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Abstract Since 2014, an array of current meters deployed in the Iceland Basin as part of the
Overturning in the Subpolar North Atlantic Program has provided new measurements of the southward
flow of Iceland-Scotland Overflow Water (ISOW) along the eastern flank of the Reykjanes Ridge. The
location of the array, near 58-59°N, captures the ISOW plume at the farthest downstream location in the
Iceland Basin before significant amounts of ISOW can flow into the Irminger Basin through deep fractures
in the Reykjanes Ridge. The net transport of the ISOW plume at this location—approximately 5.3 Sv
based on the first 4 years of observations—is significantly larger than previous values obtained farther
north in the Iceland Basin, suggesting that either previous measurements did not fully capture the plume
transport or that additional entrainment into the ISOW plume occurs as it approaches the southern tip of
the Reykjanes Ridge. A detailed water mass analysis of the plume from continuous temperature/salinity
observations shows that about 50% of the plume transport (2.6 Sv) is derived from dense waters flowing
over the Nordic Sea sills into the Iceland Basin, while the remainder is made up of nearly equal parts

of entrained Atlantic thermocline water and modified Labrador Sea Water. The overall results from this
study suggest that the ISOW plume approximately doubles its transport through entrainment, similar to
that of the Denmark Strait overflow plume in the Irminger Sea that forms the other major overflow source
of North Atlantic Deep Water.

Plain Language Summary This study reports new observations of an important branch

of the Atlantic Meridional Overturning Circulation known as Iceland Scotland Overflow Water. It is
formed from dense Nordic Sea waters that spill across the Iceland-Scotland Ridge and mix with ambient
North Atlantic waters to form a bottom-intensified current along the eastern flank of the Mid-Atlantic
Ridge south of Iceland. These new observations provide the most comprehensive measurements of this
flow to date—in terms of both their spatial and temporal coverage—and show that the transport of this
current and the overall formation rate of Iceland Scotland Overflow Water is much larger than previously
understood. The observations also indicate that approximately one-third of the Iceland Scotland Overflow
Water must flow southward in the Atlantic on the eastern side of the Mid-Atlantic Ridge, rather than
passing through gaps in the Mid-Atlantic Ridge to join the Deep Western Boundary Current system of the
North Atlantic.

1. Introduction

Deep water formation in the North Atlantic occurs through two main processes: overflows of dense waters
across the Greenland-Scotland Ridge that subsequently entrain ambient thermocline and mid-depth waters
(Hansen et al., 2016; Jochumsen et al., 2015), and waters formed by intermediate depth convection in the
Labrador and Irminger seas (De Jong et al., 2018; Rhein et al., 2011; Yashayaev & Loder, 2016). The North
Atlantic Deep Water (NADW) formed by these processes comprises the lower limb of the Atlantic Meridi-
onal Overturning Circulation that flows southward through the Atlantic Ocean through the Deep Western
Boundary Current, as well as along interior pathways (Bilo & Johns, 2019; Bower et al., 2009; McCarthy
et al., 2020). The strength of the overturning circulation—and its related climatic impacts in terms of me-
ridional heat and freshwater transport—is intimately tied to the rates of formation of NADW and to the
volume of water that is added to the overflows through entrainment processes.

The overflow waters consist of two main sources, the Denmark Strait overflow between Greenland and Ice-
land that forms the densest component of the NADW, and the Iceland-Scotland overflow that has slightly
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Figure 1. Map of the Iceland Basin showing the location of the Overturning in the Subpolar North Atlantic Program
mooring array (in red symbols, with denoted mooring names), and the locations of two previous moored arrays
(Kanzow & Zenk, 2014; Saunders, 1996) used to estimate the Iceland-Scotland Overflow Water plume transport. The
location of the Faroe Bank Channel, where most of the Norwegian Sea overflow waters enter the Iceland Basin, is
indicated in the upper right. Additional overflow pathways across the Iceland-Faroes Ridge are indicated by lighter
arrows. Bottom topography is from the SRTM15+ Global Bathymetry (Tozer et al., 2019), that combines all available
echo sounding and multi-beam data sets with satellite altimetry (updated from Smith & Sandwell, 1997).

lower density and enters the Iceland Basin mainly through the Faroe Bank Channel (FBC, Figure 1), as
well as through deeper channels across the Iceland-Faroes Ridge (IFR). In the literature, these waters are
typically referred to collectively as lower NADW, while the waters formed by intermediate depth convection
in the Labrador and Irminger seas are typically referred to as upper NADW, or simply Labrador Sea Water.

A great deal of research has been performed over the past several decades on the processes and rates of
NADW formation. The available data suggest that the deep overflows have remained relatively steady with-
out significant long-term trends since continuous measurements of them began in the mid-1990s (Hansen
et al., 2016; Jochumsen et al., 2017), while there is much greater interannual variability in the Labrador
Sea Water formation rate (Kieke et al., 2007; Kieke & Yashayaev, 2015). The Denmark Strait overflow is
3.2 + 0.6 Sv (Jochumsen et al., 2017) and approximately doubles its transport through entrainment within a
few hundred kilometers downstream of the Denmark Strait sill (Dickson et al., 2008). The Iceland-Scotland
overflow is less well constrained due to the broader nature of the Iceland-Scotland Ridge, but the main
contribution is through the FBC which has been well studied and has a mean transport of approximately
2.0 Sv for waters denser than gy = 27.8 (Hansen & Osterhus, 2007; Hansen et al., 2016). Less is known about
the overflow across the IFR, which appears to be more sporadic in nature (Hansen et al., 2018; Osterhus
et al., 2008). Historical estimates have suggested a net overflow of dense waters across the IFR of O(1) Sv
(Olsen et al., 2016), and Beaird et al. (2013) estimated a lower bound of the net overflow of dense waters
across the IFR of 0.8 Sv from detailed glider surveys conducted along the IFR during 2006-2009. More
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Table 1

Transport Estimates for the Iceland-Scotland Ridge Overflow, and for the Iceland-Scotland Overflow Water Plume in
the Western Iceland Basin From Prior Mooring Arrays (Kanzow & Zenk, 2014; Saunders, 1996) and From This Study
(Overturning in the Subpolar North Atlantic Program [OSNAP])

Location/Reference Transport

Iceland-Scotland Ridge

(a) Faroe Bank Channel (Hansen & Osterhus, 2007; Hansen et al., 2016) 2.0 £0.3Sv
(b) Iceland-Faroes Ridge (Beaird et al., 2013) >0.8 Sv
63°N (Saunders, 1996) 32+ 0.5Sv
61°N (Kanzow and Zenk, 2014) 3.8+ 0.6 Sv
58°N OSNAP (this study) 53+ 0.4 Sv

recently, Hansen et al. (2018) suggested that the total IFR overflow may be less, based on new current meter
observations showing a weak overflow through the “Western Valley” just east of Iceland, which had previ-
ously been thought to be one of the major inflow channels through the IFR.

The waters comprising the Iceland-Scotland overflow include Norwegian Sea Deep Water (NSDW) and
Norwegian Sea Arctic Intermediate Water (NSAIW) that are formed by deep and intermediate convection in
the Norwegian Sea, as well as a less dense component formed northeast of Iceland known as Modified East
Icelandic Water (MEIW) (Beaird et al., 2013; Hansen & @sterhus, 2000). Historically the overflow waters
contributing to the Iceland-Scotland Overflow Water plume (hereafter ISOW plume) have been consid-
ered as those with densities greater than oy = 27.8, which include the above three water types. The largest
fractions of NSDW and NSAIW (often referred to collectively as Norwegian Sea Overflow Water, NSOW)
flow through the FBC, with smaller amounts also sporadically flowing across the IFR (Hansen & Oster-
hus, 2000). While some MEIW flows through the FBC overlying the denser NSOW components, the bulk of
the MEIW overflow is believed to occur across the IFR, and is probably the least constrained contribution to
the total overflow (Beaird et al., 2013).

A puzzling aspect of the ISOW plume's development in the Iceland Basin is the apparently low rate of en-
trainment into the overflow, compared to the approximate transport doubling known to occur for the Den-
mark Strait overflow. Previous observations based on moored arrays across the ISOW plume (Table 1) have
found transports that are only slightly larger than the ~3 Sv of overflow waters crossing the Iceland-Scot-
land Ridge. For example, Saunders (1996) found an ISOW plume transport of 3.2 Sv from an array deployed
just south of Iceland, and Kanzow and Zenk (2014) found a transport of 3.8 Sv farther downstream near
61°N (see Figure 1), of which approximately 0.4 Sv was found to recirculate northward in the Iceland Basin.

Nevertheless, there is clear evidence for entrainment of lighter waters into the ISOW plume based on observed
changes in its water mass properties downstream from the sills. Within a few hundred kilometers downstream
of the IFR, the densest waters in the ISOW plume have potential temperatures and salinities of approximately
2.5°C and 34.97 (Saunders, 1996), substantially warmer and saltier than the NSOW flowing through FBC
with potential temperatures from —1.0 to 0.5°C and salinities near 34.90. This rapid increase in the tempera-
ture and salinity of the ISOW plume indicates substantial mixing with warm and salty Atlantic thermocline
waters (6 = 7-8°C, S = 35.20) that overlie the NSOW where it exits from the FBC (Hansen & @sterhus, 2000;
Van Aken & De Boer, 1995). Further dilution of the plume occurs through mixing with modified Labrador
Sea Water that occupies the subthermocline layer in the Iceland Basin. Saunders (1996) concluded that en-
trainment of these two source waters into the ISOW plume resulted in a ~50% dilution of the original NSOW,
leading to an estimate of only 1.6 Sv of NSOW being contained within the plume, smaller than the ~2.0 Sv of
NSOW known to be overflowing through the FBC (Hansen et al., 2016). Also, Saunders at that time did not
consider any possible contribution of MEIW to the total overflow. This led Hansen et al. (2016) to conclude
that Saunders’s observations had likely underestimated the strength of the plume or may have possibly missed
some portion of it. Other estimates from single hydrographic cruises have estimated ISOW plume transports
as high as 5-6 Sv (Dietrich, 1956; Steele et al., 1962), but the majority of estimates (summarized by Kanzow &
Zenk, 2014) put the plume transport at between 3 and 4 Sv all along the Reykjanes Ridge from Iceland to 58°N.
Similar estimates were found from the OVIDE program (Daniault et al., 2016; Garcia-Ibafiez et al., 2018) that
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Figure 2. Overturning in the Subpolar North Atlantic Program mooring array configuration overlaid on a shipboard CTD salinity section across the Iceland
Basin during July 2014. The section runs from the crest of the Reykjanes Ridge on the left to the Rockall-Hatton Plateau on the right. High salinities are found
in the near-surface layer on the eastern side of the section associated with the North Atlantic Current; low salinities at intermediate depths associated with
Labrador Sea Water, and higher salinities near the bottom along the eastern flank of the Reykjanes Ridge associated with the Iceland-Scotland Overflow Water
(ISOW) plume. The gy = 27.8 isopycnal, denoting the ISOW layer, is indicated in bold. The originally deployed array in July 2014 is denoted by yellow and gray
symbols; instruments marked in red were added in July 2016.

crossed the ISOW plume near 58°N, close to the location of the new observations we describe in this study.
Garcia-Ibafiez et al. (2018) reported a mean ISOW plume transport of 3.2 + 0.4 Sv from six OVIDE cruises
occupied between 2002 and 2012, but a higher estimate of 5.1 Sv from the OVIDE cruise in 2014.

In this study, we report on the results from the first 4 years of a mooring array deployed across the ISOW plume
near 58°N, as part of the Overturning in the Subpolar North Atlantic Program (OSNAP; Lozier et al., 2019).
This is the most comprehensive moored array across the ISOW plume to date, involving a larger number of
current meters deployed within the plume than in earlier studies (Kanzow & Zenk, 2014; Saunders, 1996),
and with roughly twice (or longer) the temporal duration of these earlier studies. The array also includes direct
temperature/salinity measurements paired with each current meter in the array, to provide continuous estimates
of the water mass composition of the plume. Our results show a larger mean plume transport (5.3 + 0.4 Sv) than
found in most previous studies, and we show through water mass analysis that the amount of original overflow
source waters contained in the plume is consistent with the amount of overflow waters coming over the sills,
within uncertainties. The results suggest that the ISOW plume does in fact approximately double its transport
through entrainment, similar to the behavior of the Denmark Strait overflow plume, which represents an im-
portant change in the understanding of the net production and export of ISOW from the Iceland Basin.

2. Data and Methods
2.1. Moored Current Meters and Temperature/Salinity Recorders

As part of OSNAP, a set of nine taut-wire subsurface moorings were set across the Iceland Basin between
the crest of the Reykjanes Ridge and the western edge of the Rockall-Hatton Plateau (Figure 1). The array
was designed to capture several key elements of the eastern subpolar gyre circulation: (a) the Deep West-
ern Boundary Current (DWBC) along the eastern flank of the Reykjanes Ridge, composed of ISOW and
its entrainment products; (b) the northward flow of upper ocean waters transported by the main branches
of the North Atlantic Current toward the Nordic Seas; and (c) the southward recirculation of the broader
cyclonic subpolar gyre along the Reykjanes Ridge's eastern flank within the East Reykjanes Ridge Current
(ERRC; Koman et al., 2020). The tall moorings M1-M4 (Figure 2) were configured as "dynamic height"
moorings with vertical arrays of temperature/salinity recorders (Seabird 37-SM microcats) spaced through
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the water column that allow estimates of the relative geostrophic transport over the broad areas between
them. Each of the tall moorings M1-M4 also had upward-looking Acoustic Doppler Current Profilers (AD-
CPs) at depths between 300 and 500 m to observe the near-surface currents at those locations. Over the
eastern flank of the Reykjanes Ridge, a denser set of short moorings (D1-D5) was deployed to monitor the
ISOW plume at depths below 1,200 m. These moorings had paired current meters and T/S recorders at 3-5
depths between 1,200 m and the bottom, and together with similar instrumentation on the deep parts of M1
and M2, provide measurements across the full extent of the ISOW plume from the crest of the Reykjanes
Ridge to the central Iceland Basin. Details of the instrument sampling configurations and the processing
and quality control of the data are contained in the Supporting Information.

The array was first deployed in July 2014 and was subsequently serviced in June 2015, July 2016, and July
2018. The data presented in this study therefore span a period of 4 years from July 2014 to July 2018, result-
ing in a 1460-day common time period for all data records. Individual moorings in the array were typically
recovered and redeployed on the same day (or on the following day), resulting in only small gaps in the
time series records that were filled by linear interpolation. The originally deployed array consisted of the
eight moorings M1, D1, D2, D3, M2, D4, M3, and M4 (from west to east across the Iceland Basin), and that
configuration was maintained for the first 2 years of observations from July 2014 to July 2016 (Figure 2). In
July 2016, an additional mooring (D5) was added between moorings D4 and M3 to better capture the deeper
reaches of the ISOW plume, and instrumentation was enhanced on two moorings (an upward extension of
mooring D4 to 1,800 m and two additional current meters on mooring M3), as shown in Figure 2.

For the purposes of this study, all time series records have been low-pass filtered using a fourth order But-
terworth filter with a 40-h cutoff period to eliminate tides and fluctuations associated with internal/inertial
waves.

2.2. Argo and Altimetry Data

Most of the analysis presented in this study is based on the above moored time series data. However, we also
use Argo float data and satellite altimetry data to help constrain the deep transports within the ISOW layer
in the eastern part of the Iceland Basin where the mooring data is sparse. Specifically, we use both surface
velocities derived from altimetry and 1,000 m drift data from Argo floats to reference the geostrophic trans-
ports between the broadly spaced dynamic height moorings M2, M3, and M4 (Figure 2).

Estimates of surface geostrophic velocity from the 1/4° Aviso+ blended altimetry analysis were obtained
from the Copernicus Marine Environmental Monitoring Service (CMEMS) for the period from 1992 to
2018. The available Argo 1,000 m drift data from 1997 to 2018 was obtained from the Asia-Pacific Da-
ta-Research Center (APDRC) and similarly averaged onto a 1/4° grid using the methodology described in
Bilo and Johns (2019). The Argo drift analysis of Bilo and Johns (2019) is publicly available at https://doi.
org/10.17604/cf5z-x124.

2.3. Shipboard CTD and Lowered-ADCP Data

During the mooring deployment and recovery cruises in the summers of 2014, 2015, and 2016, CTD and
lowered-ADCP (LADCP) sections were acquired across the western portion of the array from the Reykjanes
Ridge crest to the location of mooring D5. The CTD/LADCP stations were spaced 12-16 km apart with
highest resolution along the upper ridge crest. The LADCP data were processed using version IX_13 of
the LDEO LADCP processing software maintained by M. Visbeck and A. Thurnherr (https://www.ldeo.
columbia.edu/~ant/LADCP/), including the use of on-station vessel-mounted ADCP (VM-ADCP) data and
bottom-track data from the LADCP to constrain the final velocity profiles.

Geostrophic velocity profiles were produced for each pair of stations and referenced to the spatially aver-
aged VM-ADCP data acquired between the station pairs, over the range of good upper-ocean data provided
by the ADCPs (typically to 600-800 m using 75 kHz VM-ADCP systems). On the 2016 cruise, the VM-ADCP
data were of poor quality and only LADCP velocity profiles were available (with no upper-ocean VM-AD-
CP constraint). The resulting LADCP and geostrophic velocity sections have about 2-3 times the spatial
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resolution of the moorings and are used to check the transports derived from the moored array during the
time periods when the shipboard sections were acquired.

2.4. Gridding of the Mooring Data and Estimation of ISOW Transport

As we will show in the Results section, the southwestward flow of the ISOW plume is confined to the region
between moorings M1 and D5 along the eastern Reykjanes Ridge flank. To estimate the transport of the
ISOW plume, the current meter data at each site is first fit to a shape-preserving cubic spline in the vertical
using the “pchip” Piecewise Cubic Hermite Interpolating Polynomial routine in Matlab (Gupta, 1991), and
saved at 50 m vertical resolution with extension of the deepest measurement level to the bottom. The re-
sulting current profiles are similar to those produced by Akima spline interpolation (Akima, 1970), passing
exactly through the measured data points at the current meter levels but without permitting any extrema
to be created between data points. Following this, a two-dimensional "natural neighbor” interpolation (Sib-
son, 1981; Watson, 1992) is performed across the full array from moorings M1-D5 and sampled on a 10 m
vertical by 2 km horizontal grid. The resulting gridded current field is similar to that produced by a simple
linear two-dimensional (triangular) interpolation except that it produces slightly smoother fields without
abrupt transitions in velocity gradients at the mooring locations. As in linear interpolation, the fields agree
exactly with the original data at the measurement locations. Tests using both linear and natural neighbor
interpolation showed only minor differences in computed transports, typically less than 0.1 Sv for daily
estimates and within 0.02 Sv for the time mean transport, which is negligible compared with the statistical
uncertainty of £0.3 Sv for the ISOW plume mean transport (to be discussed further in Results). The gridded
current fields were produced at daily intervals, based on the 40-h lowpass filtered data records. The exact
same gridding procedure was applied to the temperature and salinity records from the moorings, and the
corresponding potential density fields. The transports for the ISOW plume are estimated by summing all
flow contributions below the og = 27.8 interface, which also varies in its location on a daily basis.

To account for the missing data at mooring D5 during the first 2 years (2014-2016), the time mean flow
profile at mooring D5 from the last 2 years (2016-2018) was substituted for all times during the first 2 years
in the above two-dimensional interpolation procedure. This results in a somewhat reduced variability of
the total plume transport during the first 2 years, but should not lead to a significant bias in the mean trans-
port for that period. (Note that the mean currents at all other sites were remarkably consistent between
the first 2 years and last 2 years of the record, and even for individual annual averages, lending support to
this statement). In addition, a method had to be found to fill in the top measurement level (at 1,820 m) on
mooring D4 during the first 2 years, since the 1,820 m sensor was only added to the array in 2016 (Figure 2).
From the 2016-2018 data on mooring D4, a robust linear relationship was found between the currents at
the 1,820 m and 2,320 m levels (r = 0.7 for the 215°T alongslope component; °T = relative to true north),
with the 1,820 m currents having about 60% of the variability observed at the 2,320 m level, and this linear
relationship was used to fill the 1,820 m level. For temperature and salinity, a multiple regression was used
to fill the 1,820 m T/S records based on the nearby records from M2 (at 1,600 m and 1,860 m; see Figure 2)
and the 2,320 m level on D4, which gave a good approximation of the T/S records at the 1,820 m level on
mooring D4 during 2016-2018, with no bias.

Prior to computing transports, a 30-m thick bottom boundary layer was added to the gridded velocity data,
by linearly reducing the velocity at 30 m off the bottom to zero at the bottom across the entire array. The
choice of 30 m for the bottom boundary layer is somewhat arbitrary but is consistent with the average thick-
ness of the bottom boundary layer found in previous studies of the ISOW and Denmark Strait Overflow
Water (DSOW) plumes (Beaird et al., 2013; Jochumsen et al., 2017) as well as in other dense water plumes
such as the Mediterranean and Red Sea outflow plumes (Baringer & Price, 1997; Peters et al., 2005). Appli-
cation of this bottom boundary layer correction results in a reduction of the total plume transport by 0.15 Sv
compared to the calculation without it being applied. We also note that the topography along the mooring
line—measured precisely by multi-beam echo sounding during the initial deployment cruise—is slightly
modified for transport estimation purposes, with certain areas being filled in that are associated with local-
ized topographic depressions that have a short (<50 km) alongstream scale, and in which no current meter
data was directly available. These areas are indicated by the gray shading in Figure 6a (see Section 3), and
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Figure 3. Four-year mean currents at depths >1,200 m across the Iceland-Scotland Overflow Water plume, from
mooring sites M1 to D5. White vectors show the mean currents at 1,200 m; darker colors show the currents at
increasing depth to within 50 m above the bottom.

the tops of these gray areas, or the actual topography otherwise, represent the effective topography across
the array for the purposes of computing transport.

3. Results
3.1. Mean Flow and Variability of the ISOW Plume

The 4-year mean currents recorded on moorings M1-D5, which span the ISOW plume along the Reykjanes
Ridge's eastern slope, are displayed in Figure 3. The currents are aligned generally along the Ridge topogra-
phy and perpendicular to the mooring line with maximum mean speeds of approximately 0.1 m/s near the
bottom. At moorings M1 and D1, on the upper Reykjanes Ridge (RR) slope, the currents tend to be more ver-
tically uniform up to the top of the ISOW plume array (at 1,200 m depth), whereas at the other sites the flow
is bottom intensified and shows relatively weak mean flow at 1,200 m (e.g., at moorings D2, D3, and M2).

A notable feature of the mean flow distribution is the much weaker mean flow observed at mooring M2, and
the again strongly bottom-intensified southwestward flow at mooring D4. Farther eastward, at mooring D5,
the flow is northward and also shows a bottom-intensified structure, indicating a possible recirculation of
ISOW plume waters to the east of the main plume. The relative minimum in the plume speeds near mooring
M2 appears to be due to a bifurcation of the ISOW plume into two branches upstream of the OSNAP array:
one that follows the upper RR slope, and a secondary branch that follows the deeper topography along the
lower RR slope and passes through mooring D4. This interpretation is supported by modeling studies that
also show such a bifurcation of the ISOW plume occurring near 59-60°N (Xu et al., 2010; Zou et al., 2017),
related to a local promontory in the RR slope topography that causes an offshore diversion of the deeper
part of the ISOW plume around this feature to the southeast before again following the deeper RR isobaths
toward the southwest. To illustrate this, Figure 4 shows a comparison of the deep currents observed at the
OSNAP array with the deep currents derived from the 1/12° FLAME model analyzed by Zou et al. (2017),
where a deeper branch of the ISOW plume can clearly be seen splitting off from the main plume near 60°N
to follow a pathway through the location of mooring D4. The model also suggests that there can be multiple
branches of the ISOW plume at other locations, for example along the broader topographic slope south of
Iceland near 23-24°W where the model shows three distinct plume branches, with the deepest of these
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Figure 4. Fifteen-year mean currents from the FLAME model, with Overturning in the Subpolar North Atlantic
Program 4-year mean currents overlaid (in red), averaged over the density layer g > 27.8.

three branches also possibly feeding partly into the deep plume branch on the OSNAP line at mooring D4.
Details of the FLAME model configuration are described in Zou et al. (2017).

There are some aspects of the FLAME model results that are not consistent with the observations, for ex-
ample, the strong northward recirculating flow at D5 is not represented in the model, and the ISOW plume
flow at D3 is underestimated in the model, perhaps indicating a greater impact of the above-described
topographic feature in blocking the plume's flow in the model than occurs in reality. Figure 4 also shows
the deep currents observed at moorings M3 and M4 in the eastern Iceland Basin, where the mean flow is
southward at M3, and then northward again at M4, indicating an alternating pattern of the deep flow across
the central and eastern Iceland Basin, although one that is likely poorly resolved by the sparse mooring
observations. The model suggests that the southward flow observed at mooring M3 is related to a local re-
circulating feature rather than having any direct connection to the ISOW plume farther north in the basin.

The variability of the deep currents across the array is illustrated in Figure 5 by vector time series plots from
the deepest current meter level on each mooring, which were typically placed at 50 m above the bottom,
except at mooring D2 which was located in a local topographic depression and for which the bottom current
meter was placed at 100 m off the bottom. Along the upper RR slope from moorings M1 to D3, the flow is
persistently southwestward, with few reversals, and a similarly persistent southwestward flow occurs at
mooring D4. Maximum speeds in the upper plume reach up to ~0.3 m/s at M1, with slightly weaker values
of 0.2-0.25 m/s farther down the slope as well as at D4. The flow at mooring M2 is also persistently south-
ward but with smaller maximum speeds of ~0.15 m/s, and with few exceptions, it is consistently weaker
than the neighboring flows at D3 and D4.

The deep flow at mooring D5 (only available for 2016-2018) is also persistently northward with only occa-
sional reversals, while those at M3 and M4 are more variable. The near-bottom flow at M4 is closely aligned
with the topographic orientation of the deep Rockall-Hatton Bank slope, with a preponderance of strong
northeastward flow events. Maximum flows at these sites can reach similar magnitudes to those observed
in the ISOW plume, of ~0.3 m/s. Owing to the 4-year length of the records, which have calculated integral
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time scales of typically 10-20 days, and therefore approximately 40-80 degrees of freedom, nearly all of the
measured mean currents are significantly different from zero (Table S1 contains the mean flows, standard
deviations, and standard errors for all of the current meters below 1,200 m across the array).

A cross-section of the mean flow observed by the array, rotated into the mean alongstream direction of the
ISOW plume (215°T), is shown in Figure 6a from the top of the RR to mooring D5. The separation of the
plume into a branch along the upper RR slope, from moorings M1-D3, and a lower branch centered near
D4, is clearly evident. The flow is bottom intensified eastward of mooring D1—hugging the bottom as is to
be expected for the ISOW plume—with weak flow at M2 and then the secondary bottom intensified offshore
branch at D4. However, on the upper ridge crest the plume merges into the lower part of the ERRC, which
has a nearly barotropic structure (Koman et al., 2020) and extends quasi-uniformly to the surface above the
1,200 m level. Therefore, it is not straightforward to determine where the flow associated with the ISOW
plume "ends” and the flow associated with the ERRC begins. Nevertheless, if the traditional definition of
the ISOW layer is used, with ISOW being defined as waters with potential densities of gg > 27.8 (Hansen
& Osterhus, 2000), then the lower part of the ERRC clearly contains waters that are part of the ISOW layer
(note the gy = 27.8 contour drawn in Figure 6a). For the purposes of this paper, we will continue to use the
classical definition of ISOW in the Iceland Basin (i.e., og > 27.8), and all transports computed for the ISOW
plume will include waters with potential density og > 27.8.

Figures 6b and 6¢ show the mean distributions of potential temperature and salinity across the array, de-
rived from the moored T/S recorders deployed on the moorings, with os contours overlain on each panel for
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reference. A notable feature of the potential density field is the downward deflection of density surfaces into
the steep topography along the upper ridge crest, a signature that is suggestive of intensified near-bottom
mixing (Callies & Ferrari, 2018; St. Laurent et al., 2001). This feature is linked primarily to the temperature
field, which shows potential temperature isopleths bowing downward near the bottom as far offshore as M2,
while the salinity field shows a nearly uniform layer of characteristically higher salinities along the bottom
associated with ISOW, with salinities reaching 34.98 near the bottom.

3.2. Transport of the ISOW Plume

Using the methodology described in Section 2.4, daily estimates of the ISOW plume transport were pro-
duced for the period from July 15, 2014 to July 13, 2018, a total length of 1,460 days. The time mean trans-
ports computed for different regions of the plume (cg > 27.8) are as follows:

1. —4.53 £ 0.22 Sv for the “upper” plume branch from the crest of the RR to mooring M2.

2. —1.61 £ 0.26 Sv for the “lower” plume branch from mooring M2 to the location of the time-mean ze-
ro-crossing of the flow between moorings D4 and D5 (at ~300 km on Figure 6a).

3. —0.78 £ 0.34 Sv for the net transport computed from mooring M2 all the way to mooring D5. The above
uncertainties represent standard errors based on the observed autocorrelation time scales of the trans-
port time series (ranging between 7 and 10 days), computed in the same manner as described earlier for
the mean currents.

Integrating the transports over the above regions (1) and (2) together yields a total plume transport of
—6.14 £ 0.31 Sv, while integrating over regions (1) and (3) together yields a mean transport of —5.31 + 0.35 Sv.
The first value (—6.14 Sv) can be taken as an estimate of the actual southward plume transport along the
eastern flank of the RR, but it could be an overestimate of the net export of ISOW from the Iceland Basin
due to the observed northward recirculation at mooring D5, which has virtually identical T/S properties
to the water at mooring D4 (as will be shown later). Unfortunately, the current meter data to the east of
mooring D5 is too sparse to resolve the width of the northward recirculation at D5, or to compute direct
transports for the rest of the basin.

Therefore, to estimate the net transport of ISOW across the eastern part of the section, including any re-
circulating component, we use the dynamic height moorings M2, M3, and M4 to make an independent
estimate of the spatially integrated transport over the distances between them. For each mooring, the tem-
perature and salinity profiles from the moored CTD sensors are first interpolated in the vertical using the
"pchip” shape-preserving cubic spline, and dynamic height profiles are created at each site. The time-mean
geostrophic velocity profile between each pair of moorings is then calculated and referenced to two esti-
mates of absolute velocity: (a) the spatially integrated surface velocity between each mooring pair derived
from the Aviso+ altimetry analysis, and (b) the spatially integrated Argo drift velocity at 1,000 m between
each mooring pair from the Bilo and Johns (2019) analysis. The time mean values of these reference veloc-
ities are taken over the full data periods available for each data set (1992-2018 for altimetry; 1997-2018 for
Argo) to obtain the most representative estimates.

To capture the geostrophic shear associated with the lower branch of the ISOW plume at D4, the dynamic
height profile at M2 is extended vertically by appending the deepest CTD sensor on mooring D4 (at 2,630 m)
to the M2 T/S profiles. This is consistent with best practices in applying "endpoint” geostrophic techniques
(Ganachaud, 2003; McCarthy et al., 2015) and should provide a close approximation of the net geostrophic
flow between moorings M2 and M3 to the extended depth of M2 (2,630 m). The corresponding geostrophic
velocity profile for the M3-M4 mooring pair extends to a depth of 2,800 m. These geostrophic velocity pro-
files are then linearly extrapolated to the bottom and masked by the bottom topography to obtain transport
profiles for the regions between M2-M3 and M3-M4. The results of this calculation are shown in Figure 7,
where the corresponding transports for the layer below o, = 27.8 are obtained by integrating these profiles
vertically below mean depth of the oy = 27.8 isopycnal for each mooring pair.

For the M2-M3 mooring pair, the results using the two different reference velocity estimates agree relatively
closely, with both indicating southward flow beginning at 1,800-2,000 m and with transport estimates for
op > 27.8 of —1.8 Sv and —1.4 Sv for altimetry and Argo reference, respectively. For the M3-M4 pair, the
results show greater disagreement (1.0 Sv for altimetry reference and 0.4 Sv for Argo reference), but in both
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27.8 (—1.6 Sv for M2-M3, and 0.7 Sv for M3-M4),

cases show a net northward flow in the deep gy > 27.8 layer. For the final
estimates of these geostrophic transports, we take the average of the two
estimates for each mooring pair (—1.6 + 0.2 Sv for M2-M3; 0.7 + 0.3 Sv
for M3-M4), with uncertainties reflecting the difference between the two
estimates. Thus, for the central and eastern portion of the basin between
moorings M2 and M4, the estimated transport for the oy > 27.8 layer
from these geostrophic calculations is —0.9 + 0.4 Sv (southward), net of
recirculation.

The flow in the bottom triangle east of M4 (see Figure 2) is neglected in
this estimate, and the bottom intensified northward flow observed at M4
could lead to a northward transport in that region of up to 0.2 Sv if uni-
formly extended to the boundary, but is likely to be smaller.

The above estimate, of —0.9 Sv for the entire ISOW layer between moor-
ings M2 and M4, is nearly the same as the estimated transport of —0.78 Sv
that is derived from the direct current meter observations for the region
between M2 and D5. This suggests that the current meter derived trans-
port for the western region between M2 and D5—inclusive of the part of
the recirculation near D5 that is captured within this area—is representa-
tive of the net southward ISOW transport all across the basin between M2
and the Rockall-Hatton Bank. Therefore, we will use the directly comput-
ed moored transport over the region from moorings M1 to D5 as our best
estimate of the southward transport of the ISOW plume, including any
net recirculation across the rest of the basin.

3.3. Variability of the ISOW Plume Transport

Daily transport estimates over the total plume domain from moorings
M1-D5 show a wide range of variability from >15 Sv southward to 5 Sv

northward, while for 30-day lowpass filtered values the transports typically range from 0 to 10 Sv southward
(Figure 8a). The upper branch of the plume, from M1 to M2, shows a weaker variability (Figure 8b), with
daily values ranging from about 0-10 Sv to about 2-8 Sv for 30-day lowpass filtered data, even though it
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Figure 8. Transport time series of the Iceland-Scotland Overflow Water plume: (a) total transport, (b) transport
contributions of the upper (M1-M2) and lower (M2-D5) plume branches. Thin lines are daily average values; thick
lines are 30-day lowpass filtered values. Cyan and magenta dots in (a) show the corresponding plume transports derived
from CTD sections (referenced to vessel-mounted Acoustic Doppler Current Profiler [ADCP]), and from lowered-ADCP
sections across the plume, respectively.
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accounts for 85% of the time mean plume transport (4.5 Sv of the total 5.3 Sv). Most of the extremes of the
total transport are related to the variability of the transport in the lower plume domain, which actually has
a higher variance (standard deviation of 3.0 vs. 1.9 Sv for the upper plume), with daily values ranging from
>10 Sv southward to >5 Sv northward.

The transports of the upper and lower plume regions are statistically uncorrelated (r = —0.02), and there-
fore their variances nearly add up (within 1%) to the variance of the total plume transport, which has a
standard deviation of 3.5 Sv. At certain times, the two transport time series do show some degree of covaria-
tion, such as during January 2018 when the upper plume transport was near its minimum strength and the
lower plume transport was strongly northward, leading to an extreme (northward) transport event across
the entire array. However, overall there is no observed tendency for the transports within the upper and
lower plume branches to either compensate or covary with each other.

Temporal variations of the total plume transport occur over a broad range of time scales, with no particular
dominant period of variation. The power spectra of the ISOW plume transport for the total transport (not
shown), and for the two branches separately, are red and relatively featureless, with a minor peak near
100 days that is mostly associated with the transport variability in the lower plume domain. We believe
the higher transport variability in the lower plume domain is due in part to the effects of deep-reaching
mesoscale eddies that are prevalent in the central Iceland Basin, linked to the variability of the North At-
lantic Current that exhibits a surface eddy kinetic energy (EKE) maximum near the location of mooring
M3, and that extends westward to the locations of moorings D5 and D4 with still elevated EKE values (Zhao
et al., 2018). Over the upper plume region, where the surface EKE values are substantially lower, the effects
of these eddies should be correspondingly less, and the observed transport variations appear to be more
intrinsic to the plume variability itself. While a detailed analysis of the plume variability will be the subject
of a future study, we show in the Supporting Information (Figure S1) a few snapshots of the plume structure
observed during periods of extreme high and low transports, and for a typical state with a transport close to
its mean value. In the extreme transport cases, the flow in the D4/D5 region shows northward (southward)
anomalies over much of the deep-water column in the high (low) transport cases that appear to be super-
imposed on the lower plume velocity core near mooring D4 and primarily cause the extreme transports at
these times.

The transports computed from the mooring array were checked against the corresponding transports de-
rived from the CTD and LADCP sections available during the mooring servicing cruises, as described in
Section 2.3. These transports are plotted in Figure 8a on top of the mooring-derived transport time series,
and in each case agree with the mooring-derived estimate within +1 standard deviation of the time-mean
moored transport over the period of time it took for the sections to be completed. Some of the CTD/LADCP
sections were more synoptic than others: the first section in 2014 was done after the mooring array was
fully deployed and took only 3 days to complete, while during 2015 and 2016 the sections were interspersed
with mooring operations and took 5 and 7 days to complete, respectively. The largest discrepancy occurred
during 2016 when the CTD and LADCP derived transports were different by 1.8 Sv (4.2 Sv for the LADCP
section, and 6.0 Sv for the CTD section), with the moored transport estimate of 3.9 + 2.7 Sv agreeing more
closely with the LADCP transport, but still within the range of the CTD transport. These comparisons, al-
though limited, give us confidence that the mooring array is adequately resolving the ISOW plume structure
and producing accurate, unbiased transport estimates.

3.4. Water Mass Composition of the ISOW Plume

Given the larger transport estimate for the ISOW plume we find in this study compared to those from pre-
vious studies farther north in the Iceland Basin (Kanzow & Zenk, 2014; Saunders, 1996), a logical question
to ask is: Can the observed transport be rationalized against the known transport of dense overflow waters
crossing the IFR, after accounting for the entrainment of lighter waters into the overflow? To answer this
question, we perform a water mass analysis of the ISOW plume to determine the volume-flux weighed con-
tribution of different source waters to the plume, including the original overflow source waters (NSOW and
MEIW) and the primary waters entrained into the plume (Atlantic thermocline water, commonly referred
to as Subpolar Mode Water [SPMW], and Labrador Sea Water [LSW]).
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Figure 9. Water mass composition of the ISOW plume: (a) mean 6/S frequency distribution of gridded 6/S data below
1,200 m from moorings M1-D5, (b) as in (a) but expanded to show water mass mixing endpoints (SPMW = Subpolar
Mode Water, LSW = Labrador Sea Water, MEIW = Modified East Icelandic Water, NSOW = Norwegian Sea Overflow
water). The circled areas in (a) show the main water mass cores found within the plume (LSW = Labrador Sea Water,
ISOW = Iceland-Scotland Overflow Water, ISW = Icelandic Slope Water).

To begin, we show in Figure 9a the water mass properties of the ISOW plume in the form of a potential
temperature/salinity (6/S) frequency distribution derived from the gridded arrays of 6 and S below 1,200 m
across the array from moorings M1 to D5. The highest concentration of 6/S values occur in two cores,
one at [2.6-2.7°C, 34.98] corresponding to the core properties of ISOW, and the other at [3.8-3.9°C, 34.92]
corresponding closely to the properties of LSW that overlie the ISOW layer within the Iceland Basin. A
third, weaker core occurs near [3.8°C, 34.98] that corresponds to the properties of so-called "Icelandic Slope
Water” (ISW) that has been identified in prior hydrographic studies along the RR slope south of Iceland
(Read, 2000; Van Aken & De Boer, 1995). For the ISOW layer below o = 27.8, the highest 6/S concentrations
occur along a swath that represents a mixing product primarily between ISOW and LSW, but a fraction of
the ISW core also occurs at densities greater than o, = 27.8 and therefore occupies a part of what is tradi-
tionally defined as the ISOW layer.

In most previous studies of the water mass composition of the ISOW plume, it has been assumed that the
waters within the plume are the product of mixing between three primary source waters, or endpoints: (a)
NSOW (representing an appropriate volume-weighted mixture of NSDW and NSAIW that overflows the
FBC and IFR sills), (b) SPMW that occupies the thermocline layer of the northern Iceland Basin and is
initially mixed into the overflows just downstream of the sills, and (c) modified LSW that occupies the in-
termediate layer in the Iceland Basin and can be subsequently mixed into the plume. Our analysis of the 6/S
structure of the plume suggests that a fourth water mass endpoint needs to be taken into account to explain
the observed properties of the plume, namely the MEIW, which is the least well constrained component of
the dense waters that can overflow the IFR.

In Figure 9b, we show an expanded view of the /S distribution in Figure 9a that includes the above mixing
endpoints. The core properties of these mixing endpoints are listed in Table S2. Consistent with previous
studies (Saunders, 1996; Van Aken & De Boer, 1995), the core properties of ISOW represent a mixture pri-
marily of NSOW and SPMW, with a small degree of influence from LSW. The core of ISW, however, can
be seen to lie almost exactly on a straight mixing line between SPMW and MEIW, suggesting to us that
the ISW is formed primarily by mixing of MEIW overflowing the sills with SPMW. While previous studies
have generally linked the formation of ISW to some mixing process between overflow waters and SPMW,
the exact means of its formation has, to our knowledge, not been established, and we believe these obser-
vations point to the mixing of MEIW and SPMW as its primary origin. The other possibility, though we
feel a less likely one, is that it is formed by preferential mixing of already-formed ISOW with waters in the
lower thermocline of the northern Iceland Basin lying along the mixing line between SPWM and LSW with
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Figure 10. Spatial fractions of the three water mass cores identified in the Iceland-Scotland Overflow Water (ISOW)
plume: (a) 6/S frequency distribution within the plume, with crosses denoting local maxima in frequency distribution
of the ISOW, Labrador Sea Water (LSW), and Icelandic Slope Water (ISW) cores, (b-d) fractional distributions of the
ISOW, LSW, and ISW core waters across the plume, respectively.

potential temperatures near 4.5°C and salinities of 34.98. However, why the ISOW would preferentially mix
with these particular waters as it descends the IFR slope to form the core properties of the ISW is hard to
understand.

To account for both possibilities, we perform a 3-endpoint water mass decomposition of the waters within
the ISOW plume (consisting of mixing only between NSOW, LSW, and SPMW), and a 4-endpoint mixing
scheme involving NSOW, MEIW, LSW, and SPMW. For the 3-endpoint mixing scheme, the calculation is
straightforward and the set of linear equations that determine the water mass fractions of each source water
type is given by:

Xmb, =0y, XmS; =Sy, 2m; =1

where m;, represent the mass fractions of each water type, 6, and S; are the potential temperature and salinity
of each water type, and 6, S, are the observed potential temperature and salinity of the water at any par-
ticular location within the plume.

For the 4-endpoint mixing scheme, a unique solution cannot be obtained with only two measured water
properties (9 and S), and a further constraint needs to be added to the above equations. To add a fourth con-
straint to this set of equations, we developed a data-driven approach which uses the same set of equations as
above, but is applied instead to the actual ISOW, ISW, and LSW cores in the observed 6/S frequency distribu-
tions (i.e., where the 6, and S, correspond to the observed potential temperature and salinity of those water
mass cores, see Figure 10a), to develop an approximate spatial template for the relative fractions of NSOW
and MEIW within the ISOW plume domain. Using these three water mass cores as endpoints in the above
system of equations, we can map the respective mass fractions m; of the water types associated with ISOW,
LSW, and ISW water mass cores over the domain of the mooring array, which is shown in Figure 10 for the
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Figure 11. Mean fractions of water mass endpoint mixtures within the Iceland-Scotland Overflow Water plume: (a)
Subpolar Mode Water, (b) Labrador Sea Water, (c) Norwegian Sea Overflow Water, (d) Modified East Icelandic Water.

time-mean plume. This analysis shows that the ISOW core waters are found in highest concentration along
the bottom in the offshore region of the plume, while the ISW is located along the upper RR slope and also
within the base of the ERRC at densities less than op = 27.8, and the LSW is found, as expected, overlying
the ISOW layer at intermediate depths. Under the assumption that the ISW reflects mainly a mixing product
between MEIW and SPMW, and ISOW mainly a mixing product between NSOW and SPMW, we then use
these templates of the ISW and ISOW distributions as a measure (according to their ratio) of the relative
fractions of MEIW and NSOW at each location within the plume. This provides a fourth constraint for the
4-endpoint problem, allowing the mass fractions of four original source waters (NSOW, MEIW, SPMW, and
LSW) to be calculated across the entire plume domain. While this is not a unique solution, we believe it
is the most logical way to approach the 4-endpoint problem given that we only have continuous measure-
ments of two water properties (9 and ) from the array. The corresponding spatial distributions of each of
the four source water endpoints are shown in Figure 11 for their time-mean distributions.

The above calculations (for either the 4-endpoint or 3-endpoint problem) are done at each time step (dai-
ly), and the respective source water mass fractions at each grid point are then multiplied by the observed
velocity at each gridpoint to obtain an estimate of the fractional transport carried by each of the original
source waters within the total plume. For the 3-endpoint problem, this calculation yields the result that
approximately 46% of the total plume transport, or 2.42 Sy, is associated with "pure” NSOW overflowing the
sills (Table 2), and that the remaining transport is made up of 25% SPMW and 29% LSW that are entrained
into the plume. For the 4-endpoint calculation, the total transport of overflow waters (NSOW and MEIW) is
2.57 Sv, or 48% of the total plume transport, with 1.81 Sv (34%) being derived from NSOW and 0.76 Sv (14%)
from MEIW, and with the remainder being made up of 27% SPMW and 25% LSW. In both cases, approxi-
mately half of the total plume transport is derived from the overflow waters and the remaining half from the
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Table 2
Water Mass Transports and Respective Water Mass Transport Fractions Within the Iceland-Scotland Overflow Water
Plume (o > 27.8)

3 Endpoint model (SPMW-LSW-NSOW) 4 Endpoint model (SPMW-LSW-NSOW-MEIW)
Transport (Sv) Transport (Sv) Fraction (%)

‘Water Mass mean = std. err. Fraction (%) mean = std. err. mean =+ std. err. mean = std. err.
SPMW 1.32 + 0.08 252 1.43 £ 0.10 Sv 27+2

LSW 1.56 + 0.13 29+2 1.31 £ 0.18 Sv 25+3
NSOW 2.42 £0.16 46 £ 3 1.81 £0.13 Sv 34+2
MEIW - - 0.76 = 0.10 Sv 14+ 2

Total 5.31 +0.35 100 5.31 £ 0.35 Sv 100

Note. Results are shown for the 3-endpoint mixing model (including SPMW, LSW, and NSOW) and the 4-endpoint
mixing model (including SPMW, LSW, NSOW, and MEIW).

LSW, Labrador Sea Water; MEIW, Modified East Icelandic Water; NSOW, Norwegian Sea Overflow Water; SPMW,
Subpolar Mode Water.

entrained SPWM and LSW, indicating that the overflow source waters approximately double their original
transport through the entrainment process.

In addition, the endpoint water mass distributions in Figure 11 indicate a significant fraction of MEIW on
the upper RR slope that lies above the oy = 27.8 contour, as well as a small influence of NSOW above the
0p = 27.8 contour in the offshore plume region. This means that some of the original overflow source waters
(NSOW and MEIW) have been mixed up into density layers lighter than oy = 27.8, or, in other words, that
the ISOW layer as it is traditionally defined (i.e., gy > 27.8) does not actually capture all of the original over-
flow source waters. Using the same approach as above to determine the volume-flux weighted contributions
by these endpoint water masses, but applied to the velocity distributions and mass fractions of NSOW and
MEIW at densities less than gy = 27.8, we find that an additional 0.13 Sv of NSOW and 0.53 Sv of MEIW is
flowing southward within the upper reaches of the plume (or, in the case of MEIW, within the deep layers of
the ERRC along the upper RR slope). For the 3-endpoint solution, involving only NSOW, the corresponding
"extra” NSOW transport above gg = 27.8 is 0.40 Sv. Note that for the 3-endpoint calculation, the NSOW water
mass fraction (not shown) looks very much like a merger of the MEIW and NSOW water mass fractions
shown in Figures 11c and 11d, but with slightly weaker relative NSOW fractions on the upper RR slope.

Adding together the volume flux fractions of NSOW and MEIW below o, = 27.8 with the above estimates,
we obtain a total southward transport of 1.94 Sv of NSOW and 1.29 Sv of MEIW for the 4-endpoint case (for
a total overflow transport of 3.23 Sv), and for the 3-endpoint case, a total southward transport of 2.82 Sv of
NSOW. The latter estimate is consistent with accepted estimates of the total overflow strength across the
Iceland-Scotland Ridge (Table 1), while the former estimate is somewhat larger than accepted estimates
and, in particular, requires a much larger contribution of MEIW flowing across the sills than has previously
been theorized. We believe the real answer lies somewhere between these two limits, which effectively
represent extremes of the possible combinations of NSOW and MEIW that could make up the total over-
flow. Nevertheless, the total amount of overflow waters inferred from these calculations is consistent with
observational estimates of the strength of the net overflow of dense waters through the FBC and across the
IFR, within available uncertainties.

In the above water mass decomposition we have neglected a fifth water mass, Lower Deep Water (LDW),
that is present in the eastern part of the deep Iceland Basin and has been postulated to mix into the ISOW
and enhance its transport through a process known as "cold entrainment” (McCartney, 1992). This water
mass enters the deep Iceland Basin from the West European Basin to the south and has slightly lower salin-
ity than ISOW and high dissolved silicate content, indicating its remote origin linked to Antarctic Bottom
Waters. The 6/S properties of the deep mooring data in the eastern Iceland Basin clearly show the influence
of LDW (Figure 12), where a strong pull of the core ISOW properties toward LDW is seen at the deepest
level on mooring M4, and also to a lesser degree at mooring M3. A much smaller influence of LDW is seen
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Figure 12. 6/S frequency distributions from individual T/S recorders on each of the moorings across the Iceland Basin, for potential temperatures less than
5°C. Water mass endpoints for Labrador Sea Water (LSW) and Lower Deep Water (LDW) are indicated by the square and starred symbols, respectively.

at moorings D5 and D4, while no LDW influence is seen at moorings M2 or at the shallower moorings along
the upper RR slope where most of the ISOW plume transport occurs.

We believe that the northward boundary flow observed at the eastern edge of the Iceland Basin below
2,300 m at mooring M4 (Figure 5 and Table S1) is likely the main entry point for LDW into the Iceland Ba-
sin, but that little of this LDW gets mixed into the ISOW that is being exported from the Iceland Basin. As
a way to quantify this we can use silicate, which is the most sensitive water mass indicator for LDW, to esti-
mate the fraction of LDW that may be contributing to the deep branch of the plume offshore of mooring M2.
Silicate values obtained from a full-chemistry hydrographic section across the OSNAP line at the beginning
of the OSNAP program show maximum silicate values of 19 umol/l in the deep eastern part of the section
off Hatton Bank, and values of 11 pumol/l within the ISOW core waters along the mid-RR slope, both of
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which are consistent with historically reported values (e.g., Van Aken & De Boer, 1995). The average silicate
concentrations in the o > 27.8 layer near the location of moorings D4/D5 are ~12-13 umol/l, meaning that
the fractional LDW contribution to the deep branch of the ISOW plume is at most 25%. Multiplying this by
the 0.8 Sv net transport of the deep branch of the ISOW plume gives an estimate of at most 0.2 Sv of LDW
contained within the plume, which is a negligible amount compared to the total plume transport of 5.3 Sv.

4. Discussion

These new measurements of the ISOW plume along the OSNAP line raise fundamental questions about
our current understanding of the formation and export of ISOW from the Iceland Basin, and its overall
role in the lower limb of the Atlantic Meridional Overturning Circulation. First among these is: How can
these new, higher transport estimates be rationalized against the lower transports estimated from previous
moored array studies of the ISOW plume in the northern Iceland Basin?

One possibility is time-dependence of the overflow itself, and whether it may have been larger during the
time of these observations than during the corresponding periods of the earlier studies. We believe this is
unlikely, since the long-term measurements of the FBC overflow by Hansen et al. (2016) show yearly av-
erage variations about the long-term mean overflow of no more than 0.3 Sv. Those overflow observations
include the time period of the Knzow and Zenk (2014) study (collected during 2000-2002) but not the time
period (1990-1991) of the measurements described by Saunders (1996). Therefore, it is possible that the
overflow could have been anomalously weak during the period of the Saunders (1996) study, and it must
also be acknowledged that little is known of the interannual variability of the remaining overflow across
the IFR. However, the magnitude of the overflow reduction during these periods would have to have been
of order 1 Sv to explain the discrepancy between our results and those of Saunders (1996) and Kanzow and
Zenk (2014), which does not seem likely in view of the existing overflow observations.

A second possibility is that significant additional entrainment occurs within the ISOW plume as it flows
southward from the northern Iceland basin toward the OSNAP line. A related study of the DWBC off East
Greenland (Lauderdale et al., 2008) found elevated mixing rates in the DSOW core layer near Cape Farewell
and suggested that up to 5 Sv of additional entrainment could occur in the East Greenland DWBC due to
vertical mixing that takes place downstream of the rapid DSOW entrainment region a few hundred km
from Denmark Strait. The authors did not explicitly account for the addition of ISOW to the DWBC off
East Greenland, of perhaps 3 Sv, or any possible recirculation of deep waters of the Irminger Basin into
the DWBC, so that a more probable estimate of this additional entrainment would be of the order 1-2 Sv.
Whether such additional entrainment could be occurring in the ISOW plume is unclear, but if it was in-
deed occurring, it would imply additional dilution of the ISOW layer (mainly with LSW), and one would
expect to see corresponding changes in the ISOW core properties (6, S, and op) along its southward pathway
from Iceland. There is really no evidence for this taking place, however. Saunders (1996) and multiple
other studies (e.g., Fogelqvist et al., 2003; Hansen & @sterhus, 2000), as well as hydrographic data from the
"Ellet line" line south of Iceland acquired during the period of our study (https://www.bodc.ac.uk/data/
bodc_database/nodb/cruise/15037/) show that after its initial rapid entrainment phase the ISOW core has
/S properties all along the RR slope south of Iceland that are very similar to our observed ISOW core prop-
erties of ~[2.6-2.7°C, 34.9]. Therefore, substantial modification of the ISOW core waters following the rapid
entrainment phase downstream of the FBC does not appear to occur.

There are, however, notable differences in the characteristics of the ISOW plume along its southward
pathway between the Saunders (1996), Kanzow and Zenk (2014) and OSNAP arrays. The maximum
mean speeds in the plume gradually decrease (from nearly 0.2 m/s at the Saunders array, to ~0.15 m/s at
the Kanzow & Zenk array, and ~0.1 m/s at the OSNAP array), and the average thickness of the gg > 27.8
layer also increases substantially between the arrays. Comparing Figure 6a with similar representations
of the plume structure shown in Saunders (1996) and Kanzow and Zenk (2014), we estimate the average
thickness of the near-bottom oz > 27.8 layer to be 280, 340, and 450 m at the three arrays, respectively,
where these estimates are taken from the point where the oy = 27.8 contour intersects the RR or Ice-
land slope topography to a depth of 2,400 m (spanning the main area of active plume flow in each case
and to the maximum bottom depth of the Saunders array section). This suggests that there could be a
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mixing-related "inflation" of the ISOW layer and, possibly, a corresponding transport increase due to
upward mixing of momentum from the bottom layer, which slows in its maximum speeds as the plume
moves southward.

Enhanced mixing within the ISOW plume could be produced as it encounters increasingly rugged topogra-
phy along the eastern flank of the RR upstream of the OSNAP line (see Figure 1). The structure of the densi-
ty field within the ISOW plume at the OSNAP line—in particular the downward bowing of density surfaces
int the crest of the RR, as noted earlier—is indeed suggestive of enhanced bottom-intensified mixing over
the upper ridge flank. This feature is consistently present in all of our OSNAP hydrographic sections (e.g.,
Figure 2), and also in the OVIDE hydrographic data across the region of our array (Daniault et al., 2016),
but does not appear to be present at the Saunders or Kanzow & Zenk array locations. Therefore, it appears
to develop as the plume begins to encounter the rougher RR topography going southward. However, any
additional entrainment that results from this enhanced mixing does not seem to impact the core properties
of ISOW near the bottom, but instead may act to entrain additional LSW into the upper parts of the plume.

Finally, we consider whether the earlier arrays by Saunders and Kanzow & Zenk could have underestimated
the transport of the ISOW plume, or if our array may have overestimated its transport. For both ours and
Saunders' arrays, the average separation between moorings over the region where most of the plume flow is
contained is approximately 40 km, while for the Kanzow & Zenk array it was almost twice that (70-80 km).
Furthermore, the "I" mooring in Kanzow & Zenk's "ISOW" array (see Figure 1) was not recovered, so that
the authors had to infer the flow in the upper part of the ISOW plume from a single RAFOS float trajec-
tory that passed through the region during the time of their study. These earlier studies also had far fewer
current meters located within the southward flowing ISOW layer than in the OSNAP array: seven in the
Saunders array, and five in the Kanzow & Zenk array, compared to 14 in the OSNAP array (Figure 6a). Given
the sparse spatial sampling of the Kanzow & Zenk array, it seems possible that the flow maximum of the
ISOW plume could have been missed and the transport underestimated. In the case of Saunders' study, the
near-bottom current meters in that array were placed at 10 m above bottom, and five of the seven current
meters that recorded southward flow in the ISOW layer were from those current meters at 10 m above bot-
tom. These near-bottom current meters—using the method applied by Saunders, in which representative
cross-sectional areas were assigned to each current meter—accounted for 2.3 Sv (72%) of the total of 3.2 Sv
ISOW transport estimated by Saunders. If these near-bottom current meters were within the bottom bound-
ary layer, which seems likely, it could have led to an underestimate of the plume's transport. Therefore, we
believe that there are legitimate reasons why the earlier arrays by Saunders and Kanzow & Zenk could have
both underestimated the ISOW plume's transport. In addition, as noted previously, Saunders’ water mass
analysis of the ISOW plume could account for only 1.6 Sv of dense overflow waters within the plume, less
than even the ~2.0 Sv known to be flowing through the FBC.

As to whether the OSNAP array could have overestimated the ISOW plume's transport, such a scenario
could occur if the moorings happened to be placed in local maxima of the flow with regions of weaker flow
between them. The only mooring location where we think such a situation could apply is at D2, which lies
in an off-axial trough associated with the so-called V-shaped ridge/trough system emanating from the RR’s
main spreading center (Jones et al., 2002; see Figure 1). Mooring D2 was specifically placed in this deep
trough to capture any ISOW flow that might be funneled along it. Although there is clearly ISOW flow with-
in and overlying this deep trough, the maximum of the plume flow is found at different locations along the
slope at different times (Figures 5 and S1) and the flow at mooring D2 can even stop or reverse. Therefore,
we do not believe that the OSNAP mooring placements along the RR topography are likely to have led to
any significant transport bias due to having been preferentially located in regions of stronger flow. Also, as
shown previously, the available transport estimates from contemporaneous CTD/LADCP sections across
the plume show relatively good agreement with the moored transport estimates.

We therefore conclude that the apparent transport growth of the ISOW plume could be due, in part, to
possible underestimates of the plume strength in earlier studies, and also possibly to the effects of gradual
additional entrainment of LSW into the top of the plume between the southern Icelandic slope and the
southern tip of the RR.
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Given the larger transport estimate for the ISOW plume obtained in this study compared to earlier studies,
another important question is: What do these higher transport estimates imply about the known export
pathways of ISOW from the Iceland Basin? Historically, it has been assumed that most of the ISOW plume
exits the Iceland Basin through fracture zones in the Mid-Atlantic Ridge, flowing into the Irminger Basin
and then wrapping around the northern rim of that basin to join the DWBC system off east Greenland (Dick-
son et al., 2008). The most important of these fracture zones is the Charlie-Gibbs Fracture Zone (CGFZ)
near 53°N (Figure 13), where observations by Saunders (1994), and later by Bower and Furey (2017), have
estimated that between 1.7 and 2.4 Sv of ISOW flows westward into the Irminger Basin. A second fracture
zone farther north along the ridge, the Bight Fracture Zone (BFZ) near 57°N, has also been viewed as a
potentially significant cross-ridge pathway for ISOW, and recent moored observations in the BFZ by Furey
et al. (2020) found a 2-year mean transport of ISOW of 0.8 + 0.4 Sv through the BFZ. These estimates
are generally consistent with results from recent modeling studies that show about 3 Sv of ISOW flowing
through various gaps in the Mid-Atlantic Ridge, including the CGFZ, BFZ, and a few smaller gaps between
55and 56°N (Xu et al., 2010, 2018). Notably, these estimates are also consistent with the earlier estimates of
just over 3 Sv for the ISOW plume in the Iceland Basin, having reinforced the impression that most of the
ISOW plume flow exited the Iceland Basin through gaps in the ridge to flow into the western basin of the
Atlantic Ocean.

However, our new measurements of the ISOW plume showing a transport of over 5 Sv means that there
must be another—relatively significant—pathway for ISOW to leave the Iceland Basin. The only other path-
way for ISOW to exit the Iceland Basin is southward along the east side of the Mid-Atlantic Ridge into
the West European Basin, bypassing the CGFZ. Indeed, there have been previous indications that some of
the ISOW flow has to follow this pathway, based on water mass analysis showing a clear imprint of ISOW
properties in the West European Basin that can be traced as far south as the Madeira Abyssal Plain (Van
Aken, 2000). Zou et al. (2017) also found evidence of a significant southward flow into the West European
Basin along the eastern flank of the Mid-Atlantic Ridge from yearlong current meter records deployed
in the ISOW layer. In addition to the main ISOW plume flowing along the RR, there is a small contribu-
tion of ISOW that can enter the West European Basin through the Rockall Trough after overflowing the
Wyville-Thompson Ridge, but this contribution to the net export of ISOW from the Iceland Basin is thought
to be small, of order 0.1-0.3 Sv (Sherwin & Turrell, 2005). Based on chlorofluoromethane (CFC-11) inven-
tories, LeBel et al. (2008) estimated a mean production rate of ISOW of 5.7 Sv for the period between 1970-
1997, and found that 30% of the ISOW CFC-11 inventory was in the eastern basin of the Atlantic, suggesting
that about one-third (equivalent to ~1.7 Sv) of the ISOW export from the Iceland Basin must follow this
eastern pathway. Using CFC-11 and tritium observations, Fleischmann et al. (2001) found that as much as
2.4-3.5 Sv of ISOW could be flowing into the West European Basin along this pathway. These estimates,
along with our updated estimate of the ISOW plume transport at the OSNAP line, and other observational
estimates of the ISOW plume transport and its export pathways from the Iceland Basin, are summarized in
Figure 13. The recent modeling study of Xu et al. (2018) also reproduces a significant southward pathway
of ISOW along the eastern flank of the Mid-Atlantic Ridge, of 1.7 Sv, that is composed of the densest ISOW
waters flowing from the Iceland Basin.

We find it compelling that our new estimate of the net export of ISOW from the Iceland Basin, of 5.3 + 0.4 Sy,
is in relatively close agreement with estimated net production of ISOW by LeBel et al. (2008). Both studies
indicate (Lebel et al.s by CFC-11 inventories, and ours by inference relative to other known exit pathways)
that approximately 2 Sv of the ISOW plume transport follows this eastern pathway into the West European
Basin. The remainder, of order 3 Sv, flows to the western basin through gaps in the Mid-Atlantic Ridge,
consistent with the available observations from CGFZ and BFZ. We believe that these results, together with
our water mass analysis of the ISOW plume, which shows that it contains approximately 3 Sv of pure over-
flow waters and nearly doubles its transport through entrainment, paint a fairly self-consistent picture of
the mass budget of ISOW in the eastern North Atlantic. The principal outcome of this new understanding
is that the ISOW, through both its eastern and western pathways, plays a larger role in the lower limb of the
AMOC than has commonly been perceived.

It remains an interesting question what happens to this eastern pathway of ISOW. Does it continue south-
ward in the eastern basin, or does it find a pathway back to the western basin at some more southerly
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Figure 13. Iceland-Scotland Overflow Water pathways and transports in the eastern subpolar North Atlantic (adapted from Zou et al., 2017). All transports
labeled in boxes (in Sv) are from observation-based estimates; data sources and references for each location are described in the text. Dots indicate the location
of the Overturning in the Subpolar North Atlantic Program Iceland Basin mooring array. Abbreviations: FBC = Faroe Bank Channel; IFR = Iceland-Faroes
Ridge; RR = Reykjanes Ridge; WTR = Wyville-Thompson Ridge; RT = Rockall Trough; RP = Rockall Plateau; BFZ = Bight Fracture Zone; CGFZ = Charlie
Gibbs Fracture Zone; MAR = Mid-Atlantic Ridge.
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latitude? The CFC-11 inventories by LeBel et al. (2008)—though limited by the time horizon of CFC input
to the ocean—suggest a possible route back to the western basin south of the Azores along a zonal pathway
near 30°N. This pathway would be very similar to the recently identified pathway of Labrador Sea Water
that passes into the eastern basin through the CGFZ, southward in the eastern basin, and then re-crosses
the Mid-Atlantic Ridge south of the Azores to flow westward along ~30°N, eventually joining the DWBC off
of the Bahamas (Bilo & Johns, 2019). Given the mounting evidence for this eastern pathway of ISOW, more
research into its eventual fate seems warranted.

5. Conclusions

We report here the results from a moored array along the eastern flank of the Reykjanes Ridge measuring
the ISOW plume and its southward export of overflow and entrained waters from the Iceland Basin over a
4-year period from 2014 to 2018. This array is part of the Overturning in the Subpolar North Atlantic Pro-
gram (OSNAP) trans-basin observing system and represents the most comprehensive array yet deployed
across the ISOW plume. The main conclusions of this study are as follows:

1. Atthe location of the OSNAP array, near 58°N, the ISOW plume consists of two branches, a main branch
flowing along the upper Reykjanes Ridge slope in depths from 1,400 to 2,200 m and a lower branch
at depths of 2,400-2,800 m along the deeper ridge flank. The total transport of the two branches is
6.1 + 0.3 Sv (for g5 > 27.8), and the net export of ISOW from the Iceland Basin is 5.3 + 0.4 Sv after ac-
counting for interior recirculation across the basin.

2. Water mass analysis of the ISOW plume shows that about half of its transport is made up of overflow
waters crossing the Iceland-Scotland Ridge and the other half from entrained waters, with the entrained
waters being a nearly 50/50 mix of SPMW and LSW. The Iceland- Scotland overflow therefore nearly
doubles its transport through entrainment.

3. Our observations also show that some fraction of the original overflow waters (NSOW and MEIW)
are mixed up into layers lighter than o = 27.8, meaning that the ISOW layer as traditionally defined
(09 > 27.8) does not actually contain all of the overflow waters. The total amount of overflow waters
(NSOW and MEIW) transported southward in the ISOW plume and the lower part of the ERRC is found
to be approximately 3 Sv, consistent with existing estimates of the total overflow across the ISR. Our
analysis further suggests that MEIW may be a more important component of the overflow than previ-
ously thought, contributing not only to the ISOW plume at densities oy > 27.8 but also being a key water
mass component in the formation of Icelandic Slope Water that is present all along the upper Reykjanes
Ridge slope south of Iceland.

4. The transport of the ISOW plume derived from this array is larger than previously accepted estimates of
3-4 Sv from earlier studies, including those from moored arrays farther north in the Iceland Basin. Part
of this transport growth may be real and related to enhanced mixing in the ISOW plume as it encounters
more rugged topography along its southward pathway, while part of it could be due to underestimates
of the ISOW plume transport from earlier studies. The estimate of 5.3 Sv we obtain for the net export of
ISOW from the Iceland Basin is more consistent with independent estimates of ISOW production from
tracer inventories than the earlier estimates.

5. The larger ISOW transport obtained from these observations implies that a significant additional path-
way for ISOW must exist, of order 2 Sv, that bypasses the Charlie Gibbs Fracture Zone and other gaps
in the Mid-Atlantic Ridge to flow southward into the eastern basin of the Atlantic. The existence of this
pathway is also inferred from hydrographic and tracer observations and has been found in recent nu-
merical model simulations.

The observations reported here are from the first 4 years (2014-2018) of the OSNAP Iceland Basin array, and
further updates to these results will be forthcoming as OSNAP is extended; it is currently planned to continue
until at least 2024. Besides the observations of the ISOW plume described here, the basin-wide OSNAP array
provides continuous measurements across the other major deep boundary current systems of the subpolar
gyre—including the DWBC off east Greenland (Hopkins et al., 2019), west Greenland (Pacini et al., 2020),
and in the Labrador Sea (Zantopp et al., 2017)—so that an integrated, long-term analysis of the transports of
the deep limb of the AMOC around the entire subpolar North Atlantic can be achieved. The subpolar North
Atlantic is currently undergoing remarkable changes, having recently experienced the largest freshening
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event in the upper eastern subpolar basin observed in the past 120 years (Holliday et al., 2020). It is antic-
ipated that this freshening event will propagate into the ISOW system through entrainment, or eventually
through changes in the source water properties of the overflows across the Iceland-Scotland Ridge, and
that the observations collected during the OSNAP time frame will aid in understand how such water mass
anomalies are introduced into and propagate within the DWBC system of the subpolar gyre.
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OSNAP data used in this study are available online at http://www.o-snap.org/observations/data/. The Ssal-
to/Duacs altimeter products used in this study were produced and distributed by the Copernicus Marine
and Environment Monitoring Service (CMEMS): http://www.marine.copernicus.eu. The gridded Argo
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