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Many clever routes to Majorana fermions have been discovered by exploiting the interplay between su-
perconductivity and band topology in metals and insulators. However, realizations in semimetals remain
less explored. We ask, “Under what conditions do superconductor vortices in time-reversal symmet-
ric Weyl semimetals —three-dimensional semimetals with only time-reversal symmetry —trap Majorana
fermions on the surface? ” If each constant-k. plane, where z is the vortex axis, contains equal numbers
of Weyl nodes of each chirality, we predict a generically gapped vortex and derive a topological invari-
ant v = %1 in terms of the Fermi arc structure that signals the presence or absence of surface Majorana
fermions. In contrast, if certain constant-k. planes contain a net chirality of Weyl nodes, the vortex is
gapless. We analytically calculate v within a perturbative scheme and provide numerical support with a
lattice model. The criteria survive the presence of other bulk and surface bands and yield phase transitions
between trivial, gapless and topological vortices upon tilting the vortex. We propose Li(Feg.91Cog.09)As
and Feq .y, Seg 45Teq.55 with broken inversion symmetry as candidates for realizing our proposals.

The interplay of band topology and superconductivity
has paved new routes to Majorana fermions (MFs) —as
topologically protected zero energy bound states trapped
in topological defects such as superconductor vortices [1—

]. Following realizations in semiconductor nanowire-
superconductor heterostructures [11, 14, 21], MFs were re-
cently found for the first time in a three-dimensional (3D)
system —at the ends of vortices in the bulk superconductor
FeSeg 45 Teq 55 [22-26]. This inspires a fundamental ques-
tion: In a 3D superconductor, what properties of the normal
state band structure ensure that vortices trap protected MFs
at their ends? Restricting to bands with time-reversal sym-
metry (7), since T enables a Cooper instability to begin
with, sufficient conditions are known in two generic cases:
a band insulator (metal) yields MFs if it is topological [5]
(a modestly doped topological insulator [6]).

The third type of generic T -preserving band material
is a time-reversal symmetric Weyl semimetal (TWSM)
[27-30]. Here, point intersections between nondegenerate
bands create Weyl nodes (WN5s) that possess a chirality of
+1 and appear in quadruplets to respect 7 and Brillouin
zone periodicity. Weyl semimetals constitute topological
matter as they are immune to perturbations that do not hy-
bridize antichiral WNss, i.e., WNs of opposite chirality and
exhibit numerous topological responses [31-57]. On the
surface, the bulk band topology manifests as Fermi arcs
(FAs) that connect surface projections of antichiral WNss.

Motivated by the quest for MFs, we ask, “What is the
fate of a superconductor vortex in a TWSM? ” We show
that there are three possible vortex phases —(i) gapped,
with end-MFs; (ii) gapped, without end MFs; (iii) gapless,
with topologically protected chiral MFs dispersing along
the vortex axis z. Crucially, we prove that the vortex phase
relies solely on basic band structure data, namely, the FA
configuration on the surface normal to Z and the locations
of the bulk WNs. Remarkably, simply tilting the vortex can
drive transitions between the three phases.

The criteria for the phases are as follows (see Fig. 1).
Within each constant-k, plane, identify the pair(s) of an-
tichiral WNs that are closest to each other in periodic k
space. Connect the partners with a geodesic and project it
onto the surface. From the remaining WNs, identify the
next closest pair(s) and project their geodesic(s) onto the
surface, and so on for all WNs and constant-k,, planes. If
all the WNs find partners in this process, the surface Bril-
louin zone will contain a set of lines that, along with the
FAs, form closed Fermi-geodesic loops. In general, the sur-
face will also carry closed Fermi loops and Dirac nodes. If
the total number of Fermi-geodesic loops Fermi loops and
Dirac nodes is M, we predict a gapped vortex with a topo-
logical invariant

v=(-1)M (1)
Thus, odd M yields a topologically protected MF in the
vortex core on the surface whereas even M does not. All
WNs find partners only if each constant-k, plane contains
equal numbers of left- and right-handed WNs. For a mini-
mal TWSM with four WNs at (£ K, £K>), a vortex di-
rection such that | K1, | = | K5, | ensures this, while general
TWSMs with more WNs need a mirror or glide symme-
try plane parallel to Z —which is present in most TWSMs
[45, 58-60] —to ensure all WNs are partnered. Generically,
though, some WNs will lack partners and the surface will
host open Fermi-geodesic arcs whose end points will be
projections of the unpartnered WNs. Each such WN will
contribute a 1D chiral MF to the bulk vortex spectrum with
a chirality equal to its own chirality times the vorticity of
+1. The vortex will be in a gapless phase protected by k.
conservation, analogous to the topological protection of a
Weyl semimetal by 3D momentum conservation.

These criteria hold for general pairing symmetries pro-
vided the superconductor is gapped in the absence of a vor-
tex. They survive doping around the WNss if the resulting
Fermi surfaces are well separated and the presence of triv-
ial Fermi surfaces with rare exceptions. They are also im-
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Figure 1. Schematic of the main result. Orange (blue) dots
denote right(left)-handed WNs which produce right(left)-
moving chiral MFs, colored red (green), inside the vortex.
To determine the vortex phase, identify pairs of antichiral
WNs at the same &, and project the line joining them onto
the surface. If these lines (solid black), along with the FAs
(red curves), form M closed loops, the vortex is gapped
and has a topological invariant v = (—1)* (a), whereas
open arcs produce a gapless vortex (b).

mune to surface effects unless the surface is exposed to a
topological insulator, in which case M effectively acquires
the odd number of surface Fermi loops or Dirac nodes of
the latter. Finally, Eq. (1) captures the known results for
metals [6] and insulators [5], which lack Fermi-geodesic
contours but may have Fermi loops and Dirac nodes.
Equation (1) is obtained by computing the Z, topolog-
ical invariant for the vortex viewed as a 1D supercon-
ductor [7, 61, 62]. We require a mild assumption in the
clean limit: for a given WN, if the two nearest antichiral
WNss at the same &, are at distances AK; and A K5, then

e%[UI(AKl)Z_”(AKQ)Z] > lor AK, =2 AK,, where A
and £ are superconducting properties —the uniform pair-
ing amplitude and coherence length, respectively —and v;
is the typical Weyl velocity along AK;. This condition
ensures that the dominant hybridization is between chi-
ral MFs from neighboring antichiral WNs, assuming hy-
bridization is driven by band curvature. If hybridization
is due to nonmagnetic disorder that is smooth over dis-
tance £ p, the requirement becomes A K; > €,51 > AK,
while magnetic disorder invalidates Eq. (1). Disorder can
be suppressed in principle whereas band curvature is un-
avoidable, so a physical regime of validity of Eq. (1) ex-
ists. We neglect hybridization between equi-chiral chiral
MFs, i.e., chiral MFs of the same chirality, which amounts
to smoothly deforming any accidentally gapless nonchiral
vortex minibands away from zero energy.

Heuristically, Eq. (1) says that vortex-end MFs are
present (absent) if the TWSM normal state is “closer” to
a topological (trivial) insulator. To see this, imagine mov-
ing the WNs along the geodesics and annihilating them in
pairs. If all WNs get annihilated, the resulting insulator
will be topological (trivial) if the surface FAs evolve into
an odd (even) number of surface Fermi loops, while the

vortex will be topological (trivial). However, the vortex
spectrum remains gapped in the process, so its topological

state before and after WN annihilation must be the same.
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Figure 2. Vortex topological phases predicted by Eq.
(1) and computed numerically. The yellow mask (black
dots) denote a vortex predicted (computed) to be topo-
logical. Black lines separate the normal states: TWSMs
with N = 1,2 quadruplets of WNs at k, = 0, triv-
ial (N = 0%) and topological (N = 07) insulators.
We fix v,, = 1.18,.856, B,,. = .856,1.178,3.0,
A(r) = 0.42tanh (0.3r) and L, , = 31. Points t, m
and b are further studied in Fig. 3

Recently, Refs. [63, 64] showed that s-wave supercon-
ductor vortices in Dirac semimetals can trap helical MFs
protected by crystal symmetries. Unlike those vortices, the
gapless vortex here is a 1D phase of matter rather than a
critical point as it cannot be gapped out by perturbatively
changing the crystal space group. Reference [65] found
that below a critical doping in a lattice model of a Dirac
semimetal with two Dirac nodes, an s-wave vortex normal
to the line joining the nodes is gapped and traps a surface
MF. The MF survives when the Dirac semimetal is per-
turbed into a minimal TWSM with four WNs in the plane
normal to the vortex, assuming s-wave pairing even with
broken inversion symmetry (Z) in the TWSM. In compar-
ison, our criteria include the TWSM results of Reference
[65] at low doping, but allow arbitrary numbers and con-
figurations of type-I WNs, trivial Fermi surfaces and filled
topological bands in the bulk, FAs, Fermi loops and Dirac
nodes on the surface, and arbitrary pairing that opens a full
gap when uniform.

Continuum analytics:- Consider a canonical WN of chi-
rality h = &1 described by Hy (P) = h >, v;3; P —pu,
where 3;, 7 = X,Y, Z, are Pauli matrices spanning the
lowest two bands and P is the momentum relative to the
WN. At P; = 0, Hy resembles the 2D surface Hamilto-
nian of a 3D topological insulator [3, 5, 6, 66]. If vx = vy
and © = 0, it yields a pseudospin-polarized MF with
(¥7) = w in the core of an s-wave superconductor vortex,
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Figure 3. Left column: Color plots of the lowest band for a
45-layer slab in the normal state for the points t, m and b in
Fig. 2 defined by [ = 0.942, my = 6.28 (top), [ = 0.972,
mo = 5.48 (middle) and [ = 0.552, my = 6.18 (bottom).
Red filled (empty) circles denote surface projections of
right-(left-)handed WNs. Surface projections of geodesics
(black lines) connecting anti-chiral WNs at k, = 0 form
M closed loops along with the FAs (red curves). Right col-
umn: Probability densities of six lowest energy states along
a z-oriented vortex in a 31 x 31 x 45-site system. Bold and
dotted lines mark states with energies £ < 5.0 x 1073,
considered “zero energy”, and E > 1.0 x 1072,

A(R) = A(R)e™®, w = +1 [5]. Being topologically
protected, the MF will survive albeit with partial polariza-
tion, 0 < w(Xz) < 1, when vx # vy, p # 0 and the
pairing is arbitrary but real and nonzero on the Fermi sur-
face. In fact, the MF only requires a Fermi surface Berry
phase of 7 in the weak-pairing, smooth-vortex limit [6].
When P, # 0, the MF disperses as E;, = hvzPz(X.,),
thus realizing a chiral MF with chirality h at P; = O or the
k., of the parent WN. In a real TWSM, k, conservation for-
bids hybridization between chiral MFs whose parent WNs
are at different k., resulting in a gapless vortex[Fig. 1(b)].

Next, consider a minimal TWSM with one quadruplet
of WNs at (£K,0), (£K5,0), where WNs at £K,,
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Figure 4. Topological phase transitions upon tilting the
M = 2 trivial vortex in Fig. 3 (bottom) obtained by diago-
nalization in real-space (a, ¢) and k-space (b, d). (a) Tilting
about the z-axis produces M = 3 (inset) and gaps out one
of the two MFs at 0, ~ 0.067. (b) At 6, = 0.1, the bulk
vortex is gapped, so the surviving MF in (a) at 8 > 6, is
protected and the vortex is topological. (c, d) Analogous
figures for tilting about z 4+ y = 2z = 0. In (¢), a small gap
opens for one MF at 6. &~ (.17 while the surface has open
Fermi-geodesic arcs (inset). (d) The bulk vortex is gapless,
indicating that the gap in (c) is a finite size gap.

are related by 7 and have chirality (—1)". Suppose FAs
on the z = 0 surface connect K; to K5 and —K; to
— K5, and Fermi surfaces around the WNs are well sepa-
rated. In the presence of a superconductor vortex along z,
each WN produces a chiral MF dispersing along (—1)"z
with a wavefunction ¢, = €7, (1), where @, (r)
is the zero mode of the vortex Hamiltonian near the n'"
WN. The chiral MFs remain robust when | K, ¢| — oo,
but hybridize for finite |K,&|. Neglecting hybridiza-
tion between equi-chiral chiral MFs, a generic perturba-

tion H' in the basis (¢4 1,9 _1, 12, ¢,2)T has the form
o 0 iQ _ q12 412
H = ( —iQt 0 > where () = tis i ) and
Gmn = (U |H'|y,). If H' preserves T, then ¢n = ¢ma
and the vortex is a gapped 1D superconductor with topo-
logical invariant v = sgn(Pf[H']) = sgn(|q12|? — |q13/|%)
[7]. For a spatially smooth perturbation, q,,,, decays with
|K,, — K,|; for instance, band curvature terms yield
Gon ~ €~ 2Em=Enl*6/80 for 3 linear vortex profile with
slope Ag/€ [67]. Then, |K; — Ko| < | Ky + K| pro-
duces a trivial vortex while |K; — K»| 2 |K; + K|
yields a topological vortex with end MFs. On the surface,
geodesics connecting K| to K5 and — K| to —K 5, along
with the FAs, form M = 2 loops. In contrast, geodesics




connecting K, to —K 5 and — K to K5 foom M = 1
loops with the FAs. Thus, there is a one-to-one correspon-
dence between v and M that is captured by Eq. (1). The
Gaussian form of q,,,, further ensures only logarithmic cor-
rections to the above inequalities due to O(1) prefactors.

Next, consider moving the WNs away from k, = 0 in
pairs while preserving 7 in the normal state. If K, =
K., the chiral MF v, () can hybridize with 1) »(7) but
not with 9_5(7), so the resulting vortex is adiabatically
connected to the trivial vortex where all WNs are at k, = 0,
qi12 # 0and ¢;5 = 0. In contrast, if K, = —K_, the adi-
abatic equivalent with all WNs at k, = 0 has ¢;5 #* 0 and
q12 = 0, which is a topological vortex. These conclusions
extend straightforwardly to more quadruplets of WNs, thus
proving Eq. (1) for arbitrary configurations of WNs and
FAs.

Finally, let us consider the effects of additional bands
on our criteria. A filled topological band will produce a
2D Dirac node or Fermi loop on the surface in the nor-
mal state, thereby changing the parity of M. However,
the superconductor vortex will trap another surface MF
and acquire a bulk gap due to this band, thus preserving
Eq. (1). Suppose the bulk also contains trivial Fermi
surfaces, i1.e., Fermi surfaces that do not enclose WNs
or other band intersections. For pairing that is real and
nonzero on the Fermi surface, a vortex will contain bands

en(k,) ~ =2

Q

§lr(kz)
surface, where n € Z and I (k.) ([¢r(k.)]) is the perime-
ter (Berry phase) of the Fermi surface cross section at k,
[6]. Unless ¢r(k,) = 0, trivial Fermi surfaces come in
pairs with opposite Berry phases +¢r (k) to ensure that
the constant-k, slice is a sensible 2D metal. As a result,
slices with ¢p(k,) # m will acquire a vortex minigap
~ Ay /&lp (k. ) while slices with ¢ (k,) = £, where the
minigap vanishes, will host counter propagating chiral MFs
that will generically hybridize and gap out. In summary,
additional bands will not interconvert gapped and gapless
vortices and filled bands always preserve our general crite-
ria.

(n + % + %) for each trivial Fermi

For gapped vortices, predicted to obey Eq. (1), curable
violations due to trivial Fermi surfaces occur in two cases:
(1) a surface Fermi loop or Dirac node gets buried under
the surface projection of a bulk Fermi surface, resulting in
Mopservable = M —1. This can be cured in principle by dop-
ing to expose the relevant surface state; (ii) a Fermi surface
centered at k., = 0 or 7 is past the doping threshold for a
vortex phase transition [6], which changes the vortex phase
without changing M. This can be fixed by noting that such
a Fermi surface has a pair of slices away from k, = 0,7
where ¢r(k,) = m. An incurable violation occurs when
¢r(k,) = m at the precise k. where a WN exists, the WN
is closer to the trivial Fermi surface than to other antichiral
WNss at the same k, and the chiral MFs produced by the
trivial Fermi surface and the WN have opposite chiralities.
Then, H’ must include hybridization between these MFs,

but Eq. (1) is ruined because M stays unchanged.

Lattice numerics:- We support our general claims with
numerics on an orthorhombic lattice model defined by
H(k) = 1,0 - d(k) + m.m (k) — 1,0,¢ where d; =
v;sink;, i = x,y,z, m(k) = my — >, B;cosk; and
7; (0;) are Pauli matrices in orbital (spin) space. Varying
Ba,y,- and £ allows tuning into trivial and topological insu-
lating phases as well as TWSMs with up to two quadruplets
of WNs each at k, = 0, 7 at the Fermi level. We then intro-
duce an s-wave superconductor vortex A(r) = |A(r)| e
and diagonalize the Bogoliubov-deGennes Hamiltonian in
2D real space at fixed k. to obtain the spectrum and the
topological invariant [7] for a class D 1D superconductor
[61, 62]. In [68], we describe graphical methods for de-
termining the normal state of H (k) and FA configuration
as well as further details of the lattice numerics. Figure
2 shows that the prediction using Eq. (1) agrees excel-
lently with the explicit calculation. We found smaller mis-
match for larger systems or weaker pairing, suggesting that
it is due to departure from the thermodynamic and weak-
pairing limits.

Figure 3 shows the Fermi-geodesic loops in the normal
state and the probability density of the lowest few vortex
modes for select points in Fig. 2. The FAs are obtained by
plotting the lowest energy at each surface momentum in the
normal phase and the geodesics are simply straight lines
connecting proximate antichiral WNs at k£, = 0. The prob-
ability densities are computed by diagonalizing the vortex
Hamiltonian in 3D real space. For each selected point, we
find that the number of MFs localized to the vortex ends
equals M. In Fig. 4, we show that tilting the vortex drives
phase transitions between trivial, topological and gapless
vortices since geodesics connect WNs at the same k.. The
transitions are expected at infinitesimal tilting in the weak-
pairing, smooth-vortex limit, while the numerics find the
transitions to occur at small angles.

Candidate material:- We propose Li(Feg 91Co¢.g9)As
and Fe;,Seq.45Teo 55 with broken 7 as candidate mate-
rials. Li(Feg 91Coq.g9)As is a Dirac semimetal with two
Dirac nodes on the c axis of the crystal [69] and shows
strong type-II superconductivity below 7. =~ 9 K [70].
FeSeq 45Teq 55 realizes a doped topological insulator that
turns into a type-II superconductor below T, ~ 14.5 K
[25, 26], but the normal state also has two Dirac nodes
along the ¢ axis ~ 15 meV above the Fermi level that
may be accessed with naturally occurring Fe dopants [69].
Perturbatively breaking Z while preserving 7 will turn
the Dirac semimetals into a TWSM with four WNs at
+K,, K> with K{ ~ K > |K; — K,|. If super-
conductivity survives Z breaking, a vortex along z will be
topological (trivial) according to Eq. (1) if | Ky,| = | Ka.|
and (z x K,) - (z x K3) > 0 (< 0), whereas a vor-
tex in any other direction will be gapless. Assuming typ-
ical values v ~ 10° m/s for the Dirac velocity, chemical
potential ;# ~ 100 K relative to the WNs, Ay ~ 5K,
¢ ~ 5nm < the penetration depth d ~ 10% nm ob-



served in LiFeAs [64] which guarantees negligible inter-
vortex tunneling (x e~%¢), and | K, — K,|/K¢ ~ 0.1,
we estimate a vortex gap of ~ (0.1 K. However, the gap
depends exponentially on &, | K1 — K| and Ay, so it will
change substantially for small changes in their values [71].
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Appendix A: Orthorhombic lattice model of a T-WSM

In this section, we analyze the orthorhombic lattice model studied in the main text and describe how to determine its
topological nature in the normal state. To recapitulate, the Bloch Hamiltonian is

H(k)=r1,0-d(k)+71.m(k)—71,0.0 — 1 (A1)

where d; = v;sink;, i = x,y,z, m(k) = mo — Y_, B; cosk; and 7; and o; are Pauli matrices acting on orbital and spin
space, respectively. H (k) preserves time-reversal (7 = 10,K), reflection about the xz and yz planes (M,_,_; = 7.0,
1 = x, Yy, ) and twofold rotation about the z-axis (R; = 7;), but breaks inversion (Z = 7,), reflection about the zy plane,
and twofold rotation about the = and the y axes are broken. Its spectrum is given by

2
(E(k) + p)* = v?sink? + m?(k) + <\/v§ sin k2 + vZsin k2 + 6) (A2)

Defining X = cosk,, Y = cos k,, a quadruplet of Weyl nodes (WNs) appears in the k, = 0 or 7 plane at (K, K)) =
(£ cos™t X, £ cos™ 1Y) for each intersection between the following ellipse and lines within the unit square X € [—1, 1],
Y e [-1,1]

D G T e T e (A3)
BuX + B,)Y = My, =my — B, cosk, (A4)

When the ellipse and line do not intersect within the unit square, the system is an 7 -symmetric insulator. These behaviors
are depicted in the top panel of Fig. 1

At ¢ = 0, Z is restored, the system is necessarily insulating since the ellipse circumscribes the unit square and the
topological nature of the insulator can be deduced from the parity criterion which only depends on sgn[m(k)] at the
eight time-reversal invariant momenta (0/7,0/7,0/7). For larger ¢, the strong topological index of an insulating state
can be obtained easily by observing the connectivity of the Fermi arcs on an xy-surface, as shown in the bottom panel
of Fig. 1. Imagine tuning a parameter that creates and subsequently annihilates a quadruplet of WNs. Now, nodes are
always created as well as annihilated in pairs of opposite chirality. Moreover, creating a pair of nodes and moving them
apart leaves behind a surface Fermi arc that connects the surface projections of the nodes. If the nodes switch partners
between creation and annihilation — in other words, if a given right-handed WN is created along with a left-handed WN
but annihilates a different left-handed WN — a non-degenerate, T -invariant Fermi surface is left behind on the surface.
Such a Fermi surface can be viewed as the surface state of a topological insulator doped away from charge neutrality.
Therefore, each time WNs switch partners between creation and annihilation, the strong topological index of the bulk
insulator toggles.

In the main paper, we choose parameters such that the line defined by m(k, = m) = 0 never intersects the ellipse.
Then, all the normal state phase transitions occur via crossings in the £, = 0 plane, which gives access to trivial and
topological insulators as well as T-WSMs with N = 1, 2.

Appendix B: Vortex topological invariant in a minimal lattice model

In this section, we use a perturbative scheme to explicitly determine the topological state of the vortex in the lattice
model (A1) in the range of parameters which gives N = 1 quadruplet of WNs.



(©) (d)

Figure 1. Prescription to determine the number of WN quadruplets (/V), the Fermi arc structure on the surface and the
Zo invariant in the insulating phase in the lattice model (Al). Top: X = cosk., Y = cosk, and the ellipses and lines
are given by (A3) and (A4), respectively, with smaller |¢| defining larger ellipses. Each ellipse-line intersection within
the defines a quadruplet of WNs in the plane defining the line. Green arrows indicate the path of the intersections as the
ellipse is enlarged. Solid (dashed) ellipses denote T-WSMs with N quadruplets (insulators with N = 0). The £ = 0
ellipse circumscribes the square and defines an Z-preserving insulator with Z, indices given by the parity criterion [2].
It has the opposite (same) strong index as the innermost ellipse if exactly one line (no or both lines) intersects a vertical
and a horizontal edge of the unit square, as shown on the left (right). Bottom: Brillouin zone of the (001) surface and the
effect of moving WN5s along the paths indicated in the top panel on the Fermi arcs. For simplicity, only the effect of WNs
in the k, = 0 plane is shown; the effects of k, = m WNs are identical. Circles with + denote the surface projections
of right/left-handed WNs, and their trajectories as the ellipse in the top panel is enlarged are indicated by green arrows.
These trajectories trace out the Fermi arcs. If a quadruplet is created at a k, = —k, plane and annihilated on a k, = —k,
plane or vice-versa, the Fermi arcs close into a single Fermi surface, implying a change of the bulk strong Z, topological
index. If a quadruplet is created and destroyed on a k, = —k, (or k, = —k,) plane, the Z, invariants corresponding to
the ellipse shrunk to a point and the ellipse circumscribing the unit square are the same.



1. Reduction to a canonical Weyl Hamiltonian

We begin with the Bloch Hamiltonian (A1) and assume the parameters are chosen so that there is a single quadruplet of
WNs, at (£K,, £K,,0). The Bloch Hamiltonian at these points has a higher symmetry, namely, [H (K), 7,0.] = 0, so
it is convenient to work in the eigenbasis of 7,0 . For convenience, let us perform a rotation

HI(K) — eiTg:ﬂ'/4H(K)e—iTm7T/4 — 7-:20- . d(k) _|_ Tzo'ze — /’L (Bl)

which explicitly diagonalizes the term proportional to £. Since |d(K)|* = ¢2 at the nodes according to Eq. (4) of the
main paper, the four states at each WN have energies 2¢, 0,0, —2¢. The two zero energy states explicitly are

1 1
V2 V2

where 6, = arg(d, + id,) and the primes serve as reminders that we have performed a '™
Hamiltonian near the WN in the (|]A’), | B’))7 basis is given by

1A = — (1,0,0, =) | |B) = — (0,¢"*,1,0)" (B2)

/4 rotation. The low energy

O 0 Ve p:r:
Hy(p) = (3,5, 5.) B, sin K, By sin K, 0 p, | —u (B3)
—vil~ " sin K, cos K, —v2l~'sin K cos K, 0 D,

where X; are Pauli operators in the |A’), |B’) basis. Note that reversing K ; to get to a different WN is equivalent to
reversing p; in Hy,. Atp, = 0, Hy;, contains only X, and X,,. For convenience, we rotate X, — —X,, ¥, — 3, to
define Hjj, = e™®v™/4H|,e~=v/* H inthe p, = 0 plane is

Hiy(p. =0) = (£, 2) 0 (B0 )~ (Be)

2)-1 o 2)-1
vyl sin K, cos K, v ¢~ sin K, cos K,
B sin K, By sin K,

value decomposition of M

where M = < ) . To bring this into a canonical form, we perform a singular

3t = Rios) (5 ) R ®S)

where R(¢) = ( 2(1)1?2 ;(S)lsn(f ) and vy y > 0. We have assumed that the WNs at (K, K{,,) can be brought into

a canonical form by proper rotations. This automatically means that the nodes at £ (K, —K,) need improper rotations.
The necessity of singular value decomposition indicates that the principal axes for p and 3 are different, and both differ
from the Cartesian axes of the original problem. Moreover, vy # vy, implying that the WN is anisotropic. Nonetheless,
this can be brought into a canonical form H{;, = vxXx Px + vy Xy Py — p through the rotations

( J;j ) = R"(,) (Z ) (B6)
(5) = R"(¢,) (g) (B7)

% EL —iX. ¢x E»L 2. ¢z
(&)= () w8 oo

Y

2. Vortex modes of anisotropic vortex

In the presence of s-wave superconductivity, the Bogoliubov-deGennes Hamiltonian is given by

" Hy, (P A(R
Hyyo(P) = < A*((R)) —H{E{,()P) > (B9)

T
in the basis % (c A+ Cpry—Car + Cpr, —CL/ + CE/, —CL, - cL,) . Furthermore, if the superconductivity develops a

vortex A(r) = Ag(r)e, where 6 = arg(x + iy), the pairing term in H}; ., becomes A(R) = e!®>+®) Ay(R), where



4

© = arg(X +4Y). If ux = vy, the problem has a rotational symmetry which can be used to obtain the eigenmodes of
HY, .. analytically. This result is well-known [1, 3, 5]. When vx # vy, we can still obtain the eigenmodes analytically in
the linear approximation Ag(R) = AgR/, where £ is the superconducting coherence length.

We explicitly write

AoR .
1 a(P) =TLH! (P) + == (II, cos (8 + ¢5) — II, sin (6 + ¢x,)) (B10)
The ¢s-dependence can be eliminated by a II-rotation:
Ho(P) = e M=o=/2 [/ (P)eitl-9=/2 (B11)
A

=ILH},(P)+ ?" (I, X —I,Y) (B12)

At u = 0, we can separate the X and Y parts of the problem via another rotation. Specifically, define
Hia(P) = €M S AT  (P) T B13)

A A

=TI, (UXEXPX + éf’zyx> - <vayPY + HnyY> (B14)

—i,/vXaX Z'\/’Uyay
. QAO 7:‘/7})((13( i\/ Vy ay (BlS)
B 3 _i\/UYaJ{/ 14/ Uxax

—i,/vya{, —z}/UXa}

§ (%J + w; P J> ,J = X, Y is the usual annihilation operator for a quantum harmonic oscillator.

2Apvg

where a; =

The eigenstates of H/t, are of the form (|nx — 1,ny — 1), [nx,ny — 1), |nx — 1,ny), [nx,ny))". In this basis,

—i\/vXnX i\/Uyny
2A . .
Hyionxome) = [ =2 | Y i, i (B16)

—{\/oyry i\/UxTIx

—’i\/vyny —i\/vXnX

[2A
= TO (IL Yy oxnx + /oy ny) (B17)

Thus, it has the spectrum

2A
E (nx,ny) = i\/go (vxnx + vyny) (B18)
In particular, the zero mode is given by nx = ny = 0 and has the wavefunction
¢""(R) = (0,0,0,]0,0)" = (0,0,0,1)” foo(X,Y) (B19)

A Ay /X2 Y?
where foo (X,Y) = 0 p [ = <

— 20 exp |—=2 (2= 4+ 2 )| is the wavefunction for the (nx = 0,ny = 0) mode of
Wf\/mex 2 vx+vy>]ls e wavefunction for the (ny ny ) mode o

the 2D harmonic oscillator. Undoing the rotations generated by II, >y, 11, 3, and the singular value decomposition gives

) ) 1 ) )
@/(R) _ eszyw/éleszszbz/Z(pu — C iTym/4 (Z-euﬁz’ 0,0, 1)T fOO(X, Y) (B20)
V2
1 . 4 . g T %
(pl(x7y) = 5 (Ze ¢Z7Z€ ¢27_171) f($7y> (le)

in the basis (¢4, cp, cly, —cl,), where f(z,y) = ws\/Av(;Ty exp [— Ajg'Z {(i + i) + (i — i) cos[2(0 + (ﬁp)]H

wg\/Aui(Ty exp [—Af—j {i + - cos[2(0 + gf)p)]H ¢’ is an eigenstate of charge conjugation: C¢’ = II, X, ¢™* =

. , T
ie~'=¢’ and hence, represents a Majorana mode. In the original basis (csT, Cs, 5 Cpts Cpls cl 1 —clT, c; 1 —C;T) ,
e—iﬂ'/4
p(z,y) =
’ 2v/2

= xf(z,y)
Finally, x'TI,7,0.x = 1, so non-zero k. induces a dispersion F/(k.) = v, sin k. and thus produces a CMM.

(—ei‘z’Z Jiet0atos) _pitm _joilatds) o= | jo=ifa 1>T f(x, Y) (B22)



3. Hybridization between CMMs

The Majorana fermions coming from WNs at (K, —K,)), (—K,, —K,) and (— K, K,) can be obtained by applying
the symmetry operations S, = iTM, = TK®y — —y, Sy = —illLM,M, = Il.0. ® (x,y) — —(z,y) and
S, =1LTM, =1l,7,0,K® x — —ux, respectively. The result after reinstating the fast spatial variation is

ror. (T, y) = oMKt Xy Kyy—Xo X, m/4) Ao oxc {_ Agr? {1 cos[2(6 — A Ay 9y)] H %
2 \0Y) =508 € fox oy 1€ v v-

) . . ) ) ) T
(*61)\””)\3’(1)2 7 ,L')\yeMx)\y(9d+¢z)’ 7>\w)\yel>\m>\y¢zv 7,1/)\w61)\mAy(0d+¢2)7 71/)\y6_1>\m>\7/0d7 1’ Z)\we—MmAde7 )\w)\y>

where A\, = &, A\, = £. For K, ,& > 1, the leading perturbation from band curvature is given by the matrix elements

<%;A; | H| ¢Azxy> e / 61'[(“4;)&””(%7A;’)Kyy]<P1w (z,y)x

z Ny

z,y

1
B (piainBdG(Aera AKy) +p§ainBdG(Ame7 )‘yKy)) Oaun, (7, 9) (B23)

1 . oyt . ’ . ’

— _ielﬂ/él()\w)\y—)\w)\y) / ez[(/\z—)\l,)Kml-l-(/\y—Ay)Kyy]QPK;A; ($7 y)HzX
z,y

P2 (’\E%A;Tzaxvx sin K, — 7.3, cos Kl> +

Oaur, (2, Y) (B24)

9 [ A+, .
py( 3 Tz0y Uy sin Ky — 7,3, cos K,

which consists of straightforward Gaussian integrals. First, let us compute the spinor products. In the basis
(|X++>7 |X——>7 ’X—+>7 ‘X+—>)’ we find

N + X)) 10 — 00 =,y (B25)

e*"‘?z cos 4 sin(ps, + 04) —efid’z cos(¢px + 04) sin 04
M. — . —e7% cos(px + 0,) sinfy e cos Oy sin(¢s + 0,) n (B26)
0

0
0
€= cos Oy sin(ds, + 0,) —€'?= cos(¢s + 04) sin b,
—€'% cos(¢x + 04) sinfy €= cos O, sin(dx, + 04)

Note that only CMMs coming from nodes of opposite chiralities mix, in which case A}, A}, = —A,\,, and the hybridiza-
tion is caused by the “mass” term, not the “kinetic” terms, of the Dirac Hamiltonian (A1). Finally, we get the effective

Hamiltonian in the basis (|¢44), [¢)__), e = |¢p_, ), e > |1/J+,>)T as

dz Gy
4y G4z
—qz _Qy
_Qy —Qx

Hop =i (B27)



where ¢; decays as a Gaussian as a function of AK; = K; — (—K;). Explicitly,

(AKI)2 cos @, sin (¢ + 04)

G = 5 exp _2Ao e %)
(Vi <v1+ . Coff’ﬁp)rz B, cos K, + V2 sin” 2¢”5y sKy> (B28)
S (AK,)* cos (Q;z +6,)sinb, oxp | - - §(AKy)22
(=)
(Visjriz%’ﬁx cos K, + V2 <vl+ + COSU2¢”>2 B, cos Ky> (B29)

vy v v v

_ <3z 3;3) simplifies to <(2/ qoy>

~1/2 L\ -5/2
to leading order in Ao /(AK,)? and Aoé/(AK,)?, where V2 = (vxvy) '/ (i + %) (i F M)

has units of velocity-squared. For

and < q(‘)” (? > respectively, so that the vortex topological invariant is

-1 |AK,| > |AK,|
v = sgn[det(Q)] = {+1 AK,| < |AK,| (B30)

Thus, there is vortex phase transition as the WNs “switch partners”, i.e., the nearest WN to a given WN changes.

4. Hybridization gap in the continuum limit

Deep in the topological phase, g, < g,, and the eigenvalues of H. s, reduce to £|g,|. To detect the surface Majorana
fermion in this regime, one must thus be at temperatures 7" < |g,|/kp, which we now estimate.

lqy |, as given by (B29), is straightforward albeit tedious to estimate in the continuum limit &, k, < 1. Restricting to
the £, = 0 plane as done throughout the derivations above, (A3) and (A4), which determine the locations of the WNs,
simplify to

VK2 + KD =P (B31)
B. K2+ B,K = —2mr (B32)

where mr = mg — Zi:z,y,z B;. Then, M , which defines the non-canonical Weyl Hamiltonian H{;, in (B4) becomes

M = ( ;K / ‘ ”;fy/ g) = R(¢x) (”5‘ o ) R"(¢,) (B33)

Deep in the topological phase of the vortex where K 5 < K2, (B31) implies ¢ &~ K,v,. To ensure consistency with (B32),
we must fine-tune mr ~ —f,K2/2. Note that |¢|, |mr| < |v,|, |v,| ensures that the WNs occur in the continuum limit,
K, , < 1. Within the continuum limit, K, < K, is enforced by fine-tuning 3, without making any of the individual

parameters — £, v, v, B4, 3, and mp — further small or large in magnitude. In this regime, M simplifies to

~ 2
M= (B:;fz Uy%%:& ) = Rioz) (UG( o ) R (@) (B34)
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where vx, vy > 0, assuming that the singular value decomposition at (K, K,) is achieved by proper rotations. Explicitly,

1/2
(v3 /K, + BuBy Ky)?
|2 2 -2 : y of
A R Ll (B35)
|U§/Bw/vm - Uwﬁy‘ U;
vy & o2+ FIK |K,| ~ Bzv—g — Byl |1 K, (B36)
v2 + BB, K2 K v’ K
60l = | 5705 Db B Ky |ttty (B37)
2+ [2K2 K, 2K,
1/2
BIK: + B K] K
|#s| ~ 2 4 2J2J2 %‘/8 (B38)
v2 +up K2 /v2K?2 Uy
Since vy /vy, |¢,| ~ O(K,/K,) < 1, this further yields
1 1
— 4+ (B39)
V4 Vy
V, (B40)
V)
Ux
Vo~ — B41
22 (B41)
V+ Vy K
Yo o8B o B42
\= Ux <Kx> < ( )

Putting all this together along with |¢s| ~ O(K,) < 1 in the continuum limit and |6,| ~ |v, K, /v, K,| < 1 deep in
the topological phase, we get for |g,|:

(B43)

1 ) AK,)?
0] = 36, (MK, 1] exp [—“iA)]

Assuming typical values for band parameters (vy ~ vy /10 ~ 10*m/s, K, ~ K,/10 ~ 0.02 x 27 /a with a ~ 6.0A,
vy, = v, sothat || ~ 0.1 and ﬁy_ 1 ~bare electron mass) and superconducting properties (Ag ~ 5K and & ~ 5nm) gives
lgy| ~ 0.1K and |g,| ~ 0 with |AK €| ~ 2 = 1. The vortex originating from individual WNsis § ~ Aghvy /pué ~ 1K
for  ~ 100K, so that |g,| < 6 < Ao, ensuring that we are in the right perturbative regimes. Note that this expression
for § differs from the one that follows from (B18); the latter is only valid at . = O whereas real materials invariable have
non-zero 4 > Ag and fall in the regime where the former is valid.

Appendix C: Level crossings, Pfaffian and Topological phase transitions

In this section, we select representative points on the phase diagram in Fig. 2 of the main paper, explicitly compare the
prediction (Eq. 1 of the main paper) and the result of calculating the Pfaffian-based invariant [4], and show that topological
phase transitions are accompanied by level crossings in the vortex as expected. The results are shown in Fig. 2. All the
data points in Fig. 2 of the main paper were obtained using the same Pfaffian-based invariant [4].
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Figure 2. (a) Representative points and the path for which results are presented in (b). (b) Lowest few energies, predicted
topological invariant (—1)* and the computed invariant v along the path denoted in (a) parameterized by \. The insets
show the FGSs at each representative point. The predicted and computed results show excellent agreement and each phase
transition is accompanied by a level crossing at zero energy.
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