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Provable Super-Convergence With a Large
Cyclical Learning Rate

Samet Oymak , Member, IEEE

Abstract—Conventional wisdom dictates that learning rate
should be in the stable regime so that gradient-based algorithms
don’t blow up. This letter introduces a simple scenario where an
unstably large learning rate scheme leads to a super fast conver-
gence, with the convergence rate depending only logarithmically on
the condition number of the problem. Our scheme uses a Cyclical
Learning Rate where we periodically take one large unstable step
and several small stable steps to compensate for the instability.
These findings also help explain the empirical observations of
[Smith and Topin, 2019] where they show that CLR with a large
maximum learning rate can dramatically accelerate learning and
lead to so-called “super-convergence”. We prove that our scheme
excels in the problems where Hessian exhibits a bimodal spectrum
and the eigenvalues can be grouped into two clusters (small and
large). The unstably large step is the key to enabling fast conver-
gence over the small eigen-spectrum.

Index Terms—Convergence of numerical methods, Iterative
algorithms, Gradient methods.

I. INTRODUCTION

CONSIDER a least-squares problem with design matrix
X ∈ Rn×p and labels y ∈ Rn. We wish to solve for

θ� = arg min
θ∈Rp

1

2
‖y −Xθ‖2�2 .

If we use a gradient-based algorithm the rate of convergence
obviously depends on the condition number κ of X . Here κ =
L/μ where the smoothness L and strong convexity μ of the
problem is given by the maximum and minimum eigenvalues of
the Hessian matrix X�X as follows

L = ‖X�X‖, μ = σmin(X
�X).

Here, σmin(), ‖ · ‖ denote the smallest/largest singular value of
a matrix respectively. Standard gradient descent (GD) requires
κ log(ε−1) iterations to achieve ε-accuracy. Nesterov’s acceler-
ation can improve this to

√
κ log(ε−1). In general, consider the

iterations

θt+1 = θt − ηtX
�(y −Xθt).

Here, the contraction matrix Ct = I − ηtX
TX governs the

rate of convergence. Over the ith eigen-direction of X�X with
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Fig. 1. Convergence performance of gradient descent with ηt = 1/L, Nes-
terov’s acceleration (AGD) and Unstable Cyclical Learning Rate of Theorem 1
on a linear regression task. In Figures (a) to (d), we vary the condition number
κ from 10 to 104. In these experiments, eigenspectrum of Hessian is bimodal
where eigenvalues lie over the intervals [1,2] and [κ/2, κ]. This means the local
condition numbers are κ+ = κ− = 2. As the global condition number grows,
Unstable CLR outperforms standard gradient descent or Nesterov AGD as it only
requires logarithmic iteration in κ. We note that Unstable CLR can potentially
further benefit from acceleration.

eigenvalue λi, the convergence/contraction rate is given by 1−
ηtλi. Setting a fixed stable learning rate of ηt = 1/L, the issue
is that gradient descent optimizes small eigen-directions much
slower than the large eigen-directions. Faster learning over small
eigen-directions can be facilitated by a large learning rate so that
1− ηtλi is closer to 0 even for small λi’s. However this would
lead to instability i.e. ‖Ct‖ > 1.

Here, we point out the possibility that, one can use an unstably
large learning rate once in a while to provide huge improvements
over small directions. The resulting instability can be compen-
sated quickly by following this unstable step with multiple stable
steps which keep the larger directions under control. Overall, for
problems with bimodal Hessian spectrum, where eigenvalues
are clustered in large and small groups, this leads to substantial
improvements with logarithmic dependency on the condition
number. Fig. 1 highlights this phenomena. Our approach can
be formalized by using a cyclical (aka periodic) learning rate
schedule [1], [2]. We remark that cyclical learning rate (CLR)
is related to SGD with Restarts (SGDR) and Stochastic Weight
Averaging which attracted significant attention due to their fast
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convergence, generalization benefits and flexibility [3]–[5]. [6]
assesses certain theoretical benefits of cosine learning rates
which are periodic. [7], [8] investigate periodic learning rates
to facilitate escape from saddle points with stochastic gradients.
Large initial learning rates are also known to play a critical role
in generalization [9]–[11]. Recent work [12] provides further
empirical evidence that practical learning rates can be at the
edge of stability. However to the best of our knowledge, prior
works do not consider potential theoretical benefits of unstably
large learning rate choice. The closest work is by Smith and
Topin [3]. Here authors observe that CLR can operate with very
large maximum learning rates and converge “super fast”. We
believe this letter provides a rigorous theoretical support for
such observations. We show that maximum learning rate can in
fact be unstable and it can be much larger than the maximum
stable learning rate. We also show that “super fast” convergence
can be as fast as logarithmic in condition number (which is dras-
tically better than GD or Nesterov AGD) for suitable problems
(discussed further below).

Our CLR scheme simply takes two values η± as described
below.

Definition 1: Fix an integer T > 1 and positive scalars
η+, η−. Set periodic learning rate ηt for t ≥ 0 as

ηt =

{
η− if mod(t, T ) = −1

η+ else
.

We call this schedule Unstable CLR if η− > 2/L where L is
the smoothness of the problem. Indeed when this happens, the
algorithm is susceptible to blow up in certain eigendirections as
the contraction matrix I − η−X�X has operator norm larger
than 1.

Theorem 1 (Linear regression): Let λ ∈ Rp
+ be the decreas-

ingly sorted eigenvalues of X�X with L = λ1 and μ = λp. Fix
some integer r with p > r ≥ 1. Introduce the quantities

κ =
L

μ
, κ+ =

L

λr
, κ− =

λr+1

μ
.

Set period T ≥ κ+ log( 2κ
2κ−−1 ) + 1 and learning rate according

to Def. 1 with η+ = 1
L and η− = 1

κ−μ
. For all twith mod(t, T ) =

0, the iterations obey

‖θt − θ�‖�2 ≤
(
1− 1

2κ−

)t/T

‖θ0 − θ�‖�2 . (1)

Alternatively, for t ≥ 2Tκ− log(ε−1), we have ‖θt − θ�‖�2 ≤
ε‖θ0 − θ�‖�2 for 1 > ε > 0.

Interpretation: Observe that in order to achieve ε accuracy,
the number of required iterations grow as

κ+κ− log (κ) log(ε−1). (2)

Here κ+, κ− are the local condition numbers for the eigen-
spectrum. κ+ is the condition number over the subspace S
(i.e. eigens from λ1 to λr) and κ− is the condition number over
the orthogonal complement Sc. Observe that κ+ × κ− is always
upper bounded by the overall condition numberκ i.e.κ+κ− ≤ κ.
However if eigenvalues over S and Sc are narrowly clustered,
we can have κ+κ− � κ leading to a much faster convergence.

Finally observe that the dependence on the (global) condition
number κ is only logarithmic. Thus, in the worst case scenario
of κ+κ− = κ, the iteration complexity (2) is sub-optimal by a
log(κ)-factor compared to the standard gradient descent which
requires κ log(ε−1) iterations. However there is a factor of
κ/ log(κ) improvement when the eigenvalues are clustered and
κ+, κ− are small. Fig. 1 demonstrates the comparisons to gradi-
ent descent (with η = 1/L) and Nesterov’s Accelerated GD. In
these examples, we set local condition numbers toκ− = κ+ = 2
whereas κ varies from 10 to 10 000. As κ grows larger, Unstable
CLR shines over the alternatives as the iteration number only
grows as log(κ). Finally, note that inverse learning rate η−1

+ = L
is equal to the smoothness (top Hessian eigenvalue) of the whole
problem whereas η−1

− = κ−μ is chosen based on the smoothness
over the lower spectrum.

Bimodal Hessian: The bimodal Hessian spectrum is crucial
for enabling super fast convergence. In essence, with bimodal
structure, Unstable CLR acts as a preconditioner for the problem
and helps not only large eigen-value/directions but also small
ones. It is possible that other cyclical schemes will accelerate
a broader class of Hessian spectrums. That said, we briefly
mention that bimodal spectrum has empirical support in the
deep learning literature. Several works studied the empirical
Hessians (and Jacobians) of deep neural networks [13]–[15]. A
common observation is that the Hessian spectrum has relatively
few large eigenvalues and many more smaller eigenvalues [13],
[15]. These observations are closely related to the seminal spiked
covariance model [16] where the covariance spectrum has a
few large eigenvalues and many more smaller eigenvalues. In
connection, [14], [17], [18] studied the Jacobian spectrum. Note
that, in the linear regression setting of Theorem 1, Jacobian is
simply X . They similarly found that practical deep nets have a
bimodal spectrum and the Jacobian is approximately low-rank.
It is also known that behavior of the wide deep nets (i.e., many
neurons per layer) can be approximated by their Jacobian-based
linearization at initialization via neural tangent kernel [19], [20].
Thus the spectrum indeed closely governs the optimization
dynamics [21] similar to our simple linear regression setup.
While the larger eigendirections of a deep net can be optimized
quickly [14], [18], intuitively their existence will slow down the
small eigendirections. However it is also observed that learning
such small eigendirections is critical for success of deep learning
since typically achieving zero-training loss (aka interpolation)
leads to the best generalization performance [22]–[24]. In light
of this discussion, related empirical observations of [3] and our
theory, it is indeed plausible that Unstable CLR does a stellar job
at learning these small eigen-directions leading to much faster
interpolation and improved generalization.

II. EXTENSION TO THE NONLINEAR PROBLEMS

To conclude with our discussion, we next provide a more
general result that apply to strongly-convex functions. Recall Sc

as the complement of a subspace S . Let ΠS denote the matrix
that projects ontoS . Our goal is solvingθ� = argminθ∈Rp f(θ)
via gradient iterations θt+1 = θt − ηt∇f(θt).

Definition 2 (Smoothness and strong-convexity): Let f :
Rp → R be a smooth convex function and fix L > μ > 0.
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f : Rp → R is L-smooth and μ strongly-convex if its Hessian
satisfies the following for all θ ∈ Rp

LIp 
 ∇2f(θ) 
 μIp.

First, we recall a classical convergence result for strongly
convex functions for the sake of completeness.

Proposition 1: Let f obey Definition 2 and suppose θ� is its
minimizer. Pick a learning rate η ≤ 1/L, and use the iterations
θt+1 = θt − η∇f(θt). The iterates obey ‖θτ − θ�‖2�2 ≤ (1−
ημ)τ‖θ0 − θ�‖2�2 .

This is the usual setup for gradient descent analysis. Instead,
we will employ the bimodal Hessian definition.

Definition 3 (Bimodal Hessian): Let f : Rp → R be an L
smooth μ strongly-convex function. Additionally, there exists a
subspace S ∈ Rp and local condition numbers κ+, κ− ≥ 1 and
cross-smoothness ε ≥ 0 such that, the Hessian of f is satisfies

Upper spectrum: LIp 
 ΠS∇2f(θ)ΠS 
 (L/κ+)Ip,

Lower spectrum: κ−μIp 
 ΠSc∇2f(θ)ΠSc 
 μIp,

Cross spectrum: ‖ΠS∇2f(θ)ΠSc‖ ≤ ε. (3)

Here κ+, κ− are the local condition numbers as previously.
Observe that both of these are upper bounded by the global
condition number κ = L/μ as f obeys Def. 2 as well. The cross-
smoothness controls the interaction between two subspaces.
For linear regression ε = 0 by picking S to be eigenspace. For
general nonlinear models, as long as problem can be approxi-
mated linearly (e.g. wide deep nets can be approximated by their
linearization [19], [20]), it is plausible that cross-smoothness is
small for a suitable choice of S . We have the following analogue
of Theorem 1.

Theorem 2 (Nonlinear problems): Let f obey Definition 3
with non-negative scalars L, μ, κ+, κ−, ε. Consider the learning
rate schedule of Definition 1 and set

T ≥ 2κ+ log

(
2L
κ−μ

)
+ 1 , η− =

1

κ−μ
, η+ =

1

L
.

Additionally, suppose the cross-smoothness ε satisfies the fol-
lowing upper bound

4ε ≤ min(1, κ−/T )μ.

Let θ� be the minimizer of f(θ). Starting from θ0, apply the
gradient iterationsθt+1 = θt − ηt∇f(θt). For all iterations t ≥
0 with mod(t, T ) = 0, we have

‖θt − θ�‖�2 ≤
√
2

(
1− 1

4κ−

)t/T

‖θ0 − θ�‖�2 .

Interpretation: This result is in similar spirit to the linear
regression setup of Theorem 1. The required number of iterations
is still governed by the quantity (2). A key difference is the
cross-smoothness ε which controls the cross-Hessian matrix
ΠS∇2f(θ)ΠSc . This term was simply equal to 0 for the linear
problem. In essence, our condition for nonlinear problems es-
sentially requires cross-Hessian to be dominated by the Hessian
over the lower spectrum i.e. ΠSc∇2f(θ)ΠSc . In particular, ε
should be upper bounded by the strong convexity parameter μ
as well as κ−μ/T where κ−μ is the smoothness over the lower

spectrum. It would be interesting to explore to what extent the
conditions on the cross-Hessian can be relaxed. However, as
mentioned earlier, the fact that wide artificial neural networks
behave close to linear models [19] provides a decent justification
for small cross-Hessian.

III. PROOFS

A. Proof of Theorem 1

Proof: Following Theorem 1’s statement introduce L =
λ1, μ = λp. Each gradient iteration can be written in terms of
the residual wt = θt − θ� and has the following form

θt+1 = θt − ηtX
T (y −Xθt)

⇒ wt+1 := θt+1 − θ� = (I −XTX)wt.

LetS be the principal eigenspace induced by the first r eigenvec-
tors andSc be its complement. LetΠS be the projection operator
on S . Set at = ΠS(wt), bt = ΠSc(wt). Also set at = ‖at‖�2 ,
bt = ‖bt‖�2 . Since the learning rate is periodic, we analyze
a single period starting from a0, b0. During the first T − 1
iterations, we have that

at ≤
(
1− 1

κ+

)t

a0 and bt ≤
(
1− μ

L

)t
b0=

(
1− 1

κ

)t

b0.

At the final (unstably large) iteration t = T − 1, we have

aT ≤ L

κ−μ
aT−1 =

κ

κ−
aT−1 and bt ≤

(
1− 1

κ−

)
b0.

Now bt term is clearly non-increasing and obeys bT ≤ (1−
1
κ−

)(1− 1
κ )

T−1b0 ≤ (1− 1
κ−

)b0. Note that we forego the (1−
1
κ )

T−1 for the sake of simplicity. We wish to make the growth
of aT similarly small by enforcing

κ

κ−

(
1− 1

κ+

)T−1

≤ 1− 1

2κ−
⇐⇒ 2κ

2κ− − 1

≤
((

1− 1

κ+

)−1
)T−1

.

Observe that (1− 1
κ+

)−1 ≥ e1/κ+ . Thus, we simply need

log

(
2κ

2κ− − 1

)
≤ T − 1

κ+
⇐⇒ T ≥ κ+log

(
2κ

2κ− − 1

)
+ 1.

In short, at the end of a single period we are guaranteed to have
(1) after observing ‖wt‖2�2 = a2t + b2t . �

B. Proof of Theorem 2

Proof: The proof idea is same as Theorem 1 but we addi-
tionally control the cross-smoothness terms. Denote the resid-
ual by wt = θt − θ�. We will work with the projections of
the residual on the subspaces S,Sc denoted by at, bt re-
spectively. Additionally, set B = max(‖a0‖�2 , ‖b0‖�2) and set
at = ‖at‖�2/B, bt = ‖bt‖�2/B. Observe that by this definition
B ≤ ‖θ� − θ0‖�2 and

max(a0, b0) = 1.
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We will prove that at the end of a single period, (aT , bT ) pair
obeys

max(aT , bT ) ≤ 1− 1

4κ−
. (4)

The overall result follows inductively from this as follows. First,
inductively we would achieve max(at, bt) ≤ (1− 1

4κ−
)t/T for

mod(t, T ) = 0. That would in turn yield

‖θt − θ�‖�2 ≤
√
2max(‖at‖�2 , ‖bt‖�2) ≤

√
2Bmax(at, bt)

≤
√
2(1− 1

4κ−
)t/T ‖θ� − θ0‖�2 .

Establishing (4): Thus, let us show (4) for a single period of
learning rate i.e. 0 ≤ t ≤ T . The gradient is given by

∇f(θt) = Hwt,

where H is obtained by integrating the Hessian’s along the path
from θ� to θt. Write the next iterate as

‖wt+1‖2�2 = ‖wt − ηt∇f(θt)‖2�2 = ‖wt − ηtHwt‖2�2 .
By Definition 3 and triangle inequality, H satisfies the bimodal
Hessian inequalities described in (3). To analyze a single period,
we first focus on the lower learning rate η+ which spans the
initial T − 1 iterations. Hence, suppose ηt = η+ = 1/L. Note
that from strong convexity of H over S,Sc, we have that

‖at − ηtΠSHat‖2�2 ≤ (1− ηtL/κ+)‖at‖2�2 for ηt ≤ 1/L

‖bt − ηtΠScHbt‖2�2 ≤ (1− ηtμ)‖bt‖2�2 for ηt≤1/(κ−μ).

Following this with ηt = η+ = 1/L, for at, we find the recur-
sions

‖at+1‖�2 = ‖at − ηtΠSHwt‖�2
≤ ‖at − ηtΠSHat‖�2 + ηt‖ΠSHbt‖�2
≤
(
1− ηtL

2κ+

)
‖at‖�2 + ηtε‖bt‖�2

=

(
1− 1

2κ+

)
‖at‖�2 +

ε

L
‖bt‖�2 . (5)

Using the identical argument for bt yields

‖bt+1‖�2 = ‖bt − ηtΠScHwt‖�2
≤ ‖bt − ηtΠScHbt‖�2 + ηt‖ΠScHat‖�2
≤
(
1− μ

2L

)
‖bt‖�2 +

ε

L
‖at‖�2 .

Setting ε̄ = ε
L , we obtain

at+1 ≤
(
1− 1

2κ+

)
at + ε̄bt. (6)

Additionally, recall that, since f is μ strongly-convex we have
L/κ+ ≥ μ. Thus using L/κ+ ≥ μ ≥ 2ε we have

‖bt+1‖�2 ≤
(
1− μ

2L

)
‖bt‖�2 + ε̄‖at‖�2

≤ max(‖at‖�2 , ‖bt‖�2)

‖at+1‖�2 ≤
(
1− 1

2κ+

)
‖at‖�2 + ε̄‖bt‖�2

≤ max(‖at‖�2 , ‖bt‖�2).
That is, we are guaranteed to have 1 ≥ at, bt ≥ 0. Thus, using

(6), recursively, for all 0 ≤ t ≤ T − 1, at satisfies

at ≤
(
1− 1

2κ+

)t

+ ε̄
t−1∑
τ=0

(
1− 1

2κ+

)t−τ−1

bt ≤
(
1− 1

2κ+

)t

+ ε̄
t−1∑
τ=0

bτ ≤
(
1− 1

2κ+

)t

+ tε̄. (7)

At time t = T − 1, we use the larger learning rate η− = 1
κ−μ

.
The following holds via identical argument as (5)

at+1 ≤ L

κ−μ
at +

ε

κ−μ
bt

bt+1 ≤
(
1− 1

2κ−

)
bt +

ε

κ−μ
at. (8)

To bound bT at time t = T − 1, we recall bT−1, aT−1 ≤ 1 and
the bound ε ≤ μ/4, to obtain

bT ≤ 1− 1

2κ−
+

ε

κ−μ
≤ 1− 1

4κ−
.

Bounding aT is what remains. Noticing log(1− x) ≤ −x, our
period choice T obeys

T ≥ 2κ+log(2L/(κ−μ)) + 1 ≥ 1− log(2L/(κ−μ))
log(1− 1

2κ+
)

forκ+ ≥ 1. Thus, using the assumption ε ≤ κ−μ
4T , and the bounds

(7) and (8), the bound on aT is obtained via

aT ≤ L

κ−μ

((
1− 1

2κ+

)T−1

+ (T − 1)
ε

L

)
+

ε

κ−μ

≤ 1

2
+ T

ε

κ−μ
≤ 3

4
≤ 1− 1

4κ−
,

where we notedκ− ≥ 1. The above bounds onaT , bT establishes
(4) and concludes the proof. �

IV. CONCLUSION

This letter introduced a setting where remarkably fast conver-
gence can be attained by using cyclical learning rate schedule
that carefully targets the bimodal structure of the Hessian of the
problem. This is accomplished by replacing global condition
number with local counterparts. While bimodal Hessian seems
to be a strong assumption, recent literature provides rich empiri-
cal justification for our theory. Besides relaxing the assumptions
in Theorem 2, there are multiple interesting directions for Unsta-
ble CLR. The results can likely be extended to minibatch SGD,
overparameterized settings, or to non-convex problems (e.g. via
Polyak-Lojasiewicz condition [25]). While our attention was
restricted to bimodal Hessian and a CLR scheme with two values
(η+, η− as in Def. 1), it would be exciting to explore whether
more sophisticated CLR schemes can provably accelerate opti-
mization for a richer class of Hessian structures. On the practical
side, further empirical investigation (beyond [3], [12]) can help
verify and explore the potential benefits of large cyclical learning
rates.
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