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ABSTRACT

Recent top-k computation efforts explore the possibility of revis-
ing various sorting algorithms to answer top-k queries on GPUs.
These endeavors, unfortunately, perform significantly more work
than needed. This paper introduces Dr. Top-k, a Delegate-centric
top-k system on GPUs that can reduce the top-k workloads signifi-
cantly. Particularly, it contains three major contributions: First, we
introduce a comprehensive design of the delegate-centric concept,
including maximum delegate, delegate-based filtering, and § dele-
gate mechanisms to help reduce the workload for top-k up to more
than 99%. Second, due to the difficulty and importance of deriving
a proper subrange size, we perform a rigorous theoretical anal-
ysis, coupled with thorough experimental validations to identify
the desirable subrange size. Third, we introduce four key system
optimizations to enable fast multi-GPU top-k computation. Taken
together, this work constantly outperforms the state-of-the-art.
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1 INTRODUCTION

Formally, top-k algorithms find the top k elements from an input
vector V. Here, the criteria could be the top k largest or smallest,
or any other conditions of interest. For simplicity, we assume the
default criterion in this paper to be the top k largest. k-selection
algorithm slightly differs from the top-k algorithm, as k-selection
only identifies the k‘" largest element from V. These two algo-
rithms serve as building blocks for a variety of applications, such as,
High Performance Computing (HPC) [26, 51], Information Retrieval
(IR) [8, 11], deep learning training [3, 48, 49], big data [14, 15, 27],
and data mining [25, 34, 54]. A textbook implementation of top-k
exploits priority queue, i.e., min-heap. That is, a priority queue at
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the size of k will slide through the input vector. For each encoun-
tered element that is larger than the minimum from the priority
queue, we substitute the minimum of the priority queue by this
encountered element. Eventually, this priority queue captures the
top-k largest elements for the input vector V.

Recently, the interest in deploying top-k computation on GPUs
has surged for three major reasons. First, GPUs offer superior pro-
cessing power and memory throughput comparing to the other
processing hardware [17, 23, 47]. For instance, the most recent
A100 GPU [28] features an astonishing 312 Tera Floating Point Op-
erations Per Second (TFLOPS) computing capability and 2,039 GB/s
memory throughput. Second, both the existing leading supercom-
puters [45] and future exascale ones (e.g., Aurora [46], Frontier [32]
and El Capitan [41]) use GPUs as the major computing resources.
Third, the majority of the applications that exploit top-k, such as
IR [24], deep learning [1], data mining [36, 53], and database appli-
cations, e.g., PG Strom [35], Ocelot [7], and MapD [38] are offloaded
atop GPUs, deploying top-k on GPUs could avoid copying data back
and forth between GPU and CPU for top-k computation.

While priority queue-based top-k is the most efficient approach
for single- or multi-core systems [55], it requires to maintain many
local priority queues to expose massive parallelism to GPUs. Unfor-
tunately, maintaining such many priority queues would experience
expensive global synchronization overhead when merging these
local priority queues into a final global one. Consequently, perti-
nent top-k applications do not adopt priority queue-based top-k.
Instead, they use sort-and-choose approach for top-k computing
on GPUs [6, 18, 33, 44, 48]. However, as shown in Figure 17, the
GPU-based sort-and-choose top-k [6] takes much longer time than
GPU-based top-k algorithms.

Revising sorting algorithms to compute top-k becomes a popular
trend because, at most, only a subset of data needs to be sorted in
the top-k problem. Along this direction, bitonic top-k [42] presents
a revised bitonic sort algorithm [20] that focuses on the top-k ele-
ments when merging 2k elements together. Since this rudimentary
design can only reduce the workload by half, [42] further proposes
to read 8k elements and reduce it to k while using GPU shared
memory to cache the intermediate results. Due to the limited ca-
pacity of shared memory on GPUs, bitonic top-k can only work
for very small k (i.e., k < 256). Another notable attempt [2] revises
bucket sort by discarding all buckets that do not include the k"
elements at each iteration, similarly for radix top-k. Despite these
designs in [2] have the chance of reducing more workloads, they
would suffer from unstable workload reductions (see Figure 6).

To reduce more workload in a stable manner, we introduce Dr.
Top-k, a delegate-centric system that partitions the input vector
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into subranges, extracts the delegate from each subrange, and uses
the top-k of the delegates to rapidly reduce the workload for the
overall top-k computation on the input vector. It is essential to
note that the popular IR algorithm, i.e., Block Maximum WAND
(BMW) [11] also uses the delegate concept for search engine de-
signs. In contrast, Dr. Top-k has a more comprehensive design and
innovative usage for the delegate concept. Taken together, it can
help state-of-the-art top-k algorithms to improve their performance
significantly with the following three contributions:

First, we introduce a comprehensive delegate-centric design,
which includes maximum delegate, top-k delegate-based filtering,
and f delegate mechanisms to help reduce the workload for top-k up
to more than 99%. Specifically, we (i) partition the input vector into
a collection of subranges and extract the maximum delegate from
each subrange to construct a delegate vector, and (ii) perform top-k
on the delegate vector. Since only those subranges whose maximum
delegates belong to the top-k of the delegate vector can contribute
to the top-k for the input vector, we further (iii) concatenate those
qualified subranges to construct a concatenated vector, and (iv)
perform top-k on the concatenated vector. To further reduce the
workload for step (iv), we use the minimum of the top-k of the
delegate vector to filter out smaller elements from the qualified
subranges. Not limited there, we extend the maximum delegate to
delegate to reduce the workload for concatenation and second top-k.
In particular, we will extract the top § delegates, instead of merely
the maximum, from each subrange. Afterward, we introduce a new
rule using which we only concatenate subranges whose entire
delegates are taken.

Second, we deduce the optimal subrange size with both theoreti-
cal soundness and experimental validation. Note, a proper subrange
size is crucial for Dr. Top-k to achieve a good performance; on the
one hand, a small subrange size would lead to too many subranges.
In this context, the delegate vector construction and first top-k
would suffer from heavy workloads. On the other hand, when the
subrange size is too large, we would have too few subranges. In this
case, the majority of these subranges will be eligible for the second
top-k. We hence skip too few subranges, leading to limited work-
load reduction for concatenation and second top-k. In Section 5.2,
our theoretical analysis derives that the total time consumption
of Dr. Top-k is a convex function of subrange size, which we also
verify in our experiment. We further extract the optimal subrange
size for a wide range of |V| and k.

Third, we deploy Dr. Top-k atop multiple GPUs with four key
system optimizations. First, we introduce a warp-centric delegate
vector construction mechanism to achieve near-peak GPU global
memory throughput. Second, although our delegate-centric design
can help all existing top-k algorithms, we identify that the best Dr.
Top-k assisted top-k algorithm changes along with the climbing
of k. We further introduce a flag-based strategy to avoid random
memory access during in-place radix top-k. Third, we identify that
delegate vector construction suffers from low thread utilization and
an exceeding usage of CUDA (an acronym for Compute Unified De-
vice Architecture) shuffle instructions when k becomes relatively
large. As a result, we introduce a novel coalesced load to shared

memory and strided compute approach to improve the thread utiliza-
tion, as well as curb the usage of CUDA shuffle instructions. This
optimization has reduced the delegate vector construction time
consumption from 31.4 ms in Figure 10 to 9.5 ms in Figure 15 for
k = 2%* and |V| = 23°, Finally, we scale top-k across multiple GPUs
to handle gigantic input vectors, and achieve sustained scalability.

During evaluation, we notice that the recent top-k efforts [2, 42]
only test their systems on synthetic datasets, limiting the impacts
of top-k. This paper hence builds a benchmark that contains three
real-world applications, i.e., k-nearest neighbor search [21], website
degree centrality [12], and COVID fear related Twitter dataset [19]
for top-k. Our evaluation shows that Dr. Top-k can outperform the
state-of-the-art on both synthetic and real-world datasets.

The remainder of this paper is organized as follows: Section 2
discusses the background and related work which motivate the
overview in Section 3. Section 4 presents the delegate-centric top-k
design and compares it against BMW. Section 5 deploys our top-k
on multi-GPU systems with GPU-specific optimizations. Section 6
evaluates Dr. Top-k and we conclude in Section 7.

2 BACKGROUND AND RELATED WORK

2.1 Graphics Processing Units

Streaming processors and threads. Designed with NVIDIA Volta
architecture, V100S [30, 31] is powered by 80 streaming processors
(SMs). Each SM is equipped with 64 CUDA cores, yielding a total
of 5,120 cores running at 1.5 GHz. During execution, a GPU thread
runs on one CUDA core, and an SM schedules a group of 32 con-
secutive threads known as warp in a Single Instruction Multiple
Thread (SIMT) manner. Note, all the threads in a warp can use
shuffle instructions to exchange data. A collection of consecutive
warps further formulate a Cooperative Thread Arrays (CTAs) or a
block. All the CTAs are called a grid.

Memory architecture. V100S is equipped with 32 GB global
memory with 1,134 GB/s as the peak throughput. All the SMs share
an L2 cache of 6,144 KB. Each SM owns a private 96KB configurable
shared memory, also used as the L1 cache. All the threads in a CTA
can use shared memory to communicate with the help of the CUDA
__syncthreads() primitive. It is desirable to use shared memory to
cache intermediate data because it is around one order of magnitude
faster than the global memory [42].

2.2 Related Work

This section discusses the closely related projects for Dr. Top-k that
includes priority queue-based top-k [42], sorting-based top-k [6, 48],
bucket top-k [2], radix top-k [2] and bitonic top-k [42].

Priority queue approach. A natural way to compute top-k
would be to maintain a priority queue that only keeps the top-k
elements while scanning through the input vector. While this idea
is well-suited for single- or multi-threaded systems, implementing
it on massively parallel GPUs remains elusive. Mainly, a parallel
implementation would involve the maintenance of many local pri-
ority queues and the eventual merging of these priority queues into
a global one. This adds the challenge of frequent read and write
and global synchronization across the threads when merging them.
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Figure 1: Bucket top-2 computation for an input vector with 16 ele-
ments. The highlighted bucket is of interest at each iteration.

Sort-and-choose is an alternative approach that is more friendly
for parallel implementation. Basically, we sort the input vector ele-
ments using sorting algorithms, like in THRUST [6] and choose the
top-k elements. But this implementation turns out to do more work
than necessary. At least, there is no need to sort the elements that are
outside of the range of 157 — k" elements. Alabi et. al. [2] also show
their top-k algorithms, e.g., radix and bucket top-k outperforms the
sort-and-choose designs.

Top-k algorithms. Bucket, radix, and bitonic top-k are intro-
duced to alleviate the aforementioned inefficiency problems faced
by sorting. In contrast to their corresponding sort-and-choose ap-
proach, the top-k algorithm distributes the input vector into differ-
ent subranges, like a bucket in bucket top-k, and only focuses on
the subrange that will lead to the k’ h element of the input vector.
Below we explain how these designs work with examples.

I Bucket top-k first obtains the min and max values from the
input vector. Afterward, it divides this min — max value range into
several buckets, with each of which accounting for a disjoint equal
value range. In the second step, this method scans through the input
vector, puts each element into the corresponding bucket, and tracks
the number of elements in each bucket. This way, one can easily
figure out which bucket contains the k* h elements. As mentioned
earlier, top-k operation discards the buckets that do not contain
the k% element. This method continues until the bucket of interest
only has one element, i.e., the k' one.

Figure 1 exemplifies how bucket top-k works for an input vector
of 16 elements. We first derive the min and max as 101 and 3210,
respectively. Therefore, we can divide this value range into four
buckets, that is, [101, 878.25), [878.25, 1655.5), [1655.5, 2432.75),
[2432.75, 3210]. Scanning through the entire input vector, one can
obtain all elements that belong to each bucket as shown in iteration
1 of Figure 1. Since we are searching for the 2nd largest element from
the input vector, our next iteration only focuses on the [2432.75,
3210] bucket, which is the largest bucket that contains four elements.
Consequently, iteration 2 of Figure 1 divides the [2432.75, 3210]
value range into four buckets and scans through the elements from
the [2432.75, 3210] bucket of iteration 1 to generate new element
distributions in iteration 2 of Figure 1. While Figure 1 only includes
three iterations due to space constraints, this process is supposed
to continue until the bucket of interest only contains one element.

II. Radix top-k is similar to bucket top-k but exploits the digits
(i.e., radixes) of each element to determine which bucket a value
belongs to. The key is that the position of the bucket needs to indicate
their order so that we can derive the bucket of interest for the next
iteration. Consequently, radix top-k starts from the Most Significant
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Figure 2: Bitonic top-2 on the same input vector as Figure 1.

Digit (MSD) to the Least Significant Digit (LSD). Following this
manner, for instance, if we process 3 bits at one iteration, we will
need eight buckets, that is, 000, 001, 010, 011, 100, 101, 110, 111. And
all the elements from bucket ‘111’ are larger than those of ‘110’.
Similarly for other buckets. At the end of each iteration, we only
Kth

focus on the bucket that contains the elements to proceed.

III. Bitonic top-k. Improving from the traditional bitonic sort-
ing algorithm, bitonic top-k [42] proposes to discard k elements
by selecting the top-k elements from a bitonic sequence of size
2k. Therefore, the workload is always reduced by half. Figure 2
demonstrates how bitonic top-2 behaves for the same input vector
in Figure 1. Particularly, this algorithm sorts every two consecutive
elements in the input vector, as shown in Iteration 1. Afterward, it
merges the adjacent two sequences - {101, 2001} and {3012, 1323} -
and gets the top-2 from these four elements, that is, {2001, 3012},
similarly for remaining sequences. This process continues until
Iteration 3, where we obtain the final top-2, as {3012, 3210}.

Some of the other related projects worth mentioning are a GPU-
based bucket sorting [10] that takes samples from different regions
in the input vector to achieve a good workload balancing. The
work partitions the input vector into several subranges, performs a
local sort in each subrange, and selects multiple samples from each
subrange. These samples are collectively processed to guide data
reordering on the original vector so that each bucket would end
up with a similar amount of workloads. The top-k at [22] performs
a priority queue based k-selection algorithm in register memory
in GPUs. As the registers per thread in the GPU are limited to a
few numbers, similar to [42], the performance degrades for k >
1024. A recent work [37] uses sampling to make bucket select more
immune of skewed data distribution. Particularly, this work samples
splitters from the original vector. Then, these splitters are sorted
and used to assign bucket ranges. While this work tries to adjust
the bucket boundaries in order to reduce workload in each level,
our work directly reduces the original input vector for not only bucket
top-k but also other ones, e.g., radix and bitonic top-k algorithms.

3 CHALLENGES AND OVERVIEW

The state-of-the-art GPU-based top-k designs, as shown in Fig-
ure 3(a), directly work on the input vector when reducing the el-
ements. This data reduction process continues until a desirable
condition is met. Despite that such designs can outperform the
traditional priority queue and sorting-based approaches, they still
face the following two challenges:

e The performance of bucket and radix top-k is unstable. That
is, they are sensitive to the value distribution of the data. For
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Figure 3: Workflow of (a) Bucket/radix/bitonic top-k vs (b) Dr. Top-k.

instance, the radixes of interest might carry most of the ele-
ments from one iteration over to the next. Figure 4 presents
the performance variation of Dr. Top-k on three different
distributions Uniform (UD), Normal (ND) and Customized
Distributions (CD), where the data distributions are rigor-
ously defined in Section 6. We observe both radix and bucket
top-k [2] experience performance variations when changing
data distributions. And bitonic top-k [42] performs stably
across different data distributions.

While bitonic top-k can stably reduce the workload, it only
reduces the workload by half at one iteration. To further re-
duce the workload, bitonic top-k requires tremendous shared
memory to store the intermediate results. This is problematic
for GPUs due to limited shared memory capacity. Figure 2
demonstrates how bitonic top-k reduces the workload only
by half at an iteration when it selects top-2 elements from
each bitonic sequence of length 4 at an iteration. For instance
at iteration 1, from the first bitonic sequence of 4 elements
{101, 2001, 3012, 1323} top-2 elements i.e. {2001, 3013} are
selected to be written into new vector for next iteration. Sim-
ilarly, remaining bitonic sequences in the vector go through
same process. This leads the vector length to reduce from 16
to 8 at iteration 1.
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Figure 4: The performance inconsistency of different top-k versions
on different distribution defined at Section 6.

Dr. Top-k, as shown in Figure 3(b), introduces the delegate-
centric concept where top-k computation only happens on delegate
and concatenated vectors which are small fraction of the original
input vector. This warrants both stable and larger workload reduc-
tions during top-k computation on Dr. Top-k. (i) Our workload
reduction is stable regardless of the value distribution of the input
vector. That said, for a given k and |V, the workload is determined
(detailed in Section 5.2). (ii) Dr. Top-k on average reduces a greater
portion of the workload, compared to top-k algorithms such as

Subrange 0 Subrange 1 Subrange 2 Subrange 3

Input vector [2001 101 {1323{3012] 212 | 1132{2310]2313]3000] 3010 | 1002{3210] 1020] 333 23212003
Delegate vector |3012|2313]3210[2321

Top 2 delegates [3012]3210

First top-k

Coneatenated 76501 T01 [ 1323]3012]3000] 3010] 1002] 3210]
vector

Final top 23012{3210

Second top-k

Figure 5: Maximum delegate-based top-2 computation for the same
input vector V in Figure 1.

bucket, radix, and bitonic top-k. This is because the total size of the
delegate and concatenated vectors is smaller than the input vector,
which is the input for the bucket/radix/bitonic top-k algorithms.
This is evident in Section 6.2. It should be noted that instead of being
regarded as an alternative algorithm to the existing top-k algorithms,
Dr. Top-k can help reduce workloads for all existing top-k algorithms,
including bucket, radix, and bitonic top-k as long as we change the

first and second top-k (@, and @) into these algorithms.

4 DR. TOP-K: DELEGATE-CENTRIC TOP-K

4.1 Maximum Delegate

RuLE 1. For a given vector V, 3D € V, such that D is the delegate
vector containing the maximum elements of all subranges S;. If the
maximum m; from S; is not among the top-k elements in D, then S;
will not contribute any elements to the top-k of V.

Rule 1 indicates that we can use the delegate of a subrange to de-
cide whether to omit the entire subrange during top-k computation.
Figure 5 presents an example about how to use Rule 1 to find the
top k, (i.e., k = 2) elements from the same input vector as Figure 1.
Essentially, we first divide the input vector into four subranges,
with each of which containing four elements. Second, we extract
the delegate, i.e., maximum element from each subrange to formu-
late a delegate vector, i.e., {3012, 2313, 3210, 2321}. The first top-k
finds 3012 and 3210 as the top 2 elements from the delegate vector.
This implies that only the subranges that contain 3012 and 3210
are qualified for concatenation. Therefore, we concatenate these
two subranges and conduct the second top-k on the concatenated
vector — {2001, 101, 1323, 3012, 3000, 1002, 3210}. Our second top-k
derives the final top-2 as {3012, 3210}

T T T T — T
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60 I First top-k [ Second top-k 60

250 50

;’ 40 40

=230 30

=
20 20

10 10

20 21 22 23 94 25 26 97 28 29 21051171291351471591617718919920921922523924
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Figure 6: Dr. Top-k assisted radix top-k time consumption break-
down with respect to the increase of k for UD dataset on Section 6.

Leveraging Rule 1, we implement the initial version of Dr. Top-
k. Figure 6 demonstrates the time consumption breakdown of Dr.
Top-k accelerated radix top-k for |V| = 23° unsigned integers with
k ranging from 2° to 224, Fork < 213, the time consumption delegate
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Figure 7: Dr. Top-k with delegate top-k enabled filtering for the UD
dataset on Section 6.

vector construction is ~4.2 ms, which means we achieve 84% of the peak
throughput of the V100S GPU, albeit delegate vector construction
also performs additional shuffle instructions. When k > 21°, the
time consumption of Dr. Top-k also increases, which is reflected
in all the four steps of Dr. Top-k.

4.2 Delegate Top-k Enabled Filtering

Although the maximum delegate of a subrange is in the top-k of
the delegate vector, not all the elements in the qualified subrange
will be eligible for the second top-k. This section uses the top-k of
the delegate vector to remove elements from the qualified subrange
during the concatenation, leading to further workload reduction
for the second top-k through the following rule.

RULE 2. The kth element in the delegate vector is the minimum

possible element the final k' element can become.

This rule can be derived as follows: the minimum of the top-
k of the input vector V will be no less than that of the delegate
vector D, i.e., min(topk(D)) < min(topk(V')). Therefore, only the el-
ements that are larger than the min(topk(D)) are possible to get into
topk(V), hence are qualified for the concatenation. Here, topk(V)
denotes the top-k elements in V, similarly for topk(D). We can use
the example from Figure 5 to assist the understanding of this Rule 2.
Here, the minimum element from the top-2 of the delegate vec-
tor is 3012. Our prior Dr. Top-k takes the entire subranges whose
maximums are in the first top-k into consideration. This is, in fact,
wasteful. For instance, the elements that are smaller than 3012 in
both subranges 0 and 2, that is, 2001, 101, 1323, 3000, 3010, and 1002,
will never become one of the elements in the final top-2. Hence,
none of them should be copied to the new concatenated vector.
Eventually, the concatenated vector is merely {3012, 3210}.

To implement this delegate top-k enabled filtering approach, we
disseminate the minimum of the top-k from the delegate vector
across all threads. Afterward, the threads are dispatched to work
on the qualified subranges identified by the first top-k. When per-
forming scan on those qualified subranges, only the elements that
are larger than the minimum of the top-k of the delegate vector
are stored in the concatenated vector. As the number of eligible
elements from each subrange is unknown beforehand, each thread
needs to use atomic operation [13, 16] to obtain the position to
store the eligible element.

Figure 7 demonstrates the effectiveness of delegate top-k enabled
filtering for the same dataset in Figure 6. Comparing Figures 7 and 6,
one can observe that the benefits of this optimization for the second

Subrange 0 Subrange 1 Subrange 2 Subrange 3

Input vector |2001] 101 |1323{3012[ 212 | 1132[2310]2313]3000{ 3010 [ 1002[3210] 1020] 333 |2321]2003
Delegate vector |2001|3012]2310]2313{3010f3210[2321]2003
Top 3 delegates _
3012[3010]3210 Top 2 delegate  [3012[3210

C"“szzgfmd Bo12010[3210 Final top 2

Final top 3 |3012[3010]3210 Neither concatenation nor second top-k is needed.

(a) B=2 delegate for top-3 computation. (b) B=2 delegate for top-2 computation.

Figure 8: Top-k with f delegate on the same input vector in Figure 1.
Particularly, it shows different workload reductions for (a) f = 2
delegate for top-3 query and (b) § = 2 delegate for top-2 query.

top-k is substantial, especially when k > 2!°. Using k = 224 as an
example, we reduce the second top-k time consumption from 28.7
ms in Figure 6 to 6.1 ms.

4.3 f Delegate

While delegate top-k enabled filtering can tremendously reduce the
workload for second top-k, it still has two weaknesses that require
further improvements: First, one might need to perform extensive
atomic operations to build the concatenated vector. Second, we still
need to scan through the qualified subranges to omit the elements
that are smaller than the minimum of the top-k of the delegate
vector. Now we introduce § delegate that allows Dr. Top-k to safely
avoid the entire subrange without scanning any elements which
would be qualified for second top-k if without § delegates. Below,
we formally introduce the § delegate rule.

RuULE 3. In a subrange S;, we select the top f elements as f§ dele-
gates. If not all of the f delegates in S; would qualify as top-k of the
delegate vector D, the rest of the elements from this subrange will not
qualify for the top-k of the input vector V. Note, f € N and § > 1.

Figure 8 describes how to use Rule 3 to answer the top-3 and
top-2 queries with § = 2. In this case, our delegate vector contains
two delegates from each subrange. For top-3 in Figure 8(a), since
we only take one delegate from subrange 0 and both delegates
from subrange 2, we obtain the concatenated vector as {3012, 3010,
3210}. Note, even the concatenated vector is the same as the top 3
delegates, we still need to scan through the entire subrange 3 to
omit the ineligible elements. Finally, the second top-k computes on
the concatenated vector to figure out the final top-3. Figure 8(b)
presents a special benefit of f§ delegate. That is, we might not need
the concatenation and second top-k computation. In this case, since
the top-2 of the delegate vector does not take all the § delegates
from any subrange, Rule 3 suggests that neither concatenation nor
second top-k is necessary.

Note, f delegate will lead to more workloads for the first top-
k and delegate vector construction. To reduce the workload for
the first top-k, we let the first top-k skip the final iteration when
locating the exact bucket or radix of interest. Because § delegate
and delegate top-k enabled filtering can substantially reduce the
workload for concatenation and second top-k, this skipping, which
helps first top-k noticeably, will lead to negligible performance
drop for the subsequent concatenation and second top-k steps.
For performance improvements on delegate vector construction,
Section 5.3 will introduce our novel optimizations shortly.
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Figure 9: The performance dynamics with respect to the change of
B when (a) varying k at |V | = 2°°, and (b) varying |V | at k = 2%°.

An appropriate f is important for Dr. Top-k, our empirical study
in Figure 9 suggests that f = 2 performs the best. For better visu-
alization, we normalize the performance of various tests towards
B = 1. In Figure 9(a), we find that f = 2 is the desirable configura-
tion which increases the performance up to 1.41 when k = 224 from
p = 1. Although Figure 9(b) observes slightly better performance
when f8 = 3 for smaller |V| = 2%° and 23°, we find § = 2 always
yield good performance across both figures.
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Figure 10: Dr. Top-k with § delegate and delegate top-k enabled fil-
tering optimization for UD dataset on Section 6.

Figure 10 shows the time consumption breakdown of f dele-
gate optimization. Using k=22* as an example, although f delegate
spends 31.4 ms for delegate vector construction and 8.9 ms for first
top-k, it reduces the time consumption for concatenation and sec-
ond top-k from 16.8 ms and 6.1 ms of Figure 7 to 2.3 ms and 4 ms,
respectively. Overall, we reduce the time consumption from 58 ms
of Figure 7 to 46.7 ms for k = 224,

4.4 Discussion: Dr. Top-k vs BMW Algorithm

This section compares our Dr. Top-k algorithm with a closely re-
lated IR algorithm, BMW [11], which is a variant of the popular
Weak AND (WAND) algorithm [8]. Briefly, the BMW algorithm
aims to find the top-k most related documents for a query term.

Figure 11 presents an example for BMW algorithm. For clarity,
we first describe the settings of our example: (i) there are ten docu-
ments, i.e., dg - do; (ii) the query contains three terms: “the search
engine”, and (iii) the score of a term in a document is the number
of occurrence of the query term in that document. BMW first puts
the documents that contain each term together, subsequently sorts
them by the document ID and partitions them into blocks, e.g., the
term “the” contains two blocks by = {dy - d4}, and b; = {d¢ - dg}. For
each block, BMW stores the maximum score, e.g., the maximum
score of block by is 5. Assuming BMW is working on document ds,

Postings list of each term if (max(by) + max(bs) + max(bs) > 1)
then

Term .
An eligible document.

tr
bp,max =5 = p;" by, max =2
max 7S | | ] Step 1: Decompress bybs,bs;
_ o _ 4 Dtr _ Step 2: Extract the accurate scores
o |pymax=3 1bsmax=4 g bjmax=4 of document d; for the terms
search’ I I I I { “the search engine” }, and
(max =4) - . . perform full evaluation.
ptry
bs,max =8 l;' bs, max =7 fullyEvaluate(document d;);
“engine”
(max = 8) I I I I I I I else

Skipping these documents.

DocID  dy dy  dyldyddy ! ds de dy dg ) dy

move pointer to min(ptro, ptry, ptr,);

Figure 11: BMW algorithm for a query {“the search engine”}.

the right side of Figure 11 is the pseudocode of BMW. Specifically,
BMW first evaluates whether the block maximums of the three
blocks that contain document d3 would be bigger than the thresh-
old A. If this condition is true, BMW will perform a full evaluation
on document d3 and move on to the next document d4. Otherwise,
BMW will skip all the documents that exactly share the same block
maximum with document ds. In this context, using each block’s
maximum to estimate whether we should skip a document is similar
to Dr. Top-k, which uses the maximum of a subrange for delegate.

Distinction. While BMW leverages the block maximum to skip
computations when extracting the top-k documents, Dr. Top-k
designs and exploits the delegate concept more comprehensively
from three aspects. First, Dr. Top-k introduces a delegate-centric
processing concept while BMW still uses a regular element-centric
concept. Here a regular element is a document. Particularly, Dr.
Top-k uses the delegate to decide whether an entire subrange (i.e.,
a block in BMW) is eligible or not. However, BMW processes one
document at a time. Using document d3 in Figure 11 as an example,
even ds is qualified, BMW still needs to perform the eligibility check
for d4. Further, for ineligible documents, BMW can only skip the
documents that share the same or fewer terms than ds. Second, we
further introduce S delegate to help remove more subranges and del-
egate top-k enabled filtering to reduce some regular elements from
the qualified subranges. Both of these designs are novel compared
to BMW. Third, as we will discuss shortly in Section 5, Dr. Top-k
also includes subrange size tuning and GPU-aware optimizations,
which are also novel compared to the BMW algorithm.

5 DR. TOP-K IMPLEMENTATION AND
OPTIMIZATIONS

5.1 GPU-based Dr. Top-k Design

Warp-centric delegate vector construction first divides the en-
tire input vector into smaller subranges at the length of 24, where
a is an integer. Afterward, each warp of GPU threads is assigned
to extract each subrange delegate in three phases. Using maximum
delegate as an example, every thread first records the maximum
element when scanning through a specific subrange. Second, all
the threads in each warp use shuffle instruction, i.e., __shfl_sync(),
to communicate and derive the maximum element in the current
subrange. During the third phase, Dr. Top-k writes each subrange’s
maximums and the subrange IDs to the delegate vector in the global

V]

memory. The size of the delegate vector is 4z .




Warp-centric concatenation. This step concatenates the eli-
gible subranges into a new concatenated vector where the second
top-k performs on. Particularly, a warp of threads is responsible
for moving the subrange elements into the concatenated vector.
Because Dr. Top-k uses delegate top-k enabled filtering, the eligible
elements per subrange are unclear. We resort to atomic operations
to calculate the location for each eligible element.

First and second top-k. Once Dr. Top-k formulates delegate
or concatenated vector, it will perform top-k on them. While both
top-k algorithms work on a relatively small vector, the first top-k
presents two unique features. First, this top-k algorithm has to work
on a delegate vector that comes in the format of (key, value) pair.
Here, the key is the delegate element from each subrange, and the
value indicates which subrange this delegate element comes from,
which is essential for the concatenation step. Second, the first top-k
algorithm has to be a top-k operation instead of k-selection because
one needs to extract all the top-k subranges for concatenation. We
hence have to revise the radix and bucket k-selection algorithms
of [2] to support top-k.

Choice of top-k algorithms. Despite the fact that Dr. Top-
k can help all existing top-k algorithms, we notice that the best
Dr. Top-k will favor different top-k algorithms when k changes.
Particularly, (i) when k is small, all top-k algorithms will enjoy com-
parable performance gains over their baseline algorithms. However,
for radix and bucket top-k, they prefer in-place designs that always
work on the input vector V as instead of out-place variants that
copy the derived candidates to a new array for the follow-up iter-
ation. (ii) When k is large, the performance of Dr. Top-k assisted
bitonic top-k will lag behind. Specifically, bitonic top-k needs a
large shared memory space to cache the intermediate results and
achieve desirable performance, which will experience low occu-
pancy hence poor performance when k > 256. As shown in Figure 4,
when k goes beyond 256, the performance of bitonic top-k degrades
significantly. This makes Dr. Top-k assisted bitonic perform worse
than other Dr. Top-k assisted ones.

Optimized in-place radix top-k. Since existing in-place radix
top-k algorithm [2] requires to modify the ineligible element from
the input vector into a value that is assured to fall out of the value
range of interest (e.g., zero), this results in excessive random mem-
ory accesses. We introduce a single flag variable to indicate the
radixes of interest. This flag tracks the radixes that are eligible for
the next iteration. Subsequently, once an element is loaded from
global memory, we will perform flag == (flag & loadedElement)
between the loaded element and the flag variable. Only when the
condition is evaluated as true, we consider this loaded element as a
qualified element. As shown in Figure 12, our optimized in-place
radix top-k is on average 10.7x faster than the state-of-the-art [2].

5.2 o Tuning

A proper subrange size is crucial for Dr. Top-k to achieve good
performance. On the one hand, a small subrange size would lead
to too many subranges. In this context, the delegate vector con-
struction and the first top-k would suffer from heavy workloads.
On the other hand, when the subrange size is large, there are too
few subranges. In this case, the majority of these subranges will
be eligible for the second top-k. We hence skip too few subranges,

Speedup
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Figure 12: Dr. Top-k in-place radix top-k speedup over GGKS in-
place radix top-k on uniformly distributed vector of size |V | = 221,

leading to limited workload reduction for concatenation and second
top-k. Rule 4 helps Dr. Top-k derive an optimal subrange size.

RuLE 4. For Dr. Top-k,
a =1 -[Const +log,(|V]) — log, (k)]

leads to the optimal subrange size 2%, where |V| is the number of
elements in the input vectorV, k is the number of top elements Dr. Top-
k aims to find. Const = log,[6- (Cglobal +Cshfl)] —log,(6 "Cglobal))
where Cyopa1 and Cgpgy are the clock cycles for one global memory
access and one CUDA shuffle instruction, respectively.

Proor. The time consumption of Dr. Top-k is:
T= TDelegate + Trirstk + Tconcat + Tsecondk» (1)

where TDelegate’ Trirstk> Tconcat and Tseconak are the time con-
sumption of delegate vector construction, first top-k, concatenation,
and second top-k, respectively.

Global memory access and intra-warp communication are the
key factors determining the time consumption of Dr. Top-k for
two reasons. First, one global memory access or intra-warp shuffle
operation takes a much longer time than a single arithmetic and
logic operation on GPUs, according to Nvidia profiler [29]. Second,
the number of arithmetic and logical operations is similar to that of
global memory accesses across all four stages of Dr. Top-k. Using
delegate vector construction as an example, each thread loads one
element from global memory and compares, i.e., a logic operation,
it with the current maximum in a register. In this case, one memory
access leads to one arithmetic or logic operation. As a result, we
mainly use global memory access and shuffle instructions to esti-
mate the time consumption. We perform our analysis for maximum
delegate for simplicity and assume all global memory accesses have
equal latency, i.e., Cgiopal-

Tpelegate: Delegate vector construction reads |V| elements and

write lLal delegates. After thread local comparison, each subrange

resorts to CUDA __shfl_sync instruction to derive the maximum for
the entire subrange. Since one warp contains 32 threads, 3} <; <5 g—% =
31 shuffle instructions are needed. Therefore, the communication
complexity is 31 - % - Cspy1, where Cgppy is the cost of a shuffle
instruction. Together, delegate vector construction time is:

31 |V|

saCsnrt - (@)

1
TDelegate =(1+ ZTZ) |V 'Cglobal +

Global memory access Intra—warp comm.
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Figure 13: The runtime of Dr. Top-k with respect to the change of «,
where k = 2'° and the UD dataset from Section 6.

Trirstk: Now, we analyze the time consumption of our optimized
in-place radix top-k. According to our study, 8-bit per digit yields
the optimal performance for in-place optimized radix top-k. A 32-bit
unsigned integer hence experiences four iterations of scans. At each
iteration, we always load all the elements. An additional iteration
over the vector is used to identify the top-k elements. Finally, we
write k elements, which are also the indices of the eligible subranges.
Therefore, the time consumption of the first top-k is:

5-1V| 'Cglobal

2a +2-k- Cglobal- (3)

Trirstk =

Tconcat: The concatenation step reads k indices for the sub-
ranges that are eligible for the second top-k and copies those sub-
ranges from the input to the concatenated vector for the second
top-k. The time consumption for concatenation is:

Tconcar =k - Cglobal +2- k2% Cglobal- (4)

Tsecondk: The second top-k takes as input the output from the
concatenation step and conducts in-place radix top-k to derive the
eventual top-k. Consequently, this step is mainly about reading the
entire outputs from concatenation. Similar to the analysis for the
first top-k, which reads the concatenated vector by four times, the
time consumption of the second top-k is:

TSecondkx =4k -2% - Cglobal' (5)

Taken Equations (2) — (5) together, we arrive at the total time
consumption of Dr. Top-k as shown as in Equation 6.

T= TDelegate + Trirstk + Tconcat + TSecondk
=31-|vV]-27%. Cshfl+ 6)
(6-VI-27"+6-k-2%+2-k+|V]) Cyropal-

Given Equation 6 ignores various hardware scheduling, arith-
metic, and logical operation latency, we introduce A(a, k, |V]) (at
Equation 7), which is a positive function of @, k and |V|, to make
up the impacts. We assume the magnitude of A(e, k, |V|) is smaller
than that of T.

Tpy. Top-k = T+ Ma, k, |V]). (7)

We first prove Tpy. Top-k is a convex function, which makes it easy
to obtain the optimal o for Dr. Top-k. According to [50], in order to
demonstrate the convex nature of Tp;. Top-k. the second derivative
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Figure 14: Performance of oracle « vs. auto-tuned a.

of Tpy. Top-k With respect to a should be positive.

2
0°Tpy. Top-k

Frpa (31 Csnf1 +6 - Cyiopar) - V] - In*(2) - 27

®)

+6 -k Cyropar - In*(2) - 2% + A (a, k, |V ]).

According to the assumption in Equation 7, the magnitude of
A"(a,k,|V|) will be smaller than the remaining factors in Equa-
tion 8. For positive values of k, |V|, Cy1opar and Cgppy, We obtain:

& Tpy. Top-k
Oa

Hence, Tp,. Top-k is convex function of a.

> 0. 9)

Our study in Figure 13 also suggests that Dr. Top-k is a convex
function of a. Particularly, the time consumption of delegate vector
construction and first top-k decrease along with the increase of a.
Meanwhile, concatenation and second top-k increase. Altogether,
the total time consumption decreases then increases with respect
to the increase of a. Finally, since Tpy. Tpp-k is convex, the optimal
value of @ can be obtained by:

ITpy. Top-
T DrTopk _ (10)
oa
Solving Equation 10, we obtain:
o= 3 llogy(IV) ~ logy(k) + const] | (11)

where, const = 10gy(6 * Cgiopar + 31 Cspr1) —10gy(6 - Cyropar) +
A (a, k, |V)).

Figure 14, from an evaluation perspective, exhibits the perfor-
mance alignment of the auto-tuned « and the oracle « across a
wide range of k for the |V| = 230 unsigned integers dataset, where
we set const = 3 according to performance tuning. O

5.3 Delegate Vector Construction Optimization

After we optimize the first and second top-k computations and
concatenation steps, delegate vector construction becomes the next
bottleneck for Dr. Top-k. This is especially true when k is relatively
large. According to Equations 11: & decreases with respect to the
increase of k. For instance, when [V|=23°, and k = 224, the optimal
a = 4. This implies that the input vector is partitioned into a large
number of small subranges which would lead to two problems: (i)
the small subrange size fails to saturate a GPU warp; and (ii) too many
subranges will lead to an overwhelming number of shuffle instructions
for delegate communication.
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Figure 15: After delegate vector construction optimization, Dr. Top-
k time consumption breakdown for UD dataset on Section 6.

We introduce a novel coalesced loading to shared memory
and strided computing approach to remedy this small subrange
size problem (a < 5). This method consists of two phases: (i) one
warp moves 32 subranges into the shared memory for delegate
extraction. Here, each subrange is loaded from global memory into
the shared memory by a warp in a coalesced manner. Since the
subrange size is small, the shared memory pressure remains low.
Subsequently, (ii) each thread of the warp individually works on
the entire subrange to extract the delegate. This design ensures that
all the threads of a warp have workloads, and no shuffle instruction
is needed to communicate and decide the subrange delegates. This
design helps the f delegate tremendously, which would otherwise
needs approximately fx more shuffle instructions to extract the
delegates. We use padding to avoid shared memory bank conflict.

Figure 15 shows the improvement brought by the delegate vector
construction optimization for different values of k. Comparing to
Figure 10, one can find out that the delegate vector construction
time is dramatically reduced for larger values of k, making the
sampling time always close to merely the time consumption of
scanning the input vector. Especially, for k = 224, we observe the
time consumption of delegate vector construction decreases from
31.4 ms to 9.4 ms. And the total time consumption is reduced from
46.7 ms of Figure 10 to 24.7 ms.

5.4 Distributed Dr. Top-k

In the distributed GPU setting, we partition the input vector V into
disjoint sub-vectors of equal length. To fit in the GPU memory,
we require the length of each sub-vector to be no longer than 23:
(i) when (#GPUs) x 239 > |V|, we partition V into #GPU number
of sub-vectors and let each GPU account for one sub-vector. (ii)

When (#GPUs) x 230 < |V|, we partition V into l‘;gl number of

sub-vectors. In this case, one GPU accounts for morg than one sub-
vector; hence will load the unloaded sub-vectors from outside of
GPUs. We schedule each GPU to compute the top-k for its own
sub-vectors to arrive at one top-k per GPU. Subsequently, each GPU

sends its top-k to the primary GPU to calculate the final top-k.
Figure 16 presents the workflow of multi-GPU Dr. Top-k which
contains three major steps: @ It enables all the participating GPUs
to work on their local sub-vectors to compute local top-k. @ It
gathers these locally computed top-k’s to the primary GPU. @
It enables primary GPU to compute the global top-k. For inter-
GPU communication, we use Message Passing Interface (MPI) [43].
Particularly, we use MPI asynchronous (« Asynch. MPI in the

figure) communication among the processes to gather local top-k’s
from all the GPUs to the primary GPU.

While relying on the primary GPU to compute the final top-k
works for a small number of GPUs, e.g., 16 in our evaluation, we
anticipate hierarchical reduction [52] would excel when Dr. Top-k
scales to a large number of GPUs. Particularly, for a multi-node
setting, where each node installs multiple GPUs, the hierarchical
scheduling method first derives the top-k across all the GPUs in
each node. Afterward, all the nodes will send their top-k to the
primary GPU to compute the final top-k.

It is also worthy of
noting that we attempt
to reduce the workload
for the second top-k by
enabling an MPI commu-
nication for the top-k"
element of the first top-
k (the < symbol in Fig-
ure 16). With the k% del-
egate across all GPUs, we \ o
anticipate this will help
filter out more unpromis-
ing elements hence re-
duce the workload. How-
ever, since this method re-
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the concatenation kernel,
this introduces synchro-
nization overhead. Addi-
tionally, in Figure 15, we
also notice the cost of sec-
ond top-k remains low throughout for a wide range of k, leaving
relatively small room for improvement. In summary, the overhead

Figure 16: Workflow of multi-GPU
Dr. Top-k.

of synchronizing the k' elements from first top-ks’ exceeds the
benefits of a smaller concatenated vector, we disable this technique
in our final version of distributed Dr. Top-k.

6 EVALUATION

We implement Dr. Top-k with ~1,500 lines of C++ and CUDA
code, extending the state-of-the-art bitonic, bucket and radix top-k
projects [2, 42]. We compile the source code using NVIDIA CUDA
10.1 nvee compiler with the optimization level as O3. We use two
platforms to evaluate the performance of Dr. Top-k. Platform Iis a
server with two Intel Xeon “Cascade Lake-SP” CPUs (@3.8 GHz)
and 4 Tesla V100S GPU running Ubuntu Server 18.04. Platform II
consists of 17-8700 CPU @ 3.20GHz with one Titan Xp running
Ubuntu Server 16.04. All the reported execution time is an average
of five runs. The default size of the input vector V is |V| = 2%,
and each data entry is an unsigned integer. V is generated by the
following distributions.

e Uniform distribution dataset (UD) is generated follow-
ing U[0, 232-1], meaning the value ranges from 0 to 22 — 1.
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Figure 17: The time consumption of Dr. Top-k versus various top-k
algorithms with respect to the increase of |V|.

e Normal distribution dataset (ND) is produced with the
normal distribution N[10%, 10], where the mean and standard
deviation are 10 and 10, respectively.

e Customized distribution dataset (CD) is produced to in-
crease the number of iterations in bucket top-k. The values
are generated in the range of [0, 232-1] such that every bucket
other than the bucket containing the k? h

have at least one element in every iteration and majority of
kth

element will always

the element is present in the bucket with the element.

Unless stated differently, we present the experiments on platform I
for the UD dataset.

6.1 Dr. Top-k vs. State-of-the-art

This section reports the performance gains brought by Dr. Top-k
to the state-of-the-art with respect to the change of |V| and k.

Dr. Top-k for different input vector V sizes. Figure 17 demon-
strates the time consumption of different versions of top-k for
k = 1024 on V whose sizes vary from 226 to 23°. The general trend
is that Dr. Top-k becomes more beneficial when the input vector size
is bigger, because delegate vectors can help reduce more workloads
when V gets larger. Particularly, when |V| = 230, radix, bucket,
bitonic and sort and choose top-k consume 41.3 ms, 38.4 ms, 127.0
ms and 243.2 ms, respectively. Our Dr. Top-k assisted radix, bucket
and bitonic top-k designs reduce the time to 6.4 ms, 7.0 ms and 7.0
ms, respectively.

Dr. Top-k assisted radix top-k. As shown in Figure 18, in gen-
eral, Dr. Top-k yields bigger performance gains on the normal and
customized distribution datasets. Particularly, we observe 1.7x -
10x and 1.1X - 10.1X speedups, respectively on normal and cus-
tomized distribution, while 1.7x - 6.6X on uniform distribution. It
is also important to note that the impact of Dr. Top-k decreases
with respect to the increase of k. For instance, when k=224, Dr.
Top-k only gives 1.7x speedups for both the uniform and normal
distribution datasets and 1.1X speedup for customized distribution.
This is caused by the fact that Dr. Top-k requires more delegates
to figure out the useful subranges when k becomes larger, leading
the first top-k to consume significant time. Section 6.2 conducts a
thorough study on the workload reduction trend for varying k.

Dr. Top-k assisted bucket top-k. Figure 18 also shows the
speedup of Dr. Top-k assisted bucket top-k over the bucket top-k
alone algorithm on the normal, customized and uniform distri-
butions. The trends are analogous to radix top-k but with two
differences. First, bucket top-k performs fairly well when k = 1
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Figure 18: The speedup of Dr. Top-k over the-state-of-the-art for a
varying k on synthetic datasets.

because bucket top-k first finds the maximum value. Then the query
is completed. Thanks to near bandwidth performance of delegate
vector construction and single delegate needed to be selected for
first top-k for k = 1, Dr. Top-k assisted bucket top-k only needs to
work on the first top-k, leading Dr. Top-k assisted bucket top-k to
perform faster, i.e., by 1.1x for all normal, customized and uniform
distributions. Second, in bucket top-k, the speedup of Dr. Top-k
on customized distribution outpaces the uniform and normal distri-
bution. Particularly, we observe the speedups from 1.1X - 118.6X
for customized distribution while 1.1X - 6.1x and 1.1x - 6.2X for
normal and uniform distribution respectively.

Dr. Top-k assisted bitonic top-k. Figure 18 further includes the
speedup of Dr. Top-k assisted bitonic top-k over the bitonic top-k
stand alone algorithm [42]. Note, the original source code [5] from
bitonic top-k project [42] experiences shared memory overflow
when k goes beyond 256. We modify the source code to enable it for
k > 256. Particularly, the speedup of Dr. Top-k climbs from 1.1x
when k=20 to 473x when k=224, Since the performance of bitonic
top-k is independent from the data distribution, the speedups over
the normal, uniform and customized distributions are the same.
Note, for visualization, we limit the y-axis to [0, 128] in Figure 18.
Hence the speedups that are beyond 128 for bitonic top-k are
marked as numbers in Figure 18.

Dataset Abbr. V|
ANN SIFT1B [21] AN | 536,870,912
ClueWeb09 [9, 40] CW 1,073,741,824
TwitterCOVID-19 [19] | TR | 1,073,741,824
Table 1: Real-world datasets.

Application domain
k-Nearest Neighbor
Sparse Networks
Social Networks

Real-world datasets contains three datasets: ANN_SIFT1B [21],
ClueWeb09 [39] and TwitterCOVID-19 [19]. (i) ANN_SIFT1B dataset
contains 1 billion vectors, each of which is at 128 dimensions and
describes an image. We use the first vector from the ANN_SIFT1B
dataset to calculate the euclidean distances between this vector
and the 1 billion vectors. Afterward, the distance array is the input
vector for top-k. (ii) The ClueWeb09 is a webpage graph which
contains 4,780,950,910 webpages and 7,939,635,651 links. We derive
the degrees of the webpages and use that as the input vector for
top-k. (iii) TwitterCOVID-19 [19] dataset consists of COVID-fear
related scores of the tweets related to the COVID-19 pandemic from
28 January 2020 to 1 January 2021. The original 132 million public
twitter posts are duplicated on the vector of 1 billion size to achieve
same distribution. Top-k computation can help (i) derive the k-NN of



@~ Radix (AN) '—&—" Bucket (AN) —@— Bitonic (AN) ' - 4096
. —O— Radix (CW) —A— Bucket (CW) Bitonic (CW)
2 Radix (TR) Bucket (TR) Bitoni 1624
4 S 256
< 64
o
2 16
0
& 4

1

2(] 2] 22 23 24 25 26 27 28 2‘)2|”2|l2]22|32142|52|(!2|72|82W22()22|222223224
k (logscale)

Figure 19: The speedup of Dr. Top-k over the-state-of-the-art for a
varying k on real-world graph.

a query vector [21], (ii) rank the vertices by degree [12] and (iii) k least
fearful tweets related to the COVID19 pandemic in [19] dataset. Since
bitonic top-k cannot work on |V| that is not at size of power of 2,
and GGKS radix top-k suffers from |V| > 231, we cut the sizes of (i)
and (ii) datasets into 536,870,912 and 1,073,741,824, respectively.

Figure 19 shows the speedup of Dr. Top-k assisted top-k algo-
rithms over the state-of-the-art projects on the real-world datasets.
In general, for the same top-k algorithm, Dr. Top-k enjoys higher
speedups on CW dataset than AN, because CW is larger. This aligns
with our finding in Figure 20. On average, Dr. Top-k assisted radix,
bucket and bitonic top-k, respectively, perform 6.7x, 4.6 X and
173.7x faster than their corresponding top-k algorithms on CW.
AN dataset observes an average speedup of respectively 4.2X, 3.3x
and 127.1x over the state-of-the-art top-k algorithms. Similarly, TR
dataset observes an average speedup of respectively 4.8, 4.1 and
170.2x over the state-of-the-art top-k algorithms.

6.2 Dr. Top-k Workload Statistics
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Figure 20: Workload dynamics of the first top-k, second top-k and
their sum with respect to the increase of |V |. Here, we set k = 21°.

Figure 20 plots the workload dynamics for the first top-k, sec-
ond top-k and their sum with respect to varying sizes of the input
vector |V|. Particularly, the workloads are the sizes of the delegate
vector and the concatenated vector for the first and second top-k,
respectively. We observe that the ratio of the delegate vector over |V |
decreases significantly when |V| increases, so does that for concate-
nated vector. Specifically, the sum of the delegate and concatenated
vector sizes is 76.06% of |V| at |[V| = 222 and 0.83% at |V| = 230,
This workload reduction trend demonstrates the scalable nature of Dr.
Top-k, that is, Dr. Top-k performance improves when the problem
size |V] increases.

Figure 21 demonstrates the vector size of the first top-k and
second top-k in Dr. Top-k assisted radix top-k across different k
values. Apparently, for a given input vector size, the increase of k

10' F ~5— First top-k 10!
g 10° <>— Second top-k 10°
g
%107 107!
=102 102
Z 103 &~ 107
S8 104 & 7 104

oS g e A S S SR -5

2(7 2] 22 23 24 25 26 27 28 29 2I(72II2I22132142152162172I821922(722122222?224225

k (logscale)

Figure 21: Workload dynamics of the first top-k, second top-k and
their sum with respect to the increase of k. Here, we set |V| = 2%,

will lead to larger vector sizes for both the first and second top-k.
As the vector sizes increase to a higher ratio of the input vector,
the speedup of Dr. Top-k over the state-of-the-art also decreases.
Another fact is that the workload of the first top-k dominates the
entire workload for Dr. Top-k because f delegate will lead to more
delegates. Further,  delegate and delegate-based filtering together
can significantly reduce the workload for the second top-k. Partic-
ularly, the ratio of the sum of both vectors over the input vector
climbs from 0.0015% to 15.91% with the increase of k.
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Figure 22: The performance impacts of delegate top-k enabled fil-
tering vs S delegate.

Figure 22 studies the separate and combined effects of delegate
top-k based filtering and f delegate, given both of them are pro-
posed to reduce the workload for concatenation and second top-k.
Here, we include delegate vector construction optimization. When
k is small, one can observe that delegate top-k enabled filtering
yields better performance gains over f§ delegate, k = 220 in particu-
lar. However, once k becomes bigger, the f delegate optimization
starts picking up the momentum. Overall, delegate top-k enabled
filtering combined with f delegate always offers the best perfor-
mance. Particularly, for k = 224, the time consumption of delegate
top-k enabled filtering, f delegate and the combined one are 54.2
ms, 35.9 ms 24.7 ms.

6.3 Dr. Top-k Scalability

Table 2 demonstrates the scalability of Dr. Top-k assisted radix top-
k for vector sizes [V| of 230 - 233 on up to 16 V100 GPUs (4 compute
nodes). The table includes the communication overhead among
the GPUs, vector reloading overhead, and total time. Overall, we
can observe that Dr. Top-k achieves desirable scalability in various
settings. When the partitioned sub-vector can fit in 1 - 16 GPUs in
|V| = 230, the speedup goes up to 3.4x on 16 GPUs. In the remaining
columns ([V| > 231) of the table, we observe superlinear speedup.
The reason is that when the # of GPUs is low, we cannot fit all



T 2
#GPU (#Nodes) Iv]=2% Ivi-2° V|- 2° Iv|=2%
Communication Reload Total time Communication Reload Total time Communication Reload Total time Communication Reload Total time
(ms) Overhead (ms) (speedup) (ms) Overhead (ms) (speedup) (ms) Overhead (ms) (speedup) (ms) Overhead (ms) (speedup)
(ms) (ms) (ms) (ms)

1(1) 0 0 6.1 (1x) 0 373.14 384.93 (1x) 0 123813 | 1261.51 (1x) 0 289854 | 2944.99 (1x)
2 (1) 0.11 0 3.7 (1.6x) 0.46 0 6.22 (61.7%) 0.06 52441 | 536.218 (2.3%) 0.08 1586.81 | 1788.3 (1.7x)
(1) 0.11 0 25 (2.4%) 0.29 0 3.7 (104.0x) 0.12 0 8.8 (143.3%) 0.07 1056.02 | 1067.68 (2.8%)
8(2) 0.19 0 1.96 (3.1x) 0.29 0 2.71 (141.7x) 0.73 0 4.36 (289.2x) 1.32 0 7.97 (369.4x)
16 (4) 0.31 0 1.80 (3.4x) 0.32 0 2.07 (185.9x) 0.82 0 2.68 (470.5%) 143 0 4.01 (734.2x)

Table 2: Scalability of Dr. Top-k with varying |V | and k = 128.

the sub-vectors in GPU before computation. Therefore, Dr. Top-k
loads certain partitions during computation. And the total time
includes sub-vector loading time. Whereas, when the GPU number
increases to 16, the data can fit in GPUs. Thanks to a relatively
low communication cost in asynchronous communication for the
top-k elements, we observe a maximum communication time of
1.43 ms at 16 GPUs |V| = 233 configuration. Similarly, for a large
input vector |V| = 23% and with a single GPU configuration, the
reload overload can go up to 2898.54 ms. Note, we cannot include
the multi-GPU settings for the state-of-the-art tools because they
do not support multi-GPU features.

6.4 Global Memory Transactions Analysis

#global memory Radix top-k Bucket top-k Bitonic top-k
transactions GGKS [2] | DrTop-k | GGKS [2] | Dr.Top-k | Bitonic [42] | DrTop-k
#load (><109) 3.07 1.34 4.04 1.44 11.45 1.35
#store (XlOg) 2.01 0.003 1.36 0.003 2.09 0.007

Table 3: Number of global load and store transactions in different
versions in top-k. We test on UD dataset with |[V| = 2%* and k = 27.

Table 3 showcases the number of global memory load and store
transactions of different versions of top-k on the UD dataset with
[V] = 230 and k = 27. We use nvprof [29] profiler for profiling the
results. From the table, we observe a reduction of load transac-
tions by 2.3%, 3.1x and 8.5X, respectively when Dr. Top-k assists
radix, bucket and bitonic top-k. Similary, Dr. Top-k helps reduce
the global memory store transaction by 766.8%, 516.9x and 298.6X,
respectively on radix, bucket and bitonic top-k.

6.5 Dr. Top-k on Different GPUs
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Figure 23: Dr. Top-k on V100S Vs Titan Xp.

Figure 23 compares the Dr. Top-k radix top-k on the V100S

and Titan Xp GPUs. Clearly, the time consumption patterns of Dr.
Top-k on both the GPUs are similar for a range of k. Overall, the

performance of Dr. Top-k on V100S is better than in Titan Xp by

a factor of 1.3x - 1.8x. This roughly aligns with the ratio of the
reported peak throughput difference between V100S [31] and Titan
Xp [4] which are 1,134 GB/s and 547.7 GB/s.

6.6 Dr. Top-k vs BMW

Figure 24 presents the ratio = oMW workload

Dr. Top-k workload”’
sum the workloads of first and second top-k as Dr. Top-k workload.

Overall, we observe the ratio to be, on average, 212X in ND and 6x
in UD, which suggests that Dr. Top-k reduces 212X and 6x more
workload than BMW. The reason is that BMW still works on each
regular item even after deriving the delegate while Dr. Top-k uses
a delegate to skip an entire subrange directly.

where we use the
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Figure 24: The ratio of fully evaluated workload (after workload re-
duction) of BMW to that of Dr. Top-k.

7 CONCLUSION

We introduce Dr. Top-k with three contributions: First and fore-
most, Dr. Top-k introduces a comprehensive delegate-centric con-
cept to help tremendously reduce the workload for top-k computa-
tions. Second, we introduce a practical way to partition the input
vector into proper sized subranges with theoretical support. Finally,
we deploy our project atop distributed GPUs to handle extreme
large input vectors along with various system optimizations. Taken
together, Dr. Top-k assisted top-k algorithms constantly outper-
form the state-of-the-art.
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