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Abstract—In this paper, real outage data from utilities are
analyzed to gain better understanding of cascading outage
propagation. In order to accurately estimate the interactions
between component outages, two mechanisms are introduced:
the evolution of interactions over generations and the memory
between consecutive generations. A metric, the expected number
of outages following one component outage, is calculated based
on the estimated interaction networks by solving a set of carefully
formulated linear equations, considering loops due to the complex
component interactions. Existence of unique positive solution
for the linear equations is mathematically proved. Components
that are critical for outage propagation are further identified
based on the developed metric. Besides, the outage propagation
properties are revealed by the interaction networks estimated
from real outage data. Further, the cascades simulated from
a highly probabilistic generation-dependent interaction model
using the estimated interactions well capture the properties of the
original outage data in terms of the distribution of the number
of line outages, the offspring mean of the branching process, the
distribution of the component metrics, and the identified critical
components. Cascading failure risks are greatly mitigated by
reducing the probability that the identified critical components
fail.

Index Terms—Blackout, cascading failure, interaction, mitiga-
tion, propagation, real data, resilience, utility outage data.

I. INTRODUCTION

ASCADING failure is a common phenomenon in com-
plex systems, such as power systems [l], natural gas
systems [2], transportation networks [3], Internet [4], and
interdependent critical infrastructure systems [5]. For example,
there have been several large-scale blackouts, such as the
2003 U.S.-Canadian blackout [6], the 2011 Arizona-Southern
California blackout [7], the 2012 Indian blackout [8], and
the 2019 Venezuelan blackout [9], which have led to many
component outages and significant economic/social impacts.
Traditionally simulation-based approaches dominate cascad-
ing failure study, partly due to the scarcity of real outage
data for the very rare cascading events. In order to simulate
cascading failures, many models have been developed [1], such
as Manchester model [10], hidden failure model [11], [12],
CASCADE model [13], OPA model and its variants [14]—
[16], PRA model [17], dynamic model [18], sandpile model
[19], the model with detailed protection systems [20], and the
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AC power flow based model that explicitly considers tem-
perature disturbance and the system response [21]. However,
these simulation models are difficult to benchmark or validate
[22], [23]. Although there could be many mechanisms in a
cascading failure, the simulation models can only select a
few mechanisms and it is usually not clear how realistic the
simulated cascades are compared with what have happened
in real systems and what will most probably happen in the
future. Another major challenge is the rapidly increasing
computational complexity with the increase of the system size
and the number of mechanisms to be considered [1].

Efforts have been made on extracting useful information
from the data generated by simulation models. The branching
process (BP) [24], [25] and multi-type BP [26] can extract
high-level statistical information of the propagation of outages.
Since BP does not retain detailed information about outage
propagation, influence graph [27] and interaction network
[28]-[31] provide a better way to extract propagation patterns.
Both single-layer interaction network [28]-[30] and multi-
layer interaction graph [31] have been proposed to enable an
explicit study of the interactions between component outages.
However, since the data used for analysis are from simulation
models, the limitations of simulation models still exist.

Therefore, a distinct approach that directly analyzes real
outage data is urgently needed. In [32] the Bonneville Power
Administration (BPA) outage data in the Transmission Avail-
ability Data System (TADS) of North American Electric
Reliability Corporation (NERC) is analyzed and the BP es-
timation of the distribution of the total number of line outages
matches well the empirical distribution of the total number of
outages. In [33], 22 years of the online records of blackout
size and duration published by NERC’s Disturbance Analysis
Working Group are analyzed for investigating the blackout
size distributions, the statistics of waiting times, and long-term
correlations between blackouts. In [34], the power network
topology for the same data used in [32] is formed and the
overall spatial spreading is analyzed.

However, in these papers the interactions between compo-
nent outages have not been systematically studied for utility
outage data and no models that consider detailed outage
interactions have successfully match the statistics of the black-
out size distributions. A recent paper [35] addresses similar
challenges of describing the statistics of cascading line outages
with an interaction graph from real data, but uses distinctly
different methods to form the interaction matrices and analyze
the results. In this paper we will reveal credible propagation
patterns of utility outage data and further develop effective
mitigation strategies to reduce the risk of cascading. The
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contributions of this paper are summarized as follows.

1) We develop a method to estimate the interactions be-
tween component outages for real outage data based on
two mechanisms: evolution of interactions over genera-
tions and memory between consecutive generations.

2) The expected number of outages following one compo-
nent outage is calculated using the interaction networks
by solving a set of carefully formulated linear equations,
considering loops due to complicated component inter-
actions, and is used for identifying critical components
that play important roles in propagation of outages.

3) A highly probabilistic generation-dependent interaction
model utilizing the evolving interaction matrices is de-
veloped to generate cascades that match the statistics of
the utility outage data and is carefully validated.

4) Cascading failure mitigation is effectively performed
by upgrading the identified critical components and
reducing the probability that they could fail.

The remainder of this paper is organized as follows. Sec-
tion II introduces the utility outage data used for analysis.
Section III discusses the estimation of component interactions
from utility outage data. Section IV develops approaches to
identify critical components under complicated component
interactions. Section V investigates the properties of the in-
teraction network. Section VI proposes and validates a highly
probabilistic generation-dependent interaction model that can
simulate cascading failures using the estimated component
interactions. Section VII mitigates the cascading risk based
on the identified critical components. Finally conclusions are
drawn in Section VIIIL.

II. UTILITY OUTAGE DATA

The recorded outages by BPA for 14 years since January
1999 include 44,593 automatic and planned transmission line
outages [34], [36]. After preprocessing the outage data by
deleting the outages that are remote from the main system
and for lines with rated voltage below 68 kV or without
bus names, adjusting bus names to eliminate duplication,
and combining buses in the same or adjacent substation, we
obtain 42,561 automatic and planned line outages [34]. We
only use the 10,942 automatic outages to analyze cascading
outage propagation, mainly because cascading failure analysis
focuses on uncontrolled outages, as in NERC’s definition of
“cascading” as “the uncontrolled successive loss of system
elements triggered by an incident at any location [37].”

In order to analyze the interactions between component
outages we need to group the outages into different cascades
and generations. One cascade corresponds to one cascading
failure sample while one generation corresponds to one stage
in a cascade. Each cascade starts with initial outages in gener-
ation O followed by further outages grouped into generations
1,2,--- until the cascade stops. This can be done according
to the gaps in start time between successive outages [32]. If
successive outages have a gap of more than one hour (operator
actions can usually be completed in one hour), the outage after
the gap starts a new cascade. In each cascade, if successive
outages have a gap of more than one minute (fast transients

and protection actions are completed within one minute), the
outage after the gap starts a new generation of the cascade.

This procedure is applied to the 10,942 automatic outages.
In some generations the same outage appears more than once,
probably due to the reclosing of the protective relay within
very short time. In this case we only keep one outage for that
particular component in that generation. After this we have
6,687 cascades with 10,779 automatic outages.

III. ESTIMATING INTERACTIONS BETWEEN COMPONENT
OUTAGES FOR UTILITY OUTAGE DATA

In order to estimate the interaction between component
outages (here components are transmission lines [28], [30]),
we need a large amount of data that record the processes
of cascading failures. These data are grouped into different
cascades and generations according to the timing of each
outage, as in Section II. Assume we have M cascades as:

generation()  generation1  generation 2
cascade 1 fél) Flm .7-'2(1)
cascade 2 ]:(52) f1(2> ]:2(2)
cascade M J-"SM) }—1(M) -7'—2(M)

Here }"g(m) is the set of the failed components in generation g
of cascade m. The same component may appear in different
generations of the same cascade, partly due to the operation
and reclosing of protective relays. For the utility outage data
in Section II we have M = 6,687 cascades in which n = 582
lines (components) are involved. The number of line outages
and generations in each cascade varies significantly. 84% of
the cascades only have one generation of outages with an
average number of line outages as 1.16 while there is one
cascade that has 109 generations and 143 line outages.

A. Problem Formulation for Interaction Estimation

After obtaining the original cascades, we can estimate the
component interactions, which are defined as the interaction
matrix B € R™*™ where n is the number of components in
the system. The element of B, b;;, is the empirical probability
that component j fails following component ¢ outage. Since
the same component may appear in consecutive generations,
the diagonal elements of B may be nonzero, i.e. the same
component can fail following the outage of itself.

In order to estimate B, we need to obtain another matrix
A € R™™ whose element a;; is the expected number of
component j outage following component ¢ outage among all
successive generations of all cascades, because there is

CLij
bij N, (1
where [V; is the number of component ¢ outages.

Because initially neither A nor B is known, the estimation
of the interactions between component outages is a typical pa-
rameter estimation problem with incomplete data, which will
be solved by the expectation maximization (EM) algorithm
[30], [38] to be discussed in Section III-B.
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B. Interaction Estimation by EM Algorithm

In [28], the interaction matrix B is directly estimated from
an approximated matrix A that is not statistically inferred
from B. In [30] the EM algorithm is applied to deal with
incomplete data and more accurately estimate the interaction
matrix. The corresponding maximum likelihood estimation
problem is to estimate the parameters B in order to maximize
log P(A,y; B), which is the logarithm of the joint probability
of having the specific interactions between components in any
two successive generations among all used cascades that are
represented in A and the observed result y as the M original
cascades [30]. In order to make this paper self-contained, we
briefly introduce the algorithm proposed in [30] as follows.

1) Initialization: Set initial interaction matrix as B(O),
Obtain initial A(*) € R"*" assuming any failed com-
ponents in generation g is the cause of the component
outages in generation g+ 1, and calculate B from (D).

2) E-step: Estimate A*Y) based on B®).

For any two successive generations of any cascade m,
the probability that the component j outage in generation
g+ 1 is caused by component ¢ € fém in generation g
can be inferred as

by
1= I (1-)

leF{m™

(k+1)m, 9 _
ij

2

It i ¢ F§", pgﬁl)mg = 0. The updated entry of

A¥+D) can be obtained as
M G™—1

=> >

m=1 g=0

k+1 k+1

3)

where G™ is the largest generation number with nonzero
number of outages in cascade m.

3) M-step: Estimate B*+D pased on A*+D,
Update B**Y based on AFHY by (1).

4) End: Iterate the E-step and M-step until

oo
VN

where || X|| is the Frobenius norm of a matrix X,
N = Nq if Ny, the number of nonzero elements in
B+ _ B(k), is greater than 0, otherwise N = 1, and
€ is the tolerance and is chosen as 1074,

F

<¢ “)

C. Interaction Estimation for Utility Outage Data

In [28] and [30], also as in Section III-B, when estimat-
ing the interaction network using simulated cascades, the
data across all generations are used, without considering the
evolution of cascading behavior during different stages. The
empirical probabilities that one component outage happens
following another component outage are averaged over all
generations. The overall outage propagation may be greatly
underestimated, because as the operating conditions become
more abnormal in later stages, these empirical probabilities

capturing the component interactions may become more sig-
nificant, although the number of components involved in
cascading may become smaller.

For estimating interaction networks from real outage data,
it is much more challenging due to many reasons, including
1) more obvious evolution among generations/stages, 2) high
heterogeneity among cascades (both very short and very long
cascades occur; in the BPA outage data one cascade has 109
generations and 143 outages), and 3) data scarcity.

Remark 1. The very long cascade may conceivably be an
artifact of the way cascades are defined by the timings. It could
be produced by several cascades that could be considered as
separate that overlapped in time, when applying the procedure
for grouping cascades in Section Il solely based on the timing
of each outage. Better grouping cascades can be achieved by
relying on additional information such as the ‘cause’ of the
particular outage that may be available in the recorded data,
which, however, is out of the scope of this paper.

The data scarcity challenge will be addressed in Section
VI by generating more cascades from a highly probabilistic
model. Here we propose the following two mechanisms in
order to address the first two challenges for real outage data.

1) Estimating interaction matrices for different genera-
tions: To capture the evolution of interactions over
different generations, we propose to estimate separate
failure interactions for different generations rather than
performing estimation for the entire data. Specifically,
instead of estimating one interaction matrix for all data,
we will first estimate an interaction matrix BO_1 for any
two consecutive generations g — 1 and g using the EM
algorithm in Section III-B based only on the data for
generations g — 1 and g. Assume the largest generation
number is GG, we can get Bg forg=0,--- ,G— 1.

2) Memory of interactions in previous generations: In order
to get sufficient propagation capacity and generate very
long cascades, the interaction networks are assumed to
be correlated in the sense that the interaction network in
current generation shares part of the interactions in a few
previous generations to allow for memory. Specifically,
the failure interactions in B is assumed to last g > 1
generations unless the correspondlng elements are up-
dated in a future failure interaction matrix. For example,
as a special case of g = 2, the interaction matrix
has memory of its last failure interaction matrix B° g—1-
Specifically, we first set the actual interaction matrix for
generation g as B, = Bg. For the zero elements in
BO, g =1,---,G — 1, if the corresponding elements
in B 1 are nonzero then in B, those zero elements
in B8 will be updated to their counterparts in B° g—1-
Note that not B,_; but Bgf1 is used to update B,
because using B,_; to update would involve more and
more components in cascading as the generation number
increases, which would greatly overestimate cascading
failure propagation. Throughout the paper we set g = 2
which is chosen based on numerical experiments.

Since it is usually rare that component : fails following the
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Fig. 1. Illustration for a subgraph starting with 7.

outage of itself, in our estimations the diagonal elements of
By are strictly less than one for g = 0, - - - , G—1. For the BPA
dataset, the maximum value among all diagonal elements for
all 108 interaction matrices is 0.5. This is reasonable because
if any diagonal element is equal to one the cascade would
not be able to stop once the corresponding component fails,
which would conflict with either engineering experience or the
original BPA dataset where all cascades eventually stop.

The interaction matrices B,’s describe how the components
interact with each other in different generations. The nonzero
(or to be more exact positive) elements are called links. For
a nonzero element b;; of By, there is a link [ : i — j,
representing that there is a positive probability for the des-
tination component j outage in generation g following source
component i outage in generation g — 1. All links of B,
form a directed interaction network G9(C9,L9) with the set
of vertices CY and the set of links £9.

IV. IDENTIFYING COMPONENTS CRITICAL FOR
PROPAGATION OF OUTAGES

As an intuitive way of identifying the critical components,
the number of outages of a component r, denoted by I'(r),
can be used to indicate how critical a component is in
cascading failures. The set of critical components identified
by I’(r) is denoted by C;. For the BPA outage data in Section
II, C; could be identified as the top ten components that fail
the most times as {2,8,92,24,42,41,101,17,237,234}.
The corresponding numbers of times they fail are
354,334,240,191,173,163, 146,143,117, and 108. However,
even a component fails for many times it is not necessarily
true that many components will consequently fail. To address
this problem, in this paper we develop a better metric,
the expected number of outages following each component
outage, based on the interaction networks.

A. Expected Number of Outages Following A Component
Outage in Generation g

For each interaction network a subgraph that starts with a
component r with at least one outgoing link can be obtained,
as illustrated in Fig. 1. This subgraph provides useful informa-
tion about the outage propagation pattern starting with the root
component: the probability of each link indicates how possible
one component outage happens following another component
outage; the expected number of outages of each component
indicates the risk level of that particular component.

One major challenge for calculating the expected number
of outages following a component is that there may be loops
(directed circles or self-loops) in the subgraph, due to com-
plicated interactions among components. In [28] some links
are removed in order to obtain a directed acyclic subgraph
which, however, will inevitably lose useful information. Here,
we maintain the original subgraph structure and address this
challenge by solving a set of carefully formulated linear
equations related to the corresponding subgraph.

For any node r that has outaged in generation g at least once,
from B, there is a subgraph starting with node r (called root
node), denoted by GJ(CY, L£9) with card(Cd) = NZ where
card(-) is the cardinality of a set. It is obvious that there is
at least one path from r to any node ¢ € C¢ and any node in
CY has at least one incoming link. The root node is at level
0 and any other node that can be reached from the root node
after a minimum £ hops is at level k. The node numbers in the
subgraph are re-ranked from 1 which corresponds to the root
node 7. For the new node number j we denote j° as its old
number before re-ranking. An adjacency matrix C? = [¢d,] €
RN?*N? s built, for which ¢, = b’ , if there is a link from
node u° to node v° in By; otherwise ¢, = 0.

For Vj € CY, its expected number of outages, ef , can be
easily obtained from G¢ as
N7
ef =D chyel + i, )

1

.
Il

where the first term on the right hand side is the expected
number of outages caused by the nodes in G¢ (including j
itself) and djg. is the expected number of outages of node j
due to any factor outside G¢. Since the objective is to calculate
the expected number of outages following node j outage in
generation g, only when j = 1 (j is the root node) is d? €z
the number of times that the root node fails in generation g
(denoted by n7) while for V;j € CZ\{1} there is d = 0.

Let the vector of the expected number of outages for the

nodes be €9 € RV %! = [ef €3 €9 ,]. Then e can be
obtained by solving the following linear equations:
DYe? = d?, (6)

where DY = Iys — (C9)7, Iys is an identity matrix with
dimension N¢, and d? = [n¢ 0 --- 0]". Since G¢ is weakly
connected, there does not exist any row of DY whose elements
are all zeros.

B. Existence of Unique Positive Solution for (6)

Theorem 1. DY is singular if and only if there exist two nodes
i,J € C4 for which

1) there are links both from i to j and from j to i;

2) at least one of them has a self-loop;

3) there are no incoming links to node i or j from any node

other than i or j; and
4) there is
(L—¢f)(1— C?j) = ijcﬁ-’i-

The proof of Theorem 1 is straightforward and is thus
omitted due to space limit. It is based on linear dependency
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of two rows of DY and the fact that the diagonal element
0 < 1—¢J < 1 while the nonzero off-diagonal element
—cfj < 0. Here we only show how condition 4 is derived
when conditions 1-3 are satisfied. Assume 4,5 € C¢ satisty
conditions 1-3. The submatrix of the ith and jth rows of DY
that has nonzero elements is:
i J
i [ 1=¢ =

J 7

where cf;cf; # 0 due to condition 2 in Theorem 1. It is obvious
that only when condition 4 is satisfied will rows 7 and j be
linearly dependent and DY be singular.

Instead of calculating the probability of satisfying condi-
tions 1-3 for each subgraph GZ, we directly evaluate the
whole interaction network G9. It is obvious that if condi-
tions 1-3 cannot be satisfied by GY they will not be satis-
fied by any of its subgraph GJ. Let P§ = P(condition 1),
P§ = P(conditions 1-2), and P¥ = P(conditions 1-3) as the
probabilities for any pair of nodes in GY to satisfy condition
1, conditions 1-2, and conditions 1-3, respectively. For the
estimated B,’s from BPA data, the nonzero P{’s and P§’s for
g =0,---,107 are shown in Fig. 2 and P§ = 0 for all g’s.
For any ¢ that does not have a data point for P{ or P§ in
Fig. 2, there is P{ = 0 or P§ = 0, Therefore, conditions 1-3
cannot be satisfied by any two nodes of G9. Further, for G¢
starting with any root node r that has outaged in generation
g — 1, not any two nodes in G¢ could satisfy conditions 1-3
at the same time, and thus DY is always invertible, indicating
the existence of a unique solution for €9 in (6).

Remark 2. Even though conditions 1-3 in Theorem 1 are
indeed satisfied for GY, since wa ng,cw and ci; are usually
small it is safe to have (1 — cf;)(1 — c];) > c¢];c%;, and the
chance to satisfy condition 4 is very low

For our estimated B,’s from BPA data, for all pairs of
nodes in G9, g = 1,--- ,108 that satisfy conditions 1-2 (note
that no node pair satisfies conditions 1-3), the conditional
probability for satisfying condition 4 is as low as 0.69% while
the conditional probability for (1 — cf;)(1 — ¢] J) [elicd > 2
is as high as 98.27%. The average and maximum values
of (1 —¢f)(1 —¢;)/cl;c); among all ij pairs that satisfy
conditions 1-2 are, respectively, 4.51 x 10%® and 6.50 x 104,

Next we show that this unique solution is positive. Note that
ef is the expected number of outages and has a clear physical

meaning. For 7 = 1, since cg is small and e! < e for Vi # j,

the right hand side of (5) is dominant by dj > 0. Therefore,
it is safe and reasonable to assume that e > 0. In reality, in
our calculations we always have ef ~ d > 0.

Lemma 1. If there exists any j # 1 for which 6? < 0, the
assumption € > 0 would not hold.

Proof of Lemma 1. Assume there exists j # 1 at level k > 0
for which 63 < 0. Since j # 1 there is dq = 0. From (5) it is
obvious that at level k£ — 1 either e = O for any node ¢ that
has a link to j or at least one of the nodes that has a link to
node j, such as [, should have ef < 0. This derivation can be
continued until £k = 0 for which there will be e“l] < 0, which
conflicts with the assumption ef > 0. O

From Lemma 1 it is easy to obtain the following theorem.

Theorem 2. Under the assumption that e > 0, the unique
solution of the linear equations in (6) is positive.

The proof of Theorem 2 is straightforward based on Lemma
1 and is thus omitted.

C. Metric Based on Expected Number of Outages

Based on Theorems 1 and 2, the linear equations in (6) can
be readily solved to obtain a unique positive solution. Then
the expected number of outages following ng node r outages
in generation g can be calculated as:

N7
Iy(r) =Y _ef(r) = ni, ®)
j=1
where n¢ included in ef is subtracted. Further, the total

expected number of outages following one particular node r
outage in all generations can be calculated as

G—-1
r) =Y Iy(r), )
g=0

which is used as a metric to identify critical components that
play important roles in cascading outage propagation. The set
of critical components identified from I(r) is denoted by Cs.

We compare the identified 20 most critical components in
BPA outage data by using I’(r) and I(r) in Table I. When
calculating (r) the elements in B,’s that are less than 1076
are ignored. Component 83 is the most critical component
identified by the interaction-network based approach but is
only ranked as the 12th most critical component by the
intuitive approach. Component 83 only fails for 93 times and
appears in 40 cascades, compared with the outage of 354 times
for component 2. However, among these 40 cascades, in 22
cascades as many as 341 outages happen after the first outage
of component 83 (in one cascade there can be more than one
outage of the same component). Therefore, component 83 is
indeed very critical in terms of cascading outage propagation.

On the other hand, some very critical components identified
by the intuitive approach have much lower ranking in the
interaction-network based approach. For example, component
92 fails for 240 times and thus is considered as the third
most critical component by the intuitive approach. But it is
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TABLE 1
IDENTIFIED KEY COMPONENTS
Rank  Ci(I) Ca(I) Rank  Ci (1) Ca2 (1)

1 2 (354) 83 (136.0) 11 37 (98) 201 (50.8)
2 8 (334) 17 (101.0) 12 83 (93) 61 (48.7)
3 92 (240) 234 (86.3) 13 446 (91) 56 (43.2)
4 24 (191) 24 (74.4) 14 5 (83) 59 (42.1)
5 42 (173) 76 (65.3) 15 97 (81) 126 (41.2)
6 41 (163) 2 (64.2) 16 19 (79) 26 (40.6)
7 101 (146) 85 (62.2) 17 148 (76) 92 (39.8)
8 17 (143) 8 (54.0) 18 29 (75) 73 (39.8)
9 237 (117) 101 (53.6) 19 72 (75) 308 (39.5)
10 234 (108) 187 (53.6) 20 128 (75) 42 (39.3)

102

°°n° ocpoo o o % o
100 ooe® % 0 00 o wmo o o o
-
102
10'4' © component 83 o
o component 92
0 10 20 30 40 50

g+1

Fig. 3. I, for the subgraphs starting with components 83 and 92.

(b)
Fig. 4. Subgraph in B3 starting with component 83 (a) and

component 92 (b). Red dot in (a) and (b) respectively indicates
component 83 and 92. Color indicates the value of the B3 entry.

only considered as the 17th most critical component by the
interaction-network based approach using I(r). Although it
fails for 240 times, for most times the cascading stops after
its outage and there are only 29 times for which there are
other outages after the outage of component 92. Only as few
as 49 outages happen after the first outage of component 92.
Therefore, it is not that critical for propagation of outages.

The expected numbers of outages in each generation starting
with component 83 and component 92, as shown in Fig. 3,
can be used to indicate their importance in outage propagation
over generations. Although I; of component 92 is greater than
that of component 83, component 83 has almost the same
I> as component 92 and significantly greater I, for g > 3.
Overall I(83) = 136.0 is greater than I(92) = 39.8 and
thus component 83 is much more critical than component
92. As shown in Fig. 4, in the subgraph of Bj starting with
component 83 there are 236 links while in that of component
92 there are only 4 links with a very simple topology.

Fig. 5. Interaction networks from Bg (a), B4 (b), and Bg (c).
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Fig. 6. Distribution of the non-zero probabilities in By.
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Fig. 7. Distribution of the non-zero probabilities in By.

V. CASCADING FAILURE PROPERTIES REVEALED BY
INTERACTION NETWORKS

A. Evolution of Interaction Networks

From the estimated interaction networks shown in Fig. 5, it
is found that with the increase of the generation number, the
number of links quickly decreases while the average proba-
bility increases. For example, the complementary cumulative
distributions (CCDs) of the nonzero elements are shown in
Figs. 6-8. Note that the elements in B’s that are less than
1076 are ignored. The probability that the nonzero (positive)
elements in By is equal to one is 0.0042, while for B, and
By it increases to 0.34 and 0.61. This may be a consequence
of sampling from cascades. Since the later generations have
many fewer samples, they will reveal correspondingly fewer
number of interactions. Moreover, with the decreasing number
of samples the average probability of each of these revealed
interactions will increase because there are fewer of them.
Besides, to some extent Figs. 6-8 seem to show a decreasing
number of samples from the same distribution.

B. Number of Outages versus Number of Links

As shown in Fig. 9, the number of outages in each genera-
tion follows power law with a slope —2.09. Since the number
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Fig. 10. Number of links in B for different generations.

of outages for g > 30 becomes very small, their data points
are replaced by one as their average values.

In Fig. 10 we show the number of links in B, for different
generations. The elements in By’s that are less than 1076 are
ignored. It is seen that it follows power law with the slope as
—1.73. Because the number of links in By and B, are very
close, we replace their data points by their average values.
For g > 30, cascading failure is in its late stages and a large
variance appears due to the smaller sample sizes. To obtain
more statistically reliable results, we replace their data points
by one as their average values. Fig. 10 is similar to Fig 9,
probably due to the decreasing number of samples with the
increase of the generation number.

C. Evolution of Propagation Capacity

Define total propagation capacity of generation g as PC, =
>on_, I,(r) where n is the number of components, and aver-
age propagation capacity in generation g for the components
that cause positive expected number of outages as PC, =
S I,(r)/ny where n is the number of components that
have positive I, (I, can only be either positive or zero). Fig.
11 shows PC, and ]/36'9 over different generations. Similar
to Figs. 9-10, the data points for g > 30 are also replaced by

30 0 T PC,,slope= —1.83
10 o
\D\ o
& ~.0
t0o
% 10 %
g A4
< S
(5 0%%\0
1= 0.
& 10" B, slope= —0.25 N
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Fig. 11. PCy and 155'9 for different generations.

Algorithm 1: Generation-Dependent Interaction Model
Input: By, ¢g=0,--- ,G—-1
Output: My« cascades

1 Setm=0

2 while m < Muyax do

3 Generate initiating events ]-"ém) and set g =0

4 while 7\™ +# @ and g < G — 1 do

5 g+—g+1

6 Simulate failed component F{™ utilizing B,_,

7 m<+—m-+1

one data point as their average value. It is seen that both PC,,
and ]/35'9 follow power law, but with significantly different
slopes. The slope for PC, is —1.83 while that for 136’9 is
—0.25. Although ]/36'9 also has a decreasing trend with the
increase of the generation number, it reduces much slowly than
PC,. Compared with the number of interactions or the total
propagation capacity of each generation PC,, after dividing
by the number of components with positive I, 1359 can better
quantify how extensive the average outage propagation is for
the involved components in each generation.

VI. HIGHLY PROBABILISTIC GENERATION-DEPENDENT
INTERACTION MODEL

From the perspective of complex systems, the system-
level failures are not caused by any specific event but by
the property that the components in the system are tightly
coupled and interdependent [28], [30]. With the estimated
component interactions, here we develop a highly probabilistic
generation-dependent interaction model to generate cascades
that could capture and extend what have been observed in real
outage data, validate the estimated component interactions, and
further evaluate mitigation strategies. In this section we discuss
the details of such a model and validate it using the BPA
outage data discussed in Section II.

A. Generation-Dependent Interaction Model

The proposed generation-dependent interaction model is
illustrated in Algorithm 1, in which the interaction matrix B,
changes with the number of generations. The major steps of
this model are listed as follows.

1) The same initiating events, i.e. the outages in generation

zero of the real data, are used for the interaction model
simulation. In order to consider the randomness and
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obtain statistically reliable results, we simulate for each
initiating event in the real data for more than once.
Alternatively, we can also simulate cascades with other
initiating events in order to reveal their consequences.

2) The outages in generation g are generated independently
by outages in generation g — 1 using interaction matrix
B,_;. If one component is to fail in generation g for
more than once, only one outage is kept.

3) The columns of B, corresponding to the component
outages are not set to be zero to take into account the
fact that a component may fail more than once partly due
to the operation and recolsing of the protective relays.

B. Comparison of Distribution of the Number of Line Outages

We simulate ten times of the number of cascades as in
the utility outage data by using the interaction model. The
initial outages for the interaction model simulation are the
same as those in the utility outage data. Fig. 12 shows a
comparison between the CCD of the number of line outages
for the original BPA data and those for the simulated cascades
from different interaction matrix estimation methods. Each
CCD for the simulated cascades is the averaged result over
K = 40 estimations each of which is performed using 10M
cascades generated from the generation-dependent interaction
model. Here we choose K = 40 because the results for
more estimations are similar. The gray lines next to the CCD
estimation in Fig. 12 are the C' = 95% confidence interval of
the esti@ation [39], i.e. P(ﬁ—t.* \/‘% <p<p+t* \/‘%) = 95%
where p is the sample mean, s is the sample standard error, and
t* is the upper (1 — C)/2 critical value for the ¢-distribution
with K — 1 degrees of freedom. It is seen that the CCD of
the generated cascades using the proposed interaction matrix
matches very well with that of the original utility outage
data and greatly extends it, while using one single interaction
matrix estimated for the entire data as in [28], [30] or the
generation-dependent interaction matrix without memory of
interactions in previous generations greatly underestimates the
risk of large cascades. Therefore, considering the evolution of
interactions over generations and enabling memory between
consecutive generations are important for effectively capturing
the outage interactions in the original utility outage data and
further the statistical properties of the line outage distribution.

C. Comparison of Offspring Mean of Branching Process

The overall offspring mean of branching process (the mean
number of child outages generated by each parent outage), A,
can be estimated as [24], [25]:

G
Zg:l Zg

G
Zg:O Zg

where Z; is the number of outages in generation g. The A
estimated from the generated 10/ cascades by the interaction
model is 0.252, which is close to that estimated from the
original BPA outage data, 0.273.

The mean number of child outages in generation g + 1
for each parent in generation g is offspring mean A, of

A= : (10)

original cascades
interaction model

= interactionmodel — 1 |
interaction model — 2 |

>

probability

10° 10! 107
number of line outages

Fig. 12. Comparison of the CCDs of the number of line outages from
original and simulated cascades. The result for “interaction model” is
from using the proposed method for estimating B’s, while those for
“interaction model — 1” and “interaction model — 2” are from
using the estimated interaction matrix for the data with all generations
and without memory, respectively. The gray lines indicate the 95%
confidence interval.
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Fig. 13. Comparison of the offspring mean of branching process 5\9
estimated from original and simulated cascades.

the branching process. For 9 < 9, Ay is estimated using
generations g and g + 1 as Ay = Z,11/Z,. Similar to [32],
for g > 10 one single offspring mean is estimated as:

G
Zg:ll Zy

G-1 ., °
Zg:lO Zy
In Fig. 13 it is shown that the estimated 5\g from the simulated
10M cascades using the proposed interaction model matches
well with that from the original cascades. Besides, )\, increases
with the increase of g as the cascade proceeds, which is
consistent with the results in [32]. Further, the confidence

interval of the estimated A, can be obtained by using the
method in Appendix B of [32].

Y

>\10+ =

D. Comparison of Distribution of Component Metrics

We calculate the component metric I(r) based on the esti-
mated interaction matrices B’s using the cascades simulated
by the interaction model and compare its distribution with that
using the estimated interaction matrices from the original data.
From interaction model we simulated 100/ cascades which is
ten times as many of the original data. In order to have a
meaningful comparison we divide the I(r) calculated from
the cascades using interaction model by 10. As shown in Fig.
14, the two distributions match with each other very well.

E. Comparison of Identified Critical Components

With the estimated interaction matrices B’s from the 10M
cascades generated by the generation-dependent interaction
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Fig. 14. Comparison of the CCDs of the component metric I(r) from
original and simulated cascades.

TABLE II
IDENTIFIED KEY COMPONENTS FROM SIMULATED CASCADES
Rank C,(I/10) Rank CL(I/10)
1 17 (64.6) 11 92 (32.7)
2 83 (58.9) 12 59 (31.1)
3 2 (55.8) 13 234 (30.8)
4 24 (54.2) 14 201 (29.9)
5 85 (50.4) 15 41 (29.6)
6 202 (45.7) 16 13 (29.4)
7 8 (40.0) 17 26 (29.4)
8 187 (37.4) 18 42 (28.4)
9 101 (37.0) 19 126 (28.2)
10 218 (34.2) 20 427 (28.0)

model, critical components can also be identified (the cor-
responding set of critical components is denoted by C%). The
identified critical components and their corresponding I(r)/10
are listed in Table II. Comparing Table II with Table I, it is
found that eight out of ten most critical components in Cs
and C) are the same, although their rankings are slightly
different. If more cascades are simulated from interaction
model the matching may be better. On the other hand, with
a large number of simulated cascades the interaction model
can help better identify the most critical components. For
example, components 13, 41, 202, 218, and 427 are identified
as critical components by the cascades from interaction model
simulations but not by the original cascades. The higher
accuracy of C% than Cy will be further validated through
cascading failure mitigation in the next section.

VII. CASCADING FAILURE MITIGATION

After useful information is extracted from utility outage
data, we can make use of it to mitigate cascading failure risks,
such as by upgrading the identified critical components so that
the probability that they will fail is significantly reduced.

In the generation-dependent interaction model simulations,
cascading outage propagation can be mitigated by reducing
the elements of the columns of By, g = 0,---,G — 1
corresponding to the identified critical components in Cy, Ca,
or C), each of which contains 20 components, about 3.44%
of the 582 total number of components. For example, we can
multiply the elements of the columns of B, corresponding to
the ith element in Cy, Cy, or C} by « = /40, in which case the
higher the ranking of a critical component, the more upgrade is
implemented so that the probability that it may fail will reduce
more significantly. We simulate 10M cascades under different
B,’s. The overall offspring mean of the branching process

10°

2
i
107 i
E
]
S .
210+ e original cascades '1,. *

4 interactionmodel —Cy | 4
interaction model — Cy

| = interaction model — Cj

10° 10! 10%
number of line outages

Fig. 15. CCDs of the number of line outages under different
mitigation strategies.

TABLE III
PROBABILITY OF DIFFERENT CASCADE SIZES UNDER DIFFERENT
MITIGATION STRATEGIES

Mitigation Small cascade  Medium cascade Large cascade
strategy (Y £10) (10 <Y < 50) (Y > 50)
no mitigation 0.9930 0.0067 2.99 x 10742
C1-based 0.9952 0.0048 1.50 x 107°
Ca-based 0.9961 0.0039 0
Cl-based 0.9964 0.0036 0

defined in (10) for the cases without mitigation, with C;-based
mitigation, Co-based mitigation, and Cj-based mitigation are,
respectively, 0.273, 0.190, 0.184, and 0.179.

As shown in Fig. 15, all mitigation measures can reduce
the risk of cascading, but the mitigation effect using C is
better than that using Cy or C;. In order to better quantify the
mitigation effect, in Table III we list the probability for having
different cascade sizes (total number of line outages Y) with
or without mitigation strategies. It is clearly seen that under all
three mitigation strategies the probabilities for both medium
size and large size cascades are reduced. Specifically, the C;-
based mitigation reduces the probability for large cascades to
1.50 x 1075 from 2.99 x 10~* for the case without any miti-
gation, and more impressively the C5- and Cy-based mitigation
reduces that probability to zero. Further, compared with Ca-
based mitigation, C}-based mitigation reduces the probability
for medium size cascades from 0.0039 to 0.0036.

VIII. CONCLUSION

In this paper we analyze BPA outage data in an attempt
to gain better understanding of cascading outage propagation.
The proposed two mechanisms, the evolution of interactions
over generations and the memory between consecutive gen-
erations, help accurately estimate the interactions between
component outages. The developed metric for components can
accurately identify the most critical components for outage
propagation, paving way for effective cascading failure miti-
gation. Credible properties of cascading failures are revealed
directly from utility outage data and the estimated interactions.
The simulated cascades from the proposed highly probabilis-
tic generation-dependent interaction model well capture the
properties of the original outage data and also help evaluate
the proposed critical component based mitigation strategy.

It is promising that some of the conclusions drawn in this
paper could also apply to other systems, either other power
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networks or other types of complex systems, which will be
carefully studied in our future research.

ACKNOWLEDGMENT

The author would like to thank Prof. ITan Dobson at Towa
State University for providing cleaned Bonneville Power Ad-
ministration (BPA) outage data and also useful comments on
the initial version of this paper.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

K. Sun, Y. Hou, W. Sun, and J. Qi, Power System Control under Cascad-
ing Failures: Understanding, Mitigation, and Restoration. Wiley-IEEE
Press, Jan. 2019.

Z. Han and W. Weng, “An integrated quantitative risk analysis method
for natural gas pipeline network,” Journal of Loss Prevention in the
Process Industries, vol. 23, no. 3, pp. 428-436, May 2010.

S. N. Dorogovtsev and J. F. Mendes, “Evolution of networks,” Advances
in physics, vol. 51, no. 4, pp. 1079-1187, Jun. 2002.

S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no.
6825, pp. 268-276, Mar. 2001.

T. Li, M. Eremia, and M. Shahidehpour, “Interdependency of natural gas
network and power system security,” IEEE Trans. Power Syst., vol. 23,
no. 4, pp. 1817-1824, Nov. 2008.

NERC Steering Group, “Technical analysis of the August 14, 2003,
blackout: What happened, why, and what did we learn,” Report to the
NERC Board of Trustees, Jul. 2004.

Federal Energy Regulatory Commission, “Arizona-Southern California
outages on September 8, 2011: Causes and recommendations,” FERC
and NERC Staff, Apr. 2012.

L. L. Lai, H. T. Zhang, C. S. Lai, F. Y. Xu, and S. Mishra, “Investigation
on July 2012 Indian blackout,” in International Conference on Machine
Learning and Cybernetics, vol. 1, Jul. 2013, pp. 92-97.

“2019 venezuelan blackouts.” [Online]. Available: https://en.wikipedia.
org/wiki/2019_Venezuelan_blackouts

D. S. Kirschen, D. Jayaweera, D. P. Nedic, and R. N. Allan, “A
probabilistic indicator of system stress,” IEEE Trans. Power Syst.,
vol. 19, no. 3, pp. 1650-1657, Aug. 2004.

A. Phadke and J. S. Thorp, “Expose hidden failures to prevent cascading
outages [in power systems],” IEEE Computer Applications in Power,
vol. 9, no. 3, pp. 20-23, Jul. 1996.

J. Chen, J. S. Thorp, and I. Dobson, “Cascading dynamics and mitigation
assessment in power system disturbances via a hidden failure model,”
Int. J. Elec. Power, vol. 27, no. 4, pp. 318-326, May 2005.

I. Dobson, B. A. Carreras, and D. E. Newman, “A loading-dependent
model of probabilistic cascading failure,” Probability in the Engineering
and Informational Sciences, vol. 19, no. 1, pp. 15-32, Jan. 2005.

H. Ren, I. Dobson, and B. A. Carreras, “Long-term effect of the n-1
criterion on cascading line outages in an evolving power transmission
grid,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 1217-1225, 2008.
S. Mei, Y. Ni, G. Wang, and S. Wu, “A study of self-organized criticality
of power system under cascading failures based on AC-OPF with voltage
stability margin,” IEEE Trans. Power Syst., vol. 23, no. 4, pp. 1719-
1726, Nov. 2008.

J. Qi, S. Mei, and F. Liu, “Blackout model considering slow process,”
IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3274-3282, Aug. 2013.

P. Henneaux, P.-E. Labeau, and J.-C. Maun, “Blackout probabilistic risk
assessment and thermal effects: Impacts of changes in generation,” IEEE
Trans. Power Syst., vol. 28, no. 4, pp. 4722-4731, Nov. 2013.

J. Song, E. Cotilla-Sanchez, G. Ghanavati, and P. D. Hines, “Dynamic
modeling of cascading failure in power systems,” IEEE Trans. Power
Syst., vol. 31, no. 3, pp. 2085-2095, 2016.

J. Qi and S. Pfenninger, “Controlling the self-organizing dynamics
in a sandpile model on complex networks by failure tolerance,” EPL
(Europhysics Letters), vol. 111, no. 3, p. 38006, Aug. 2015.

I. Dobson, A. Flueck, S. Aquiles-Perez, S. Abhyankar, and J. Qi,
“Towards incorporating protection and uncertainty into cascading failure
simulation and analysis,” in [EEE Int. Conf. Probabilistic Methods
Applied to Power Systems (PMAPS), Jun. 2018, pp. 1-5.

S. R. Khazeiynasab and J. Qi, “Resilience analysis and cascading failure
modeling of power systems under extreme temperatures,” Journal of
Modern Power Systems and Clean Energy, 2020.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

(39]

J. Bialek, E. Ciapessoni, D. Cirio, E. Cotilla-Sanchez, C. Dent, I. Dob-
son, P. Henneaux, P. Hines, J. Jardim, S. Miller et al., “Benchmarking
and validation of cascading failure analysis tools,” IEEE Trans. Power
Syst., vol. 31, no. 6, pp. 4887-4900, Nov. 2016.

P. Henneaux, E. Ciapessoni, D. Cirio, E. Cotilla-Sanchez, R. Diao,
I. Dobson, A. Gaikwad, S. Miller, M. Papic, A. Pitto et al., “Bench-
marking quasi-steady state cascading outage analysis methodologies,”
in IEEE Int. Conf. Probabilistic Methods Applied to Power Systems
(PMAPS), Jun. 2018, pp. 1-6.

1. Dobson, J. Kim, and K. R. Wierzbicki, “Testing branching process es-
timators of cascading failure with data from a simulation of transmission
line outages,” Risk Anal., vol. 30, no. 4, pp. 650-662, Apr. 2010.

J. Qi, I. Dobson, and S. Mei, “Towards estimating the statistics of
simulated cascades of outages with branching processes,” IEEE Trans.
Power Syst., vol. 28, no. 3, pp. 3410-3419, Aug. 2013.

J. Qi, W. Ju, and K. Sun, “Estimating the propagation of interdependent
cascading outages with multi-type branching processes,” IEEE Trans.
Power Syst., vol. 32, no. 2, pp. 1212-1223, Mar. 2017.

P. Hines, 1. Dobson, and P. Rezaei, “Cascading power outages propagate
locally in an influence graph that is not the actual grid topology,” IEEE
Trans. Power Syst., vol. 32, no. 2, pp. 958-967, Mar. 2017.

J. Qi, K. Sun, and S. Mei, “An interaction model for simulation and
mitigation of cascading failures,” IEEE Trans. Power Syst., vol. 30, no. 2,
pp- 804-819, Mar. 2015.

W. Ju, J. Qi, and K. Sun, “Simulation and analysis of cascading failures
on an NPCC power system test bed,” in 2015 IEEE Power Energy
Society General Meeting, Jul. 2015, pp. 1-5.

J. Qi, J. Wang, and K. Sun, “Efficient estimation of component inter-
actions for cascading failure analysis by EM algorithm,” IEEE Trans.
Power Syst., vol. 33, no. 3, pp. 3153-3161, May 2018.

W. Ju, K. Sun, and J. Qi, “Multi-layer interaction graph for analysis and
mitigation of cascading outages,” IEEE J. Emerg. Sel. Topics Circuits
Syst., vol. 7, no. 2, pp. 239-249, Jun. 2017.

I. Dobson, “Estimating the propagation and extent of cascading line
outages from utility data with a branching process,” IEEE Trans. Power
Syst., vol. 27, no. 4, pp. 2146-2155, Nov. 2012.

B. A. Carreras, D. E. Newman, and I. Dobson, “North American
blackout time series statistics and implications for blackout risk,” IEEE
Trans. Power Syst., vol. 31, no. 6, pp. 4406-4414, Nov. 2016.

I. Dobson, B. A. Carreras, D. E. Newman, and J. M. Reynolds-Barredo,
“Obtaining statistics of cascading line outages spreading in an electric
transmission network from standard utility data,” IEEE Trans. Power
Syst., vol. 31, no. 6, pp. 4831-4841, Nov. 2016.

K. Zhou, 1. Dobson, Z. Wang, A. Roitershtein, and A. P. Ghosh, “A
markovian influence graph formed from utility line outage data to
mitigate large cascades,” IEEE Trans. Power Syst., Early Access, 2020.
Bonneville Power Administration Transmission Services Operations
& Reliability website. [Online]. Available: http://transmission.bpa.gov/
Business/Operations/Outages

North  American Electric Reliability Corporation, “Reliability
terminology,” Aug. 2013. [Online]. Available: http://www.nerc.com/
AboutNERC/Documents/Terms%20AUG13.pdf

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Stat. Soc. Series B
Stat. Methodol., vol. 39, no. 1, pp. 1-22, Sept. 1977.

V. J. Easton and J. H. McColl, “Statistics glossary,” 2002.

Junjian Qi (S’12-M’13-SM’17) received the B.E.
degree in electrical engineering, from Shandong
University, Jinan, China, in 2008, and the Ph.D.
degree in electrical engineering from Tsinghua Uni-
versity, Beijing, China, in 2013. He was a Visiting
Scholar with Iowa State University, Ames, IA, USA,
in 2012, a Research Associate with the Department
of EECS, University of Tennessee, Knoxville, TN,
USA, from 2013 to 2015, a Postdoctoral Appointee
with the Energy Systems Division, Argonne National
Laboratory, Lemont, IL, USA, from 2015 to 2017,

and an Assistant Professor with the Department of Electrical and Computer
Engineering, University of Central Florida, Orlando, FL, USA, from 2017 to
2020. He is currently an Assistant Professor with the Department of Electrical
and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ,
USA. He was the recipient of the NSF CAREER award in 2020 and is an
Associate Editor for the IEEE Access. His research interests include cascading
blackouts, microgrid control, cyber-physical systems, and synchrophasors.



