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GSOFA: Scalable Sparse Symbolic
LU Factorization on GPUs

Anil Gaihre, Xiaoye Sherry Li and Hang Liu

Abstract—Decomposing a matrix A into a lower matrix L and an upper matrix U, which is also known as LU decomposition, is an
essential operation in numerical linear algebra. For a sparse matrix, LU decomposition often introduces more nonzero entries in the L

and U factors than in the original matrix. A symbolic factorization step is needed to identify the nonzero structures of L and U

matrices. Attracted by the enormous potentials of the Graphics Processing Units (GPUs), an array of efforts have surged to deploy
various LU factorization steps except for the symbolic factorization, to the best of our knowledge, on GPUs. This paper introduces
GSOFA, the first GPU-based symbolic factorization design with the following three optimizations to enable scalable LU symbolic
factorization for nonsymmetric pattern sparse matrices on GPUs. First, we introduce a novel fine-grained parallel symbolic factorization
algorithm that is well suited for the Single Instruction Multiple Thread (SIMT) architecture of GPUs. Second, we tailor supernode
detection into a SIMT friendly process and strive to balance the workload, minimize the communication and saturate the GPU
computing resources during supernode detection. Third, we introduce a three-pronged optimization to reduce the excessive space
consumption problem faced by multi-source concurrent symbolic factorization. Taken together, GSOFA achieves up to 31× speedup
from 1 to 44 Summit nodes (6 to 264 GPUs) and outperforms the state-of-the-art CPU project, on average, by 5×. Notably, GSOFA

also achieves up to 47% of the peak memory throughput of a V100 GPU in the Summit Supercomputer.

Index Terms—Sparse linear algebra, sparse linear solvers, LU decomposition, static symbolic factorization on GPU
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1 INTRODUCTION

Many scientific and engineering problems require solving
large-scale linear systems, i.e., Ax = b. Solving this prob-
lem with direct methods [1] often involves LU factoriza-
tion [2], [3], that is, decomposing the original matrix A into
lower and upper triangular matrices L and U, respectively,
where A = LU. Since LU decomposition of a sparse matrix
typically introduces new nonzeros, also known as fill-ins,
in the L and U factored matrices, symbolic factorization [2]
is used to compute the locations of the fill-ins for both L
and U matrices. This information is needed to allocate the
compressed sparse data structures for L and U, and for the
subsequent numerical factorization.

Symbolic factorization is a graph algorithm that acts on
the adjacency graph of the corresponding sparse matrix.
Figure 1 shows a sparse matrix A and its adjacency graph
G(A). In the graph, each row of a matrix corresponds to
a vertex in the directed graph with a nonzero in that row
corresponding to an out edge of that vertex. For instance,
row 8 of A in Figure 1(a) has nonzeros in columns {1, 2, 7,
8, 9}. We thus have those corresponding out edges for vertex
8 in G(A) of Figure 1(b). For brevity, we do not include the
self edges corresponding to the diagonal elements. We will
use this example throughout this paper.
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(a) The sparse matrix A. (b) G(A): Graph of A.
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9 0 Figure 1: (a) A
sparse matrix A
used throughout this
paper where each
represents a nonzero,
(b) G(A): the graph
representation of A.

The motivation to parallelize the sparse symbolic factor-
ization on GPUs is threefold. Firstly, the newer generation
GPUs have a relatively large amount of device memory,
which allows the entire sparse matrix to reside on the GPUs.
Secondly, more and more exascale application codes are
moving to GPUs, which demands the underlying linear
solvers to reside on GPUs to eliminate CPU-GPU com-
munication. Ultimately, we will move all the workflows
of the sparse LU solver to GPUs. Third, many GPU-based
efforts have gone to deploying numerical factorization and
triangular solution on GPUs [4], [5] due to (i) numerical
factorization and triangular solution take more time, and (ii)
symbolic factorization consumes excessive memory space.
We argue that since sparse symbolic factorization detects
the fill-ins and supernodes for the numerical steps, it is
imperative to move sparse symbolic factorization on GPUs.

Existing symbolic factorization algorithms are difficult
to deploy on GPUs, as well as scale-up in distributed
settings, due to stringent data dependency, lack of fine-
grained parallelism, and excessive memory consumption.
There mainly exist three types of algorithms to perform
symbolic factorization, that is, fill1 and fill2 algorithms by
Rose and Tarjan [6] and Gilbert-Peierls algorithm [7], [8].
They are based on traversing either the graphs G(L) and
G(U) or graph G(A). In particular, fill1 works on G(U)



for fill-ins detection while Gilbert-Peierls algorithm does
that on G(L). Fill2 algorithm is analogous to Dijkstra’s
algorithm [9]. Consequently, fill1 and Gilbert-Peierls algo-
rithms are sequential in nature as the fill-in detection of
larger rows or columns has to wait until the completion
of the smaller rows or columns. Fill2 algorithm lacks fine-
grained parallelism (i.e., in each source) due to strict pri-
ority requirement, although coarse-grained parallelism (i.e.,
at source level) exists. Furthermore, symbolic factorization
needs to identify supernode [10], which is used to expe-
dite the numerical steps. But supernode detection presents
cross-source data dependencies. Third, we need to perform
parallel symbolic factorization for a collection of rows to
saturate the computing resources on GPUs. This introduces
overwhelming space consumption problem, which is similar
to multi-source graph traversal [11].

In this paper, we choose the fill2 algorithm as a starting
point stemming from the fact that fill2 directly traverses
the original instead of the filled graphs, i.e., allowing in-
dependent traversals from multiple sources. However, we
have to revamp this algorithm to expose a higher degree of
fine-grained parallelism in order to match GPUs’ SIMT na-
ture and reduce the excessive memory requirements during
the multi-source symbolic factorization to, again, fit GPUs,
which often equip limited memory space. To summarize, we
make the following three major contributions.

First, to the best of our knowledge, we introduce the
first fine-grained parallel symbolic factorization that is well
suited for the SIMT architecture of GPUs. Particularly, in-
stead of processing one neighbor of each source at a time, we
allow all the neighboring vertices to be processed in parallel,
such that the computations align well with the SIMT nature.
Since this relaxation enables traversal to some neighbors before
their dependencies are satisfied, we further allow revisitation to
these vertices to ensure correctness. We also introduce opti-
mizations to reduce the reinitialization overhead and ran-
dom memory access to the algorithmic data. Finally, we use
multi-source concurrent symbolic factorization to saturate
each GPU and achieve intra-GPU workload balance.

Second, we not only tailor supernode detection into a
SIMT friendly process but also strive to balance the workload,
minimize the communication and saturate GPU computing re-
sources during supernode detection. Particularly, we break
supernode detection into two phases to expose massive par-
allelism for GPUs. Further, we assign a chunk of continuous
sources to one computing node to avoid inter-node com-
munication and interleave the sources of each chunk across
GPUs in each node to balance the workload. Eventually, we
investigate the configuration space of unified memory and
propose a design that can significantly reduce page faults
during supernode detection.

Third, we introduce a three-pronged optimization to
combat the excessive space consumption problem faced
by multi-source concurrent symbolic factorization: (i) We
propose the external GPU frontier management because
the space requirement of frontier-related data structures is
very dynamic, and their access pattern is predictable. (ii)
We identify and remove the unused allocations in vertex
status-related data structures; and (iii) since various data
structures present dynamic space requirements with respect
to different sources, we propose allocating single memory
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(a) Symbolic factorization 
on A. Row 8 under analysis.

(c) Supernode detection 
on L+U.

(b) G(L+U): Graph 
representation of L+U.
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Figure 2: (a) Symbolic factorization on sparse matrix with row 8
under analysis A, (b) the Graph representation of filled matrix
(L+U) with row 8 under analysis and (c) Supernode detection
on filled matrix. The is the new nonzeros (fill-ins) in the L and
U factors. And 99K/99K indicates the new edges in the G(L+U)
graph. The dark edges with blue or pink glows in (a) and (b)
show the traversal paths that lead to new fill-ins.

space for all these data structures and dynamically adjust
their capacities to reduce the frequency of copying frontier-
related data structures between CPU and GPU memories.

The rest of this paper is organized as follows: Section 2
introduces the background of this work. Section 3 presents
the design challenges. Sections 4, 5 and 6 present the fine-
grained symbolic factorization algorithm design, parallel
efficient supernode detection, and space consumption opti-
mization techniques. We evaluate GSOFA in Section 7, study
the related work in Section 8, and conclude in Section 9.

2 BACKGROUND

2.1 Sparse LU Factorization

Factorizing a sparse matrix A into the L and U matrices
often involves several major steps, such as preprocessing,
symbolic factorization, and numerical factorization.

Matrix preprocessing performs either row (partial piv-
oting) or both row and column permutations (complete
pivoting) in order to improve numerical stability and reduce
the number of fill-ins in the L and U matrices. For numerical
stability, existing methods aim to find a permutation so
that the pivots on the diagonal are big, for instance, by
maximizing the product of diagonal entries and make the
matrix diagonal dominant [12]. Supplemental file illustrates
how matrix preprocessing works with matrix A. Regarding
fill-in reduction, the popular strategies are minimum degree
algorithm [13], Reverse Cuthill-McKee [14] and nested dis-
section [15], or a combination of them, such as METIS [16].

Symbolic factorization. Symbolic factorization can be
viewed as performing Gaussian elimination on a sparse
matrix with either 0 or 1 entries. At each elimination step,
the pivoting row is multiplied by a nonzero scalar and
updated into another row below, which has nonzero in the
pivoting column; this is called an elementary row operation.
After a sequence of row operations, the original matrix is
transformed into two triangular matrices L and U. Con-
sidering row 8 in Figure 2(a), since row 8 has nonzeros
at columns 1 and 2, both rows 1 and 2 will perform row
operations on row 8. Using row operation from row 2 as an
example, it produces a fill-in (8, 3), which further triggers
row operations from rows 3 and 5 that produce fill-ins (8, 4)
and (8, 5). We will detail this process shortly. The following
fill-path theorem succinctly characterizes the fill-in locations
reflecting the above elimination process.
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Theorem 1. A fill-in at index (i, j) is introduced if and
only if there exists a directed path from i to j, with the
intermediate vertices being smaller than both i and j [6].

Theorem 1 can be applied on either the (partially) filled
graph G(U) by the fill1 algorithm or the original graph
G(A) by the fill2 algorithm [6].

Figure 3(a) shows how fill1 works for the src-th row
in three steps: (i) lines 3-9 initialize the fill(:) and fron-
tierQueue(:). While the usages of frontierQueue(:) and
newFrontierQueue(:) are straightforward, fill(:) is a flag
array that tracks which vertex is visited by src vertex. (ii)
If the neighbor vertex is first-time visited (i.e., lines 13-16),
we mark this neighbor as visited by setting fill(neighbor) =
src at line 13, and add neighbor to either L(src, :) or U(src, :)
based upon the location of (src, neighbor). (iii) If neighbor
is smaller than src, we add it to newFrontierQueue(:) for
next iteration traversal. Figure 2(b) shows how row 8 works
under fill1 algorithm. That is, 8→ 2→ 3 leads to (8, 3), 8→
2 → 3 → 4 leads to (8, 4), 8 → 1 99K 5 leads to (8, 5) . Note
that the third path goes through a new fill-in edge (1,5).

Figure 3(b) presents the fill2 algorithm. Similar to fill1,
it uses fill(:) array to indicate an already visited vertex by
setting fill(neighbor) = src. The algorithm differs from fill1
mainly on two points. (i) It uses the original graph G(A) for
traversal (line 12). Second, during traversal, this algorithm
only permits traversing one vertex (i.e., threshold) at a
time, starting from the smallest one (line 9 - 10). For each
threshold that is treated as a frontier, this algorithm checks
its neighbors, updates the statuses of the neighbors in fill(:),
and adds new fills to either L(src,:) or U(src,:), as well as to
the newFrontierQueue(:) if this neighbor obeys Theorem 1.
This process continues until the vertices that are smaller
and connected to the threshold vertex are exhausted, i.e.,
frontierQueue(:) is empty. Subsequently, fill2 will proceed
to the next threshold vertex in line 9. Considering row 8 in
Figure 2(b) again, the three fill-ins are due to the three paths
going through only existing edges: 8→ 2→ 3 leads to (8, 3),
8→ 2→ 3→ 4 leads to (8, 4), 8→ 2→ 5 leads to (8, 5).

A decade later, [8] introduces the Gilbert-Peierls algo-
rithm to find the fill-in structures, which is a simpler way
of interpreting fill1 algorithm. Specifically, this approach
determines the nonzero structures column by column. For
clarity, we define that L(i : j,m : n) and U(i : j,m : n)
denote the block from rows i to j, and columns m to n in
L and U matrices, respectively. For column k, it traverses
the graph L(:, 0 : k − 1)T in a Depth-First Search (DFS)
manner. The vertex that is reachable by the vertices in
column k results in a fill-in at column k. The graph used
by [8] is similar to that of fill1 except for that [8] applies a
transpose to the L matrix. Further, the vertices that can be
reached from the source vertices will automatically satisfy
Theorem 1 because only the graph of L(:, 0 : k − 1)T is
used.

It is worth noting that the nonsymmetric-pattern
sparse LU symbolic factorization is much harder than the
symmetric-pattern counterpart: (i) In the symmetric case,
the transitive reduction of the filled graph G(L) is a tree,
called elimination tree; symbolic factorization using the
elimination tree can be done in time O(nnzeros(L)), linear
to the output size. (ii) However, for the nonsymmetric

Input: src, A(:, :)
Output: src-th row of L(src, : ) and U(src, : )
Initialization: fill(:) = 0; //Only init once
fill(src) = src; 
forall v in A(src, :) do

fill(v) = src;
if v < src add v to L(src, :);
else add v to U(src, :);

for threshold = 0:src-1 s.t. fill(threshold) == src do
add threshold to frontierQueue(:);
forall frontier ∈ frontierQueue(:) do

forall neighbor ∈ A(frontier, : ) do
if fill (neighbor) < src

fill (neighbor) = src;
if neighbor > threshold 

add neighbor to L(src, :) or U(src, :);
else

add neighbor to newFrontierQueue(:);
swap (frontierQueue(:), newFrontierQueue(:))
and goto line 11;

Input: src, A(:, :)
Output: src-th row of L(src, : ) and U(src, : )
Initialization: fill(:) = 0; //Only init once
fill(src) = src; 
forall v in A(src, :) do

fill(v) = src;
if v < src

add v to frontierQueue(:) and L(src, :);
else (add v to U(src, :));

forall frontier ∈ frontierQueue(:) do
forall neighbor ∈ U(frontier, :) do

if fill (neighbor) < src
fill (neighbor) = src;
add neighbor to L(src, :) or U(src, :);
if (neighbor < src) 

add neighbor to newFrontierQueue(:);
swap (frontierQueue(:), newFrontierQueue(:))
and goto line 10;
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(b) Fill2 algorithm(a) Fill1 algorithm

Figure 3: Fill1 and fill2 algorithms. We use MATLAB format
to denote both arrays and matrices. The snippet with the
same background colors in the algorithms represent equivalent
sections of these two algorithms.

cases, the transitive reduction of the filled graphs G(L)
and G(U) are Directed Acyclic Graphs (DAGs), called elim-
ination DAGs. Computing these DAGs is expensive, and
all variants of this method on the nonsymmetric symbolic
factorization algorithms take asymptotically longer than
linear time [6], [8].

Numerical factorization. After the structure of the fill-
ins is determined, the solvers perform numerical factoriza-
tion to calculate the values of the L and U matrices. Popular
numerical factorization methods are left-looking [8] and right-
looking [2]. We explain how numerical factorization works
on matrix A in supplemental file.

Triangular solution. Once LU factorization arrives at
A = LU, we can solve Ax = b in two steps with triangular
solver, given Ax = b becomes LUx = b. First, triangular
solver can solve Ly = b to derive y. Second, triangular
solver derives x by solving Ux = y.

2.2 Supernode

Symbolic factorization also needs to identify the supern-
odes in G(L + U), which is important to improve the
performance for both numerical factorization and triangular
solver. Particularly, a supernode is a range of rows or columns
with the same nonzero structures, such as rows 1 and 2 in
Figure 2(c), so that these rows or columns can be treated
as a dense matrix [10]. During numerical factorization, a
dense matrix format allows us to use Level 3 Basic Linear
Algebra Subprograms (BLAS) operations such as matrix-
matrix multiplication, which is often faster than the lower
level BLAS operations like Level 2 BLAS operations. In
this paper, GSOFA supports T3, one of the most popular
types of supernodes among five types of supernodes [10].
Definition 1 defines a T3 supernode.

Definition 1. Supposing a T3 supernode begins at row r
and extends through row s − 1, row s belongs to T3 if
and only if nnz(U(s, :)) = nnz(U(s − 1, :)) − 1 and
L(s, r) 6= 0 according to [10].

Definition 1 states that for a supernode that already
contains rows r through s−1, two requirements are needed
for the next row s to be included in this supernode: (i) The
number of nonzeros in row s of U shall be one fewer than
that of row s− 1. (ii) There shall be a nonzero at (s, r) in the
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filled matrix L. If either of the requirements is not met, row
s will not belong to the supernode. Intuitively, (i) a nonzero
at L(s, r) ensures that all the nonzero patterns of row r in
U are mapped into row s during symbolic factorization. (ii)
Further, because the nonzero count of row s is one fewer
than that of row s− 1 in U, we can conclude rows s− 1 and
s follow the same nonzero pattern in U. Thus, they belong
to the same supernode.

Now, we use the example in Figure 2(c) to illustrate how
to detect a supernode in G(L + U). Starting from row 0,
we check whether (i) the number of nonzeros in row 1 of U
matrix (i.e. 2) is one fewer than row 0 (i.e., 3); and (ii) there
is a nonzero at (1, 0). Since both requirements are met, row
1 is included in the supernode starting at row 0. Applying
a similar process to row 2, we find that row 2 has neither
one less nonzero than the previous row (i.e., row 1) nor a
nonzero at (2, 0). Hence, row 2 starts a new supernode.

2.3 Graphics Processing Units

This section discusses general-purpose GPUs with recent
NVIDIA V100 GPU [17] as an example.

Streaming processors and threads. The V100 GPU is
designed with NVIDIA Volta architecture. V100 is powered
by 80 Streaming Multiprocessors (SMX). Each SMX features
64 CUDA cores, resulting in a total of 5,120 CUDA cores.
During execution, a GPU thread runs on one CUDA core. A
SMX schedules a group of 32 consecutive threads known as
a warp in a SIMT manner. A collection of consecutive warps
further formulate a Cooperative Thread Array (CTA), or a
block. All the CTAs together in one kernel are called a grid.

Memory architecture. V100 comes with two memory
capacities, that is, 16 GB and 32 GB, with peak bandwidth
up to 900 GB/s. Each SMX has 96 KB on-chip fast memory
that is shared by the configurable shared memory and L1
cache. All the SMXs share a L2 cache at a size of 6,144 KB.
Each thread block can use up to 65,536 32-bit registers.

Fine-grained parallelism. GPUs favor fine-grained par-
allelism. Particularly, GPUs can only achieve the aforemen-
tioned ideal computing and memory throughput when a
warp of threads is working on the same instruction and
fetching data from consecutive memory addresses. Other-
wise, GPUs might suffer from either warp divergence or
uncoalesced memory access issues, resulting in order of
magnitude performance degradation [17].

Unified memory [18] can unite the memory space of
all GPUs and CPUs into a single virtual address space.
During execution, any process or thread can access the
data from this virtual address space. In the background,
the required data is either transferred from where the data
resides to where the data is needed implicitly or directly
accessed remotely. This is different from the traditional ex-
plicit method, which requires programmers to explicitly call
cudaMemcpy() (or similar functions) in order to transfer the
data. Consequently, unified memory bests explicit transfer
when the requested data is either small (in terms of size) or
randomly accessed, or both. Further, unified memory can be
used without terminating the kernel, which is not possible
from the explicit method.

Matrix (A) Abbr. Order (A) nnz (A)
Struct.
symm.

nnz(A)
Order(A)

#Fill-in
nnz(A)

BBMAT BB 38,744 1,771,722 0.53 45.7 18.29
BCSSTK18 BC 11,948 149,090 1 12.47 6.52
EPB2 EP 25,228 175,027 0.67 6.93 9.28
G7JAC200SC G7 59,310 717,620 0.03 12.1 24.51
LHR71C LH 70,304 1,528,092 0 21.7 3.10
MARK3JAC MK 64,089 376,395 0.07 5.9 28.59
RMA10 RM 46,835 2,329,092 1 49.729 3.14

AUDIKW 1 AU 943,695 77,651,847 1 82.28 31.43
DIELFILTER DI 1,157,456 48,538,952 1 41.93 22.39
HAMRLE3 HM 1,447,360 5,514,242 0 3.8 32.63
PRE2 PR 659,033 5,834,044 0.33 8.8 20.70
STOMACH ST 213,360 3,021,648 0.85 14.2 25.77
TWOTONE TT 120,750 1,206,265 0.24 10 6.07

Table 1: Dataset specifications. Note, in graph terminology,
order (A) and nnz(A) represent |V | and |E| of the graph G(A),
respectively, where A is the matrix of interest.

2.4 Dataset
Table 1 presents the datasets that are used to evaluate
GSOFA. They are available from Suite Sparse Matrix Col-
lection [19]. This dataset collection includes a variety of
applications, such as circuit simulation (HM, PR, and TT),
structural problems (BC, AU), computational fluid dynam-
ics (BB and RM), thermal problems (EP), economic modeling
(G7 and MK), chemical engineering (LH), electromagnetics
(DI) and bioengineering problems (ST). Besides, this dataset
collection covers a wide range of variations in both struc-
tural symmetry and sparsity (the fifth and sixth columns
in Table 1). This table arranges the datasets into smaller
(upper) and larger (lower) collections with respect to or-
der (A). The larger matrices are used in space complexity
analysis in Sections 6 and 7. Following SuperLU DIST [20],
we use ParMETIS [21] library to preprocess the matrix, and
adopt Compressed Sparse Row (CSR) format to represent
the matrices [22], [23].

3 DESIGN CHALLENGES

Challenge #1. Existing symbolic factorization algorithms
present limited fine-grained parallelism.
Comparing the fill1 and fill2 algorithms, we can see that fill1
is severely limited in parallelism due to data dependency,
because, to find the nonzero structure of the current row, we
need to wait for the completion of detecting all the nonzero
structures of the previous rows in U. In comparison, the
fill2 algorithm exhibits a high degree of parallelism: because
graph G(A) is static, we can perform parallel independent
traversals from all vertices in G(A). Therefore, an algorithm
variant based on fill2 is more favorable for a massively
parallel device like GPU.

Despite that fill2 presents more parallelism, fill2 also
faces the limited fine-grained parallelism issue because line
9 - 10 of fill2 in Figure 3(b) only allows processing one
threshold vertex at a time. It is important to note that simply
allowing fill2 to process multiple threshold vertices in parallel will
not warrant the correctness because the threshold value has
to be strictly incremented sequentially. This is due to the
constraint that each vertex can only be visited once in fill2.
An example of this argument is discussed in Section 4.

To mitigate this bottleneck, GSOFA allows all frontiers to
be processed in parallel, such that a warp of GPU threads
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can work on consecutive tasks. Given this relaxation, some
frontiers might be worked on earlier than they are supposed to,
we introduce new data structures and control logics to allow
revisitations in order to ensure correctness.

Challenge #2. Parallel supernode detection needs a
good trade-off between load balance and communica-
tion reduction.

(a) BC: small dataset (b) TT: big dataset
Figure 4: Average frontier size per source for BC and TT. Note,
we only present two datasets for brevity.

Theorem 1 indicates that the amount of workload per
source generally increases with the increase of source vertex
ID, because more intermediate vertices will be smaller than
the source ID when the source is larger. Our experimen-
tal results in Figure 4 corroborate with this. The general
trend is that the workload soars with the increasing source
ID. For instance, the workload ratios between the smallest
and largest sources are 1,265× and 6,230× for BC and TT
datasets, respectively.

We note that the optimization to balance the workload con-
tradicts the optimization for supernode detection. On the one
hand, as suggested by the workload dynamic of different
sources in Figure 4, a proper workload balancing strategy
would require interleaving the sources across GPUs. On the
other hand, supernode detection has to check a continuous
range of sources, implying that assigning a continuous
range of sources to one GPU would minimize the communi-
cation cost. These contradictory goals require novel source
scheduling and system optimizations.

In this paper, we first transform supernode detection into
a massively parallel process that fits GPUs. Subsequently,
we introduce a trade-off to both balance the workload and
significantly reduce the communication cost during supern-
ode detection with the help of a judicious source scheduling
mechanism and an interesting unified memory-based data
sharing design.

Challenge #3. The auxiliary data structures may con-
sume overwhelming memory space.
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Figure 5: GSOFA memory consumption of the original matrix
vs the auxiliary data structures on a Summit compute node.

While the fast runtime is important for symbolic factor-
ization, so is the small space consumption. As shown in Fig-
ure 3(b), the original fill2 algorithm requires three auxiliary

Input: maxId(:), src, A(:, :)
Output: src-th row of L(src, : ) and U(src, : )
Initialization: maxId(:)= maxVal; //Initialize every !"#$"%

|$|
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 src

maxId (src) = 0;
forall v in A(src, :) fill(v) = 0, maxId (v) = 0, add v to either L(src, :) or U(src, :);
forall v in A(src, :) such that v < src, add src to frontierQueue(:); 
forall frontier ∈ frontierQueue(:) in parallel do //Fine-grained parallelism

newMaxId = Maximum of frontier and maxId(frontier);
forall neighbor ∈ A(frontier, :) in parallel do //Fine-grained parallelism

if ((atomicMin of maxId(neighbor) and newMaxId) > newMaxId)
if neighbor > newMaxId

if ((atomicMax of fill(neighbor) and src) < src)
//if not detected as fill-in before 
add neighbor to either L(src, :) or U(src, :);

else continue; //Avoid re-insertion to frontierQueue(:)
if (neighbor < src) atomicAdd neighbor to newFrontierQueue(:)

swap (frontierQueue(:), newFrontierQueue(:));

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:

13:
14:
15:
16:

Line 9.5
if fill(neighbor) == src continue;

//Enable line 9.5 when
there exist many 
fill-ins in the graph.

Figure 6: GSOFA parallel algorithm. The data structures are in
MATLAB format. L(src, :) and U(src, :) represent the L and U
structures of the row src.

arrays, fill(:), frontierQueue(:) and newFrontierQueue(:).
When we improve the fill2 algorithm with combined fron-
tier queue traversal, we need to add two new arrays:
tracker(:) and newTracker(:). In addition, we need maxId(:)
to allow the revisitation mechanism to avoid false negatives.
Altogether, each source needs six nontrivial auxiliary data
structures, each of which consumes memory space of size
O(|V |). Further, since we often need tens to thousands of
concurrent sources to saturate a GPU (discussed in Sec-
tion 4), the memory requirement of the initial version of
GSOFA for certain matrices becomes significantly large in
comparison to the available memory on GPUs. Figure 5
presents the GPU memory consumption for the sparse
matrix and the auxiliary data structures (before and after
space optimization) mentioned in Table 2 on one Summit
node. One can observe that the memory requirement for the
auxiliary data structures is orders of magnitude larger than
that for the matrices. In particular, maximum and minimum
memory consumption ratios for auxiliary data structure and
matrices are 3121:1 in MK and 36:1 in AU, respectively.

Section 6 presents a series of optimizations to reduce
the auxiliary data structures memory consumption while
maintaining similar performance. As shown in Figure 5,
these optimizations reduce the memory consumption of the
auxiliary data structure by an average factor of 4×. The
maximum and minimum ratios of memory consumption for
auxiliary data structure and matrices are reduced to 801:1 in
MK and 9:1 in AU.

4 A NEW FINE-GRAINED PARALLEL SYMBOLIC
FACTORIZATION ALGORITHM

GSOFA addresses the first challenge, i.e., limited fine-
grained parallelism within traversal for a single row, by i)
allowing parallel processing of the frontiers, (ii) adding a new data
structure maxId(:) array of size |V |, and (iii) allowing revisitation
of vertices. Below we explain the data structure and algo-
rithm design separately. Formally, from the source vertex
src to a specific vertex v, there often exist multiple paths,
and each path has a maximum numbered vertex. GSOFA
uses maxId(v) to store the minimum of all the maximums of
the paths from src to v.

GSOFA allows repeated updates to maxId(:) along the
traversal. And the traversal terminates once the maxId
values of all the vertices converge to their minimal value.
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Figure 7: GSOFA traversing the graph from Figure 1(b). The
dark, and light gray regions, respectively, represent the current
frontier and vertices with maxId(:) updated. Vertex 8 is the
source. The maxId(:) and fill(:) are at size of |V |. Note, Y and
N in fill(:) are respectively used to show if the corresponding
vertex is detected as fill-in or not.

As shown in Figure 6, in the beginning, the neighbors of src
that are smaller than src are eligible for continuing traversal
along with these neighbors. Hence they are inserted into
frontierQueue(:) at line 6. During traversal, the algorithm
allows all the frontiers to explore the graph in parallel. With
initial setting of 0 for every vertex, fill(v) of a vertex v in
the algorithm is set to src if there is a nonzero (src, v) in the
filled graph. The value of fill(:) helps avoid the re-detection
of fill-ins at line 12. For a vertex v, fill(v) < src means that
vertex v is not yet in the filled structures of row src.

GSOFA fulfills two tasks in lines 9 - 15. The first task is
to check whether a neighbor introduces a fill. The second
task is to decide whether a vertex can become a frontier. For
both tasks, we need the new path from the frontier to the
current neighbor to change the maxId of this neighbor, that
is, maxId(neighbor) should be updated by newMaxId at line
10. The function atomicMin updates the maxId(neighbor)
by the minimum of maxId(neighbor) and newMaxId atomi-
cally at line 10. For the first task, this neighbor further needs
to satisfy Theorem 1. And this neighbor should not have
introduced a fill before, i.e., line 12. Otherwise, we face the
issue of re-insertion of this neighbor into either L or U. For
the second task, a neighbor further needs to meet another
criterion in order to become a frontier, that is, this neighbor
is smaller than the source (line 15). Otherwise, this neighbor
either cannot be a frontier.

Example. To aid the understanding of GSOFA, Figure 7
demonstrates how GSOFA traverses from src = 8 on the
graph of Figure 1(b). After line 5, the values in maxId(:)
corresponding to the vertices {1, 2, 7, 8, 9} become 0, while
the rest remain as |V | (i.e., ‘-’ in this case).

At iteration 1, the frontiers {1, 2, 7}, in parallel, traverse
their neighbors {0}, {3, 5, 7} and {2, 4}, arriving at updated
maxId(:) and fill(:) array at the bottom of Figure 7(a). Sub-
sequently, we obtain 1, 2, 7 and 2 as the maxId along the
paths 8 → 1 → 0, 8 → 2 → 3, 8 → 7 → 4 and 8 → 2 → 5.
Clearly, these paths introduce fills at 3 and 5 as shown in the
fill(:). Proceeding to iteration 2, frontiers {0, 3, 4, 5} generate
new paths as 8 → 1 → 0 → 5, 8 → 2 → 3 → 4 and
8 → 2 → 5 → 3. Even path 8 → 1 → 0 → 5 updates
maxId(5) at line 10, it will not introduce a fill due to line
12, thus 5 will not be enqueued into newFrontierQueue(:).
Path 8 → 2 → 5 → 3 stops at line 10 because the stored
maxId(3) = 2 is smaller than the newMaxId = 5. Finally, path
8 → 2 → 3 → 4 qualifies line 10 since the stored maxId(4)
= 7 is greater than newMaxId = 3, as well as introduces a
new fill due to line 12 is true. Afterwards, only 4 is in the

newFrontierQueue(:) at iteration 3 which will not introduce
any new frontiers.

It is important to note that the parallel traversal to all the
neighbors of a frontier is not possible by simply allowing to
process multiple threshold vertices in parallel, as mentioned
in Challenge #1 (lines 9 - 10 of fill2 algorithm). Now, we
discuss how the detection of the fill-in (8,4) from Figure 7
may not occur when we allow multiple threads to traverse
the neighbors {1, 2, 7} in parallel in fill2. At line 6 in fill2
algorithm, the fill(:) entries of all the neighbors {1, 2, 7}
of source 8 are marked as 8. Assuming multiple threads
can work in parallel at line 9, implying the thresholds will
be 1, 2 and 7 from three different threads, respectively. In
that case, all the neighbors 1, 2 and 7 will be inserted into
the frontierQueue(:). When accessing the neighbor of the
frontier at line 12, if a thread working on frontier 7 explores
vertex 4 before any other threads, fill2 algorithm will update
fill(4) = 8 without detecting a fill-in at (8, 4) because the path
8→ 7→ 4 does not satisfy Theorem 1. Later, the thread that
could detect a fill at (8, 4) because of path 8 → 2 → 3 → 4
fails to do so because this thread cannot enter the branch at
line 13 since fill(4) is already updated as 8. Hence, the fill-in
(8, 4) remains undetected if we seek fine-grained parallelism
in straightforward fill2 algorithm at Figure 3(b).

Optimizing the initialization of maxId(:). Maintain-
ing a maxId(:) array for every traversal would require an
excessive amount of space that becomes impractical for
large datasets considering limited memory space on modern
GPUs. Hence reusing maxId(:) array for different sources
becomes essential. But this reuse also comes with reinitial-
ization overhead, that is, making maxId(:) to maxVal before
traversal. And this overhead is nontrivial, e.g., it takes 22%
of the total time for PR dataset to re-initialize the maxId(:).

To reduce the reinitialization overhead, we propose to
divide the value range [0,maxV al] of maxId(:) into smaller
ranges, i.e., [0, |V |] range for each source. Note that maxVal
is 232−1 for a 32-bit unsigned integer type. During traversal,
different sources can work on their respective value range
of maxId(:) without reinitialization. For instance, for the first
source, the traversal updates the maxId of the vertices in
the range of [maxVal - |V |, maxVal]. Moving to the next
source, we regard the range of [maxVal - 2 · |V |, maxVal -
|V |] as valid for maxId. In this context, any maxId value
greater than the upper bound, which is maxVal - |V | in
this case, is treated as initialized. Note, the value of maxId
will not be smaller than maxVal - |V | before execution. This
optimization helps skip the maxId(:) initialization for a total
of maxV al

|V | sources. For instance, it helps reduce the ratio of
reinitialization over the total time consumption from 22% to
0.082% for PR dataset.

Optimizing the access to maxId(:) and fill(:). It is
important to mention that the accesses to both maxId(:)
and fill(:) array are random thus time-consuming. One can
either access maxId(:) first to reduce the follow-up access
to fill(:) or vice versa (i.e., adding line 9.5 to the pseudo-
code). In both cases, we avoid repeated frontier enqueuing
for vertices that are already detected as fill-ins at line 14.

Putting maxId(:) access before fill(:), which is the pseudo-
code in Figure 6, will avoid the access to fill(:) array when
the new path fails to update the maxId of existing paths, i.e.,
line 10 is evaluated as false. Consequently, this path avoids
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the access to follow-up fill(:) at line 12. Path 8→ 7→ 4 from
Figure 7(a) falls in this case.

Adding line 9.5 to the pseudo-code in Figure 6 will avoid
unnecessarily lowering the maxId of an already detected fill-
in. Note, we do not need to do so because this vertex will
always propose its own vertex ID as the maxId(:) for the
paths that come across this vertex. Using Figure 7(a) as an
example, this logic avoids lowering maxId[5] from 2 to 1
when the path 8→ 1→ 0→ 5 attempts to do so because (8,
5) is already a fill due to 8 → 2 → 5. And the continuation
of the paths from 8 through 5 will surely use 5 as the maxId.

Including line 9.5 or not is a graph-dependent option.
Particularly, adding line 9.5 is beneficial for graphs that have
a relatively larger number of fill-ins. But for graphs with a
relatively smaller number of fill-ins, the condition of line 9.5
will become false for most of the time, resulting in higher
overhead than benefits.

Multi-source symbolic factorization with combined
frontierQueue(:) executes multiple sources of the Algorithm
in Figure 6 concurrently on a single GPU in order to saturate
the computing resources. To balance the workload across
threads, we combine the frontiers of various concurrent
traversals into a single frontierQueue(:), which is analogous
to recent multi-source graph traversal projects [11]. We
further make three revisions to this design. First, we need
to use maxId(:) instead of a single bit to track the status
of each vertex. Furthermore, GSOFA relies upon tracker(:)
and newtracker(:) to identify the source of each frontier. Last
but not least, we directly use atomic operations to enqueue
frontiers into the combined frontier queue, which is faster
than prefix-sum based approach, according to [24].

5 PARALLEL EFFICIENT SUPERNODE DETECTION

This section further introduces a massively parallel supernode
detection algorithm which can balance the workload, minimize
the communication and saturate the GPU resources with judi-
cious source scheduling and unified memory assistance.

GPU-friendly supernode detection with shared mem-
ory optimization. We introduce a two-phase supernode
detection design to match the SIMT nature of GPUs. First,
we use one GPU thread to examine whether the nonzero
count of a row in U is one fewer than the previous row
(i.e., requirement i), and use a bitmap in shared memory
to keep track of this information. If requirement (i) is not
met, it means the current row starts a new supernode. We
will use a queue in shared memory to keep track of this
leading row. Second, each GPU thread dequeues a leading
row of a supernode, examines the bitmap, also assesses the
requirement (ii) of a supernode in Definition 1. Only when
both requirements are met, the current row is considered
to be part of this supernode. The novelty of this two-phase
design is that the first phase helps break the chunkSize of rows
into independent subranges so that our second phase can work on
these subranges in parallel, which fits the SIMT nature of GPUs.
In addition, the first phase is also massively parallel.

Figure 8 demonstrates how to, in parallel, detect su-
pernodes for row ranges 0 - 3 of matrix U. In phase I, all
threads in parallel check whether the nnz of current row
is 1 fewer than the prior row. Since only row 1 satisfies
the condition, the bitmap is set to “0100” ( 1 ). Further, the

0 2 3

Phase I

Phase II

nnz per row in U
Row index

Supernode
row ranges

Bitmap

2 1 3 3
0 1 2 3

0 1 0 0
Queue

0 – 1, 2, 3

1 2
3 3

4

Figure 8: Parallel
supernode detection
for matrix U in
Figure 2(c), where
Phase I confirms
nnz(U(s, :)) =
nnz(U(s − 1, :)) − 1
while Phase II checks
L(s, r) 6= 0.

leading rows of supernode are {0, 2, 3} in queue ( 2 ). In
phase II, each thread is assigned to one leading row entry
and checks whether the bit following the leading row is 1
( 3 ), as well as the corresponding entry in L(s, r) 6= 0 ( 4 ).
If both conditions are met, the supernode grows. We will
continue this process until no supernode grows. Since row
1 satisfies both conditions while row 2 does not, supernode
of row 0 grows to include only row 1.

Communication- and saturation- aware inter-node
source scheduling. Since inter-node communication is sig-
nificantly more expensive than intra-node counterpart, we
restrict the supernode detection inside of each computing
node. We use the following equation to perform inter-node
source scheduling:

chunkSize× numConcurrChunksPerNode

= #C × numGPUsPerNode,
(1)

where chunkSize is identical to the size of the user de-
fined maximum supernode. Note, we want the size of a
chunk to be neither a fraction nor multiple of the maxi-
mum supernode size. On the one hand, since we interleave
consecutive chunks to different nodes, making chunkSize
a fraction of the maximum supernode size will introduce
inter-node communication during supernode detection. On
the other hand, making chunkSize a multiple of supernode
size will make chunk size too large, potentially lead to
worse workload imbalance. Further, #C is the preferred
number of sources to saturate one GPU. In short, all the
three items in Equation (1), i.e., chunkSize, #C , and
numGPUsPerNode are known, one can derive the value
for numConcurrChunksPerNode. For example, the PR
dataset on one Summit node would need 6,144 sources to
saturate the GPUs. If the defined supernode size is 128,
numConcurrChunksPerNode would be 48.

Unified memory assisted intra-node source scheduling.
Once the number of concurrent chunks for a computing
node is decided, we assign the sources of these chunks
to various GPUs of this node in an interleaved fashion
in order to balance the workload. However, since supern-
ode detection requires the nonzero count of consecutive
rows, communicating the fill information between GPUs is
needed. Specifically, for a supernode spanning from row r
to s − 1, one needs to communicate the nonzero count of
row s in U, and whether there is a nonzero at L(s, r). Since
both data sizes to communicate are small and we cannot
predict which nonzero count and fill location are required
beforehand, traditional cudaMemcpy based data transfer is
not suitable for such a kind of data sharing.

To this end, we choose the unified memory option over
the explicit data transfer. In this context, GSOFA uses a single
CPU process to manage all the GPUs in each node, where
the kernel launches are performed asynchronously. It is also
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important to note that unified memory introduces several
configurations which concern the performance.

First, we choose remote access over page migration
when accessing the unified memory. Since we interleave the
sources assignment in a fine-grained manner, various GPUs
might compete to migrate the same page that stores the fill(:)
or nonzero count information from the source GPU. This
will hurt the performance. During implementation, our key
guideline is keeping this data in the GPU that modifies this data.
Particularly, only one GPU will detect the fill information for
a specific row (i.e., modify that fill(:)), so does that for the
supernode detection. This implies that only one GPU needs
to keep the fill(:) information of that row locally while the
remaining GPUs will access that information remotely. In
implementation, we use the cudaMemAdviseSetPreferredLoca-
tion flag to advise the unified memory driver to keep that
data in the same GPU which modifies this data [25]. For the
remaining GPUs, we use cudaMemAdviseSetAccessedBy flag
to instruct them to access that data remotely.

Second, GSOFA allocates separate fill(:) memory for dif-
ferent GPUs instead of using one virtual space spanning
across all GPUs in one node. This design is inspired by
a key observation that there exist a significant number of
page faults when all the GPUs share one fill(:) address. This
is caused by the fact that this single memory space is not
perfectly aligned from one GPU to another. That is, one
page could span across two GPUs. In this case, once both
GPUs need to modify that page, these GPUs will compete
for that shared page for writing. This will lead to frequent
page migration.

6 SPACE OPTIMIZATION

Continuing our discussion in Challenge #3 of Section 3,
this section will rigorously quantify the space crisis faced by
multi-source concurrent symbolic factorization. Table 2 presents
the space complexity of the six major data structures used
by GSOFA, namely, frontierQueue(:) & newFrontierQueue(:),
tracker(:) & newtracker(:), maxId(:), and fill(:). When the num-
ber of concurrent sources is #C, the total space consumption
would be around 6 · |V | · #C entries. Apparently, space
consumption immediately becomes a key problem for large
graphs with relatively big number of concurrent sources.
However, when it comes to performance, GSOFA prefers
a larger #C which will provide more workload to better
saturate the GPU computing resources.

Data structure Space complexity
frontierQueue(:) & newFrontierQueue(:) 2 · |V | ·#C

tracker(:) & newTracker(:) 2 · |V | ·#C
maxId(:) |V | ·#C

fill(:) |V | ·#C

Table 2: The data structures used by multi-source concurrent
GSOFA, where |V | and #C are the number of vertices in the
graph, and concurrent sources, respectively.

Dataset Average usage (%) Peak usage (%)
AU 0.12 8.2
DI 0.04 4.55

HM 0.01 1.7
PR 0.11 25.0
ST 0.1 1.0
TT 0.1 11.0

Table 3: Percentage of usage of allocated frontier queues.

In this section, we propose three interesting optimiza-
tions based upon the access pattern and usage of various
data structures to combat the high space complexity. Par-
ticularly, we introduce external GPU frontier management,
bubble removal in maxId(:), dynamic space allocation to dy-
namically assign memory space to various data structures.
Note, this dynamic space allocation also allows GSOFA to
support configurable space consumption.

External GPU frontier management is motivated by the
observation in Table 3 where the average usage of frontier-
related data structures remains low for the large datasets,
i.e., AU, DI, HM, ST and TT. However, the peak usage can
rise to as high as 25% for PR. This observation implies that
we can allocate relatively smaller memory space to hold
frontier-related data structures because the usage remains
low for vast majority of the iterations. Once the usage goes
beyond the allocated space, we resort to our external-GPU
option, which is presented below.

We propose to only allocate a fraction of the required
space on GPU for the four frontier-related data structures,
i.e., frontierQueue(:), newFrontierQueue(:), tracker(:) and
newtracker(:) and write the extra frontiers out of GPU. Then,
we load these external GPU data structures in GPU for
computation. Figure 9 demonstrates this design. For brevity,
Figure 9 only uses a single thread to traverse the graph for
source 8 without loss of generality. The size of the allocated
newFrontierQueue(:) is only three. At iteration 1, frontiers 1
and 2 exhaust the newFrontierQueue(:) by their neighbors
0, 5, and 3. Subsequently, we copy these three frontiers to
CPU memory to still have available space for the incoming
frontiers, 7 in this case. Proceeding to the next iteration that
comes after swapping the queues, we will finish frontier 7
in the frontierQueue(:) first and load the frontiers from CPU
in GPU for further computation. It is worthy of mentioning
that, instead of directly storing the source ID in tracker(:)
and newtracker(:) in multi-source concurrent traversal, we
propose to store the index of the source for each frontier to
reduce the space further.

Transfer

1 2 7

0 5 3 - - -

GPU memory

frontierQueue(:)

newFrontierQueue(:)

CPU memoryCPU buffer

8

6

1

2

7

0

5

3
4

Updated vertexFrontiers

0 5 3

1 2 7

- - -

1 2 7

4 - -

Figure 9: External GPU frontier management. Note, the traver-
sal iteration is same as in Figure 7(a).

Bubble removal in maxId(:) is supported by the key
observation that a source vertex is not allowed to traverse
vertices that are larger than the source. Consequently, we
can remove the “bubbles” in the maxId(:) that are larger
than the source. Here, “bubble” means the allocated space
that is not used in maxId(:). Assuming the source vertex is
v, according to Theorem 1, we will never update the maxId
of the vertices that are larger than v.

Dynamic space allocation across data structures is
motivated by two facts. First, maxId(:) and fill(:) accesses
are more random than a frontier-related data structure. Par-
ticularly, the accesses to maxId(:) and fill(:) are determined
by the frontier’s neighbors which often have random vertex
IDs. Therefore, GSOFA needs to put the entire maxId(:) and
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fill(:) arrays in GPU memory in order to achieve desirable
performance. Second, the space requirement maxId(:) is
dynamic, that is, smaller sources need smaller maxId(:)
and vice versa. Therefore, we can dynamically adjust the
maxId(:) space so that the frontier-related data structures
can have more GPU resources when possible.

Towards this end, we first allocate a big chunk of mem-
ory, in contrast to allocate separate memory spaces for
various data structures discussed in Table 2. Subsequently,
this memory chunk is dynamically divided among the data
structures with priority given to maxId(:) and fill(:). For a
given number of concurrent sources in a traversal, after the
space reduction strategy of maxId(:), the amount of memory
required for maxId(:) remains low for smaller sources. In
this scenario, we can allocate more space for other data
structures. Once we start working on larger sources, the
maxId(:) space requirements begin to climb. In this context,
we prioritize the space requirement for maxId(:) along with
fill(:) so that a large number of concurrent sources can
execute together with better, at least sustained, performance.

GSOFA with configurable space budget. After putting
all the major data structures of GSOFA into one continuous
memory space, we enable a new feature, i.e., configurable
memory budget for GSOFA. This optimization will first con-
duct bubble removal, dynamic space allocation and external
GPU frontier-related data structure management. If GSOFA
still suffers from space shortage, GSOFA will judiciously
reduce the number of concurrent sources to restrict the
memory space consumption in the given budget.

7 EVALUATION

We implement GSOFA with ∼2,500 lines of C++/CUDA
code and compile the source code with NVIDIA CUDA
10.1 Toolkit with the optimization flag set to be O3. We use
IBM Spectrum MPI 10.3.0.0 for inter-node communication.
The evaluation platform is the Summit supercomputer at
Oak Ridge National Laboratory [26], where each computing
node is equipped with dual-socket IBM POWER9 CPU pro-
cessors (i.e., 42 cores), and six NVIDIA V100 GPUs. All the
GPUs on one Summit node are connected with NVIDIA’s
high-speed NVLink. We use Traversed Edges Per Second
(TEPS) to report the graph traversal performance and take
the average of three runs. We use NVIDIA nvprof profiling
tool for Figures 13 and 18.
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Figure 10: Performance of the parallel CPU and GPU versions
of fill2 and GSOFA on a Summit compute node.

Figure 10 compares the original fill2 algorithms on CPU
and GPU, and GSOFA on one Summit node. Both CPU and
GPU versions of fill2 that we are using are the straightfor-
ward parallel implementation of the fill2 algorithm in Fig-
ure 3(b). The parallel CPU version employs all the 42 cores
in a Summit node to perform symbolic factorization for 42
sources in parallel. The GPU version allows every allocated

thread to work in a source as long as the GPU memory
is sufficient. On average, GSOFA is 13.01× faster than the
GPU-based parallel fill2 algorithm, with the maximum and
minimum speedups 30.41× (RM) and 3.70× (ST), respec-
tively. When GSOFA is compared to CPU version, GSOFA
enjoys even higher speedups, that is, 33.06×, on average,
with 97.11× (RM) and 11.32× (G7) as the maximum and
minimum speedups. This suggests that the original fill2
algorithm is not suitable for massively parallel GPUs.

Comparison with the state-of-the-art CPU algorithms.
We compare GSOFA with the state-of-the-art sequential
symbolic factorization in GLU3.0 [27] and the parallel sym-
bolic factorization from SuperLU DIST [2]. Note, both the
GLU3.0 and SuperLU DIST may use GPUs only during nu-
merical factorization or later phases. However, both libraries
use CPUs for symbolic factorization.
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Figure 11: Performance comparison of GSOFA with the state-
of-the-art CPU symbolic factorization in GLU3.0. For fair com-
parison, GSOFA uses one V100 GPU since GLU3.0 performs
symbolic factorization sequentially.

Figure 11 demonstrates the time comparison of GSOFA
with the symbolic factorization on GLU3.0 [27]. We limit
the GSOFA to a single GPU because GLU3.0 can only
perform single-threaded symbolic factorization on CPU.
Note, GLU3.0 is based upon Gilbert-Peierls algorithm [8]
which suffers from stringent data dependency problems if
intended to implement in parallel (discussed in Section 2).
In the figure, we can observe a maximum and minimum
speedup of 171.1× (BB) and 1.01× (BC). The workload
in BC dataset is too small to saturate the GPUs, i.e., see
Figure 4(a). On average, the GSOFA is 50.1× faster than
symbolic factorization in GLU3.0.
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Figure 12: Speedup of GSOFA over the state-of-the-art CPU
parallel symbolic algorithm in SuperLU DIST.

Figure 12 compares the performance between GSOFA
and the CPU parallel symbolic factorization in Su-
perLU DIST. GSOFA starts worse than the CPU parallel
algorithm for majority of the datasets. However, with more
and more Summit nodes, GSOFA begins to outperform the
CPU algorithm. Particularly, initially on one node, GSOFA
is 1.2× faster on BC and 1.6×, 2.8×, 1.6×, 1.03×, 2.6×,
2.0×, 13.8×, 11.3×, 19.3×, 6.7×, 7.4× and 3.2× slower on
BB, EP, G7, LH, MK, RM, AU, DI, HM, PR, ST and TT,
respectively on one node. When it goes to six Summit
nodes, GSOFA bests CPU parallel symbolic factorization on
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majority of the datasets, i.e., BC, EP, BB, RM, G7, MK, LH
and TT. GSOFA finally outperforms CPU parallel symbolic
factorization across all the datasets by 5×, on average,
with 44 Summit nodes, at which the maximum speedup
of 10.9× is achieved for G7 matrix and minimum of 1.3×
is achieved for HM matrix. For G7, the speedup of GSOFA
is high because G7 is highly non-symmetric which limits
the benefits of symmetric pruning in SuperLU DIST and
its larger workload (i.e., nnz(A)

Order(A) in Table 1). HM though
has relatively low symmetry, but it presents the lowest
workload, which causes the speedup to be poor.
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Figure 13: Throughput achieved by GSOFA on a V100 GPU.

Throughput. Figure 13 demonstrates the throughput
achieved by the GSOFA on V100 GPU. Particularly, GSOFA
achieves a maximum of 421.5 GB/s (47% of peak memory
throughput) for AU dataset and a minimum of 363.8 GB/s
(40% of peak memory throughput). On average, GSOFA
achieves a throughput of 385.2 GB/s (43% of peak memory
throughput) over all the dataset, which is rarely observed
for graph traversal related applications [28].

��

���

����

����

����

����

����

�� �� �� �� �� �� �� �� �� �� �� �� ��

�
�
�
�

�
��
��
��
��
� �����������������������������

��������������������������

Figure 14: Impacts of maxId(:) initialization optimization.

Performance impact of maxId(:) optimization. This re-
duces the initialization overhead for maxId(:). As shown in
Figure 14, we observe noticeable performance gains across
all datasets. On average, we achieve 14% speedup with this
optimization, where the maximum impact comes from LH
of 50% and a minimum of 2% increment in BB dataset.
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Figure 15: Performance impact of dynamic space allocation on
one GPU with 1 GB space allocation.

Performance impact of dynamic space allocation. Fig-
ure 15 presents the effect of dynamic memory allocation.
We allocate 1 GB of memory and study the performance
of with versus without the dynamic memory optimization.
As expected, this optimization yields performance gains for
all the large datasets in Table 1. Particularly, we observe
improvements of 1.2×, 1.2×, 1.7×, 1.2×, 1.5× and 1.1× on
AU, DI, HM, PR, ST and TT respectively.

GSOFA space optimization with limited memory bud-
get. This includes all the space optimizations, further along

���
���
���
���
���
���
���
���

��
���
��
��
	�
��

��

AU DI HM PR ST TT

Fill-in detection
Transfer
Others

16 GB
5 GB
1 GB

16 GB
5 GB
1 GB

16 GB
5 GB
1 GB

16 GB
5 GB
1 GB

16 GB
5 GB
1 GB

16 GB
5 GB
1 GB

Figure 16: Performance study of GSOFA with different memory
capacities on 44 Summit nodes. The allowed GPU memory for
all the data structures in GSOFA varies from 1 to 16 GB.

with an explicit restriction on the available memory space.
Particularly, we enable external GPU frontierQueue(:),
newFrontierQueue(:), tracker(:) and newtracker(:) manage-
ment, bubble removal and dynamic allocation. For the single
large array that is shared by all the data structures, we
limit its size to be 16, 5, and 1 GBs to demonstrate the
performance robustness of GSOFA. This optimization will
involve transferring data between CPU and GPU memories
and other overheads, such as checking the condition of
memory overflow.

Figure 16 shows the trade-off between the runtime
and the space consumption. The general trend is that the
performance drops with the decrease of allocated space.
Particularly, with merely 1 GB memory budget, the GSOFA
performance decreases by 1.9×, 1.9×, 3.3×, 2.7×, 3.0× and
2.6×, respectively, on AU, DI, HM, PR, ST and TT datasets.
The performance drops in fill-in detection are caused by the
fact that a limited memory budget leads to the reduction of
#C. Note, enabling external GPU GSOFA also results in the
overhead of checking whether the frontier queue overflows,
which is denoted as “GSOFA: Others” in Figure 16.

��

����

����

����

�����

�����

�� �� �� �� �� �� �� �� �� �� �� �� ��

�
�
�
�

�
��
��
��
��
� ��������

���������������������

����������������������������������

Figure 17: Performance impacts of supernode detection opti-
mizations on six nodes (i.e., 36 GPUs). Here, the inter-node
optimization interleaves the chunk of rows among the com-
pute nodes and the intra-node optimization interleaves rows
scheduling in fine-grained manner during fill-in detection to
obtain optimum intra-node workload balancing.

Performance impact of supernode detection optimiza-
tions. In Figure 17 we use six nodes (i.e., 36 GPUs) in order
to showcase the impacts of our inter-node workload balanc-
ing strategies. Specifically, the “baseline” version assigns a
block of continuous chunks of sources to a node. The “inter-
node” interleaves the chunks of sources across different
nodes in a round-robin approach. And “intra-node” per-
forms unified memory-assisted fine-grained source schedul-
ing across GPUs in a node. On average, the inter-node
scheduling optimization yields 1.6× speedup over the base-
line. The intra-node optimization further adds another 3.3×
speedup. The maximum gains of inter- and intra- node opti-
mizations are 4.3× (TT) and 4.9× (PR), respectively. We also
observe performance drops for the inter-node optimization
on AU, DI, and HM graphs because the new combination of
chunks of sources might have relatively more non-uniform
workload distribution.
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Figure 18: Performance impacts of unified memory optimiza-
tion on one Summit node.

Performance impacts of unified memory optimizations.
Figure 18 demonstrates the effects of cudaMemAdvise and
data structure separation optimizations. We can observe a
general trend of reduction in the number of page faults with
each optimization’s addition. Particularly, cudaMemAdvise
reduces the page fault by 2.2×. In particular, we see the
maximum drop of page faults in AU by a factor of 10.3×.
The data structure separation optimization, when added
to the cudaMemAdvise version, further reduces the page
faults by an average of 20%, with the maximum drop to be
85% in LH. Note, PR and TT experience more page faults
due to the data structure separation optimization. This is
potentially caused by the fact that the change of memory
alignment could result in more page faults for the memory
that is not at the boundary.
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Figure 19: Scaling GSOFA to 44 Summit nodes (264 GPUs).

Strong scalability. Figure 19 demonstrates strong scaling
of GSOFA up to 44 Summit nodes (264 GPUs) for relatively
large datasets, i.e., AU, DI, PR, and HM. Particularly, GSOFA
achieves speedups of 31.0×, 24.9×, 21.5×, and 16.1×, re-
spectively, for AU, DI, PR, and HM. It is worth noting that
GSOFA can effectively use a number of GPUs that is not
necessarily a power-of-two, which provides great flexibility
to the application code. We also notice that the HM and PR
enjoy close to linear scalability from 1 to 33 nodes but flat
out from 33 to 44 nodes because these two datasets do not
have the adequate workload to saturate 44 nodes.
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Figure 20: Impacts of using line 9.5 in algorithm in Figure 6.

Performance impacts of optimizing access to maxId(:)
and fill(:). Putting fill(:) ahead of maxId(:) introduces ob-
servable performance differences. Particularly, as shown in
Figure 20 in a GPU, enabling line 9.5 in Figure 6 leads to per-
formance gain in BB, BC and ST datasets with the maximum
gain of 5.5% on BB dataset. This performance gain indicates
that noticeable fill-ins are repeatedly detected. Likewise,
among the remaining datasets, LH dataset experiences a
maximum performance drop of 4.6% because the number

of maxId(:) update after fill detection of a vertex is small.
Given the majority of the datasets experience performance
drop with the enabling of line 9.5, we disable line 9.5 for all
the datasets in our evaluations.

GSOFA performance variation with chunkSize. Fig-
ure 21 presents the performance impact of chunkSize from
Equation 1 to GSOFA. In general, one can observe that the
increase of the chunkSize leads to longer time. On average,
the performance degradation is 1.04× and 1.13× when we
increase chunkSize from 64 to 128 and 256, respectively, with
the maximum slowdown as 1.6× of MK for chunkSize = 64
to 256. The reason behind this trend is that the increase of
the chunkSize typically leads to more imbalanced workload.
In this work, we follow SuperLU DIST to set chunkSize =
128 for GSOFA as the default configuration even though
chunkSize = 64 is slightly faster.
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Figure 21: GSOFA performance variation with respect to chunk-
Size = 64, 128 and 256 in six Summit compute nodes.

8 RELATED WORK

Most of the major state-of-the-art sparse LU factoriza-
tion codes, such as GLU3.0 [27], [29], [30] and Su-
perLU DIST [20] adopt the Gilbert-Peierls algorithm [8] for
symbolic factorization. GLU3.0, [29] and [30] directly use
the sequential version of the Gilbert-Peierls algorithm [8].
SuperLU DIST implements a parallel CPU-based symbolic
factorization algorithm [2] based upon Gilbert-Peierls algo-
rithm with symmetric pruning [31] and supernodal traver-
sal [10]. To improve parallelism for symbolic factorization,
SuperLU DIST resorts to nested dissection to partition A
into independent rows at a level of the separator tree [2]. The
filled structures computed at a level of the separator tree are
communicated among the required processes that perform
symbolic factorization at the higher level of the separator
tree. This leads to inter-process communications while the
computation changes the level along the separator tree. To
the best of our knowledge, GSOFA is the first GPU-based
parallel symbolic factorization algorithm.

It is also worth mentioning that NVIDIA cuSOLVER
library [32] provides solvers for sparse and dense linear
systems with different approaches including LU decom-
position. However, cuSOLVER does not yet support GPU
version of sparse LU decomposition. Hence, we cannot com-
pare GSOFA against the symbolic factorization of cuSolver.

Fill2 algorithm is similar to Dijkstra’s Single Source
Shortest Path algorithm [33] in the sense that fill2 uses the
maximum vertex ID on a path to represent the “distance”
metric in Dijkstra’s algorithm. The salient difference be-
tween these two algorithms lies in that one does not need to
reduce the “distance” further if a fill-in is already detected
in symbolic factorization. We also would like to point out
that the previously proposed ∆-step optimization [34] for
Dijkstra’s algorithm is not effective here: because fill2 only
allows vertices that are smaller than the source to be active,
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∆-step will further restrict the parallelism. However, the
similarity between these two algorithms suggests that our
design of fine-grained symbolic factorization, external GPU
optimizations, and supernode detection can potentially pro-
vide performance enhancement and space-saving technique
to the multi-source Dijkstra’s algorithm [35].

9 CONCLUSION AND FUTURE WORK

This paper introduces GSOFA the first, to the best of our
knowledge, GPU-based sparse symbolic LU factorization
system. In particular, we revamp the fill2 algorithm to
enable fine-grained symbolic factorization, redesign supern-
ode detection to expose massive parallelism, balanced work-
load and minimal inter-node communication, and intro-
duce a three-pronged space optimization to handle large
sparse matrices. Taken together, we scale GSOFA up to
264 GPUs with unprecedented performance. As the future
work, we plan to integrate GSOFA into the state-of-the-art
SuperLU DIST package.
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