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Abstract—In this paper, a coupled interaction matrix is pro-
posed to describe the interactions between line outages and the
load shed at buses. The coupled interaction matrix is effectively
estimated by the Expectation Maximization algorithm. A highly
probabilistic coupled interaction model is further proposed to
efficiently generate cascades with both line outages and the load
shed based on the coupled interaction matrix and the distribution
of initial outages. To mitigate cascading failures, critical links are
identified based on the coupled interaction matrix by calculating
a comprehensive severity index that considers the consequences
of both line outages and the load shed. Simulation results on
the IEEE 300-bus system verify the effectiveness of the proposed
approach. The cascades generated from the coupled interaction
model match the statistics of the original cascades very well.
The identified critical links based on the comprehensive severity
index enable a proper tradeoff between reducing line outages
and reducing the load shed, leading to a better mitigation effect
than only considering either line outages or the load shed.

Index Terms—Blackout, cascading failure, coupled interaction
model, coupled interaction network, interdependency, line outage,
load shed, outage propagation, risk mitigation.

I. INTRODUCTION

ASCADING failure is one of the dominant causes of

blackouts. Although initiating outages usually only in-
volve a small number of components, the failure can propagate
in a large area of the transmission system and may lead
to a significant amount of load shed [1], [2]. Cascading
failure has been widely studied by using physical simulation
models, which include OPA model [3] and its variants [4], [5],
Manchester model [6], COSMIC model [7], Multi-Timescale
Quasi-Dynamic Model [8], the model with detailed protec-
tion systems [9], and the AC power flow based model that
explicitly considers temperature disturbance and the system
response [10]. These models mainly differ from each other in
the physical mechanisms that are considered [11]. Although
acceleration techniques, such as Random Chemistry algorithm
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[12], importance sampling [13], and simplified power flow
calculation [14], have been proposed, physical simulation
models usually require a high computational cost due to the
complicated mechanisms.

Different from physical simulation models, complex net-
work based models ignore most physical properties and an-
alyze power system vulnerability only based on the network
structure. For example, degree distribution [15] and structural
index [16] are used as robustness measures of the power sys-
tem against blackouts. Cascading failure behaviors have also
been extensively studied in the sandpile model on different
types of complex networks [17], [18]. Although the complex
network based methods require a much lower computational
time, it is difficult to incorporate the physical mechanisms of
cascading failure into the topological metrics.

Due to the limitations of the physical simulation models and
complex network based approaches, high-level statistical mod-
els such as branching processes [19]-[22] have been proposed
to extract useful information from either simulated cascades or
utility outage data. Branching process is introduced to model
the propagation of line outages and efficiently estimate the
distribution of the number of line outages in [19], [23]. The
propagation of load shed is also analyzed with branching
process [20], [21]. In [22], the interdependencies between
different types of outages are analyzed by multi-type branching
process. Although branching process can capture the distribu-
tion of line outages and the load shed, it does not distinguish
components that fail in cascading failure propagation, and thus
cannot identify critical components for cascading mitigation.

Besides, the recent studies on interaction network [24]-
[27] and influence graph [28]-[30] provide another more
useful way to extract propagation patterns in the original
cascades. In [25], the estimation of the interaction network
for line outages is formulated as a parameter estimation
problem with incomplete data and is efficiently solved with the
Expectation Maximization (EM) algorithm. Influence graphs
are constructed by Markovian process in [28]-[30], in which
the transition probability is estimated by Bayesian inferring
[30]. In addition to line outages, the load shed and electrical
distances are also analyzed by a multi-layer interaction graph
in [26]. Although the load shed is considered as one layer,
the cause of the load shed at buses is equally distributed
to the failed lines, which may not always be reasonable as
the contribution of line outages to the load shed can be
significantly different.

Although the existing high-level statistical models provide
useful tools to capture the pattern of outage propagation, it is
still very challenging to analyze the interaction between line
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outages and the load shed, especially with limited samples. In
this paper, we aim at addressing this challenge by revealing the
pattern of interactions between line outages and the load shed
and further developing effective cascading failure mitigation
strategies based on the proposed coupled interaction matrix
and coupled interaction model. The major contributions of this
paper are summarized as follows.

1) A coupled interaction matrix is proposed to describe the
interactions between line outages and the load shed at
buses, and is efficiently estimated by the EM algorithm
with a small number of original cascades.

2) A coupled interaction model that utilizes the coupled
interaction matrix and the distribution of initial outages
is proposed to efficiently simulate cascading failures with
both line outages and the load shed at buses.

3) Critical links are identified with the interaction matrix
based on a defined comprehensive severity index that
considers the consequences of both line outages and the
load shed. The critical link based mitigation strategy is
implemented and is shown to be able to significantly
reduce both line outages and the load shed.

The remainder of this paper is organized as follows. Section
II defines the coupled interaction matrix. Section III estimates
the coupled interaction matrix by the EM algorithm. Section
IV proposes a coupled interaction model for efficient cascading
failure simulation based on the estimated interaction matrix.
Section V develops a method to identify critical links based
on a comprehensive severity index. Section VI validates the
effectiveness of the proposed approach on the IEEE 300-bus
system. Finally, conclusions are drawn in Section VIIL.

II. COUPLED INTERACTION MATRIX

Cascading failures in power systems involve successive line
outages and load shed at buses. According to the outage se-
quence from either the utility outage record [19] or cascading
failure simulations [24], a cascade can be divided into different
generations. Assume there are V; lines and NV, buses with load
in the system. The index numbers of lines and load buses are
converted so that the set of lines is {1,2,---,N;} and the
set of buses with load is {1,2,--- , N;}. Assume there are M
cascades in the dataset as shown below:

generation 0

generation 1 generation 2

cascade 1 FLo Fl1 F1.2
cascade m Frm,0 Fm,1 Fm,2
cascade M FM.,0 FM,1 FM,2
where F™9 = {§™9 8", Z™9}, S and Sg"? are,

respectively, the set of lines that outage and the set of buses
with load shed in generation g of cascade m, and Z"™9 ¢ Zv
is the vector for the amount of discretized load shed at each
bus in generation g of cascade m.

In both utility outage data and cascading failure simulations,
the load shed is usually recorded in MW. Let X9 be the
load shed at bus v in MW in generation g of cascade m.
Discretization should be first performed on the load shed data

by the technique in [21], [22]. If A, MW is the chosen unit
of discretization for bus v, an integer multiples of A, MW
can be obtained for the load shed at bus v as

m,g

X
v +0.5

X , (M)

Zyh9 = int

where int[x] is the integer part of x. A systematic approach
for choosing A, will be discussed in Section III.

The interaction model in [24] and [25] only focuses on
the propagation of line outages. In this paper the interaction
analysis is not only for line outages but also considers the
interdependency between line outages and the load shed at dif-
ferent buses. This is useful because the load shed corresponds
to more direct economic losses and is of more interest by
the utilities. The analysis of interactions between line outages
and the load shed at buses enables better capture of the
cascading failure propagation patterns and can help develop
more effective mitigation strategies.

A. Definition of Coupled Interaction Matrix B

In order to capture the interdependency between line out-
ages and the load shed, a coupled interaction matrix B €
RWViANo)x(NiNo) s defined as

LL
B-|p

BLB
BBL :| )

BBB

where B, B'®, BBL and BE® are defined as follows.

Throughout the paper we assume that M, < M cascades are

used for estimating the coupled interaction matrix.

e B ¢ RNixN captures the interactions between lines
outages, which is the same as the interaction matrix in
[24] and [25]. Its entry in the ¢th row and jth column,
sz]L is the empirical probability that line j fails following
the outage of line <.

e B'® ¢ RM>*No captures the interactions from line
outages to the load shed at buses. As has been adopted
and verified in [20]-[22], Poisson distribution can capture
the statistical properties for offspring outages being se-
lected from a large number of possible outages that have
small probability and are approximately independent.
Therefore, we use Poisson distribution to approximate the
distribution of the discretized load shed at buses following
line outages. For example, to capture the discretized load
shed at bus v following the outage of line 4, the mean of
Poisson distribution is recorded as b-, which is the entry

in the ith row and vth column of B“B. If line i fails in

generation ¢, k, units of discretized load shed at bus v

will occur in generation g + 1 with probability

LB\ kv
ke = —(b};’), e V. @)
!

o BB ¢ RNo XN captures the interactions from the load
shed to line outages. Note that in this paper the interac-
tions between the load shed at buses and the further line
outages are not necessarily causal, but actually capture
what might consequently happen in the next generation
following the load shedding event in current generation.
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When load shedding cannot eliminate all line overloading
or other technical constraint violations [31], [32], line
outages can still be observed following the load shed-
ding event. As has been verified in [22], line outages
following load shedding are rare. Therefore, we consider
a simplified case in which line outages are not sensitive
to the amount of load shed at buses. When load shedding
occurs at bus wu, line 5 will fail in the next generation
with a constant probability bE}f, which is the entry in the
uth row and jth column of BBt

o BB® ¢ RNoxM captures the interactions between the

load shed at buses. Similar to BBL, BB8 captures the
successive load shedding in consecutive generations that
is also not necessarily causal. As the system has been sig-
nificantly weakened when the cascading outage evolves,
successive load shedding may occur at different buses or
at the same bus more than once. We assume each unit of
the discretized load shed at bus v independently generates
the discretized load shed at bus v by a Poisson distribution
with mean bB8. Therefore, if k,, units of load are shed at
bus u in generation g, k, units of discretized load shed
at bus v will occur in generation g+ 1 with the following
probability:

BB\ kv

oo = Bubi) ” e )

!

The matrix B determines how components, either lines or
buses, interact with each other. The nonzero entries of B are
called links. Link [ : ¢ — j corresponds to B’s nonzero entry
in the ith row and jth column. By putting all links together a
directed network G(C, L) called coupled interaction network
can be obtained: the vertices C are components, including both
lines and buses, and the directed link [ € £ represents that the
destination vertex component fails following the source vertex
component outage with probability greater than 0. Different
from [24], [25], there are four different types of links: L — L
links, L — B links, B — L links, and B — B links.

B. Definition of Auxiliary Matrix A
To estimate the coupled interaction matrix B, the following

auxiliary matrix A € R(Vi+No)x(NitNo) g peeded:
ALL ALB
A= |:ABL ABB )

whose four sub-matrices are defined below.
o A € RV>Ni has entry aft as the total number of
times that line j fails following the outage of line ¢ in

the dataset. Based on att sz]L can be estimated as

17

LL
LL _ %
bij - NL; (4)

where N} is the total number of outages of line i in the
M, cascades.

o A"B ¢ RN *No has entry at® as the total discretized
amount of load shed at bus v following the outage of

line 7 in the M,, cascades. Then b:B can be estimated by
LB
b = )

NE

o APt € RMo*Ni hag entry Bl as the total number of
outages of line j following the load shed at bus u, from
which bB% is estimated as

aBt

Nig, (6)
where NB is the total number of times that bus u has
nonzero discretized load shed in the M, cascades.

o ABB ¢ RNoXNo hag entry aBB as the total discretized
amount of load shed at bus v following the load shed at
bus u. As the load shed at bus v after each unit of load
shed at bus u independently follows Poisson distribution,
whose mean bEB can be estimated by

BL _

BB aBB
uv
b = e (7
Z Z ZqT’g
m=1 ¢g=0

where G™ is the number of generations in cascade m and
the denominator is the total discretized amount of load
shed at bus w in the M, cascades.

III. ESTIMATING COUPLED INTERACTION MATRIX BY EM
ALGORITHM

When there are multiple line outages and the load shed at
multiple buses in two successive generations, it is challenging
to decide the actual interactions between outages, either line
outages or the load shed, and further determine A and B.
To address this issue, this paper adopts the EM algorithm to
infer the interactions between outages [22], [25], [33]. The
EM algorithm iterates over E-step and M-step to maximize
the likelihood estimation of the coupled interaction matrix
B until convergence. Moreover, as the capability of Poisson
distribution to capture the propagation of load shed can be
improved by the choice of the discretization unit A, [21], the
discretization units for load buses are also adaptively updated
with the EM algorithm. The detailed procedure is as follows.

1) Initialization of discretization units: An initial discretiza-
tion unit Aq(,o = 50 MW is chosen for each load bus v.
The load shed at buses in the original M, cascades is
processed by (1) with the initial discretization units.

2) Initialization of A and B: Each component in generation
g + 1 is initially assumed to follow each outage in gen-
eration g. An initial matrix A© can thus be constructed
by processing the original M,, cascades, based on which
the initial B®) can be calculated by (4)~(7).

3) E-step: Update A*FD pased on BW)

In the (k + 1)th iteration, pZ?’g(kH) and p , the
probability of line j outage in generation g+ 1 following
line ¢ outage and that following the load shed at bus u in
generation g of cascade m, are estimated as:

m,g(k+1)
i

pLL(R)
m.g(k+1) _ ij
Y 1- I (1 _ bt;(’“)) I (1 . chjL(k))
cesm™ s €S9
pBL(R)
mA,g(lc-i-l) _ uj )
v 1— I (1 - bt;(’“)) 11 (1 - bCB].L(k)>
ces™e ceSge
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m,g(k+1) m,g(k+1)

Similarly, p and pyy , the probability of
having ZZ’W“ units of discretized load shed at bus v
in generation g + 1 following the outage of line ¢ and
that following the load shed at bus u in generation g of
cascade m, are estimated as:

LB(k
m7g(k+1) — pw ®
’ - (1-R) 1 (1-%0)
ces§™? ceSg"d
BB(k
p7rz,g(k+1) _ puv( )
uv LB(k BB(k)\ ’
1- H (1_pcv()) H (1_pcv())
ces™? ceSg?

where pZ-LE (k) and pSE (k) can be calculated by (2)—(3)
based on B*).
The entries of A" and AB are updated as

( M, G™—2
LL k+1) Z Z m g (k+1) )
m=1 g=0
M, G™—2
BL(k+1) Z Z ,g (k1) ©)
m=1 ¢g=0
where p;n-’g(kﬂ) is zero if line i ¢ S/ or line j ¢
S+ And p™?* Y s zero if bus u ¢ ST9 or line
st
The entries of A'® and AB® are updated as
M, G™—2
LB(k+1 L9 (k+1
w( ) _ Z Z Z{}n,g-&-lp?;z g( ) (10)
m=1 g=0
M, G™—2
55 k‘+1 Z Z Zm ,9+1 mg(k+1) (11)
m=1 g=0
where pZ”g(kH) is zero if line ¢ ¢ S™7 or bus v ¢

Sg” 9+ And pumv’g(kﬂ) is zero if bus u ¢ Sg"? or bus
v SgrItt,

The interactions of the load shed following line outages
are also recorded to update the discretization units. Take
the load shed at bus v following the outages of line
i as an example. First let U, denote the maximum
amount of discretized load shed at bus v. Let the vector
C’If (k+1) ¢ RUwH1 record the number of cumulative
times of the load shed at bus v following the N} times of
the outage of line ¢ in M, cascades. For the nth outage
of line 4, if there is no discretized load shed at bus v,
C;‘UB(kH)(O) increases by 1. Otherwise, if Z7*97! units
of discretized load shed at bus v follow the nth outage
of line i with a probability of p/™?* ), CLB(kH)(O)

and C-2F ) (Zm.a+1) increase by 1 — pw’gt}kﬂ and
o (kD) respectively.
4) M-step: Update B**Y baged on ARV
4.1) The estimation of interaction matrix B(kH) €
RV No) < (Ni4+N) s updated with A*+1) according
to (4)—(7).

4.2) The sample variance of the discretized load shed at bus
v following the outage of line ¢ is calculated as:

%”: C_LB(kH)(l) (l _ BLB(kJrl))Z

"

G2(kt1) _ =0 12
kX% NlL _ 1 ( )
4.3) For each load bus v, A, is updated as:
2(k41)
N: S
(k+1) (k) igs:tB IR
Ay = A, —L TG (13)
ES:LB Ny S5y
i€SL Qv

where SLB is the set of row indices at which the vth
column of BLB(kH) has nonzero entries. More detailed
explanation of (13) can be found in the Appendix.

4.4) Using the updated discretization units, the load shed
at buses in the original M, cascades is reprocessed by

(1). And the entries in BB+ and BBBHD are

updated from BLB(HD and BBB(HU as
(k)
B(k+1) _ Av’ FIB(k+1)
bi,v - wa (14)
(k+1) A (k)
pEBG+) _ Bu Do gesin) (g5

A(k)A(k'H) uv

5) End: Steps 3-5 are repeated until the following condition
is satisfied:

N+ N, 2
(k1) _ 5 (k)

S ()

— % <e,

where N = N_q if N, the number of nonzero entries

in B+ — B(k), is greater than 0, otherwise N = 1,
and ¢ is the preset threshold.

oB = (16)

After the convergence of the EM algorithm, the estimated
matrix B and the discretization units in the last iteration will
be used for the cascading outage simulation in Section IV and
mitigation in Section V.

IV. COUPLED INTERACTION MODEL FOR CASCADING
FAILURE SIMULATION

As large blackouts are usually rare, simulating large black-
outs with physical cascading failure models is rather ineffi-
cient, while the number of available utility outage data sample
is limited. By contrast, highly probabilistic interaction models
[24], [27], [30] can efficiently generate a large number of
cascades to better estimate the blackout size [34]. Moreover,
the effect of mitigation schemes can also be efficiently tested
by modifying the parameters of highly probabilistic models.
In this section, a coupled interaction model is proposed to
simulate the propagation of line outages and the load shed
utilizing the probability distribution of initial outages and the
coupled interaction matrix B. The coupled interaction model
has the following four steps.

o Step 1: Generate initial outages

Set g = 0. The line outages in generation 0 are indepen-
dently generated according to their occurrence frequency
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in generation O of the original cascades. Specifically, line
1 fails in generation O by probability:

M,
> 1fie §™
7T|7 — m=1

7 Mu ?
where 1[event] is an indicator function that evaluates to
one if the event happens and evaluates to zero when the
event does not happen.
Similarly, bus » has k units of discretized load shed in
generation 0 by probability:

A7)

M, o
IRICHE
m=
Mg = —————. 18
u,k Mu ( )
All generated outages comprise S"°, S, and Z™9.
Considering the time scale of cascading failures, most
cascading failure simulation models do not include any
repair process of the failed lines. As each line fails at
most once in a simulation, once line 7 fails the entries in
the ith column of B and BB are set to be zero.

o Step 2: Generate further line outages

Each outage in S/ and Sg"? independently generates
line outages in generation g+ 1. Line 5 fails in generation
g+1 following line ¢ outage in S;"? and the load shed at
bus u in Sg"? with probability b} and b5}, respectively.
All sampled line outages comprise S;"*/*". The columns
of B'" and B®" that are corresponding to the failed lines

are set to be zero.
o Step 3: Generate further load shed

For line i € S, the discretized load shed at bus v
follows Poisson distribution with mean bLE. For bus u €
Sg"?, the discretized load shed at bus v follows Poisson
distribution with mean Z9bB8. The load shed at bus v
are independently sampled for each outage in S and
Sg"?. Since the total load shed at bus v from generation
0 to g + 1 cannot exceed its total discretized load Z!,
the load shed at bus v in generation g + 1 is recorded
as Z;9H = min {Z8 = 300 Z0 Y icsme Z005T
Duesyo Zoe%t ), where Z9 and 2791 are the
load shed at bus v in generation g+ 1 generated from line
outage ¢ and the load shed at bus u, respectively. All buses
with load shed comprise Sg"? 1 and the corresponding
discretized load shed is recorded in Z™ 91",
o Step 4: End
Simulation ends if both S and Sg"9*" are empty.
Otherwise, increase g by one and go back to Step 2.
Steps 1-4 can be repeated to simulate many cascades
for better understanding and mitigating cascading failures.
Compared with detailed cascading failure models, the coupled
interaction model is highly probabilistic and is thus much more
time-efficient, which will be validated in Section VI-B.

V. CRITICAL LINK IDENTIFICATION

As both the number of line outages and the amount of load
shed have been used as the measures of blackout size [34], the

source outage S

level 0 target outage T’ \
level 1 line e line f* bus x
level 2 line g bus x line & bus y

Fig. 1. Ilustration of an interaction subgraph starting with link [ : S — T

mitigation effect of cascading outages can also be measured
by the comprehensive cost of line outages and the load shed.
In this paper, the severity of a link [ : S — T is measured by
the line outages and load shed propagated through [, where S
and T are, respectively, the source outage and target outage
and could be a line outage or a bus with load shedding. For
each link [ : S — T, an acyclic interaction subgraph G;(C;, £;)
in which there is a path from vertex 7' to any other vertex can
be obtained from the coupled interaction network.

As a line cannot outage twice in one propagation path while
a bus may have load shedding for multiple times in one path,
different vertices in the subgraph G;(C;, £;) cannot represent
the same line outage event but can be load shedding events at
the same bus. To extract the acyclic subgraph, the links to a
vertex as line outage event from other vertices at the same or
higher levels are removed as in [24]. For the link to a vertex as
load shedding event from other vertices at the same or higher
levels, we remove the link, add a new vertex for the load
shedding event at the next level of the source vertex of the
removed link, and connect the source vertex of the removed
link to the newly added vertex. This eliminates the loops in the
original subgraph by adding the vertices for the load shedding
events at the same buses at multiple levels.

Fig. 1 shows an example of such an acyclic interaction sub-
graph. In the coupled interaction network, the load shedding at
bus x follows both the target outage 7" at level O and the line
e outage at level 1. To capture the load shedding at bus x in
the propagation path, a new vertex is added at level 2 for the
load shedding event at bus x. With the interaction subgraph,
the severity index for link / can be calculated as follows.

o Step 1: Estimate the expected number of outages of T

— When S denotes line i outage and 7' denotes line j
outage, given the total number of line ¢ outage in the
M, cascades as N}, the expected value of the number
of line j outage following line ¢ outage is estimated
as:

Es = Njbir.

19)

— When S denotes line i outage and T" denotes the load
shed at bus v, the expected value of the amount of load
shed at bus v at level O is estimated as:

EB® = NIDLBA,,.

v 7 v

(20)

The number of times of load shedding at bus v at level
0 following line ¢ outage is estimated as:

NBO — N1 — %), Q1)
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where (1— e~ ) is the probability of having nonzero
events for a Poisson distribution with mean b:5.

— When S denotes the load shed at bus v and T" denotes
line j outage, given the total number of times that
bus u has load shedding in the M, cascades as NUB,
the expected value of the number of line j outage is
estimated as:

EY = N2bBt

J uug

(22)

— When S denotes the load shed at bus u and 1" denotes
the load shed at bus v, the expected value of the amount
of load shed at bus v at level O is estimated as:

M, G™—1

EBO =" 3" Zm9bBBA,.

m=1 g=0

(23)

The expected value of the number of times of load
shedding at bus v at level 0 following the load shed at
bus u is estimated as:

M, G™-1

N&LZE: §:<1_6¢y%ﬁ}

m=1 g=0

(24)

where (1 — e’Z;rn‘ngrE) is the probability of observing
nonzero load shed at bus v following the load shed of
Z7™9 at bus u.

o Step 2: Estimate the expected value of the outages at level
I based on the expected value of outage T and B

— When T denotes line j outage, the expected value of
the outage of line e at level 1 can be estimated by
Er = ESbs. (25)
The expected value of the amount of load shed at bus
x at level 1 can be estimated by:
EJY = EjbSPA,,

iV (26)
and the expected value of the number of times of load

shedding at bus « at level 1 is:

NBT = B (1-etE). @7)
— When T denotes the load shed at bus v, the expected
value of the number of outage of line e at level 1 can
be estimated as:
Eg = NJOb. (28)
The load shed at bus z at level 1 following outage T’
as the load shed at bus v can be estimated as:
B,1 BP0 BB
E>t = —2-b-A,,
xr AU vr
and the expected value of the number of times of load
shedding at bus x at level 1 is:

(29)

EB0,B8

’B,1 _ x/B,0 TREOAT
N;" =N, (l—e Ny v),

(30)
where (1 — e—EE’O”Ei/(Nf‘OAv)) is the probability of
having positive load shed at bus z, in which the
discretized amount of load shed at bus v at level 0

in one of the ]\75’0 load shedding is approximated by
its average value EB0/(NEOA,).

o Step 3: Estimate the expected value of the outages at
higher levels

The expected value of the outages at level k£ > 2 can also
be calculated with the estimated outages at level k — 1,
which is similar to the calculations in Step 2.

o Step 4: Calculate the comprehensive severity index I,

To measure the total number of line outages propagated
through link [, the severity index [ l'- is calculated as:

Ir=Y E,

cEC;'

€2y

where C} is the set of lines at all levels of the interaction
subgraph starting with link /.

To measure the total amount of load shed propagated
through link I, the severity index IP is calculated as:

K-1
IIB: Z Z ECBJC?

k=0 CEC?”c

(32)

where K is the number of levels in the subgraph and C lB ok
is the set of buses at level & of the interaction subgraph
starting with link [.

Then a comprehensive severity index I; is calculated as:

It IB
I =cL 4B

Nl F7 (33)

where ¢t and ¢B are the cost coefficients for line outages
and load shed set by the operators of the system, and Xt
is the total load of the system in MW.

Based on the ranking of I;, critical links can be identified
from the perspective of consequences in both line outages
and the load shed. Note that the severity index I; is only
considering the cost of the load shed (line outages) when c*
(cB) is set as zero. In practical application, the ratio between
c- and B can be adjusted by the operators according to their
preference or the actual costs of line outages and the load
shed. Mitigation strategies can further be implemented based
on the identified critical links to reduce the risk of blackouts,
which will be discussed in Sections VI-C and VI-D.

VI. SIMULATION RESULTS

In this section, the proposed method is validated on the
IEEE 300-bus system [35]. This system has 191 buses with
load and 411 lines. The total load and total generation capacity
are, respectively, 23,848 MW and 32,678 MW. The open-loop
OPA [3] is adopted to generate 30,000 original cascades. The
parameters of the OPA model in [3] are set as v = 2, a =
0.95, 8 = 0.30, and pg = 0.001. The initialization of the
discretization units in the EM algorithm should consider the
amount of load at different buses. A too large discretization
unit can lead to a lot of the load shed at some buses to zero.
In this paper, we initialize the discretization units for all load
buses as 50 MW. In the original cascades for the IEEE 300-
bus system, the load shed at 88% of the buses is not less than
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TABLE I
NUMBER OF NONZERO ENTRIES IN INTERACTION MATRIX B
Matrix B BBt B'B BEE B

Number 1704 36 246 130 2116

Proportion  1.01% 0.05% 0.31% 0.36% 0.58%

25 MW, and thus is discretlized as nonzero integers according
to (1). The load shed that is greater than 25 MW accounts for
99.21% of the total amount of load shed.

In Section II the lines and the buses with load are numbered
from 1 to IV; and from 1 to NNy, respectively, for convenience.
Here, the bus and line index numbers in both the coupled
interaction network and the following analysis are those in
the original IEEE 300-bus system to avoid confusion.

A. Coupled Interaction Network

We randomly select 10% of the original cascades (M, =
3000) to estimate the coupled interaction matrix B. The ¢ in
(16) is set as 0.01. Table I lists the number of nonzero entries
in the four sub-matrices of B and the proportion of nonzero
entries. The total number of nonzero entries in B is 2,116,
which only accounts for 0.58% of the 6022 entries. Also, B BL
is much sparser than the other sub-matrices, indicating that the
chance for load shed to be followed by line outages is very
low.

Fig. 2 shows the coupled interaction network of the IEEE
300-bus system. The red and green vertices respectively denote
lines and buses with load. The red, blue, yellow, and green
arrows are the links in BLL, BLB, BBL, and B BB, respectively.
Most links start from red vertices, indicating that line outages
are the dominant factors in cascading failure propagation. This
is because a more dramatic redistribution of power flow and
more heavy-loaded lines tend to be observed after the outages
of some critical lines rather than after load shedding at some
buses. This is consistent with the conclusion in [22].

The entry b2 of the submatrix B"® captures the interaction
that the load shed at bus v follows the outage of line i. The
interactions can be further analyzed by the connection of line
¢ and bus v in the transmission system. It is found that bus v
is connected with line ¢ only for 9.76% of the 246 interactions
in B'®. In addition, in 16.67% of the interactions, line ¢ is
connected with generation buses rather than load buses. The
result indicates that line outages may not only impact the load
supply at the buses that are connected to the outaged line.
This can be explained by various complicated causes of the
load shed in cascading outages, including but not limited to
the isolation of load buses, disconnection of generation buses,
and the transmission capacity limits.

B. Validation of Coupled Interaction Model

To test the fit goodness of Poisson distribution with mean
bEB for the interactions between the outage of line i and the
load shed at bus v recorded in C’Z.Lf , the Kolmogorov-Smirnov
(K-S) test [36] at the significance level of 0.05 is performed.
The results show that the assumption of Poisson distribution

is supported by the K-S test for 98.78% of the interactions

Fig. 2. Coupled interaction network for IEEE 300-bus system.

in B'® in Table I. Similarly, the K-S test is also performed
for the load shed at bus v following the different amounts
of discretized load shed at bus u. The results show that the
Poisson distribution assumption is supported by the K-S test
for all the interactions in B®® in Table L. This illustrates that
the Poisson distribution assumption is valid for the propagation
of load shed, which is consistent with [20]-[22].

We simulate 30,000 cascades using the coupled interaction
model in Section IV. The distributions of the total number
of line outages from 30,000 original cascades and 30,000
simulated cascades are compared in Fig. 3. The distributions
of the amount of load shed are compared in Fig. 4. It is seen
that the simulated cascades show a consistent distribution of
line outages and load shed as the original cascades. Moreover,
as seen in Figs. 3 and 4, 3,000 original cascade outages can
only estimate blackout size at the probability level of 1073,
while 30,000 simulated cascades from the coupled interaction
model can extend the probability level beyond 10~

To further validate the impact of the interactions captured
by B®" and B®B, the EM algorithm in Section III and the
coupled interaction model in Section IV are modified to only
include B' and B'®. The modified interaction model is
referred to as the reduced interaction model. Figs. 3 and 4
compare the probability distributions of the outages from the
interaction model and the reduced interaction model. Fig. 3
shows that BB has a marginal impact on the propagation of
line outages. This is because the number of nonzero elements
in BB is much smaller than that in B However, it is
found from Fig. 4 that B®® has a noticeable impact on the
propagation of load shed, especially on large load shed. This
is due to the fact that large blackouts often involve successive
load shedding, which is effectively captured by B BB,

As only 10% of original cascades are used to estimate the in-
teraction matrix B, the highly probabilistic interaction model
can significantly improve the simulation efficiency. Simulating
30,000 cascades by OPA model takes 9,214 seconds, while the
simulation with the coupled interaction model takes only 47
seconds. The time required to generate 3,000 original cascades
is 3000/30000 x 9214 ~ 921 seconds, and the time for
the EM algorithm is 52 seconds. Therefore, a speed-up of
9214/(921 4 52 + 47) ~ 9.03 can be achieved by the coupled
interaction model for simulating 30,000 cascades.
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Fig. 4. Probability distribution of the total amount of load shed.

C. Choosing Critical Links for Mitigation

To mitigation the propagation of cascading failure through
link [ : S — T, remedial actions can be implemented to reduce
the probability of outage 7" when source outage S occurs.
Table 1II lists the top 5 of each type of links ranked according
to I; in (33) with ¢ =1 and P = 1.5.

The target outage 7" in L — B and B — B links is load
shed at a bus. As the location and amount of load shed in
cascading outages are determined manually by the operators or
automatically by the relays, the priority of the buses in L — B
and B — B links for load shed can be adjusted with respect
to the source outages. For the manual load shed, the priority
of the bus in target outages can be adjusted by increasing its
load shed cost in the optimal power flow problem. For the
automatic load shed, the adaptive load shedding [37], which
is supported by the wide-area monitoring system, adjusts the
priority of buses online with respect to the disturbances.

In this paper, to mitigate the load shed as the target outage
T, the load shed cost of outage 7T is increased in the optimal
power flow problem in OPA model. After increasing the load
shed cost by ten times for the critical L — B and B — B
links in Table II, an average reduction of 4.4% of the number
of times of outage 7" and 6.1% of the amount of load shed is
observed. The load shed of outage 7" is not reduced effectively,
mainly because in cascading failure models such as OPA the
load shed is mainly caused by generation shortage in islands
or insufficient transmission capacity following the outage of
critical lines, and the increase of load shed cost cannot avoid
the occurrence of most load shedding. As the load shed cannot
be effectively mitigated by directly reducing its probability
after the occurrence of source outage S, another way to

.
0.14 :
2 0.014
z
<
S
& 0.001§ —a— Original ¥
—— Random At
1E-44 —*— =0, P=1 !
—o— k=1, P=0 ‘
=1, cP=1.5 ¥
1E-5

1 10
number of line outages

Fig. 5. Probability distribution of the number of line outage under different
mitigation strategies.

indirectly mitigate load shedding is to reduce the probability
of line outages as the source outages in critical L — B links.

On the other hand, the target outage 7" in L — L and
B — L links is a line outage. To mitigate line outages as the
target outage T, the probability of outage 7' can be reduced
by blocking the Zone 3 relay [24] or increasing the transfer
margin of the targeted line [38]. It is seen in Table II that the
indices of B — L links are much smaller than those of L — L
links. Moreover, critical B — L links tend to have L - L — B
link chains pointing to them. Take the link “bus 204 — line
309” as an example, which is the top one B — L link in Table
II. The link chain “line 268 — line 307 — bus 204" points to
“bus 204 — line 309”. Mitigating the critical link “line 268 —
line 307" reduces the probability of load shedding at bus 204
and further line 309 outage. In addition, as line 309 outage is
likely to follow both the critical link “line 268 — line 309”
and the link chain “line 268 — bus 204 — line 309”, reducing
the probability of line 309 outage by the B — L link “bus 204
— line 309” can be covered by the L — L link.

Based on the above analysis it is practical to mitigate the
propagation of cascading failures by only considering the
critical L — L links. In Section VI-D we will only consider
critical L — L links based mitigation.

D. Cascading Failure Mitigation

Here mitigation strategy is implemented based on the iden-
tified L — L critical links by blocking Zone 3 relay [24]. For
example, for critical link [ : line¢ — line j, when line : fails,
the relay of line 5 is blocked to reduce its tripping probability
to 10% of its original probability so that the control center
could perform remedy control and stop failure propagation.

The following four mitigation strategies are implemented.

1) Relay blocking is based on 30 randomly selected links.
2) Relay blocking is based on top 30 links ranked by I; with
- =0and B =1.
3) Relay blocking is based on top 30 links ranked by I; with
ct=1and c® =0.
4) Relay blocking is based on top 30 links ranked by I; with
c-=1and c®=15.
For each mitigation strategy, 150,000 cascades are generated
by the OPA model with relay blocking for the corresponding
links [24]. In this paper, when the source outage S happens
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TABLE II
TOP 5 CRITICAL LINKS RANKED ACCORDING TO I; WHEN ¢ = 1 AND ¢B = 1.5

L > Llink T, [ - B Ink T, B — L link T, B — B Ink T,
Tine 268 — linc 300  2.35 linc 307 — bus 171 7.03  bus 204 — line 309 032  bus 120 — bus 100 0.19
line 251 — line 252 1.96  line 309 — bus 171 697  bus 152 — line 249  0.23  bus 106 — bus 106  0.16
line 223 — line 222 1.89  line 268 — bus 171  5.67  bus 99 — line 178 021  bus 106 — bus 163  0.12
line 309 — line 268  1.44  line 268 — bus 204  5.62  bus 170 — line 268  0.19  bus 146 — bus 146  0.12
line 268 — line 307 131  line 307 — bus 204 474  bus 152 — line 247  0.15  bus 138 — bus 120 0.10
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—— =1, B=0 ¢
=1,cP=15
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1E-5 T
100 1000

amount of total load shed / MW

Fig. 6. Probability distribution of the amount of load shed under different
mitigation strategies.

in generation g of cascade m, the relay is blocked for the
target outage 7' in all remaining generations of cascade m.
Figs. 5 and 6 compare the probability distributions of the
number of line outages and the amount of load shed before
and after mitigation. As in Fig. 5, the number of line outages is
mitigated the most by the third mitigation strategy since only
line outage consequence is considered (c® = 0). However,
the reduction of load shed is not as effective as the strategies
that consider load shed consequences. Similarly, as in Fig. 6,
when the second strategy only considers the cost of load shed
(ct = 0), the amount of load shed is mitigated the most but
the line outage is not mitigated very well. By properly setting
ct/cB = 1/1.5, the fourth mitigation strategy is able to make
a tradeoff and reduce both line outage and load shed to a great
extent, leading to the best mitigation effect in terms of both
line outage and load shed consequences.

To evaluate the mitigation effect, the size of cascades is
classified into small, medium, and large cascade in terms of
the total number of line outages (%), the total amount of load
shed (7B), or a comprehensive cost (7). The comprehensive
cost 7 is calculated by assuming that the ratio between the
cost of the normalized line outage and that of the normalized
load shed is 1/1.5 as:

7_L B

= 415

N Xt (34)

Tables III-V compare the probabilities of small, medium,
and large cascades under the four mitigation strategies. Note
that the samples in Tables III-V for large cascades are no less
than 11 in order to estimate the probabilities of large cascades
with a confidence level of 95% [39]. As in Tables III-IV,
when ¢t = 1 and ¢B = 1.5 the mitigation effect in terms of
line outage is similar to the case in which ¢t =1 and ¢® = 0

TABLE III
PROBABILITIES OF DIFFERENT CASCADE SIZES MEASURED BY 7"

Cases Ifmall medium large

t<15 15<7b<25 b > 25

No mitigation  0.8872 0.1095 0.0033

Random 0.8932 0.1040 0.0028

ct=0, B=1 0.9856 0.0142 1.53%x10~4
ct=1, B=0 0.9985 0.0015 0
ct=1, B=15 09982 0.0018 0
TABLE IV

PROBABILITIES OF DIFFERENT CASCADE SIZES MEASURED BY 78

Cases small medium large
7B <1500 1500 < 7B <3000 7B > 3000
No mitigation 0.9129 0.0798 0.0073
Random 0.9144 0.0781 0.0075
ct=0, B=1 0.9916 0.0082 2.13%x10~%
ct=1, B=0 0.9584 0.0405 0.0011
ct=1, B=15 0.9910 0.0087 3.34x104
TABLE V

PROBABILITIES OF DIFFERENT CASCADE SIZES MEASURED BY T

Cases small medium large
7<015 015<7<0.30 7>0.30
No mitigation  0.9483 0.0506 0.0011
Random 0.9485 0.0502 0.0013
ct=0, B=1 0.9963 0.0037 0
ct=1, B=0 0.9901 0.0098 8.67x107>
ct=1, B=15 0.9971 0.0029 0

while the mitigation effect in terms of load shed is similar to
the case in which c¢- = 0 and ¢® = 1. It is seen from Table V
that a proper choice of c' and ¢ enables the fourth strategy to
provide the most reduction of the medium and large cascades
in terms of the comprehensive cost.

Finally, to validate the optimality of the fourth strategy, a
greedy algorithm in [40] is also used to identify the criti-
cal links from the coupled interaction network. The optimal
blocked links are chosen in [40] to minimize the spread
of contamination in the independent cascade (IC) model, a
high-level statistical model similar to the proposed coupled
interaction model. The details of the greedy algorithm can be
found in [40]. Here only the specific definitions for cascading
outages are introduced. Firstly, the sampling of graph in
[40] can be done by simulating cascades using the coupled
interaction model. To be specific, when an outage is generated
for a line or a bus in the simulation, the corresponding node
in the coupled interaction network is activated. And when
an outage generates another new outage, the corresponding
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TABLE VI
COMPARISON OF TOP 10 CRITICAL LINKS WITH RESPECT TO I; AND THE
GREEDY ALGORITHM

Critical links IlRaigfem
line 268 — line 309 1 1
line 251 — line 252 2 2
line 223 — line 222 3 3
line 309 — line 268 4 4
line 268 — line 307 5 6
line 190 — line 197 6 7
line 190 — line 199 7 9
line 250 — line 249 8 11
line 222 — line 225 9 12
line 190 — line 204 10 5

propagation link is activated. All the activated nodes and links
in a cascade compose a directed graph. In cascade m, outage
7 1is reachable from outage ¢ if there is a path from ¢ to j
along the activated links. The reachable node set for outage ¢
in cascade m is calculated as 7(i,m) below:

(i, m) n 1.5TB(i,m)

T(Z’7m) = Nl Xt )

(35)
where 75(i,m) is the total number of line outages reachable
from line 4 in cascade m, and 78(i,m) is the total amount of
load shed at the buses reachable from line % in cascade m.

With the above definitions, the greedy algorithm in [40] can
be applied to choose critical L — L links from the coupled
interaction network by calculating the average reachable node
set for activated nodes in the sampled graphs. In this paper,
each L — L link is chosen with 30,000 cascades simulated
by the coupled interaction model. After the choice of one
L — L link, the corresponding entry bt of B'" is set to
be zero to mimic the removal of the link from the network
in [40]. And the next blocked link is chosen using another
30,000 cascades simulated with the updated interaction matrix.
Namely, 30x30,000 cascades are simulated in total to choose
the top 30 links.

The result shows that 27 out of 30 critical links in the
greedy algorithm are also chosen as critical links by the fourth
strategy. The remaining 3 links rank, respectively, 33rd, 36th
and 38th with respect to I;. Table VI compares the top 10
critical links chosen by using I; and the greedy algorithm. It is
seen that the fourth strategy and the greedy algorithm identify
similar critical links. Figs. 7 and 8 compare the mitigation
effects of the fourth strategy and the greedy algorithm, which
are very close due to the similarity of critical links.

VII. CONCLUSION

In this paper, a coupled interaction matrix is proposed and
estimated by EM algorithm in order to extract useful infor-
mation about cascading propagation of interdependent line
outages and the load shed. A highly probabilistic interaction
model is further proposed based on the coupled interaction
matrix to enable efficient cascading failure simulation. Based
on the coupled interaction matrix, critical links are identified
by calculating a comprehensive severity index that considers
the consequences of both line outages and the load shed.

0.14
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number of line outages

Fig. 7. Probability distribution of the number of line outages under the fourth
strategy and the greedy algorithm.
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Fig. 8. Probability distribution of the amount of load shed under the fourth
strategy and the greedy algorithm.

Simulation results on the IEEE 300-bus system validate
the effectiveness of the proposed coupled interaction model
in capturing the statistical properties of the original cascades
and demonstrate that a speed-up of 9.03 is achieved when
simulating 30,000 cascades. It is also found that the links
between line outages are dominant factors in the propagation
of cascading failures. Besides, the identified critical links
based on the proposed comprehensive severity index enable
a proper tradeoff between reducing line outages and reducing
the load shed, leading to a better mitigation effect than only
considering either line outages or the load shed.

In addition to line outages and the load shed, other types
of events can also be incorporated into the coupled interaction
model. For example, similar to [22], the number of isolated
buses can also be analyzed together with line outages and
the load shed. The tripping events of generators reported in
recent blackouts [41], which may be caused following the
voltage disturbances after line faults, also deserve attention.
The coupled interaction model is promising for capturing
the propagation of isolated buses or the generator outages,
which are discrete events similar to line outages in blackouts.
The interactions among line outages, load shed, and isolated
buses/generator outages will be investigated in the future.

APPENDIX

The choice of the discretization unit for each load bus is dis-
cussed as follows. Let 5\55+1) and 5%’”1) be the mean and the
variance of the discretized load shed at bus v following the out-
age of line ¢ when Ag,k) is chosen as the discretization unit for
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bus v. If we change the discretization unit for bus v to Af,kﬂ),

the mean changes to )\gfﬂ) :\Ef+1)Aﬂgk)/Agk+l), and
_ 5_2(k) (Ag,k))Q/(Ang))Q

the variance changes to a%kﬂ) o
Note that the mean of the Poisson distribution equals its
variance. A better choice of Aq(,kﬂ) should make the mean
)\Efﬂ) close to the variance U?5k+1) as much as possible.
Moreover, the choice of ASJ’““) should consider all the lines
whose outages have interactions with the load shed at bus wv.
Thus, to choose the optimal discretization unit Aqgkﬂ) for bus

v, the following optimization problem (36) can be solved:

) A\ B+ 2(k+1)
. E41)\ _ i i
min f(A,(J )) = Z N, ;Z)lﬁ-l) + )\I(Uk'"l‘l) (36)
1€SLB O v
(k)
k1 Ay’ 1 (kt1
st AT ATUH)AE” ) 37)
v
(k) ~ 2
2(k+1 A ~2(kt1
o2 (B Yoo
v
It is easy to obtain the optimal solution as
~2(k+1)
> ey
(k:+1) (k) iESbB v Aiv
Ay = Av RGN (39)
.%B i 20T
i€ Sy
If we consider S\EfH) ~ Blgf(kﬂ) and 5%’“*” ~ S%k+1),
then Ag,kﬂ) can be chosen as
G2(k+1)
> Ny
(es1) _ a0 |
Av = Av ngs(k+1) :
le I v
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