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Revisiting Ho-Kalman based system
identification: robustness and finite-sample

analysis
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Abstract— We consider the problem of learning a realiza-
tion for a linear time-invariant (LTI) dynamical system from
input/output data. Given a single input/output trajectory,
we provide finite time analysis for learning the system’s
Markov parameters, from which a balanced realization is
estimated using the classical Ho-Kalman algorithm. By
proving a robustness result for the Ho-Kalman algorithm
and combining it with the sample complexity results for
Markov parameters, we show how much data is needed to
approximate the balanced realization of the system up to a
desired accuracy with high probability.

Index Terms— system identification, sample complexity,
balanced realization, Markov parameters

I. INTRODUCTION

Many modern control design techniques rely on the existence
of a fairly accurate state-space model of the plant to be
controlled. Although in some cases a model can be obtained
from first principles, there are many situations in which a
model should be learned from input/output data. Classical
results in system identification provide asymptotic convergence
guarantees for learning models from data [1], [2], [3]. Finite
sample complexity properties have also been discussed in
system identification literature [4], [5], [6], [7], with various
different types of assumptions (cf. [8] for a recent survey);
however earlier results rely on assumptions that might not hold
for input/output models or are conservative at times [9].

There is recent interest from the machine learning community
in data-driven control and non-asymptotic analysis. Putting
aside the reinforcement learning literature and restricting our
attention to linear state-space models, the work in this area
can be divided into two categories: (i) directly learning the
control inputs to optimize a control objective or analyzing
the predictive power of the learned representation [10], [11],
[12], (ii) learning the parameters of the system model from
limited data [13], [14], [15], [16], [9], [17]. For the former
problem, the focus has been on exploration/exploitation type
formulations and regret analysis. Since the goal is to learn how
to control the system to achieve a specific task, the system
is not necessarily fully learned. On the other hand, the latter
problem aims to learn a general purpose model that can be
used in different control tasks, for instance, by combining it
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with robust control techniques [15], [18], [16]. The focus for
the latter work has been to analyze data–accuracy trade-offs.

In this paper we focus on learning a realization for an LTI
system from a single input/output trajectory. This setting is
significantly more challenging than earlier studies that assume
that (multiple independent) state trajectories are available [15],
[9], [19], [20], [21]. One of our main contributions is to derive
sample complexity results in learning the Markov parameters,
to be precisely defined later, of the system using a least squares
algorithm [22]. Markov parameters play a central role in system
identification [1] and they can also be directly used in control
design when the system model itself is not available [23],
[24], [25]. When only input/output data is available, it is well
known that the system matrices can be identified only up to a
similarity transformation even in the noise-free case but Markov
parameters are identifiable. Therefore, we focus on obtaining a
realization. One classical technique to derive a realization from
the Markov parameters is the Ho-Kalman (a.k.a., eigensystem
realization algorithm – ERA) algorithm [26]. The Ho-Kalman
algorithm constructs a balanced realization for the system
from the singular value decomposition of the Hankel matrix
of the Markov parameters (see, e.g., [27], [28].). By proving
a robustness result for the Ho-Kalman algorithm, i.e., small
changes in the inputs of the algorithm lead to small changes
in its outputs, and combining it with the sample complexity
results, we show how much data is needed to learn a balanced
realization of the system up to a desired accuracy with high
probability.

Most common analysis for system identification algorithms
is that of consistency [1]. Other asymptotic analysis include
that of asymptotic normality, which shows that the errors in the
estimates of system matrices follow a normal distribution [2],
[29] as the number of samples goes to infinity. On the other
hand, non-asymptotic, finite sample results in system identifi-
cation (cf. [8]) focus on numerical evaluation of probabilistic
bounds on the accuracy of the estimates as a function of the
number of samples. Our analysis is different in that it reveals the
dependency of the accuracy of the estimates on the number of
samples and on the system theoretic properties of the underlying
system such as norms of Gramians, spectral radius, etc. In this
sense, our results are useful in understanding what systems are
easier to identify with the Ho-Kalman algorithm. Moreover, our
bounds can give theoretical insights into practical heuristics that
are used for establishing high-probability confidence bounds,
such as bootstrapping [15].
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A short version of this work appeared in [30] where we
provide preliminary guarantees for the system identification
problem. This work strengthens the results of [30] and also
provides the necessary technical framework and the associated
proofs. Two important changes from [30] are as follows. First,
[30] uses a bound on the spectral norm of the state matrix as the
stability assumption on the system. In contrast, this manuscript
uses spectral radius which is much less restrictive and more
conventional in the control literature. Secondly, in Section
IV, we provide new bounds on Hankel matrix estimation by
leveraging the stability of the system. We remark that after this
manuscript appeared on arXiv, there have been other interesting
works on the finite sample system identification problem,
some following up on the Ho-Kalman analysis framework we
introduced. Sarkar et al. [31] provide non-asymptotic guarantees
for systems with unknown orders, where they directly estimate
the Hankel matrix of the system which leads to a quadratic
growth in sample complexity as a function of model order. This
is in contrast to our two stage approach which first estimates
the Markov parameters. Simchowitz et al. [32] consider a
semi-parametric noise model and studies prefiltered least-
squares. Mania et al. [33] use finite-sample estimates of system
dynamics to provide performance bound for Kalman filter.
Tsiamis and Pappas [34] study stochastic systems which are
purely driven by noise.

II. PROBLEM SETUP

We first introduce the basic notation. Spectral norm ∥ ⋅ ∥

returns the largest singular value of a matrix. Multivariate
normal distribution with mean µ and covariance matrix Σ is
denoted by N(µ,Σ). X∗ denotes the transpose of a matrix
X . X† returns the Moore–Penrose inverse of the matrix X .
Covariance matrix of a random vector v is denoted by Σ(v).
tr(⋅) returns the trace of a matrix. c,C, c0, c1, . . . stand for
absolute constants. ≳,≲ denote inequalities that hold up to an
absolute constant.

Suppose we have an observable and controllable linear
system characterized by the system matrices A ∈ Rn×n,B ∈

Rn×p,C ∈ Rm×n,D ∈ Rm×p and this system evolves according
to

xt+1 =Axt +But +wt, (II.1)
yt = Cxt +Dut + zt. (II.2)

Our goal is to learn the characteristics of this system and to
provide finite sample bounds on the estimation accuracy. Given
a horizon T , we will learn the first T Markov parameters of
the system. The first Markov parameter is the matrix D, and
the remaining parameters are the set of matrices {CAiB}T−2

i=0 .
As it will be discussed later on, by learning these parameters,

● we can provide bounds on how well yt can be estimated
for a future time t,

● we can identify the state-space matrices A,B,C,D (up
to a similarity transformation).

Problem setup: We assume that {ut,wt,zt}
∞
t=1 are vectors

that are independent of each other with distributions ut ∼

N(0, σ2
uIp), wt ∼ N(0, σ2

wIn), and zt ∼ N(0, σ2
zIm)1. ut

is the input vector which is known to us. wt and zt are the
process and measurement noise vectors respectively. We also
assume that the initial condition of the hidden state is x1 = 0.
Observe that Markov parameters can be found if we have
access to cross correlations E[ytu

∗
t−k]. In particular, we have

the identities

E [
ytu

∗
t−k

σ2
u

] =

⎧⎪⎪
⎨
⎪⎪⎩

D if k = 0,

CAk−1B if k ≥ 1
.

Hence, if we had access to infinitely many independent
(yt,ut−k) pairs, our task could be accomplished by a simple
averaging. In this work, we will show that, one can robustly
learn these matrices from a small amount of data generated
from a single realization of the system trajectory. The challenge
is efficiently using finite and dependent data points to perform
reliable estimation. Observe that, our problem is identical to
learning the concatenated matrix G defined as

G = [D, CB, CAB, . . . , CAT−2B] ∈ Rm×Tp.

Next section describes our input and output data. Based on
this, we formulate a least-squares procedure that estimates G.
The estimate Ĝ will play a critical role in the identification of
the system matrices.

A. Least-Squares Procedure
To describe the estimation procedure, we start by explaining

the data collection process. Given a single input/output tra-
jectory {yt,ut}

N̄
t=1, we generate N subsequences of length T ,

where N̄ = T +N − 1 and N ≥ 1. To ease representation, we
organize the data ut and the noise wt into length T chunks
denoted by the following vectors,

ūt = [u∗t u
∗
t−1 . . . u∗t−T+1]

∗
∈ RTp, (II.3)

w̄t = [w∗t w
∗
t−1 . . . w∗t−T+1]

∗
∈ RTn. (II.4)

In a similar fashion to G define the matrix,

F = [0 C CA . . . CAT−2
] ∈ Rm×Tn.

To establish an explicit connection to Markov parameters, yt
can be expanded recursively until t−T + 1 to relate the output
to the input ūt and Markov parameter matrix G as follows,

yt = Cxt +Dut + zt,

= C(Axt−1 +But−1 +wt−1) +Dut + zt,

=Gūt +Fw̄t + zt + et, (II.5)

where, et = CAT−1xt−T+1 corresponds to the error due to
the effect of the state at time t − T + 1. With this relation, we
will use (ūt,yt)

N̄
t=T as inputs and outputs of our regression

problem. We treat w̄t, zt, and et as additive noise and attempt
to estimate G from covariates ūt. Note that, the noise terms
are zero-mean including et since we assumed x1 = 0. With
these in mind, we form the following least-squares problem,

Ĝ = arg min
X∈Rm×Tp

N̄

∑
t=T

∥yt −Xūt∥
2
`2 .

1While we assume diagonal covariance throughout the paper, we believe our
proof strategy can be adapted to arbitrary covariance matrices.
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Defining our label matrix Y and input data matrix U as,

Y = [yT , yT+1, . . . , yN̄ ]
∗
∈ RN×m and (II.6)

U = [ūT , ūT+1, . . . , ūN̄ ]
∗
∈ RN×Tp,

we obtain the minimization minX ∥Y −UX∗∥2
F . Hence, the

least-squares solution Ĝ is given by

Ĝ = (U †Y )
∗, (II.7)

where U † = (U∗U)−1U∗ is the left pseudo-inverse of U .
Ideally, we would like the estimation error ∥G − Ĝ∥2

F to be
small. Our main result bounds the norm of the error as a
function of the sample size N and noise levels σw and σz .

III. RESULTS ON LEARNING MARKOV PARAMETERS

Let ρ(⋅) denote the spectral radius of a matrix which is the
largest absolute value of its eigenvalues. Our results in this
section apply to stable systems where ρ(A) < 1. Additionally
we need a related quantity involving A which is the ratio
between the exponents of the spectral norm and the square-
root of the spectral radius defined as

Φ(A) = sup
τ≥0

∥Aτ∥

ρ(A)τ/2
.

Φ(A) is guaranteed to be finite thanks to Gelfand’s formula
which states that supτ≥0 ∥Aτ∥ρ−τ is finite if ρ > ρ(A). In our
case, we chose 1 > ρ =

√
ρ(A) > ρ(A). Another important

parameter is the steady state covariance matrix of xt which is
given by

Γ∞ =
∞
∑
i=0

σ2
wA

i
(A∗)i + σ2

uA
iBB∗

(A∗)i.

This is essentially the sum of scaled controllability Gramians
with respect to the process noise and to the control input. It
is rather trivial to show that for all t ≥ 1, Σ(xt) ⪯ Γ∞. We
will use Γ∞ to bound the error et due to the unknown state
at time t − T + 1. Following the definition of et, we have that
∥Σ(et)∥ ≤ ∥CAT−1∥2∥Γ∞∥. We characterize the impact of
et by its “effective standard deviation” σe that is obtained
by scaling the bound on

√
∥Σ(et)∥ by an additional factor

Φ(A)
√
T /(1 − ρ(A)T ) which yields,

σe = Φ(A)∥CAT−1
∥

¿
Á
ÁÀ T ∥Γ∞∥

1 − ρ(A)T
. (III.1)

Throughout, we assume Np, Tp ≥ 2 which helps simplify
the notation. Before stating our main result in Theorem 3.2,
we present a simplified version that captures the problem
dependencies in terms of the total standard deviations σz +

σe + σw∥F∥ and the total dimension q =m + p + n.
Theorem 3.1: Set q = p+n+m. Suppose ρ(A)T ≤ 0.99 and

for a proper constant c >, the sample size obeys

N

log2
(Nq)

≥ N0 ∶= cTq log2
(Tq). (III.2)

Given observations of a single trajectory until time N̄ = N +

T − 1, with high probability2, the least-square estimator of the
Markov parameter matrix obeys

∥Ĝ −G∥ ≤
σz + σe + σw∥F∥log(Nq)

σu

√
N0

N
.

We first describe the basic proof idea. Following equation
(II.5), to further simplify the notation, define the matrices

W = [w̄T , w̄T+1, . . . , w̄N̄ ]
∗
∈ RN×Tn, (III.3)

E = [eT , eT+1, . . . , eN̄ ]
∗
∈ RN×n,

Z = [zT , zT+1, . . . , zN̄ ]
∗
∈ RN×m.

With these variables, we have the system of equations

Y = UG∗ +E +Z +WF ∗.

Following (II.7), estimation error is given by

(Ĝ −G)
∗
= (U∗U)

−1U∗
(WF ∗ +Z +E). (III.4)

Hence, the spectral norm of the error can be bounded as

∥(Ĝ −G)
∗
∥ ≤ ∥(U∗U)

−1
∥(∥U∗W ∥∥F ∗∥ + ∥U∗Z∥ + ∥U∗E∥).

(III.5)

The proofs of both this theorem and the next follow by
individually bounding each of the terms appearing in the
above bound. The bounds on ∥(U∗U)−1∥ and ∥U∗W ∥ are
obtained by using the properties of random circulant matrices
in Appendix III. ∥U∗Z∥ is arguably the simplest term due to
Z being an i.i.d. Gaussian matrix. It is bounded via Lemma 1.1.
Finally, ∥U∗E∥ term is addressed by employing a martingale
based argument in Appendix IV.
Remark: Our result is stated in terms of the spectral norm
error ∥Ĝ −G∥. One can deduce the following Frobenius norm
bound by naively bounding σe, σz terms and swapping ∥F∥

term by ∥F∥F following Eqs. (III.4) and (III.5). This yields,
∥Ĝ −G∥F ≤

(σz+σe)
√
m+σw∥F∥F log(Nq)

σu

√
N0

N
.

Our bound individually accounts for the the process noise
sequence {wτ}

t
τ=t−T+1, measurement noise zt, and the contri-

bution of the unknown state xt−T+1. At a high-level the result
indicates that the accuracy of Markov parameter estimates
increases as the variance of the input increases and the effective
noise or the spectral radius of the A matrix decreases. There is
a ∥CAT−1∥ multiplier inside the unknown state component σe
hence larger T implies smaller σe. On the other hand, larger
T increases the size of the G matrix as its dimensions are
m × Tp. As a result sample size should grow proportional
to T which is reflected within the sample complexity term
N0 which grows proportional to T (ignoring log terms). This
highlights that, when N is fixed, there is a sweet spot for the
choice of T as it should be large enough to ensure small σe
but as small enough to satisfy the requirement (III.2). In the
subsequent discussion, Theorem 4.2 provides such a T choice
which ensures the σe term becomes sufficiently small.

Observe than Tp is the minimum observation period for
estimating G since there are mTp unknowns and we get to
observe m measurements at each time step. Hence, even if

2Precise statement on the probability of success is provided in the proof.

Authorized licensed use limited to: ULAKBIM UASL - Erciyes Universitesi. Downloaded on January 01,2022 at 19:13:52 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3083651, IEEE
Transactions on Automatic Control

4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

one was solving our regression problem with an ideal input
data U (e.g. with independent standardized entries) - the result
would still require at least N ≳ Tp samples and the estimation
error rate would decay as

√
1/N [35]. This is because the

input matrix U becomes tall as soon as N ≥ Tp at which point
the system of equations becomes invertible. Hence ideally
(II.7) should work as soon as N ≳ Tp. Instead Theorem 3.1 is
operational in the regime N ≳ T (p + n +m) up to log factors.
For systems where the state dimension n is much larger than
the number of sensors m and input dimension p, Theorem
3.1 can be suboptimal. Our main theorem, stated below, is
a refined version of Theorem 3.1 and achieves the optimal
sample complexity of N ≳ Tp (up to log factors) which is
independent of n. This theorem also carefully quantifies the
contribution of each noise type to the overall estimation error.

Theorem 3.2: Suppose system is stable (i.e. ρ(A) < 1) and
N

log2(Np) ≥ cTp log2
(Tp). We observe a trajectory until time

N̄ = N+T −1. Set q = p+n and Nw = cTq log2
(Tq) log2

(Nq).
Then, with high probability, the least-square estimator of the
Markov parameter matrix obeys

∥Ĝ −G∥ ≤
Rw +Re +Rz

σu
√
N

, (III.6)

where Rw,Re,Rz are given by

Rz = 8σz
√
Tp +m,

Rw = σw∥F∥(
√
Nw +Nw/

√
N),

Re = Cσe

√

(1 +
mT

N(1 − ρ(A)T /2)
)(Tp +m).

One can obtain Theorem 3.1 from Theorem 3.2 as fol-
lows. When N ≥ N0 log2

(Nq) ≥ Nw, Rw satisfies Rw ≤

σw∥F ∥
√
Nw ≤ σw∥F ∥

√
N0 log(Nq). Similarly, when ρ(A)T

is bounded away from 1 by a constant and N ≥ N0 ≥ c ⋅ Tm,
Re satisfies Re ≤ 2Cσe

√
Tp +m ≤ σe

√
N0.

A key advantage of Theorem 3.2 is that it applies in the
regime Tp ≲ N ≲ T (p + n + m). Additionally, Theorem 3.2
provides tighter individual error bounds for the σz, σw, σe terms
and explicitly characterizes the dependence on ρ(A) inside
the Re term.

Theorem 3.2 can be improved in a few directions. Some of
the log factors that appear in our sample size might be spurious.
These terms are arising from a theorem borrowed from Krahmer
et al. [36]; which actually has a stronger implication than what
we need in this work. We also believe (III.1) is overestimating
the correct dependence by a factor of

√
T .

A. Predicting the System Output via Markov Parameters
The following lemma illustrates how learning Markov

parameters helps us bound the prediction error.
Lemma 3.3 (Predicting yT ): Suppose x1 = 0 and zt ∼

N(0, σ2
zI), ut ∼ N(0, σ2

uI), wt ∼ N(0, σ2
wI) for t ≥ 0 as

described in Section II. Assume, we have an estimate Ĝ of
G that is independent of these variables and we employ the
yt estimator ŷt = Ĝūt. Then, E[∥yt − ŷt∥

2
`2
] ≤

σ2
w∥F∥

2
F + σ2

u∥G − Ĝ∥
2
F +mσ2

z + ∥CAT−1
∥
2tr(Γ∞).

Proof: Following (II.5), the key observation is that
for a fixed t, ūt, w̄t,zt,et are all independent and the

associated errors are uncorrelated. Since ūt ∼ N(0, σ2
uI),

E[∥(G − Ĝ)ū∥2
`2
] = σ2

u∥G − Ĝ∥2
F . Same argument ap-

plies to w̄ ∼ N(0, σ2
wI),zt ∼ N(0, σ2

zI) and et which
obeys E[∥et∥

2
`2
] = tr(Σ(et)). Observe that ith largest

eigenvalue λi(Σ(et)) of Σ(et) is upper bounded by
∥CAT−1∥2λi(Σ(xt−T+1)) via Min-Max principle [37] hence
E[∥et∥

2
`2
] ≤ ∥CAT−1∥2tr(Σ(xt−T+1)) ≤ ∥CAT−1∥2tr(Γ∞).

IV. MARKOV PARAMETERS TO HANKEL MATRIX:
LOW ORDER APPROXIMATION OF STABLE SYSTEMS

So far our attention has focused on estimating the impulse
response G for a particular horizon T . Clearly, we are also
interested in understanding how well we learn the overall behav-
ior of the system by learning a finite impulse approximation. In
this section, we will apply our earlier results to approximate the
overall system by using as few samples as possible. A useful
idea towards this goal is taking advantage of the stability of
the system. The Markov parameters decay exponentially fast
if the system is stable i.e. ρ(A) < 1. This means that, most of
the Markov parameters will be very small after a while and not
learning them might not be a big loss for learning the overall
behavior. In particular, τ ’th Markov parameter obeys

∥CAτB∥ ≤ Φ(A)ρ(A)
τ/2

∥C∥∥B∥.

This implies that, the impact of the impulse response terms
we don’t learn can be upper bounded. For instance, the total
spectral norm of the tail terms obey

∞
∑

τ=T−1

∥CAτB∥ ≤
∞
∑

τ=T−1

Φ(A)ρ(A)
τ/2

∥C∥∥B∥

≤
Φ(A)∥C∥∥B∥ρ(A)(T−1)/2

1 − ρ(A)1/2 . (IV.1)

To proceed fix a finite horizon K ≥ T that will later be allowed
to go infinity. Represent the estimate Ĝ as [D̂, Ĝ0, . . . ĜT−2]

where Ĝi corresponds to the noisy estimate ofCAiB. Now, let
us consider the estimated and true order K Markov parameters

Ĝ(K) = [D̂, Ĝ0, . . . ĜT−2 0 . . . 0]

G(K) = [D, CB, CAB . . . CAK−2B].

We can construct Hankel matrices from these as follows.
Definition 4.1 (Hankel matrix): Given a block matrix X =

[X1, X2, . . . XT ] ∈ Rm×Tp and integers T1, T2 satisfying
T1+T2 ≤ T , define the associated (T1, T2) block Hankel matrix
H =H(X) ∈ RT1m×T2p to be the T1 × T2 block matrix with
m × p size blocks where (i, j)th block is given by

H[i, j] =Xi+j .
Observe that H does not contain X1, which shall correspond
to the D (or D̂) matrix for our purposes. This is solely for
notational convenience in the next section where the goal is
identifying the A,B,C matrices.
Hankel operator: Following Definition 4.1, we can create
K × K block matrices H(K) = H(G(2K)) and Ĥ(K) =

H(Ĝ(2K)) of size mK × pK. The Hankel operator is the
infinite dimensional linear operator obtained by H(∞) =

limK→∞H
(K) and is critical for control applications. The
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following theorem merges results of this section with a
specific choice of T to provide approximation bounds for
the infinite Markov operator G(∞) and Hankel operator H(∞).
For notational simplicity, we shall assume that there is no
process noise.

Theorem 4.2: Suppose the spectral radius obeys ρ(A) < 1.
Fix a precision 1 > ε0 > 0 and suppose there is no process noise.
Assume sample size N and estimation horizon T satisfy3

N/ log2
(N) ≳ cTp log2

(Tp)

T ≳
c0 + log(N/T + T (1 +m/p)) − log ε0

− log ρ(A)
. (IV.2)

Then, given observations of a single trajectory until time N̄ =

N + T − 1 and estimating first T Markov parameters via least-
squares estimator (II.7), with high probability, the following
bounds hold on the infinite impulse response and Hankel matrix
of the system:

∥G(∞) − Ĝ(∞)∥ ≤ (8
σz
σu

+ ε0)

√
Tp +m

N

∥H(∞)
− Ĥ(∞)

∥ ≤ (8
σz
σu

+ ε0)

√

T ×
Tp +m

N
.

In essence, the theorem above is a corollary of Theorem 3.2.
However, it further simplifies the bounds and also provides
approximation to systems overall behavior (e.g. infinite Hankel
matrix). In particular, these bounds exploit stability of the
system and allows us to treat the system as if it has a logarithmic
order. Observe that (IV.2) only logarithmically depends on the
critical problem variables such as precision ε0 and spectral
radius. In essence, the effective system order is dictated by the
eigen-decay and equal to T ∼ O(− 1

log(ρ(A))) hence stability
allows us to treat the system as if it has a logarithmically
small order. Ignoring logarithmic terms except ρ(A), using
ε0, σz/σu = O(1) and picking

T = O(
−1

log(ρ(A))
) and N = O(δ−2

(Tp +m)),

guarantees

∥G(∞) − Ĝ(∞)∥ ≤ δ and ∥H(∞)
− Ĥ(∞)

∥ ≲
−δ

log(ρ(A))
.

By invoking standard results (see, e.g., [28]) on the singular
values of the infinite Hankel matrices, one can also upper and
lower bound the H∞-norm error between the true system and
the computed approximation. Observe that, this sample size
bound is independent of the state dimension n and only linearly
grows with p however it exhibits dependence on the spectral
radius. It is useful in the regime when the system order is high
and its Markov parameters decay rapidly. In scenarios where
the system order is small and the spectral radius is rather large,
choosing T to be the true system order and finding a low-order
realization, as discussed in the next section, would provide
more informative bounds.

V. NON-ASYMPTOTIC SYSTEM IDENTIFICATION VIA
HO-KALMAN

In this section, we first describe the Ho-Kalman algorithm
[26] that generates A,B,C,D from the Markov parameter
3Exact form of the bounds depend on A,B,C and is provided in the proof.

Algorithm 1 Ho-Kalman Algorithm to find a State-Space
Realization.

1: procedure HO-KALMAN MINIMUM REALIZATION
2: Inputs: Length T , Markov parameter matrix estimate Ĝ,

system order n, Hankel shape (T1, T2+1) with T1+T2+1 =
T , and T1, T2 ≥ n.

3: Outputs: State-space realization Â, B̂, Ĉ.
4: Form the Hankel matrix Ĥ ∈ RmT1×p(T2+1) from Ĝ.
5: Ĥ− ∈ RmT1×pT2 ← first-pT2-columns-of(Ĥ).
6: L̂ ∈ RmT1×pT2 ← rank-n-approximation-of(Ĥ−).
7: U ,Σ,V = SVD(L̂).
8: Ô ∈ RmT1×n ← UΣ1/2.
9: Q̂ ∈ Rn×pT2 ←Σ1/2V ∗.

10: Ĉ ← first-m-rows-of(Ô).
11: B̂ ← first-p-columns-of(Q̂).
12: Ĥ+ ∈ RmT1×pT2 ← last-pT2-columns-of(Ĥ).
13: Â← Ô†Ĥ+Q̂†.
14: return Â ∈ Rn×n, B̂ ∈ Rn×p, Ĉ ∈ Rm×n.
15: end procedure

matrix G. We also show that the algorithm is stable to
perturbations in G and the output of Ho-Kalman gracefully
degrades as a function of ∥G − Ĝ∥. Combining this with
Theorem 3.1 implies guaranteed non-asymptotic identification
of multi-input multi-output systems from a single trajectory.
We remark that results of this section do not assume stability
and applies to arbitrary, possibly unstable, systems.

A. System Identification Algorithm
Given a noisy estimate Ĝ of G, we wish to learn good

system matrices Â, B̂, Ĉ, D̂ from Ĝ up to trivial ambiguities.
This will be achieved by using Algorithm 1 which admits the
matrix Ĝ, system order n and Hankel dimensions T1, T2 as
inputs. Throughout this section, we make the following two
assumptions to ensure that the system we wish to learn is order-
n and our system identification problem is well-conditioned.
● the system is observable and controllable; hence n > 0 is

the order of the system.
● (T1, T2) Hankel matrix H(G) formed from G is rank-n.

This can be ensured by choosing sufficiently large T1, T2.
In particular T1 ≥ n,T2 ≥ n is guaranteed to work by the
first assumption above.

Learning state-space representations is a non-trivial, inherently
non-convex problem. Observe that there are multiple state-
space realizations that yields the same system and Markov
matrix G. In particular, for any nonsingular matrix T ∈ Rn×n,

A′ = T −1AT , B′
= T −1B, C′ = CT ,

is a valid realization and yields the same system. Hence,
similarity transformations of A,B,C generate a class of
solutions. Note that D is already estimated as part of G.
Since D is a submatrix of G, we clearly have

∥D − D̂∥ ≤ ∥G − Ĝ∥.

Hence, we focus our attention on learning A,B,C. Suppose
we have access to the true Markov parameters G and the
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corresponding (T1, T2 + 1) Hankel matrix H(G). In this
case, H is a rank-n matrix and (i, j)th block of H is
equal to CAi+j−2B. Defining (extended) controllability and
observability matrices Q = [B, AB, . . . AT2B] and
O = [C∗, (CA)∗, . . . (CAT1−1)∗]∗, we have H = OQ.
However, it is not clear how to find O,Q.

The Ho-Kalman algorithm accomplishes this task by finding
a balanced realization and returning some Â, B̂, Ĉ matrices
from possibly noisy Markov parameter matrix Ĝ. Let the
input to the algorithm be Ĝ = [D̂, Ĝ0, . . . ĜT−2] where Ĝi

corresponds to the noisy estimate of CAiB. We construct the
(T1, T2+1) Hankel matrix Ĥ as described above so that (i, j)th
block of Ĥ is equal to Ĝi+j−2. Let Ĥ− ∈ RmT1×pT2 be the
submatrix of Ĥ after discarding the rightmost mT1 × p block
and L̂ be the best rank-n approximation of Ĥ− obtained by
setting its all but top n singular values to zero. Let Ĥ+ be the
submatrix after discarding the left-most mT1 × p block. Note
that both L̂, Ĥ+ have size RmT1×pT2 . Take the singular value
decomposition (SVD) of the rank-n matrix L̂ as L̂ = UΣV ∗

(with Σ ∈ Rn×n) and write

L̂ = (UΣ1/2
)Σ1/2V ∗

= ÔQ̂.

If Ĝ was equal to the ground truth G, then Ô, Q̂ would
correspond to the order T1 observability matrix Ō = UΣ1/2

and the order T2 controllability matrix Q̄ = Σ1/2V ∗ of the
actual balanced realization based on noiseless SVD. Here, Ō, Q̄
matrices are not necessarily equal to O,Q, however they yield
the same system. Note that, the columns of Ô, Q̂ are the scaled
versions of the left and right singular vectors of L̂ respectively.
The Ho-Kalman algorithm finds Â, B̂, Ĉ as follows.
● Ĉ is the first m × n submatrix of Ô.
● B̂ is the first n × p submatrix of Q̂.
● Â = Ô†Ĥ+Q̂†.

This procedure (Ho-Kalman) returns the true balanced real-
ization of the system when Markov parameters are known
i.e. Ĝ =G. Our goal is to show that even with noisy Markov
parameters, this procedure returns good estimates of the true
balanced realization. We remark that there are variations of
this procedure; however the core idea is the same and they
are equivalent when the true Markov parameters are used as
input [2]. For instance, when constructing Ĥ , one can attempt
to improve the noise robustness of the algorithm by picking
balanced dimensions mT1 ≈ pT2.

B. Robustness of the Ho-Kalman Algorithm
Observe that Ĥ, Ĥ−, L̂, Ĥ+, Ô, Q̂ of Algorithm 1 are

functions of the input matrix Ĝ. For the subsequent discussion,
we let
● H,H−,L,H+,O,Q be the matrices corresponding to

ground truth G.
● Ĥ, Ĥ−, L̂, Ĥ+, Ô, Q̂ be the matrices corresponding to

the estimate Ĝ.
Furthermore, let Ā, B̄, C̄ be the actual balanced realization
associated with G and let Â, B̂, Ĉ be the Ho-Kalman output
associated with Ĝ. Note that L = H− since H− is already
rank n. We now provide a lemma relating the estimation error
of G to that of L and H .

Lemma 5.1: H, Ĥ and L, L̂ satisfies the following pertur-
bation bounds,

max{∥H+
− Ĥ+

∥, ∥H−
− Ĥ−

∥}

≤ ∥H − Ĥ∥ ≤
√

min{T1, T2 + 1}∥G − Ĝ∥. (V.1)

∥L − L̂∥ ≤ 2∥H−
− Ĥ−

∥ ≤ 2
√

min{T1, T2}∥G − Ĝ∥. (V.2)
Let us denote the nth largest singular value of L via σn(L).

Note that σn(L) is the smallest nonzero singular value of
L since rank(L) = n. A useful implication of Theorem 3.1
(in light of Lemma 5.1) is that if σn(L) is large enough,
the true system order n can be non-asymptotically estimated
from the noisy Markov parameter estimates via singular value
thresholding.

Our next result shows the robustness of the Ho-Kalman al-
gorithm to possibly adversarial perturbations on the Markov
parameter matrix G.

Theorem 5.2: Suppose H and Ĥ be the Hankel matrices
derived from G and Ĝ respectively per Definition 4.1. Let
Ā, B̄, C̄ be the state-space realization corresponding to the
output of Ho-Kalman with input G and Â, B̂, Ĉ be the state-
space realization corresponding to output of Ho-Kalman with
input Ĝ. Suppose the system A,B,C,D is observable and
controllable and let O,Q and Ô, Q̂ be order-n controllabil-
ity/observability matrices associated withG and Ĝ respectively.
Suppose σn(L) > 0 and perturbation obeys

∥L − L̂∥ ≤ σn(L)/2. (V.3)

Then, there exists a unitary matrix T ∈ Rn×n such that,

∥C̄ − ĈT ∥
2
F ≤ ∥O − ÔT ∥

2
F ≤ 10n∥L − L̂∥

2
/σn(L), (V.4)

∥B̄ − T ∗B̂∥
2
F ≤ ∥Q − T ∗Q̂∥

2
F ≤ 10n∥L − L̂∥

2
/σn(L).

Furthermore, hidden state matrices Â, Ā satisfy

∥Ā − T ∗ÂT ∥F ≤
9
√
n

σn(L)
(
∥L − L̂∥

σn(L)
∥H+

∥ + ∥H+
− Ĥ+

∥).

(V.5)

Above, ∥H+−Ĥ+∥, ∥L− L̂∥ are perturbation terms that can
be bounded in terms of ∥H − Ĥ∥ or ∥G − Ĝ∥ via Lemma 5.1.
This result shows that Ho-Kalman solution is robust to noise
up to trivial ambiguities. Robustness is controlled by σn(L)

which corresponds to the weakest mode of the system. This is
not surprising since “weakest” here is in terms of controllability
and observability, therefore σn(L) being small indicates that
there is a mode of the system that is hard to identify. We remark
that, for a stable system and for reasonably large T2 choice,
we have that σn(L) ≈ σn(H). This is because L = H− is
obtained by discarding the last block column of H which is
exponentially small in T2. Additionally, observe that, σn(L)

implicitly depends on the Hankel size (T1, T2). However, as
(T1, T2) grows larger, it will similarly quickly converge to
the system dependent quantity σn(H(∞)) where H(∞) is the
infinite Hankel matrix of the system which was introduced
in Section IV. Finally, we note that, this bound is consistent
with that of [32] and would lead to the ideal finite sample
estimation error rate of 1/

√
N for the state-space matrices.

Since the Ho-Kalman algorithm is based on SVD, having
a good control over singular vectors is crucial for the proof.
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We do this by utilizing the perturbation results from the recent
literature [38]. While we believe our result has the correct
dependency, it is in terms of Frobenius norm rather than spectral.
Having a better spectral norm control over Ā, B̄, C̄ would be
an ideal future improvement.

Our next result combines Ho-Kalman’s robustness with finite
sample learning bounds of Theorem 3.1 to establish an end-to-
end estimation guarantee on the state-space matrices.

Theorem 5.3: Consider the setups of Theorems 3.1 and 5.2.
Suppose σu = 1 and σz, σe, σw∥F∥ are bounded above by
constants. Set N0 = Tq log2

(Tq) where q = p+m+n. Suppose
σn(L) > 0 and sample size obeys

N/ log2
(Nq) ≳ TN0/σ

2
n(L). (V.6)

Then, with high probability (same as Thm 3.1), there exists a
unitary matrix T ∈ Rn×n such that,

max{∥C̄ − ĈT ∥F ,∥O − ÔT ∥F , ∥B̄ − T ∗B̂∥F , ∥Q − T ∗Q̂∥F }

≤

√
CnT log(Nq)
√
σn(L)

√
N0

N
. (V.7)

Furthermore, hidden state matrices Â, Ā satisfy

∥Ā − T ∗ÂT ∥F ≤
C

√
nT log(Nq)∥H∥

σ2
n(L)

√
N0

N
. (V.8)

This theorem achieves a standard 1/
√
N estimation rate on the

state-space. Recall that, ignoring log factors, N0 ∼ Tq. This
implies that, in terms of problem dimensions, we essentially
need N ≳ T 2qn samples (to achieve constant error). We suspect
that quadratic dependence on T is a proof artifact which can
hopefully be refined in future works.

VI. NUMERICAL EXPERIMENTS

We consider MIMO (multiple input, multiple output) systems
with m = 2 sensors, n = 5 hidden states and input dimension
p = 3. To assess the typical performance of the least-squares and
the Ho-Kalman algorithms, we consider a random state-space
models as follows. For each realization of a system trajectory,
we generate different A,B,C,D matrices which are drawn
with i.i.d. normally distributed entries. The entries of C,D
have variance 1/m and B has variance 1/n to ensure these
matrices are isometric in the sense that they approximately
preserve norm of the input vector. Hence, the impact of the
standard deviations σu, σw, σz are properly normalized. The
input variance is fixed at σu = 1 however noise variances will
be modified during the experiments.

The most critical component of an LTI system is the A
matrix. We generate A’s entries with variance 1. We then take
an eigenvalue decomposition and scale eigenvalues of A to
have absolute value ρ = 0.85. The upper bound ρ implies that
we are working with stable matrices and the effect of unknown
state vanishes for large T . Eventually A have four complex
and one real eigenvalue and three out of five eigenvalues are
equal to ρ in absolute value.

In our experiments we set T = 20 and work with a 10 × 10
block Hankel in Algorithm 1. This means that G is of size
2 × 60 and H is of size 20 × 30. We pick noise configurations
σw, σz and generate a single rollout of the system until time
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Fig. 1: We consider the matrices that can directly be inferred from
the Markov parameter matrix G. These are D,CB which are the
first two block submatrices of G, G itself, and H which is the
Hankel matrix that is constructed from blocks of G. These results are
for T = 20 which implies G ∈ R2×60 and H ∈ R20×30 as we picked
T1 = T2 + 1 = 10. The solid lines are the estimates obtained from
Ĝ whereas the dashed lines are the estimates obtained from the Ho-
Kalman output Â, B̂, Ĉ. Ho-Kalman leads to noticeable improvement
over simply using Ĝ when estimating the Hankel matrix.

N̄max = 3000. For each N̄ ≤ N̄max, we solve the system
via (II.7) to obtain the Ĝ and use Algorithm 1 to obtain a
state-space realization Â, B̂, Ĉ, D̂. The x-axis displays N (the
amount of available data at time t = N̄ ) and the y-axis displays
the estimation error. Each curve in the figures is generated
by averaging the outcomes of 20 independent realizations of
single trajectories each generated from a random (A,B,C,D)

choice described above.
Importantly, at the rare event that the estimated Â has an

eigenvalue larger than 0.95 (in absolute value), we scale them
to be 0.95. This operation enforces the stability of the system
estimate. While we verified that ρ(Â) ≥ 1 rarely happens for
large N , clipping smooths out the results by discarding outliers
due to the exponents of Â appearing in G and H .

In Figure 1, we investigate the problem of estimating the
matrices D,CB,G,H . D,CB are the first two impulse
responses. Estimating G and the associated Hankel matrix H
helps verify our findings in Theorem 3.2. The solid lines are
the estimates obtain directly from Markov parameters Ĝ. The
dashed lines are the estimates obtained after the Ho-Kalman
procedure i.e. constructed from (Â, B̂, Ĉ, D̂).

We plotted curves for varying noise levels σw = σz ∈

{0,0.2,0.4,0.6}. The first major conclusion is that indeed
estimation accuracy drastically improves as we observe the
system for a longer period of time and collect more data. Note
that D and CB are submatrices of G hence their associated
spectral norm errors are strictly lower compared to ∥G − Ĝ∥.
Per Definition 4.1, H is constructed from the blocks of G and
its spectral norm error is in lines with G. The second major
conclusion is that Ho-Kalman procedure is indeed robust. The
dashed lines are in fact under the solid lines indicating that
Ho-Kalman outputs a more refined system (compared to Ĝ)
by projecting initial Markov parameters to the set of low-order
systems. Another observation is that estimation error grows
gracefully as a function of the noise levels for all matrices of
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interest. Since the chosen T is large and ρ = 0.85 is reasonably
stable, the error due to unknown initial conditions (i.e. et) is
fairly negligible. Hence when σw = σz = 0, we quickly achieve
near 0 estimation error as the impact of the et term is small.

VII. CONCLUSIONS

In this paper, we analyzed the sample complexity of linear
system identification from input/output data. Our analysis
neither requires multiple independent trajectories nor relies on
splitting the trajectory into non-overlapping intervals, therefore
makes very efficient use of the available data from a single
trajectory. More crucially, it does not rely on state measure-
ments and works with only the inputs and outputs. Based on
this analysis, we showed that one can approximate system’s
Hankel operator using near optimal amount of samples and
shed light on the robustness of finding a balanced realization.
This type of analysis is particularly useful in understanding how
certain system properties affect the learning rates. There are
many directions for future work. We are especially interested in
what type of recovery guarantees can be obtained if additional
structural constraints, such as subspace constraints, on the
system matrices are known [39].
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APPENDIX I
PROOF OF THE RESULTS ON LEARNING MARKOV

PARAMETERS

Our basic proof idea is to bound the individual terms that
appear in the bound on the spectral norm of the error in the
Markov parameter estimates given in Eq. (III.5). We first prove
Theorem 3.2 which is our main theorem. It will be followed
by the proof of Theorem 3.1.

A. Proof of Theorem 3.2

Proof: The proof is obtained by combining estimates
from the subsequent sections. Set Θ = log2

(Tp) log2
(Np) to

simplify the notation. Picking c ≥ (log 2)−4, our assumption
of N ≥ cTpΘ implies N ≥ T and N ≥ (N̄ + 1)/2 (using
N̄ = N + T − 1). Consequently, log2

(N̄p) ≤ 4log2
(Np) and

we have N ≥ (c/4)Tp log2
(Tp) log2

(N̄p). This fact will be
useful when we need to utilize results of Appendix III. We first
address the Z component of the error which is rather trivial
to bound.

Lemma 1.1: Let M ∈ Rm×n be a tall matrix (m ≥ n) with
∥M∥ ≤ η. Let G ∈ Rm×k be a matrix with independent standard
normal entries. Then, with probability at least 1−2 exp(−t2/2),

∥M∗G∥ ≤ η(
√

2(n + k) + t).

In particular, setting t =
√

2(n + k), we find ∥M∗G∥ ≤

η
√

8(n + k) with probability at least 1 − 2 exp(−(n + k)).
Proof: Suppose M have singular value decomposition

M = V1ΣV
∗

2 where V1 ∈ Rm×n. Observe that Ḡ = V ∗
1 G ∈

Rn×k have i.i.d. N(0,1) entries. Also E[∥Ḡ∥] ≤
√
n +

√
k ≤√

2(n + k). Applying Lipschitz Gaussian concentration on
spectral norm, with probability at least 1 − 2 exp(−t2/2),
we obtain the relations ∥M∗G∥ = ∥V2ΣḠ∥ = ∥ΣḠ∥ ≤

η(
√

2(n + k) + t) concluding the proof.
The following corollary states the estimation error due to
measurement noise (Z term).

Corollary 1.2: Let U ∈ RN×Tp be the data matrix as in
(II.6) and let Z ∈ RN×m be the measurement noise matrix
from (III.3). Suppose N ≥ cTpΘ for some absolute constant
c > 0. With probability at least 1−2 exp(−(Tp+m))−exp(−Θ),

∥U∗Z∥ ≤ 4σuσz
√
N(Tp +m).

Proof: Set η =
√

2Nσu. Using N̄ ≥ N , Lemma 3.3 yields

P(∥U∥ ≤ η) ≥ 1 − exp(−Θ). (I.1)

Hence, combining Lemmas 3.3 and 1.1, using the fact that
Z,U are independent, and adjusting for Z’s variance σz , we
find the result.
Next, we apply Lemmas 3.3 and 3.4 to find that, for sufficiently
large c > 0, whenever N ≥ cTpΘ,

∥(U∗U)
−1

∥ ≤ 2σ−2
u /N, (I.2)

∥U∗W ∥ ≤
1

2
σuσw max{

√
NwN,Nw},

where Nw = cTq log2
(Tq) log2

(Nq) and q = p + n with
probability at least 1 − 2 exp(−Θ). Finally, applying Theorem
4.1 with γ = ∥Γ∞∥Φ(A)2∥CAT−1∥2

1−ρ(A)T as in (IV.1), with probability
at least 1 − T (exp(−100Tp) + 2 exp(−100m)),

∥U∗E∥ ≤ c3σu

√

T max{N,
mT

1 − ρ(A)T /2
}max{Tp,m}γ.

Combining all of the estimates above via union bound and
substituting θ, with probability at least,

1 − 2 exp(−(Tp +m)) − 3(Np)− log(Np) log2(Tp)

− T (exp(−100Tp) + 2 exp(−100m)),

the error term ∥G − Ĝ∥ of (III.5) is upper bounded by
Rz+Re+Rw

σu

√
N

where

Rz = 8σz
√
Tp +m, (I.3)

Rw = σw∥F∥max{
√
Nw,Nw/

√
N}, (I.4)

Re = 2C

√

(1 +
mT

N(1 − ρ(A)T /2)
)(Tp +m)Tγ. (I.5)

Absorbing the ×2 multiplier of Re into C and observing Tγ =
σ2
e , we conclude with the desired result.

B. Proof of Theorem 3.1
The proof uses the same strategy in Section I-A with slight

modifications. We will repeat the argument for the sake of
completeness. First of all, we utilize the same estimates based
on Lemmas 3.3 and 3.4, namely (I.2) and (I.1) (∥U∥ ≤

√
2Nσu)

which hold with probability at least 1−3(Np)− log(Np) log2(Tp).
Set q′ = p + n. Since q ≥ q′, observe that N ≥ N0 log2

(Nq) ≥
Nw = cTq′ log2

(Tq′) log2
(Nq′). Thus, we have that

∥U∗W ∥ ≤
1

2
σuσw

√
NwN ≤

1

2
σuσw

√
N0N log(Nq).

We use Lemma 1.1 with t =
√

2Tq to obtain P(∥U∗Z∥ ≤

4σuσz
√
TqN) ≥ 1 − 2 exp(−Tq).

Finally, to bound the contribution of E we again apply
Theorem 4.1. Since ρ(A)T ≤ 0.99, picking sufficiently large
c, we observe that

max{N,
mT

1 − ρ(A)T /2
} = N

Hence, setting σe =
√
γT with γ defined in (IV.1) and applying

Theorem 4.1 yields that for some C > 0

∥U∗E∥ ≤ Cσu
√
TN(Tp +m)γ ≤ Cσuσe

√
NTq,
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holds with probability at least 1 − T (exp(−100Tp) +

2 exp(−100m)). Union bounding over all these events and
following (III.5), with probability at least,

1 − 2 exp(−Tq) − 3(Np)− log(Np) log2(Tp)

− T (exp(−100Tq) + 2 exp(−100m)),

we find the spectral norm estimation error of

∥Ĝ −G∥ ≤

1
2
σuσw∥F∥

√
N0N log(Nq)

(σ2
uN)/2

+
4σuσz

√
TqN +Cσuσe

√
TqN

(σ2
uN)/2

≤
σw∥F∥

√
N0log(Nq) + 8σz

√
Tq + 2Cσe

√
Tq

σu
√
N

,

which is the desired bound after ensuring max{8,2C}2Tq ≤
N0 by picking c (multiplier within N0) to be sufficiently large.

C. Proof of Theorem 4.2

Proof: To prove our bound, we will pick T to be
T ≥ max(T0, T1, T2,

−2
log(ρ(A))) for proper choices of Ti’s

individually satisfying (IV.2). Let us start with G(∞) es-
timate. First observe that, the tail of the Markov param-
eters is bounded via (IV.1). Picking T ≥ T1 ∶= 1 −

2
log(2ε−10 (1−ρ(A)

1/2)−1Φ(A)∥C∥∥B∥
√

N
Tp+m )

log(ρ(A)) implies that the right
hand side of (IV.1) can be upper bounded as

Φ(A)∥C∥∥B∥ρ(A)(T−1)/2

1 − ρ(A)1/2 ≤
1

2
ε0

√
Tp +m

N
⇐⇒

ρ(A)
−(T−1)/2

≥
Φ(A)∥C∥∥B∥

√
N

Tp+m

ε0(1 − ρ(A)1/2)
(I.6)

Next, we will bound the spectral difference of order T finite
responses G and Ĝ. Let T ≥ − 2

log(ρ(A)) to ensure ρ(A)T /2 ≤

1/2. Applying Theorem 3.2, we will show that individual
error summands due to Rw,Re,Rz are upper bounded. First,
Theorem 3.2 is applicable due to the choice of N . Rw summand
is zero as σw = 0. Second, in order to bound the Re term,
observe that, for some C > 0

Re

σu
√
N

≤
C

4
σe

√

(1 +
mT

N(1 − ρ(A)T /2)
)(Tp +m)

≤
σe
σu

C

4

√

1 +
m

p

√
Tp +m

N
.

where we used
√

1 + 2mT /N ≤
√

1 + m
p

. Since σw = 0, define,

Γ̄∞ =
Γ∞
σ2
u

=
∞
∑
i=0

AiBB∗
(A∗)i.

Defining T2 ∶= 1 − 2
log(Cε−10 Φ(A)2∥C∥

√
T ∥Γ̄∞∥(1+m/p))

log(ρ(A)) and
setting T ≥ T2 guarantees the following upper bound on σe
σe
σu

≤ 2Φ(A)∥CAT−1
∥

√

T ∥Γ̄∞∥

≤ 2Φ(A)
2
∥C∥ρ(A)

(T−1)/2
√

T ∥Γ̄∞∥ ≤ 2

√
p

p +m
ε0/C.

This implies Re

σu

√
N
≤ ε0

2

√
Tp+m
N

. Combining this with the Rz
bound of Theorem 3.2 and tail bound of (I.6), we obtain

∥G(∞) − Ĝ(∞)∥ ≤ (8
σz
σu

+ ε0)

√
Tp +m

N
,

whenever N is stated as above and T obeys T ≥

max(− 2
log(ρ(A)) , T0) where

T0 ∶= 2
c0 + log(Φ(A)2∥C∥ε−1

0 ) + logα

− log(ρ(A))
≥ max(T1, T2),

and α is a shorthand variable for

α = (1 − ρ(A)
1/2

)
−1

∥B∥

√
N

Tp +m
+

√

T ∥Γ̄∞∥(1 +m/p).

Treating A,B,C related variables in the numerator as constant
terms (which are less insightful than the log(ρ(A)) term for
our purposes), we find the condition (IV.2).

To proceed, we wish to show the result on Hankel matrices
H(∞) and Ĥ(∞). We shall decompose the H(∞) matrix as
H(∞) = Hmain + Htail (same for Ĥ). Hmain, Ĥmain are the
m × p blocks corresponding to the first T Markov parameters
and their estimates. Observe that Hmain lives on the upper-left
T × T submatrix. Furthermore, the set of non-zero blocks in
each of its first T block-rows of size m×Tp is a submatrix of
G. For instance following Def. 4.1, non-zero rows of Ĥ are
all submatrices of Ĝ. Consequently, using the above bound
on G estimate and naively bounding the overall spectral norm
of these T nonzero rows (which results in a

√
T factor), we

have that

∥Ĥmain−Hmain∥ ≤
√
T×∥G−Ĝ∥ ≤ (8

σz
σu

+
ε0

2
)

√

T ×
Tp +m

N
,

where ε0/2 instead of ε0 is due to lack of tail terms. What
remains is the Htail term. Note that Ĥtail = 0. Htail matrix
is composed of anti-diagonal blocks that start from T + 1 till
infinity. The non-zero blocks of ith anti-diagonal (i ≥ T +1) are
all equal to CAi−2B due to Hankel structure, hence its spectral
norm is equal to ∥CAi−2B∥. Consequently, the spectral norm
of Htail can be obtained by adding the spectral norm of non-
zero anti-diagonal matrices which is given by (IV.1) and is
upper bounded by ε0/2 in (I.6). Hence,

∥Ĥ(∞)
−H(∞)

∥ ≤ ∥Ĥmain −Hmain∥ + ∥Ĥtail −Htail∥

concluding the proof.

APPENDIX II
PROOF OF THE HO-KALMAN ROBUSTNESS

In this section, we provide a proof for the robustness of
the Ho-Kalman procedure. Since system is assumed to be
observable and controllable and T1, T2 are assumed to be
sufficiently large, rank(L) = n throughout this section. Recall
that, given Markov parameter matrices G, Ĝ, the matrices
H,H−,L,H+ (with L =H− as H− is rank n) correspond to
G and the matrices Ĥ, Ĥ−, L̂, Ĥ+ correspond to Ĝ. We will
show that Ho-Kalman state-space realizations corresponding
to G and Ĝ are close to each other as a function of ∥G − Ĝ∥.
We first provide a proof of Lemma 5.1.
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A. Proof of Lemma 5.1

We wish to show that H − Ĥ and L − L̂ can be upper
bounded in terms of G−Ĝ via (V.1). H−−Ĥ− is a submatrix
of H − Ĥ hence we have

∥H−
− Ĥ−

∥ ≤ ∥H − Ĥ∥.

Denote the ith block row of H by H[i]. Since H[i] (for all
i) is a submatrix of the Markov parameter matrix G, we have
that ∥H[i] − Ĥ[i]∥ ≤ ∥G − Ĝ∥. Hence, the overall matrix H
satisfies

∥H − Ĥ∥ =

XXXXXXXXXXXXXX

⎡
⎢
⎢
⎢
⎢
⎢
⎣

H[1] − Ĥ[1]
⋮

H[T1] − Ĥ[T1]

⎤
⎥
⎥
⎥
⎥
⎥
⎦

XXXXXXXXXXXXXX

≤
√
T1∥G − Ĝ∥.

Similarly, columns of H are also submatrices of G. Repeating
same argument for columns, yields

∥H − Ĥ∥ ≤
√
T2 + 1∥G − Ĝ∥.

Combining both, we find (V.1). The bound (V.2) is based on
singular value perturbation. First, noticing that rows/columns
of H− are again copied from G and carrying out the same
argument, we have that

∥H−
− Ĥ−

∥ ≤
√

min{T1, T2}∥G − Ĝ∥.

Recall that L = H− and L̂ is the rank-n approximations of
Ĥ−. Denoting ith singular value of Ĥ− by σi(Ĥ−), standard
singular value perturbation bound yields

σn+1(Ĥ
−
) = ∥Ĥ−

− L̂∥ ≤ ∥Ĥ−
−H−

∥.

Consequently, using L =H−,

∥L − L̂∥ ≤ ∥H−
− Ĥ−

∥ + ∥Ĥ−
− L̂∥

≤ 2∥H−
− Ĥ−

∥ ≤ 2
√

min{T1, T2}∥G − Ĝ∥.

B. Robustness of Singular Value Decomposition

The next theorem shows robustness of singular value
decompositions of L and L̂ in terms of ∥L− L̂∥. It is obtained
by using Lemma 5.14 of [38] and provides simultaneous control
over left and right singular vector subspaces. This is essentially
similar to results of Wedin and Davis-Kahan [40], [41] with the
added advantage of simultaneous control which we crucially
need for our result.

Lemma 2.1: Suppose σn(L) ≥ 2∥L − L̂∥ where σn(L) is
the smallest nonzero singular value (i.e. nth largest singular
value) of L. Let rank n matrices L, L̂ have singular value
decompositions UΣV ∗ and ÛΣ̂V̂ ∗. There exists an n × n
unitary matrix T so that

∥UΣ1/2
− ÛΣ̂

1/2
T ∥

2
F+∥V Σ1/2

− V̂ Σ̂
1/2
T ∥

2
F ≤

10n∥L − L̂∥2

σn(L)
.

Proof: Direct application of Lemma 5.14 of [38] guaran-
tees the existence of a unitary T such that

LHS = ∥UΣ1/2
− ÛΣ̂

1/2
T ∥

2
F + ∥V Σ1/2

− V̂ Σ̂
1/2
T ∥

2
F

≤
2

√
2 − 1

∥L − L̂∥2
F

σn(L)
.

To proceed, use the fact that rank(L − L̂) ≤ 2n to bound
∥L − L̂∥F ≤

√
2n∥L − L̂∥.

Observe that our control over the subspace deviation improves
as the perturbation ∥L − L̂∥ gets smaller. The next lemma is a
standard result on singular value deviation.

Lemma 2.2: Suppose σn(L) ≥ 2∥L−L̂∥. Then, ∥L̂∥ ≤ 2∥L∥

and σn(L̂) ≥ σn(L)/2.
Using these, we will prove the robustness of Ho-Kalman.

The robustness will be up to a unitary transformation similar
to Lemma 2.1.

C. Proof of Theorem 5.2
Proof: Consider the SVD of L given by UΣV and

SVD of L̂ given by ÛΣ̂V̂ where Σ, Σ̂ ∈ Rn×n (recall
that rank(L) = n since we assumed system is observable
and controllable). Define the observability/controllability ma-
trices (O = UΣ1/2,Q = Σ1/2V ) associated to H and
(Ô = ÛΣ̂

1/2
, Q̂ = Σ̂

1/2
V̂ ) associated to Ĥ . Lemma 2.1

automatically gives control over these as it states the existence
of a unitary matrix T such that

∥O − ÔT ∥
2
F + ∥Q − T ∗Q̂∥

2
F ≤ 10n∥L − L̂∥

2
/σn(L).

Since C̄ is a submatrix of O and B̄ is a submatrix of Q,
we immediately have the same upper bound on (C̄, Ĉ) and
(B̄, B̂) pairs.

The remaining task is to show that Â and Ā are close. Let
X = ÔT , Y = T ∗Q̂. Now, note that

∥Ā − T ∗ÂT ∥F = ∥O†H+Q†
− T ∗Ô†Ĥ+Q̂†T ∥F

= ∥O†H+Q†
−X†Ĥ+Y †

∥F . (II.1)

Consequently, we can decompose the right hand side as

∥O†H+Q†
−X†Ĥ+Y †

∥F ≤∥(O†
−X†

)H+Q†
∥F+ (II.2)

∥X†
(H+

− Ĥ+
)Q†

∥F + ∥X†Ĥ+
(Q†

−Y †
)∥F .

We treat the terms on the right hand side individually. First,
pseudo-inverse satisfies the perturbation bound [42], [43]

∥O†
−X†

∥F ≤ ∥O −X∥F max{∥X†
∥
2, ∥O†

∥
2
}

≤

¿
Á
ÁÀ10n∥L − L̂∥2

σn(L)
max{∥X†

∥
2, ∥O†

∥
2
}.

We need to bound the right hand side. Luckily, Lemma 2.2
trivially yields the control over the top singular values of
pseudo-inverses namely

max{∥X†
∥
2, ∥O†

∥
2
} = max{

1

σn(L)
,

1

σn(L̂)
} ≤

2

σn(L)
.

Combining the last two bounds, we find

∥O†
−X†

∥F ≤

2

√
10n∥L−L̂∥2
σn(L)

σn(L)

The identical bounds hold for Q,Y . For the second term on
the right hand side of (II.2), we shall use the estimate

∥X†(H+ − Ĥ+)Q†∥F
√
n

≤ ∥X†
(H+

−Ĥ+
)Q†

∥ ≤
2∥H+ − Ĥ+∥

σn(L)
.
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Finally, we will use the standard triangle inequality to address
the Ĥ+ term: ∥Ĥ+∥ ≤ ∥H+∥ + ∥H+ − Ĥ+∥. Combining all of
these, we obtain the following bounds

∥(O†
−X†

)H+Q†
∥F ≤ ∥O†

−X†
∥F ∥H+

∥∥Q†
∥

≤

√

40n∥L − L̂∥2

σn(L)3/2

√
2

σn(L)
∥H+

∥

≤
9
√
n∥L − L̂∥

σ2
n(L)

∥H+
∥

∥X†Ĥ+
(Q†

−Y †
)∥F ≤ ∥X†

∥∥Ĥ+
∥∥Q†

−Y †
∥F

≤
9
√
n∥L − L̂∥

σ2
n(L)

(∥H+
∥ + ∥H+

− Ĥ+
∥)

∥X†
(H+

− Ĥ+
)Q†

∥F ≤
2
√
n∥H+ − Ĥ+∥

σn(L)
.

Combining these three individual bounds and substituting in
(II.2), we find the overall bound (V.5).

D. Proof of Theorem 5.3
Under provided assumptions, Theorem 3.1 yields ∥G−Ĝ∥ ≤

C
√
N0/N log(Nq) with high probability for some constant

C > 0. This yields ∥G − Ĝ∥ ≤ σn(L)/4
√
T under the bound

(V.6). This also implies ∥H − Ĥ∥ ≤
√
T ∥G − Ĝ∥ ≤ σn(L)/4

which in turn implies the condition (V.3). Consequently,
inequalities (V.4) and (V.5) of Theorem 5.2 hold. (II.3) follows
by using ∥L − L̂∥ ≤ 2∥H − Ĥ∥. This yields

max{∥C̄ − ĈT ∥F ,∥O − ÔT ∥F , ∥B̄ − T ∗B̂∥F , ∥Q − T ∗Q̂∥F }

≤ 7
√
n∥H − Ĥ∥/

√
σn(L). (II.3)

Plugging in the bound on ∥H − Ĥ∥ leads to (II.3). The result
on Ā is slightly more intricate. First, since H+ is a submatrix
of H

∥H+
− Ĥ+

∥ ≤ ∥H − Ĥ∥, ∥H+
∥ ≤ ∥H∥

Combining this with (V.2), the right hand side of (V.5) can be
upper bounded by

RHS =
18

√
n

σn(L)
(
∥H − Ĥ∥

σn(L)
∥H∥ + ∥H − Ĥ∥) (II.4)

=
18

√
n∥H − Ĥ∥

σn(L)
(

∥H∥

σn(L)
+ 1) ≤

36
√
n∥H − Ĥ∥∥H∥

σ2
n(L)

.

Plugging in the finite sample bound on ∥H − Ĥ∥ yields (V.8).

APPENDIX III
RESTRICTED ISOMETRY OF PARTIAL CIRCULANT

MATRICES

To proceed, let us describe the goal of this section. First, we
would like to show that U ∈ RN×Tp is well conditioned when
N ≳ O(Tp) to ensure least-squares is robust. Next, we would
like to have an accurate upper bound on the spectral norm of
U∗W to control the impact of noise wt. In particular, we will
show that

∥U∗W ∥ ≲ σuσw
√
NT (p + n).

Both of these goals will be achieved by embedding U and W
into proper circulant matrices. The same argument will apply
to both scenarios. The key technical tool in our analysis will
be the results of Krahmer et al. [36] on restricted isometries
of random circulant matrices.

The following theorem is a restatement of Theorem 4.1 of
Krahmer et al [36]. We added a minor modification to account
for the regime restricted isometry constant is greater than
1. This theorem shows that arbitrary submatrices of random
circulant matrices are well conditioned. It will play a crucial
role in establishing the joint relation of the data matrix U and
noise matrix W . Main result of [36] characterizes a uniform
bound on all submatrices; however we only need a single
submatrix for our results. Hence, some of the logarithmic
factors below might actually be redundant for the bound we
are seeking.

Theorem 3.1: Let C ∈ Rd×d be a circulant matrix where
the first row is distributed as N(0,Id). Given s, d ≥ 2, set
m0 = c0s log2

(s) log2
(d) for some absolute constant c0 > 0.

Pick an m × s submatrix S of C. With probability at least
1 − d− log(d) log2(s), S satisfies

∥
1

m
S∗S − I∥ ≤ max{

√
m0

m
,
m0

m
}.

This result is proven in the next subsection.

A. Proof of Theorem 3.1

This proof is a slight modification of the proof of Theorem
4.1 of Krahmer et al. [36] and we will directly borrow their
notation and estimates. First, we restate their Theorem 3.1.

Theorem 3.2: Let A be a set of matrices and let ξ be a
random vector whose entries ξj are standard normal. Let
dF , d2→2 be the Frobenius and spectral norm distance metrics
respectively, and understood as the radius when applied to a
set. Let γ2(⋅) be Talagrand’s γ-functional [44] that arises in the
study of suprema of random processes and is used to capture
the richness of a set. Set

E = γ2(A, ∥ ⋅ ∥)(γ2(A, ∥ ⋅ ∥) + dF (A)) + dF (A)d2→2(A),

V = d2→2(A)(γ2(A, ∥ ⋅ ∥) + dF (A)), and U = d2
2→2(A).

Then, for some absolute constants c1, c2 > 0 and for all t > 0,

P(sup
A∈A

∣∥Aξ∥2
`2−E ∥Aξ∥2

`2 ∣ ≥ c1E+t) ≤ exp(−c2 min{
t2

V 2
,
t

U
}).

Theorem 3.1 is a variation of Theorem 4.1 of [36]. In light of
Theorem 3.2, we simply need to adapt the estimates developed
during the proof of Theorem 4.1 of [36] for our purposes. We
are interested in a fixed submatrix of size m × s compared to
all s-column submatrices for fixed m-rows. This makes our
set A a subset of their set and also makes their estimates an
upper bound on our estimates. Following arguments of [36],
for some constant c3 > 0, we have dF (A) = 1 and

d2→2(A) ≤
√
s/m, γ2(A, ∥ ⋅ ∥) ≤ c3

√
s/m log(s) log(d).

To proceed, we will apply Theorem 3.2. This will be done
in two scenarios depending on whether the isometry constant
obeys δ ≤ 1 or not. Recall that m0 = c0s log2

(s) log2
(d).

Below, we pick c0 sufficiently large to compensate for c1, c2, c3.
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m ≥ m0 case: We have that γ2(A, ∥ ⋅ ∥) ≤

c3
√
s/m log(s) log(d) ≤ 1 so that E ≤

√
s/m+ 2γ2(A, ∥ ⋅ ∥) ≤

3c3
√
s/m log(s) log(d). Similarly, V ≤ 2

√
s/m and

U ≤ s/m. In this case, picking large c0, observe
that c1E ≤

√
m0/(4m). With this, we can pick

t =
√
m0/(4m) to guarantee c1E + t ≤

√
m0/m. We

have that t2/V 2 ≥ m0/(16s), t/U ≥ t2/U ≥ m0/(4s).
Picking c0 ≥ 16/c2, we conclude with the desired probability
exp(− log2

(d) log2
(s)).

m <m0 case: In this case, we have

γ2(A, ∥ ⋅ ∥) + dF (A) ≤ c′
√
s/m log(s) log(d),

where c′ = c3 +
√
c0. Hence, we find

E ≤ c′c3(s/m) log(s)2 log(d)2
+

√
s/m.

Observe that, we can ensure i) c1
√
s/m ≤

√
m0/m/4 ≤

m0/(4m) and ii) c1c′c3(s/m) log2
(s) log2

(d) ≤m0/(4m) for
sufficiently large constant c0. The latter one follows from the
fact that c′ grows proportional to

√
c0 whereas m0 grows

proportional to c0. With this, we can pick t =m0/(2m) which
guarantees c1E + t ≤ m0

m
.

To find the probability, we again pick c0 to be sufficiently
large to guarantee that i) c2t/U ≥ c2(m0/(2m))/(s/m) ≥

log2
(s) log2

(d) and ii)

t2/V 2
≥

(m0/m)2

4(s/m)(c′
√
s/m log(s) log(d))2

=
c20s

2 log4
(s) log4

(d)

4s2(c′)2 log2
(s) log2

(d)

=
c20 log2

(s) log2
(d)

4(c3 +
√
c0)2

≥ log2
(s) log2

(d)/c2,

which concludes the proof by yielding exp(− log2
(d) log2

(s))
probability of success.

B. Conditioning of the Data Matrix
This section and the next one address the minimum singular

value of the U matrix and upper bounding the maximum
singular value of the U∗W matrix by utilizing Theorem 3.1.

Lemma 3.3: Let U ∈ RN×Tp be the input data matrix as
described in Section II-A. Suppose the sample size obeys
N ≥ cTp log2

(Tp) log2
(N̄p) for sufficiently large constant

c > 0. Then, with probability at least 1−(N̄p)− log2(Tp) log(N̄p),

2Nσ2
u ⪰ U

∗U ⪰ Nσ2
u/2.

Proof: The proof will be accomplished by embedding U
inside a proper circulant matrix. Let r(v) ∶ Rd → Rd be the
circulant shift operator which maps a vector v ∈ Rd to its single
entry circular rotation to the right i.e. r(v) = [vd v1 . . . vd−1] ∈

Rd. Let C ∈ RN̄p×N̄p be a circulant matrix where the first row
(transposed) is given by

c1 = [u∗N̄p u
∗
N̄p−1 . . . u∗2 u

∗
1]
∗.

The ith row of C is ci = ri−1(c1) for 1 ≤ i ≤ N̄p. Observe
that C is a circulant matrix by construction. For instance all of
its diagonal entries are equal to uN̄p,1. Additionally, note that
second row of C starts with the last entry of u1 hence entries

of ui do not necessarily lie next to each other. Focusing on the
rightmost Tp columns, let RTp be the operator that returns
rightmost Tp entries of a vector. Our first observation is that

RTp(c1) = ūT = [u∗T u
∗
T−1 . . . u∗2 u

∗
1]
∗.

Secondly, observe that for each 0 ≤ i ≤ N − 1

RTp(c1+ip) = [u∗T+i u
∗
T−1+i . . . u

∗
2+i u

∗
1+i]

∗
= ūT+i.

This implies that ūT+i is embedded inside right-most Tp
columns and 1 + ip’th row of C. Similarly, the input data
matrix U ∈ RN×Tp is a submatrix of C with column indices
(N̄ − T )p + 1 to N̄p and row indices 1 + ip for 0 ≤ i ≤ N − 1.
Applying Theorem 3.1, setting N∗ = cTp log2

(Tp) log2
(N̄p),

and adjusting for variance σ2
u, with probability at least 1 −

(N̄p)− log2(Tp) log(N̄p), we have

2σ2
uI ⪰ N

−1U∗U ⪰
σ2
u

2
I Ô⇒ 2Nσ2

u ⪰ U
∗U ⪰ Nσ2

u/2,

whenever N ≥ N∗.

C. Upper Bounding the Contribution of the Process Noise

Lemma 3.4: Recall U ,W from (II.6) and (III.3) respec-
tively. Let q = p + n and N∗ = cTq log2

(Tq) log2
(N̄q)

where c > 0 is an absolute constant. With probability at least
1 − (N̄q)− log2(Tq) log(N̄q),

∥U∗W ∥ ≤ σwσumax{
√
N∗N,N∗

}.
Proof: The proof is identical to that of Lemma 3.3. Set

q = p + n. First, we define mt = [σ−1
u u

∗
t σ

−1
w w

∗
t ]
∗ ∈ Rq and

m̄i = [m∗
i , m

∗
i−1, . . . m

∗
i−T+1]

∗ ∈ RTq. We also define the
matrix M = [m̄T . . . m̄T+N−1]

∗ ∈ RN×Tq. Observe that by
construction, σ−1

u U , σ
−1
w W are submatrices ofM . In particular,

(σuσw)−1U∗W is an off-diagonal submatrix ofM∗M of size
Tp × Tn. This is due to the facts that a) σ−1

u U is a submatrix
of M characterized by the column indices

{(i − 1)q + j ∣ 1 ≤ i ≤ T, 1 ≤ j ≤ p},

and b) σ−1
w W lies at the complementary columns. Observe

that the spectral norm of (σuσw)−1U∗W is bounded by

(σuσw)
−1

∥U∗W ∥ ≤ ∥M∗M −NI∥. (III.1)

This is because (σuσw)−1U∗W is an off-diagonal submatrix
of M∗M , it is also a submatrix of M∗M −kI for any k ∈ R.
Spectral norm of a submatrix is upper bounded by the norm
of the original matrix hence the claim follows.

In a similar fashion to Lemma 3.3, we complete M to be
a full circulant matrix as follows. Let r(v) ∶ Rd → Rd be the
circulant shift operator as previously. Let C ∈ RN̄q×N̄q be a
circulant matrix with first row given by

c1 = [m∗
N̄q m

∗
N̄q−1 . . . m∗

2 m
∗
1]
∗.

The ith row of C is ci = ri−1(c1) for 1 ≤ i ≤ N̄q. Let RTq

be the operator that returns rightmost Tq entries of a vector.
Our first observation is that

RTq(c1) = m̄T = [m∗
T m

∗
T−1 . . . m∗

2 m
∗
1]
∗.

Authorized licensed use limited to: ULAKBIM UASL - Erciyes Universitesi. Downloaded on January 01,2022 at 19:13:52 UTC from IEEE Xplore.  Restrictions apply. 



0018-9286 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2021.3083651, IEEE
Transactions on Automatic Control

14 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

Secondly, observe that for each 0 ≤ i ≤ N − 1

RTq(c1+iq) = [m∗
T+i m

∗
T−1+i . . . m

∗
2+i m

∗
1+i]

∗
= m̄T+i.

This implies that m̄i’s are embedded inside the rows of
RTq(C) in an equally spaced manner with spacing q for
T ≤ i ≤ T +N − 1 = N̄ . Hence, M is a N × Tq submatrix of
C where the column indices are the last Tq columns and the
row indices are 1,1 + q, . . . ,1 + (N − 1)q.

With this observation, by Theorem 3.1, we have, for

N∗
= cTq log2

(Tq) log2
(N̄q),

with probability at least 1 − (N̄q)− log2(Tq) log(N̄q),

∥
1

N
M∗M − I∥ ≤ max{

√
N∗

N
,
N∗

N
},

which in turn implies ∥U∗W ∥ ≤ σwσumax{
√
N∗N,N∗} via

inequality (III.1).

APPENDIX IV
BOUNDING THE ERROR DUE TO THE UNKNOWN STATE

The goal of this section is bounding the estimation error
due to the et = CAT−1xt−T+1 term. As described in Section
II-A and (III.3), we form the matrices E = [eT . . . eN̄ ]∗ and
U = [ūT . . . ūN̄ ]∗. Our interest in this section is bounding
∥U∗E∥. This term captures the impact of approximating the
system with a finite impulse response of length T . We will
show that

∥U∗E∥ ≲ σu
√

(Tp +m)NT ∥Γ∞∥∥CAT−1∥2.

The main challenge in analyzing U∗E is the fact that
{et}

N̄
t=T terms and {ūt}

N̄
t=T terms are dependent. In fact et

contains a uτ component inside for any τ ≤ t − T . The
following theorem is our main result on bounding this term
which carefully addresses these dependencies.

Theorem 4.1: Suppose we are given U ,E, as described in
Section II-A and (III.3). Define

γ =
∥Γ∞∥Φ(A)2∥CAT−1∥2

1 − ρ(A)T
(IV.1)

and suppose N ≥ T . Then, with probability at least 1 −

T (exp(−100Tp) + 2 exp(−100m)),

∥U∗E∥ ≤ cσu

√

T max{N,
mT

1 − ρ(A)T /2
}max{Tp,m}γ.

Proof: We first decompose U∗E = ∑
N̄
t=T ūte

∗
t into sum

of T smaller products. Given 0 ≤ t < T , create sequences
St = {t+T, t+2T, . . . , t+NtT} where Nt is the largest integer
satisfying t +NtT ≤ N̄ . Each sequence has length Nt which
is at least ⌊N/T ⌋ and at most ⌊N/T ⌋ + 1. With this, we form
the matrices

Ut = [ūt+T , ūt+2T , . . . , ūt+NtT ]
∗,

Et = [et+T , et+2T , . . . , et+NtT ]
∗. (IV.2)

Then, U∗E can be decomposed as

U∗E =
T−1

∑
t=0

U∗
t Et Ô⇒ ∥U∗E∥ ≤

T−1

∑
t=0

∥U∗
t Et∥. (IV.3)

Corollary 4.3 provides a probabilistic spectral norm bound on
each term of this decomposition on the right hand side. In
particular, applying Corollary 4.3, substituting υ definition, and
union bounding over T terms, for all t, we obtain

∥U∗
t Et∥ ≤ cσu

√

max{N,
mT

1 − ρ(A)T /2
}max{p,m/T}γ,

with probability at least 1 − T (exp(−Tq) + 2 exp(−100m)).
This gives the advertised bound on U∗E via (IV.3).

A. Upper Bounding the Components of the Unknown
State Decomposition

Our goal in this section is providing an upper bound on
the spectral norm of U∗

t Et which is described in (IV.2). The
following lemma provides a bound that decays with 1/

√
Nt.

The main tools in our analysis are the probabilistic upper bound
on the Et matrix developed in Section IV-B and martingale
concentration bound that was developed and utilized by the
recent work of Simchowitz et al [9]. Below we state our bound
in the more practical setup m ≤ n to avoid redundant notation.
In general, our bound scales with min{m,n}.

Theorem 4.2: Define γ = ∥Γ∞∥Φ(A)2∥CAT−1∥2
1−ρ(A)T . U∗

t Et obeys

∥U∗
t Et∥ ≤ c0σu

√
τ max{Tp,m}Ntγ,

with probability at least 1 − exp(−100 max{Tp,m}) −

2 exp(−cτNt(1 − ρ(A)T /2) + 3m) for τ ≥ 1.
Proof: Given matrices Ut,Et, define the filtrations Fi =

σ({uj ,wj}
t+iT
j=1 ) for 1 ≤ i ≤ Nt. According to this definition

ūt+iT is independent of Fi−1 and ūt+iT ∈ Fi. The reason is
earliest input vector contained by ūt+iT has index t+1+(i−1)T
which is larger than t + (i − 1)T . Additionally, observe that
et+iT ∈ Fi−1 as et+iT is a deterministic function of xt+1+(i−1)T

which is a function of {uj ,wj}
t+(i−1)T
j=1 .

We would like to use the fact that, for each i, et+iT and
ūt+iT are independent. Let Xt = [xt+1 . . . xt+1+(Nt−1)T ]∗ so
that Et =Xt(CA

T−1)∗. In light of Lemma 4.5, we will use
a covering bound on the matrix

U∗
t Et = U

∗
t Xt(CA

T−1
)
∗.

Let C1 be a 1/4 `2-cover of the unit sphere STp−1 and C2 be a
1/4 `2-cover of the unit sphere in the row space of C. There
exists such covers satisfying log ∣C1∣ ≤ 3Tp and log ∣C2∣ ≤

3 min{m,n} ≤ 3m. Pick a,b from C1,C2 respectively. Let
Wi = a

∗ūt+iT and Zi = b∗et+iT . Observe that
Nt

∑
i=1

WiZi = a
∗
(U∗

t Et)b.

We next show that ∑Nt

i=1WiZi is small with high probability.
Applying Lemma 4.6, we find that, for τ ≥ 2, with probability
at least 1 − 2 exp(−cτNt(1 − ρ(A)T /2)),

∥Etb∥
2
`2 =

Nt

∑
i=1

Z2
i ≤ τNtγ, (IV.4)

where our definition of γ accounts for the ∥Γ∞∥ factor. We
will use this bound to ensure Lemma 4.4 is applicable with
high probability. Since ūt+iT has N(0, σ2

u) entries, applying
Lemma 4.4, we obtain
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P({
Nt

∑
i=1

WiZi ≥ t}⋂{
Nt

∑
i=1

Z2
i ≤ τNtγ}) ≤ exp(−

t2

cτσ2
uNtγ

).

for some absolute constant c > 0. Picking t =

11σu
√
cτ max{Tp,m}Ntγ, we find

P({
Nt

∑
i=1

WiZi ≥ t}⋂{
Nt

∑
i=1

Z2
i ≤ cNtγ}) ≤ e

−120 max{Tp,m}.

Defining variables Wi(a) for each a ∈ C1, and events E(a) =
{∑

Nt

i=1Wi(a)Zi ≥ t}, applying a union bound, we obtain,

P({ ⋃
a∈C1

E(a)}⋂{
Nt

∑
i=1

Z2
i ≤ cNtγ}) ≤ exp(−110 max{Tp,m}).

Combining this bound with (IV.4), we find that, for a fixed b and
for all a, with probability at least 1−exp(−110 max{Tp,m})−

2 exp(−cτNt(1 − ρ(A)T /2)), we have

a∗U∗
t Etb =

Nt

∑
i=1

WiZi ≤ c0σu
√
τ max{Tp,m}Ntγ, (IV.5)

for some c0 > 0. Applying a union bound over all b ∈

C2, with probability at least 1 − exp(−100 max{Tp,m}) −

2 exp(−cτNt(1 − ρ(A)T /2) + 3m), we find that (IV.5) holds
for all a,b. Overall, we found that for all a,b pairs in the
1/4 covers, a∗(U∗

t Et)b ≤ κ = c0σu
√
τ max{Tp,m}Ntγ.

Applying Lemma 4.5, this implies ∥U∗
t Et∥ ≤ 2κ.

The following corollary simplifies the result when N ≥ T
which is the interesting regime for our purposes.

Corollary 4.3: Assume N ≥ T . With probability at least
1 − exp(−100Tp) − 2 exp(−100m), we have ∥U∗

t Et∥ ≤

c′σu
√

max{N, mT
1−ρ(A)T /2 }max{p,m/T}γ for some constant

c′ > 0.
Proof: N ≥ T implies Nt ≥ ⌊N/T ⌋ ≥ N/(2T ).

In Theorem 4.2, pick τ = max{1, c1
mT

N(1−ρ(A)T /2)} for
c1 = 206/c. The choice of τ guarantees the prob-
ability exponent cτNt(1 − ρ(A)T /2) − 3m ≥ 100m.
To conclude, observe that c0σu

√
τ max{Tp,m}Ntγ ≤

c′σu
√

max{1, mT
N(1−ρ(A)T /2)}max{p,m/T}Nγ for an abso-

lute constant c′ > 0.
For completeness, we restate the subgaussian Martingale
concentration lemma of Simchowitz et al. which is Lemma
4.2 of [9].

Lemma 4.4: Let {Ft}t≥1 be a filtration, {Zt,Wt}t≥1 be real
valued processes adapted to Ft,Ft+1 respectively (i.e. Zt ∈
Ft,Wt ∈ Ft+1). Suppose Wt ∣ Ft is a σ2-sub-gaussian random
variable with mean zero. Then

P({
T

∑
t=1

ZtWt ≥ α}⋂{
T

∑
t=1

Z2
t ≤ β}) ≤ exp(−

α2

2σ2β
)

This lemma implies that ∑Tt=1ZtWt can essentially be treated
as an inner product between a deterministic sequence Zt and
an i.i.d. subgaussian sequence Wt.

The following lemma is a slight modification of the standard
covering arguments.

Lemma 4.5 (Covering bound): Given matrices
A ∈ Rn1×N ,B ∈ RN×n2 , let M = AB. Let C1 be a
1/4-cover of the unit sphere Sn1−1 and C2 be a 1/4-cover
of the unit sphere in the row space of B (which is at most
min{N,n2} dimensional). Suppose for all a ∈ C1,b ∈ C2, we
have that a∗Mb ≤ γ. Then, ∥M∥ ≤ 2γ.

Proof: Pick unit length vectors x,y achieving x∗My =

∥M∥. Let S be the row space of B. Observe that y ∈ S.
Otherwise, its normalized projection on S, PS(y)/∥PS(y)∥`2
achieves a strictly better inner product with x∗M . Pick 1/4
close neighbors a,b of x,y from the covers C1,C2. Then,

x∗My = a∗Mb+(x−a)∗Mb+x∗M(y−b) ≤ γ+x∗My/2,

due to the maximality of x,y. This yields x∗My ≤ 2γ.

B. Bounding the Inner Products with the Unknown State

In this section, we develop probabilistic upper bounds for
the random variable Eta where a is a fixed vector and Et is
as defined in (IV.2).

Lemma 4.6: Let Et ∈ RNt×m be the matrix composed of
the rows et+iT = CAT−1xt+1+iT . Define

γ =
Φ(A)2∥CAT−1∥2

1 − ρ(A)T
.

Given a unit length vector a ∈ Rm, for all τ ≥ 2 and for some
absolute constant c > 0, we have that

P(∥Eta∥
2
`2 ≥ τNt∥Γ∞∥γ) ≤ 2 exp(−cτNt(1 − ρ(A)

T /2
)).

Proof: Let dt = xt −ATxt−T . By construction (i.e. due
to the state-space recursion (II.2)), dt is independent of xt−T .
We can write xt+iT as

xt+iT =
i

∑
j=1

A(i−j)Tdt+jT +AiTxt. (IV.6)

We wish to understand the properties of the random variable
∥Eta∥

2
`2

which is same as,

sa =
Nt

∑
i=1

(a∗et+iT )
2
=
Nt−1

∑
i=0

((a∗CAT−1
)xt+1+iT )

2.

Denote ā = (CAT−1)∗a, aj = (AjT )∗ā, g0 = xt+1, and
gi = dt+1+iT for Nt − 1 ≥ i ≥ 1, all of which are n dimensional
vectors. Using these change of variables and applying the
expansion (IV.6), the ith component of the sum sa is given by

sa,i = (ā∗xt+1+iT )
2
= (ā∗

i

∑
j=0

A(i−j)Tgj)
2

= (
i

∑
j=0

a∗i−jgj)
2
= ∑

0≤j,k≤i
a∗i−jgja

∗
i−kgk. (IV.7)

Observe that, summing over all sa,i for 0 ≤ i ≤ Nt − 1, the
multiplicative coefficient of the gjg∗k pair is given by the
matrix,

Mj,k =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑
Nt>i≥max{j,k}

ai−ja
∗
i−k if j ≠ k,

∑
Nt>i≥j

ai−ja
∗
i−j = ∑

Nt−1−j
i=0 aia

∗
i if j = k

(IV.8)

Next, we show that these Mj,k submatrices have bounded
spectral, Frobenius and nuclear norms (nuclear norm is the
sum of the singular values of a matrix). This follows by writing
each submatrix as a sum of rank 1 matrices and using the fact
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that spectral radius of A is strictly bounded from above by 1.

∥Mj,k∥ ≤ ∥Mj,k∥F ≤ ∥Mj,k∥⋆ ≤ ∑
i≥max{j,k}

∥ai−ja
∗
i−k∥⋆

= ∑
i≥max{j,k}

∥ai−ja
∗
i−k∥

≤ ∑
i≥max{j,k}

∥(A(i−j)T )
∗āā∗A(i−k)T ∥

≤ ∑
i≥max{j,k}

∥ā∥2
`2∥A

(i−j)T
∥∥A(i−k)T ∥

≤
∞
∑
i=0

∥ā∥2
`2ρ(A)

∣j−k∣T /2ρ(A)
iTΦ(A)

2

≤
Φ(A)2∥ā∥2

`2

1 − ρ(A)T
ρ(A)

∣j−k∣T /2.

To further simplify, observe that ∥ā∥2
`2
≤ ∥CAT−1∥2 as ∥a∥`2 =

1. Setting γ = Φ(A)2∥CAT−1∥2
1−ρ(A)T , we have

∥Mj,k∥, ∥Mj,k∥F , ∥Mj,k∥⋆ ≤ γρ(A)
∣j−k∣T /2. (IV.9)

Based on the submatrices Mj,k, create the Ntn ×Ntn matrix
M . Now we define the vector ḡ = [g∗0 g

∗
1 . . . g∗Nt−1]

∗. Observe
that, following (IV.7) and (IV.8), by construction,

sa = ḡ∗Mḡ = ∑
0≤j,k<Nt

g∗jMj,kgk. (IV.10)

This puts sa in a form for which Hanson-Wright Theorem
is applicable [45], [46]. To apply Hanson-Wright Theorem,
let us first bound the expectation of sa. Since {gi}

Nt−1
i=0 ’s

are truncations of the state vector, we have that Σ(gi) ⪯

Σ(xt+1+iT ) ⪯ Γ∞. Write gi = Σ(gi)
1/2hi for some hi ∼

N(0,In). Using independence of hi,hj for i ≠ j and Σ(gi) ⪯
Γ∞, we have that

E[sa] =
Nt−1

∑
i=0

E[g∗iMi,igi] =
Nt−1

∑
i=0

E[h∗iΣ(gi)
1/2Mi,iΣ(gi)

1/2hi]

=
Nt−1

∑
i=0

tr(Σ(gi)
1/2Mi,iΣ(gi)

1/2
) (IV.11)

≤
Nt−1

∑
i=0

∥Σ(gi)∥tr(Mi,i) ≤
Nt−1

∑
i=0

∥Γ∞∥tr(Mi,i)

≤ Nt∥Γ∞∥γ. (IV.12)

In (IV.11), we utilized the fact that for positive semidefinite
matrices trace is equal to the nuclear norm and then we used
the fact that nuclear norm of the product obeys ∥XY ∥⋆ ≤

∥X∥⋆∥Y ∥ [47]. Finally, we upper bounded ∥Σ(gi)∥ by using
the relation Σ(gi) ⪯ Γ∞. Bounded ∥Σ(gi)∥ also implies that
the Gaussian vector gi obeys the “concentration property”
(Definition 2.1 of [45]) with K = O(

√
∥Γ∞∥) as Lipschitz

functions of Gaussians concentrate. Recalling (IV.10), the
Hanson-Wright Theorem of [45] states that

P(sa ≥ E[sa]+t) ≤ 2 exp(−cmin{
t2

∥Γ∞∥2∥M∥2
F

,
t

∥Γ∞∥∥M∥
}).

To proceed, we upper bound ∥M∥F and ∥M∥. First, recall
again that ∥Mi,j∥F ≤ γρ(A)∣i−j∣T /2. Adding these over all i, j

pairs, using (IV.9) and the fact that there are at most 2Nt pairs
with fixed difference ∣i − j∣ = τ , we obtain

∥M∥
2
F = ∑

i,j

∥Mi,j∥
2
F ≤ ∑

0≤i,j≤Nt−1

γ2ρ(A)
∣i−j∣T

≤ 2Ntγ
2
Nt−1

∑
τ=0

ρ(A)
τT

≤
2γ2Nt

1 − ρ(A)T
.

To assess the spectral norm, we decompose M into 2Nt − 1
block permutation matrices {M (i)}Nt−1

i=−Nt+1. M (0) is the main
diagonal of M , and M (i) is the ith off-diagonal that contains
only the submatrices Mj,k with fixed difference j − k = i. By
construction ∥M (i)∥ ≤ γρ(A)∣i∣T /2 as each nonzero submatrix
satisfies the same spectral norm bound. Hence using (IV.9),

∥M∥ ≤
Nt−1

∑
i=−Nt+1

∥M (i)
∥ ≤ γ(

2

1 − ρ(A)T /2
−1) ≤

2γ

1 − ρ(A)T /2
.

With these, setting t = τNt∥Γ∞∥γ and using (IV.12) and
bounds on ∥M∥F , ∥M∥, for τ ≥ 1 and using K = O(

√
∥Γ∞∥),

and applying Theorem 2.3 of [45], we find the concentration
bound

P(sa ≥(τ + 1)Nt∥Γ∞∥γ)

≤ 2 exp(−2cτ min{
(Nt∥Γ∞∥γ)2

∥Γ∞∥2 2γ2Nt

1−ρ(A)T
,

Nt∥Γ∞∥γ

∥Γ∞∥
2γ

1−ρ(A)T /2
})

≤ 2 exp(−cτ min{Nt(1 − ρ(A)
T
),Nt(1 − ρ(A)

T /2
)})

= 2 exp(−cτNt(1 − ρ(A)
T /2

)),

which is the desired result after 1 + τ ↔ τ substitution and
using the initial assumption of τ ≥ 2.
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