
can identify this exact node as the sender of the message.
Figure 5(b) shows the probability for this case. With our
default setting of k = 3, each query gives the adversary a
chance of p ~ 107 to identify a given edge.

Another concern is that message might not reach its des-
tination because all r copies are dropped—either on pur-
pose, by malicious forwarders, or by accident if a forwarder
goes offline and does not return by the end of the C-round.

12

Queries Number of ciphertexts
Q1,0Q2,04,Q5,08 1
Q3, Q6, Q7, Q10 14
Q9 10
Figure 6. Number of ciphertexts sent for each query
= 104
c r=1, non-forwarder =23
3 108 r=2, non-forwarder =21
m 5 r=3, non-forwarder
= 10 r=1, forwarder =21
L r=2, forwarder 3
b 10 r=3, forwarder EEEE
o

2 3 4 2 3 4
Number of hops in the communication path

Figure 7. Avg. bandwidth required of each participant per query

Figure 5(c) shows "goodput,’ the probability that a given
message is successfully received (without modifications by
adversaries). With r = 2 and a node failure rate of 4% (includ-
ing both malicious nodes and departures), only about one
in 100 messages is lost completely. Queries can handle this
case, e.g., by specifying a default value for missing inputs in
the local aggregation, by counting the number of local ag-
gregations where this (detectable) condition occurs, and/or
by asking the local aggregators to upload a final value only
when all inputs have been received.

A final question is how long forwarding takes. Figure 5(d)
shows the number of C-rounds that are needed for telescop-
ing (k?+2k) and forwarding (2k+2, since each query requires
a message for the query and a message for the response). If
k = 3 and C-rounds are one hour long, then both phases of a
one-hop query will finish in less than a day. (The duration
depends only on the number of hops and not on what specif-
ically the query computes.) This is fine, since Mycelium is
not for real-time queries.

6.4 What is the cost for normal users?

Next, we examined the bandwidth and computation cost of
Mycelium for normal user devices. Each device performs up
to three operations: (1) it prepares its own contributions to
its neighbors’ local aggregations; (2) it potentially acts as a
forwarder during onion routing; and (3) it completes a local
aggregation for its own neighborhood.

Probability of liveness

05 1 2 4 1 2 3 4 5 6 7
% of malicious users % malice + churn

(@) (b)

Probability of privacy failure

Figure 8. Probability of privacy failure (a) and liveness (b) with
different committee sizes.

The communication costs vary between queries, depend-
ing on how many FHE ciphertexts they require; each one is
around 4.3 MB. Figure 6 shows the number (Cy) of cipher-
texts for each of the queries in Table 2. In the following, we
focus on the cost of a basic query with Cy = 1 ciphertext,
such as Q5; for the more complex queries, the communication
costs need to be multiplied by the number of ciphertexts.

Figure 7 shows the communication cost per device. The
figure contains two column families: one for the case where
the device is selected as a forwarder, and one for the case
where it is not. For each case, we vary the number k of hops
during onion routing and the number r of copies that are
sent of each message. The costs are dominated by message
forwarding: each device has to send r - Cy - d large FHE
ciphertexts, where Cy is the factor from Figure 6, and, when
chosen as a forwarder with probability f, it has to download
and upload (r- Cy - d)/f of these ciphertexts. For our default
parameters from Figure 4 and a simple query with Cy =1,
this works out to 1030 MB for forwarders and 170 MB for
non-forwarders, or around 430 MB on expectation, given that
a k- f proportion of participants will serve as forwarders. For
comparison, this is about the cost of sending a four-minute
video attachment from an iPhone.

The computation time per device mainly depends on the
time to perform ciphertext operations, including encryption
and ciphertext multiplication for neighborhood aggregation,
as well as the time to generate the ZKPs. The ciphertext
operations take around 14 minutes in total with our Python
implementation, and the ZKP proof generation takes around
a minute, so the total computation time per device is roughly
15 minutes. We implemented an (unoptimized) version of
BGYV in Python for compatibility with the MPC and ZKP soft-
ware, so these costs could be dramatically reduced to make
use of existing HE optimizations. The computation times for
telescoping and message forwarding were negligible, and
the costs did not vary much between different queries.

6.5 What is the cost for committee members?

For each query, a small committee of C user devices is ex-
pected to participate in the decryption MPC using their
shares of the secret key. Our EC2 benchmarks show that,
although Mycelium uses a different cryptosystem, the cost
of this MPC is comparable to Orchard’s: with a committee

13

108

B ZKP verification
105/ ™= Global aggregation

Computation (cores)

102
3 4 108 107 108 10°

2
Number of hops in the communication path Number of participants
(a) (b)

Figure 9. Per-user bandwidth (a) and total computation (b) required
of the aggregator for each query.

of size 10, the total computation time needed was around
3 minutes and the bandwidth required per member is around
4.5GB, plus the (negligible) bandwidth for resharing the
secret key. With millions of devices, an individual user’s
chances of having to serve on a ten-member committee are
very small; nevertheless, due to the high bandwidth, it may
be best to rely on desktops or laptops where possible.

Figure 8 allows us to reason about the tradeoffs associated
with using different committee sizes: a higher committee size
provides more security over time (because a larger committee
is less likely to contain a majority of malicious members), but
also increases the bandwidth and computation time required.
We made these graphs using equations obtained from the
Honeycrisp authors. Figure 8(a) shows the probability of
there being enough malicious members in the committee to
reconstruct the secret key, thus causing a privacy failure. In
this case, a new secret key must be constructed using a new
trusted setup. Figure 8(b) shows the probability of enough
committee members being present to perform decryption. If
there aren’t enough members for liveness, we simply have
to wait for some amount of time before enough members
are back, and retry the computation.

6.6 What are the costs to the aggregator?

Recall that all messages are sent through the aggregator, who
maintains mailboxes for each device. Figure 9(a) shows the
total amount of traffic the aggregator would need to send
to each device, depending on the number of onion-routing
hops k and number of replicas per message r. As expected,
there is a substantial amount: for our choice of k = 3 and
r = 2, the aggregator would need about 350 MB per device,
or roughly the size of a 10-minute 1080p YouTube video.

The aggregator also needs to verify the ZKPs of each user
and perform a global aggregation of ciphertexts. Figure 9(b)
shows the number of cores needed to finish the computation
within 10 hours with different system sizes. The cost is dom-
inated by the ZKP verification (the bars for the aggregation
are very small). Although zkSNARKSs normally have small,
constant proof sizes, the scheme we use (Groth16) scales lin-
early in the public I/O size, which, in our case, includes the
fairly large ciphertexts. If necessary, the aggregator could
reduce this cost by spot-checking only a fraction of the ZKPs,
or it could stretch the computation over a longer time.

7 Discussion

Cost: It is clear that Mycelium’s privacy comes at a high
cost—queries on non-sensitive data could be answered cheaply
by simply uploading the data to the aggregator in the clear
and using a traditional graph-processing system such as
GraphX [45]. Indeed, we implemented Q1 for a 1-hop neigh-
borhood in GraphX and ran it on a CloudLab machine with a
random billion-node graph and random data. The query fin-
ished in about 5 seconds. Mycelium is meant for queries on
highly sensitive data that would make the aggregator a target
for attacks if it were collected in the clear, and queries that
cannot even be asked today because no single aggregator
can be trusted with the necessary data.

Device heterogeneity: In a practical deployment, one chal-
lenge would be the wide range of device capabilities. Serving
as a communication hop or committee member seems fine for
a laptop or workstation that is connected to a wired network,
but could be problematic for a mobile phone with a metered
cellular connection and limited battery capacity. However,
we note that mobile devices are increasingly part of device
federations (e.g., a laptop, mobile phone, and smartwatch
all sharing the same iCloud account).Since the devices in a
federation are typically owned by the same individual, they
could safely share their data and designate the most powerful
device—say, the laptop—as a participant in Mycelium.
Communication steps could also be delayed when a device
is on the road, and resumed when it is plugged in and on
a WiFi connection. Finally, hops and committee member
selection could be biased towards more powerful devices;
this would give the adversary a small advantage, since all of
its confederates could claim to be powerful, but one could use
slightly more aggressive parameter settings to compensate.

Aggregator workload: For the aggregator, the major costs
are communication bandwidth and ZKP verification. Much
of the bandwidth is due to the very large HE ciphertexts
(4.3 MB), but we speculate that future HE schemes will even-
tually reduce this cost. For ZKP verification, we note that
the 10-hour limit for Figure 9(b) was somewhat arbitrary; in
practice, ZKP verification could be done in the background,
whenever a data center has spare capacity, as long as the
query results are not needed immediately.

8 Related Work

Private analytics. There is considerable work on differen-
tial privacy [35], some of which considers aggregating data
from multiple domains [41]. However, most target relational
data: PDDP [23] builds histograms and DJoin [69] computes
database joins. Neither is sufficient to answer graph-based
queries. DStress [74] can handle graph data, but does not
scale beyond thousands of users. Of the systems that work at
scale, including academic works [42, 80, 81], and deployed so-
lutions [11, 15, 17, 19, 25, 30, 38, 39, 76], none handle graphs.

14

Traditional graph processing. Graph analytic frameworks
[24, 29, 43, 45, 51, 57, 64, 71, 72, 86, 91] target scale but
not privacy. Work on social networks has dealt with is-
sues of anonymity [12, 40, 89, 90], but the proposed mech-
anisms either focus on answering limited differentially pri-
vate queries [18], on aggregate network estimations that
may hide effects of individual malicious nodes [50], or on
previous definitions of privacy like k-anonymity [60].

Private contact tracing. Work in contact tracing does not
support a single aggregator, or is not designed for central an-
alytics. Mazloom and Gordon [66] support Pregel-like graph
queries but require two servers to split trust between them,
and does not guarantee differential privacy. Poirot [88] gives
differentially private contact summary aggregation, but also
splits trust amongst multiple servers, which perform a joint
MPC. In the last year we have also seen the design of several
other exposure notification and proximity detection systems
that give user-level insights [2, 21, 83]. These insights include
notifying individuals when they are likely to have been ex-
posed to an infection, but do not support graph analytics.

Anonymous messaging. Mycelium’s messaging layer is in-
spired by Tor [31]. However, Mycelium must operate without
the equivalent of Tor relays, and since the devices themselves
cannot necessarily communicate directly with each other,
it has no choice but to relay communication through the
aggregator, which is a global, active adversary. Mycelium’s
messaging can be seen as a different mix network architec-
ture [10, 22, 26, 54-56, 59, 67, 77, 84, 85] that has high latency
and prioritizes privacy over availability, but that has the ben-
efit of not requiring prior pairwise sharing of cryptographic
material between senders and the chosen mixes, and bal-
ances the load across different sets of mixes every run of the
protocol, which helps the system scale to billions of users.

9 Conclusion

Mycelium is the first system to support differentially private
analytics on graph queries at a massive scale. It leverages
HE, a new mix-network, and Pregel-style queries on top of
a Honeycrisp-like architecture. Because ciphertexts must
support aggregation of up to a billion devices’ information,
the costs of Mycelium are higher than similar FA systems.
Future work may incorporate cryptographic advances that
improve these costs while supporting richer graph queries.

Acknowledgments

We thank our shepherd Amit Levy and the anonymous re-
viewers for their thoughtful comments and suggestions. This
work was supported in part by NSF grants CNS-1513694,
CNS-1563873, CNS-1733794, CNS-1703936, CNS-1955670,
CNS-2045861, CNS-2107147, and CNS-2124184; DARPA con-
tract HR0011-17-C0047; a Google Faculty Research Award;
and a JP Morgan Chase & Co Faculty Award.

References

(1]
(2]

—_ ——
gl s W
=

[10

[t

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

bellman. https://github.com/zkcrypto/bellman.

Exposure notifications: Using technology to help public health
authorities fight COVID-19.
https://www.google.com/covid19/exposurenotifications/.

OpenSSL. https://www.openssl.org.

ZoKrates. https://github.com/Zokrates/ZoKrates.

Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL,
2020.

D. Adam, P. Wu, J. Wong, E. Lau, T. Tsang, S. Cauchemez, G. Leung,
and B. Cowling. Clustering and superspreading potential of severe
acute respiratory syndrome coronavirus 2 (sars-cov-2) infections in
hong kong. Nature Medicine, 2020.

D. Agrawal and D. Kesdogan. Measuring anonymity: The disclosure
attack. IEEE Security & Privacy, 1(6), Nov. 2003.

A. Albarghouthi and J. Hsu. Synthesizing coupling proofs of
differential privacy. Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2017.

M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan.
Homomorphic encryption security standard. Technical report, 2018.
S. Angel and S. Setty. Unobservable communication over fully
untrusted infrastructure. In Proceedings of the USENIX Symposium on
Operating Systems Design and Implementation (OSDI), 2016.

Apple Differential Privacy Team. Learning with privacy at scale.
Apple Machine Learning Journal, 2017.

L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou
r3579x?: Anonymized social networks, hidden patterns, and
structural steganography. In International World Wide Web Conference
(WWW), 2007.

G. Barthe, B. Kopf, F. Olmedo, and S. Zanella-Béguelin. Probabilistic
relational reasoning for differential privacy. In Proc. POPL, 2013.

M. Bellare, R. Ng, and B. Tackmann. Nonces are noticed: AEAD
revisited. In Proceedings of the International Cryptology Conference
(CRYPTO), 2019.

A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers.
Protection against reconstruction and its applications in private
federated learning. arXiv:1812.00984 [cs, stat], 2018.

Q. Bi, Y. Wu, S. Mei, C. Ye, X. Zou, Z. Zhang, X. Liu, L. Wei, S. A.
Truelove, T. Zhang, W. Gao, C. Cheng, X. Tang, X. Wu, Y. Wu, B. Sun,
S. Huang, Y. Sun, J. Zhang, T. Ma, J. Lessler, and T. Feng.
Epidemiology and transmission of COVID-19 in 391 cases and 1286 of
their close contacts in Shenzhen, China: a retrospective cohort study.
Lancet Infectious Diseases, 2020.

A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,

D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld. Prochlo:
Strong privacy for analytics in the crowd. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2017.

J. Blocki, A. Blum, A. Datta, and O. Sheffet. Differentially private data
analysis of social networks via restricted sensitivity. In Proceedings of
the Innovations in Theoretical Computer Science (ITCS) Conference,
2013.

K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,

V. Ivanov, C. M. Kiddon, J. Konecny, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander. Towards
federated learning at scale: System design. In Proceedings of Machine
Learning and Systems, 2019.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully homomorphic
encryption without bootstrapping. Cryptology ePrint Archive, Report
2011/277, 2011. https://eprint.iacr.org/2011/277.

R. Canetti, Y. T. Kalai, A. Lysyanskaya, R. L. Rivest, A. Shamir, E. Shen,
A. Trachtenberg, M. Varia, and D. J. Weitzner. Privacy-preserving
automated exposure notification. IACR Cryptol. ePrint Arch, 2020.

15

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. L. Chaum. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM, 1981.

R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards
statistical queries over distributed private user data. In Proceedings of
the USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012.

R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph
computation and partitioning on skewed graphs. In Proceedings of the
ACM European Conference on Computer Systems (EuroSys), 2015.

H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and scalable
computation of aggregate statistics. In Proceedings of the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2017.

H. Corrigan-Gibbs, D. Boneh, and D. Maziéres. Riposte: An
anonymous messaging system handling millions of users. In
Proceedings of the IEEE Symposium on Security and Privacy (S&P), May
2015.

G. Danezis. Statistical disclosure attacks. In IFIP International
Information Security Conference, pages 421-426. Springer, 2003.

L. Danon, J. M. Read, T. A. House, M. C. Vernon, and M. J. Keeling.
Social encounter networks: characterizing great britain. Proceedings
of the Royal Society B: Biological Sciences, 2013.

R. Dathathri, G. Gill, L. Hoang, H.-V. Dang, A. Brooks, N. Dryden,
M. Snir, and K. P. B. authors contributed equally). Gluon: A
communication optimizing framework for distributed heterogeneous
graph analytics. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), 2018.

B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In NIPS, 2017.

R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In Proceedings of the USENLX Security
Symposium, 2004.

D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,

L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,

G. Ricart, L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar, and

P. Mishra. The design and operation of CloudLab. In Proceedings of
the USENIX Annual Technical Conference (ATC), 2019.

C. Dwork, A. Karr, K. Nissim, and L. Vilhuber. On privacy in the age
of covid-19. Journal of Privacy and Confidentiality, 2020.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Theory of
Cryptography Conference (TCC), 2006.

C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Theory of
Cryptography Conference (TCC). 2006.

C. Dwork and A. Roth. The Algorithmic Foundations of Differential
Privacy. Now Publishers Inc, Aug. 2014.

A. Endo, S. Abbott, A. J. Kucharski, S. Funk, et al. Estimating the
overdispersion in covid-19 transmission using outbreak sizes outside
china. Wellcome Open Research, 2020.

U. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: Randomized
aggregatable privacy-preservingordinal response. In Proceedings of
the ACM Conference on Computer and Communications Security (CCS),
2014.

G. Fanti, V. Pihur, and U. Erlingsson. Building a RAPPOR with the
Unknown: Privacy-Preserving Learning of Associations and Data
Dictionaries. arXiv:1503.01214 [cs], 2015.

K. B. Frikken and P. Golle. Private social network analysis: How to
assemble pieces of a graph privately. In Proceedings of the ACM
Workshop on Privacy in the Electronic Society (WPES), 2006.

D. Froelicher, P. Egger,]J. Sousa, J. L. Raisaro, Zhicong Huang,

C. Mouchet, B. Ford, and J.-P. Hubaux. UnLynx: A Decentralized
System for Privacy-Conscious Data Sharing. Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), 2017.

https://github.com/zkcrypto/bellman
https://www.google.com/covid19/exposurenotifications/
https://www.openssl.org
https://github.com/Zokrates/ZoKrates
https://github.com/Microsoft/SEAL
https://eprint.iacr.org/2011/277

[42]

[46]

(47]

(48]

(49]

(50]

(51]

[52

—

(53]

(54]

[55]

(56]

[57]

(58]

(59]

(60]

(61]

(62]

D. Froelicher, P. Egger, J. S. Sousa, J. L. Raisaro, Zhicong Huang,

C. Mouchet, B. Ford, and J.-P. Hubaux. UnLynx: A Decentralized
System for Privacy-Conscious Data Sharing. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), 2017.

G. Gill, R. Dathathri, L. Hoang, R. Peri, and K. Pingali. Single machine
graph analytics on massive datasets using intel optane dc persistent
memory. arXiv preprint arXiv:1904.07162, 2019.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity
of interactive proof systems. In Proceedings of the ACM Symposium on
Theory of Computing (STOC), 1985.

J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
L. Stoica. GraphX: Graph processing in a distributed dataflow
framework. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2014.

K. Gopinath and V. H. Gupta. An extended verifiable secret
redistribution protocol for archival systems. In Proceedings. The First
International Conference on Availability, Reliability and Security, 2006.
J. Groth. On the size of pairing-based non-interactive arguments. In
Annual international conference on the theory and applications of
cryptographic techniques, pages 305-326. Springer, 2016.

D. F. Gudbjartsson, A. Helgason, H. Jonsson, O. T. Magnusson,

P. Melsted, G. L. Norddahl, J. Saemundsdottir, A. Sigurdsson, P. Sulem,
A. B. Agustsdottir, et al. Spread of sars-cov-2 in the icelandic
population. New England Journal of Medicine, 2020.

A. Haeberlen, B. C. Pierce, and A. Narayan. Differential privacy under
fire. In Proceedings of the USENIX Security Symposium, 2011.

M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis. Resisting
structural re-identification in anonymized social networks.
Proceedings of the International Conference on Very Large Data Bases
(VLDB), 2008.

I. Hoque and I. Gupta. Lfgraph: Simple and fast distributed graph
analytics. In Proceedings of the First ACM SIGOPS Conference on
Timely Results in Operating Systems, 2013.

Q.-L. Jing, M.-]. Liu, Z.-B. Zhang, L.-Q. Fang, J. Yuan, A.-R. Zhang, N. E.
Dean, L. Luo, M.-M. Ma, L. Longini, et al. Household secondary attack
rate of covid-19 and associated determinants in guangzhou, china: a
retrospective cohort study. The Lancet Infectious Diseases, 2020.

KU Leuven COSIC. SCALE-MAMBA.
https://github.com/KULeuven-COSIC/SCALE-MAMBA.

A. Kwon, H. Corrigan-Gibbs, S. Devadas, and B. Ford. Atom:
Horizontally scaling strong anonymity. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), Oct. 2017.

A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle: An efficient
communication system with strong anonymity. In Proceedings of the
Privacy Enhancing Technologies Symposium (PETS), July 2016.
A.Kwon, D. Lu, and S. Devadas. {XRD}: Scalable messaging system
with cryptographic privacy. In Proceedings of the USENIX Symposium
on Networked Systems Design and Implementation (NSDI), 2020.

M. S. Lam, S. Guo, and J. Seo. Socialite: Datalog extensions for
efficient social network analysis. In Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013), 2013.

R. Laxminarayan, B. Wahl, S. R. Dudala, K. Gopal, S. Neelima, K. J.
Reddy, J. Radhakrishnan, J. A. Lewnard, et al. Epidemiology and
transmission dynamics of covid-19 in two indian states. Science, 2020.
D. Lazar, Y. Gilad, and N. Zeldovich. Karaoke: Distributed private
messaging immune to passive traffic analysis. In Proceedings of the
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

K. Liu and E. Terzi. Towards identity anonymization on graphs. In
Proceedings of the ACM SIGMOD Conference, 2008.

Y. Liu, R. M. Eggo, and A. J. Kucharski. Secondary attack rate and
superspreading events for sars-cov-2. The Lancet, 2020.

J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz.

Superspreading and the effect of individual variation on disease
emergence. Nature, 2005.

16

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

(81]

Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein. GraphLab: A new framework for parallel machine
learning. In Uncertainty in Artificial Intelligence, 2010.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski. Pregel: A system for large-scale graph processing.
In Proceedings of the ACM SIGMOD Conference, 2010.

G. Malewicz, M. H. Austern, A. J. C. Bik, J. C.Dehnert, I. Horn,

N. Leiser, and G. Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of the ACM SIGMOD Conference, 2010.

S. Mazloom and S. D. Gordon. Secure computation with differentially
private access patterns. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2018.

P. Mittal, M. Wright, and N. Borisov. Pisces: Anonymous
communication using social networks. arXiv preprint arXiv:1208.6326,
2012.

J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikolajczyk,
M. Massari, S. Salmaso, G. S. Tomba,]. Wallinga, et al. Social contacts
and mixing patterns relevant to the spread of infectious diseases.
PLoS Med, 2008.

A. Narayan and A. Haeberlen. DJoin: Differentially private join
queries over distributed databases. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

J. P. Near, D. Darais, C. Abuah, T. Stevens, P. Gaddamadugu, L. Wang,
N. Somani, M. Zhang, N. Sharma, A. Shan, and D. Song. Duet: An
expressive higher-order language and lineartype system for statically
enforcing differential privacy. In Proceedings of the ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA), 2019.

D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure
for graph analytics. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

B. Nikolay, H. Salje, M. J. Hossain, A. D. Khan, H. M. Sazzad,

M. Rahman, P. Daszak, U. Stréher, J. R. Pulliam, A. M. Kilpatrick, et al.
Transmission of nipah virus—14 years of investigations in bangladesh.
New England Journal of Medicine, 2019.

A. Papadimitriou, A. Narayan, and A. Haeberlen. DStress: Efficient
differentially private computations on distributed data. In Proceedings
of the ACM European Conference on Computer Systems (EuroSys), 2017.
Y. J. Park, Y. J. Choe, O. Park, S. Y. Park, Y.-M. Kim, J. Kim, S. Kweon,
Y. Woo, J. Gwack, S. S. Kim, et al. Contact tracing during coronavirus
disease outbreak, south korea, 2020. Emerging infectious diseases, 2020.
V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang,
and R. Zeng. Differentially-private "draw and discard" machine
learning. ArXiv, 2018.

A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis. The
loopix anonymity system. In Proceedings of the USENIX Security
Symposium, 2017.

R. Pung, C. J. Chiew, B. E. Young, S. Chin, M. I. Chen, H. E. Clapham,
A.R. Cook, S. Maurer-Stroh, M. P. Toh, C. Poh, et al. Investigation of
three clusters of covid-19 in singapore: implications for surveillance
and response measures. The Lancet, 2020.

J.-F. Raymond. Traffic analaysis: Protocols, attacks, design issues, and
open problems. In Proceedings of the International Workshop on Design
Issues in Anonymity and Unobservability, July 2000.

E. Roth, D. Noble, B. H. Falk, and A. Haeberlen. Honeycrisp:
Large-scale differentially private aggregation without a trusted core.
In Proceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2019.

E. Roth, H. Zhang, A. Haeberlen, and B. C. Pierce. Orchard:
Differentially private analytics at scale. In Proceedings of the USENIX

https://github.com/KULeuven-COSIC/SCALE-MAMBA

(85]

(86]

Symposium on Operating Systems Design and Implementation (OSDI),
2020.

A. Shamir. How to share a secret. Commun. ACM, 1979.

C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
W. Lueks, T. Stadler, A. Pyrgelis, D. Antonioli, et al. Decentralized
privacy-preserving proximity tracing. arXiv preprint arXiv:2005.12273,
2020.

N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zeldovich. Stadium:
A distributed metadata-private messaging system. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2017.

J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela:
Scalable private messaging resistant to traffic analysis. In Proceedings
of the ACM Symposium on Operating Systems Principles (SOSP), 2015.
M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and
L. Zhou. Gram: Scaling graph computation to the trillions. In
Proceedings of the ACM Symposium on Cloud Computing (SOCC), 2015.

17

(87]

[88]

[89]

[90]

[o1]

A. Yao. Protocols for secure computations. In Proceedings of the IEEE
Symposium on Foundations of Computer Science (FOCS), 1982.

Y. Zhang, C. Wang, D. Pujol, J. Bater, M. Lentz, A. Machanavajjhala,
K. Nayak, L. Vasudevan, and J. Yang. Poirot: private contact summary
aggregation. In Proceedings of the 18th Conference on Embedded
Networked Sensor Systems, 2020.

E. Zheleva and L. Getoor. Preserving the privacy of sensitive
relationships in graph data. In Proceedings of the 1st ACM SIGKDD
International Conference on Privacy, Security, and Trust in KDD, 2008.
B. Zhou and J. Pei. Preserving privacy in social networks against
neighborhood attacks. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, 2008.

X. Zhu, W. Chen, W. Zheng, and X. Ma. Gemini: A
computation-centric distributed graph processing system. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2016.

	1 Introduction
	2 Federated analytics over graphs
	2.1 Example queries
	2.2 Threat model and goals
	2.3 Background: Differential privacy
	2.4 Strawman solutions
	2.5 Our approach

	3 Communication
	3.1 Assumptions and goals
	3.2 High-level approach
	3.3 Initialization
	3.4 Path setup
	3.5 Message forwarding

	4 Query processing
	4.1 HE encoding
	4.2 Aggregation with Orchard
	4.3 Basic protocol: Single hop
	4.4 Basic protocol: Multiple hops
	4.5 Special cases
	4.6 Malicious nodes
	4.7 Security analysis
	4.8 Limitations

	5 Implementation
	6 Evaluation
	6.1 Experimental setup
	6.2 Generality
	6.3 Communication layer
	6.4 What is the cost for normal users?
	6.5 What is the cost for committee members?
	6.6 What are the costs to the aggregator?

	7 Discussion
	8 Related Work
	9 Conclusion
	References

