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Abstract

We describe how a probabilistic Hoare logic with localities can be used
for reasoning about security. As a proof-of-concept, we analyze Vernam
and El-Gamal cryptosystems, prove the security properties that they do
satisfy, and disprove those that they do not. We also consider a version
of the Muddy Children puzzle, where children’s trust and noise are taken
into account.

1 Introduction

When it was first suggested that I should study security protocols, it was with
a remark that the problem was largely solved and that I should simply look
for a way to apply the solution to a particular protocol of interest, which hap-
pened to be one of the proposals for the IPSec suite. I found a paper that
was circulating under the title 'How to solve any protocol problem’ [8], and
spent some time studying the methods of multi-party computation described in
it. When I realized that I was not making any progress towards analyzing the
IPSec protocol at hand, I went back and found out that the suggested solution
of all protocol problems was not the multi-party computation, but strand spaces
[10, 11, 15, 16, 17]. T drew the strand space bundles corresponding to the IPSec
proposal the same afternoon.

Trying to save the science of security protocol design and analysis from its fore-
told demise, I spent a good part of the next 10 years looking for problems that
could not be solved using the strand space model. Each time, I would then meet
Joshua Guttman over dinner, usually at one of the Protocol eXchange meetings,
and told him that there was this conceptual mismatch between his model and
the reality, and he would then suggest how the problem of reality could be ad-
justed to match the strand spaces, and transformed towards a solution. On one
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or two occasions when I was too far down the road towards different solutions,
I avoided asking about the details.

But here is a record of something that definitely cannot be done by strand
spaces. It has been clear from the outset that the strand space bundles can be
annotated by Floyd-Hoare-style logical annotations [4, 6, 7], and that the various
forms of dynamic and epistemic logics, worked out for reasoning about the
preconditions, postconditions, and invariants of computations, can be elevated
and generalized for reasoning about protocol security [2, 12] and about the
higher-order properties of distributed systems and network interactions [13].
But what if we need to reason about the guessing chances, and have to go
beyond the Dolev-Yao type of models [5]'?

2 Crypto-logical systems

Towards a definition of a crypto-logical system, we begin from two basic data
types: states S and predicates P. It is assumed that they are generated by a
stratified set of algebraic operations, which allow us to write programs that lead
to the states in S, and to specify the resulting properties in P. In particular,
both & and P are built over the same algebra 7 of terms, usually multisorted,
assumed to contain enough variables, constants, and function symbols to specify
keys, nonces, encryptions, decryptions, hashes, etc. These terms are computed,
sent, and received by some actions that may be recorded in ¢q,s... € S, while
they may be compared, tested, and reasoned about in ¢, ... € P.

2.1 Crude and overly general definition
Given a state space S, an algebra of predicates P, a set of agents A, and a lattice
of observations O, a crypto-logical system is defined by the following data:

e a family of semantic maps

PxSxp i,

indexed over the agents A € A,
e a measure

S & Ry

given with a decomposition of § into a disjoint union § = Hie ; S of unit
sets S;, i.e. such that Pr(S;) = 1 holds for each ¢ € I. (Each restriction
Pr; of Pr to S, is thus a probability measure.)

I There are, of course, many ways to go beyond the Dolev-Yao models and formalize prob-
abilistic and computational reasoning in cryptography. One of the reviewers suggests that
Easycrypt [1] should be mentioned. The point here is, however, to try to extend by probabil-
ities the usual Floyd-Hoare annotations, which naturally fit with strand spaces.



Remarks. The above definition is more general than will be needed in this
paper. But it conveys the big picture and the general path.

First of all, we do not need an abstract lattice of observations O, but will
always take O = {0, 1}, and work with the usual Hoare triples ¢{q} 4%, which
are simply the elements of a ternary relation over P x & x P. The reason for
the above formulation is that the probabilistic analysis below will suggest that
the probabilistic Hoare triples, evaluated in O = [0, 1], are also of interest, and
in fact simplify some aspects of the reasoning. This option should be kept in
mind for future work.

The decomposition of the state space S = [[,.; S; allowing the decomposition
of the measure p into the probability measures p; will also not play a significant
role. It is in principle needed in the examples in Sections 3 and 4, where the
state spaces will be certain powers of the monoid ¥ = {0, 1}* of bitstrings, de-
composed into ¥ =[] ,{0,1}", with the uniform probability distribution over
each finite component {0,1}". But this is spelled out in many textbooks, and
the decomposition would flood the notations by information that is inessential
for this paper, and hide the aspects that are essential. So we reduce the mea-
sure i : S — R4 to the component probabilities Pr: & — [0, 1], omitting the
indices as they are easily reconstructed in all cases.

Furthermore, a state ¢ in the space S may or may not contain a record of a
particular computation, run, or process that led to it. Short of a better word,
we stretch the word "state" to mean "a result of a computation" — whatever
part of it we may choose to record. Sometimes it may be the whole history, even
including the intermediary results; sometimes just the outcome. A consequence
is that S may be closed under the usual programming and process operations,
or it may be structured by the recorded data alone. In the former case, the
usual rules of the Hoare logic will apply. In the latter case, when the concrete
computations are not reflected by modal operators in S, the Hoare notation
boils down to

q )j v = T{gta v
On the other hand, when the preconditions do play an essential role, relying

upon the Hoare logic tradition and intuition seems appropriate, and useful.

In any case, we always require that the semantic maps P xS x P — O preserve
the lattice structure of P, contravariantly in the first, precondition argument,
and covariantly in the postcondition.

2.2 Information sets and preorders of states

We say that, for an agent A, a process ¢’ refines a process g, or that it contains
more information than q, and we write ¢ C ¢/, whenever ¢’ satisfies, as far as A
A



can tell, all the requirements that ¢ satisfies:
1Cd = Vou oldhav < pldfay

Two processes are indistinguishable for the agent A if they satisfy the same
requirements

/

¢g~q¢ <<= qCq¢ Nqa{q
A A A
= Yoy p{g}a = o{q¢'} 4

The X—equivalence classes are A’s information sets. The quotient Sy = S/ ~ is

A’s information view. A’s information set at ¢ is written g4 € S4.

2.3 Refining the definition of crypto-logical systems

The data type P of predicates is assumed to support the usual logical connec-
tives, which make it into a lattice. Moreover, it is also closed under a family of
modalities W,, indexed over some subjective evaluations ¢ € J[0, 1], which will
be just numbers between 0 and 1 in the simple examples below, but need to be
generalized for some more involved cryptographic constructions. Semantics of
these logical operations is defined by the following conditions

(erVe) {atay = (pi{ata) A (w2{q}ta?)) (1)
e {ata (W1 A2) = (platavn) A (p{a}are) (2)
o lata W) <= Pr(p{stav|s~a)e 3)

The Hoare triples here are the standard ones, evaluated in O = {0, 1}, as ex-
plained in Sec. 2.1. Clause (3) extends the standard Hoare logic for probabilistic
reasoning. The idea is that

e A’s subjective probability that 1 holds after ¢ at ¢ is equal to
e the objective probability that v holds after ¢ at a randomly chosen state
s~ q.
A

By definition, the conditional probability in the last clause unfolds to

Pr{568|sxq A @{S}Aﬂf}

Pr{568|3:q}

PF(SD{S}Alﬁ ‘ S’ZQ) =

The subjective vs objective probability conundrum goes back to the
earliest days of probability theory [3], and persists as a useful distinction even
in cryptographic reasoning. The objective probability is a number, which can
be obtained, e.g., by counting frequencies. An observer of a random process,



however, may only be able to estimate that a probability falls within a certain
interval, or just in a set, measurable modulo computational indistinguishability.
There are thus various generality levels at which the family 70, 1] of subjective
evaluations may need to be modeled. To capture the standard cryptographic
definitions in Sec. 3, the subjective evaluations from J[0,1] will need to be
feasibly computable subintervals of [0, 1]. For the simple examples presented in
Sec. , on the other hand, rational numbers will suffice.

2.4 Probability vs. knowledge

Note that the statement W1, saying that 1 is satisfied with probability 1,
e lata Wi) = Pr(p{shav|syq)=1

can be viewed as a generalization of the knowledge modality K¢ for A defined
by

e {q}ta(Ky) <= VsES.sxqéw{s}d)

where the logical implication s v a = @{s}y is replaced by the stochastic

implication
[s;q:g@{s}w} — Pr(go {s}a ¢ ‘ s:q) =1

Intuitively, this stochastic implication says that the implication is valid almost
everywhere, i.e. everywhere except at a set of measure 0. While the usual
semantics of knowledge tells that K¢ is satisfied for A after ¢ at ¢ if ¢ is
satisfied after ¢ at every s @ the probabilistic knowledge W11 is satisfied

after ¢ for almost all s s i.e. with a possible exception of a set of measure 0.

For each A, the statements Kt and W11 are almost everywhere equivalent, i.e.
they only differ at a set of states of measure 0. Since cryptographic proofs are
not just up to sets of measure 0, but usually identify even the ensembles that
are computationally indistinguishable? the knowledge modality should, for all
cryptographic purposes, be identified with W .

2.5 Global semantics

We say that a requirement is satisfied globally if some agent observes that it is
satisfied

el v = IX. o{gx¥ (4)

In practice, crypto-logical systems are often given by

2Two ensembles are computationally indistinguishable when their differences cannot be
detected by polynomially bounded computations, e.g. because they occur only superpolyno-
mially far down the strings of digits of their probabilities.



e a global semantics

PxSxP —7 o

e a family of views

S S
indexed by A € A such that
(VX.qx =4q%) <= q=¢ and (5)
et v <= 3IX o{wx} ¥ (6)

Local semantics can then be defined by

e{gtay <= ¢ {qa} ¥

Condition (6) implies that (4) recovers the global semantics. Condition (5)
implies that ¢ ~4 ¢ <= g4 = ¢4;. In other words, since all ¢’ ~4 ¢ satisty
the same requirements p{q’'} 49 if and only if g4 satisfies them, then g4 can be
taken as the canonical representative of the information set [¢]4 € Sa.

2.6 Knowledge of probability vs probability of knowledge

The logical interpretation of the probabilistic modality W,, proposed in (3),
was stated over the observations in @ = {0,1}. Allowing the observations to
be evaluated in O = [0, 1], and replacing the logical equivalence in (1) and (2)
by the equality or indistinguishability of probabilities, leads to the probabilistic
interpretation of the knowledge modality

e {atalky) = Pr(p{s}v

551)
and promotes W, into a confidence modality

¢ {g}a(Wy) = Pr (Pr (<p {stv ‘ Bt q) € L)
But this refined view has to be left for future work, as it requires first spelling
out the standard view of familiar concepts, which barely fit in the rest of this
paper.

3 Cryptographic definitions in crypto-logic

A cryptosystem consists of three agents, each executing a single probabilistic
algorithm:



e key generation Gen : R — K x K,
e encryption Enc: £ x R x M — C, and
e decryption Dec: K x C — M,

such that
Dec(k,Enc(k,z,m)) = m

where (k,k) = Gen(y) for some y € R. Here R represents the data type of
random seeds, K is the datatype of keys, M the datatype of plaintext messages,
and C the ciphertexts. All datatypes are assumed to be finite, although unfeasi-
bly large, so that it is sometimes convenient to assume that they are countably
infinite. Each of them is given with a frequency measure

Pr : X —10,1]

When no confusion seems likely, we shall denote a random variable sampling
from X also by X, and write Pr(z € X’) where most probability theory textbooks
would write Pr(X = x).

Besides the principals of the cryptosystem, a definition of a security property
that it may satisfy involves an attacker Att, which may operate any number of
algorithms.

Remark. The notion of an algorithm is used here in the broadest sense, acco-
modating the various notions of computation. While the computational notions
of security are defined assuming Probabilistic Polynomial-time Turing (PPT)
machine as the standard model of computation, the information-theoretic secu-
rity is defined over a notion of computation which boils down to mere guessing
(of a message, a key, etc.), according to given frequency distributions. We begin
with an information-theoretic definition.

Definition 3.1. A cryptosystem is perfectly secure if Attacker’s chance to guess
a message m at a state C, when he is given a ciphertext ¢ = E(k,x,m) is the
same as his chance to guess that message at a state O, where he is not given
any data, and can just randomly sample the space M of messages:

C EW,(meM) — O EW,(meM) (IT-SEC)

Definition 3.2. Semantic (or chosen plaintext) security of a cryptosystem is
tested by the following protocol:

o the Attacker computes (or randomly selects) two messages, mo and mq,
and sends them to the Encryption oracle;

e the Encryption oracle tosses a coin, i.e. randomly selects a bit b, and a
seed © € R, computes the ciphertext ¢ = E(k,x,myp), and sends it to the
Attacker.



The cryptosystem is semantically secure if Attacker’s chance to compute (or to
guess) the bit b at the final state C, when c is known to him, is not greater than
his chance to guess b at the initial state O, without any data, i.e.

CEW, (b=1) = OEW, (b=1) (IND-CPA)

Definition 3.3. Adaptive (or chosen ciphertext) security of a cryptosystem is
tested by the following protocol:

o the Attacker computes (or randomly selects) two messages, mg and my,
and sends them to the Encryption oracle;

e the Encryption oracle tosses a coin, i.e. randomly selects a bit b, and a
seed © € R, computes the ciphertext ¢ = E(k,x,myp), and sends it to the
Attacker,

e the Attacker is then allowed to consult the Decryption oracle, to obtain
the decryption d = D(k,c'), of a chosen piece if ciphertext ¢’ is feasibly
constructed from mg, m1 and c, but differs from c, i.e. ¢’ # c.

The cryptosystem is adaptive secure if Attacker’s chance to compute (or to
guess) the bit b at the final state C, when the ciphertext ¢ and the decryption d
are known to him, is not greater than his chance to guess b at the initial state
O, without any data, i.e.

CEW, (b=1) — OEW,(b=1) (IND-CCA)

Remark. Varying the notion of computation in the above definition results
in different notions of security. If the notion of computation is reduced to
guessing, i.e. if the Attacker can only randomly choose mg and m;, and only
randomly guess b, but possibly following a probability distribution skewed by
the knowledge of ¢, then we get a weaker notion of security than the one where
the Attacker can perform more structured computation, e.g. of a Probabilistic
Polynomial-Time Turing Machine (PPT).

4 Examples of reasoning in crypto-logic

4.1 Security of the Vernam cryptosystem

In the Vernam cryptosystem, we take

K = {0,1}*
M = KI
cC = M
R =1
and then define
E(k,m) = D(k,m) = kK a&m



where @ is the exclusive or operation, and k7 is the j-tuple concatenation of a
key k. We assume that the messages have a fixed number of blocks j just to
avoid inessential notational details. The probability distributions over K and
over M are given, and they determine

Pr(ce(C) = Z Pr(m e M) -Pr(k € K)

kidm=c

The Vernam cryptosystem is called one-time pad when j = 1, i.e. when a key
is used to encrypt just one block.

Proposition 4.1. One-time pad is perfectly secure. The Vernam cryptosystem
s mot perfectly secure for j > 2.

Proof. To model the (IT-SEC) testing of the Vernam cryptosystem, we use as
the states in S the substrings of the triples (k,m,c) € K x M x C, subject to
the constraint that ¢ = k/ ® m. Each state can be construed as the record of
an encryption session, where the key k is first generated and sent from Gen to
Enc, then the message m is chosen and encrypted by Enc into ¢ = k & m, and
finally, the ciphertext c is sent to Dec and Att.

For each agent X € {Gen, Enc, Dec, Att} we define the view function S % S
to be

(k,m,c)gen = (k)
(k,m,c)ene = (k,m,c)
(k,m,c)pec = (k,c)
(k,m,c)ar = {C)

The data type P of predicates is generated from the formulas of binary arith-
metic, extended with the probabilistic modalities W, .

We define semantics by stipulating that ¢ {¢}x % is satisfied whenever the
implication ¢(gx) = %(gx) is provable in binary arithmetic and elementary
probability theory, starting from the given distributions Pra,, and Prg.

Towards a proof of (IT-SEC) property for j = 1, first note that

<> ):Wa(mEM) — PI’(mEM):a
(c) E Wp(m € M) —  Pr(meM|cel)=b

On the other hand,

Pr(ceC|me M) -Pr(me M)

Prime M |ceC) = Pr(c € )

= Pr(meM)



holds because

Pr(ceC|lmeM) = Prlc=kdmeC|meM)
= Prlk=cemeKk|meM)
= Pr(kek)

and
Pr(ceC) = ZPr(cEC|mEM)-Pr(m€M)
meM
= Pr(kek) Z Pr(m e M)
meM
= Pr(kek)

It follows that () = We(m € M) and (¢) E Wy(m € M) are satisfied if and
only if a = b.

For the Vernam cipher with j > 2, the probability Pr(c € C | m € M) does not
boil down to Pr(k € K). Given m = my :: mg :: -my, then ¢ must be in the form
c=cy ¢t -cf where ¢t @my = co @ mo = - = ¢; ®my equals the key k.
For ¢ € C which are not in that form, Pr(c € C | m € M) = 0. For those that
are, Pr(c € C | m € M) = Pr(k € K) remains valid. By a similar reasoning,

Pr(k € K) £ == 4
Prme M |cec) = {rkek) formoa i © 4
0 otherwise
This shows that the Vernam cryptosystem does not satisfy (IT-SEC) for j > 2.
O

Proposition 4.2. If a Vernam cryptosystem is used to encrypt even one bit
more than one block, then it is not semantically (IND-CPA) secure, i.e. it can
be broken by a chosen-plaintext attack.

Remark. Note that Attacker’s capability to choose a plaintext is computa-
tional, and not just stochastic: they can determine the structure of the messages
mg and m1 in the CPA-test, and not just rather than just randomly sample from
some source.

Proof of Prop. 4.2. To model the Vernam cryptosystem where one bit more
than one block is encrypted, we take

M=C = Kx{0,1}

To model the (IND-CPA) testing of this cryptosystem, we use as the states in
S the substrings of the triples (k,mg, m1,b,c) € K x M? x {0,1} x C, subject to
the constraint that ¢ = k’ @ m, where k' = k :: kg is the key k with the first bit

10



repeated at the end. Each state can be construed as the record of an encryption
session, where the key k is first generated by Gen, and securely conveyed to Enc
and Dec, while on the other side the messages mg, m; are generated by Att and
sent to Enc, who then chooses the bit b, computes the ciphertext ¢ = k% @ my
and sends it ¢ to Dec and Att.

For each agent X € {Gen, Enc, Dec, Att} we define the view function S % S
to be

<k7m07m15b7 C>Gen = k>

7m07m17buc>

)

mo,mi, C>

<k7 mo,my, b7 C>Enc

(

(k
(k,mo, m1,b, c)pec (k
<kam07mlab7 C>Att - <

The data type of predicates P and the semantics of ¢ {q}x ¢ are just like in
the proof of the preceding proposition.

Towards a proof that (IND-CPA) not satisfied, we note that () = W
holds, because® Pr(b=1) = 3.

(b=1)

=

On the other hand, we show that the attacker can construct the messages mg
and m; in such a way that (¢) = W;(b = 1) holds if and only if ¢ = k¥’ & mq,
and otherwise (c) = Wo(b = 1) holds. Either way, (c) = W1 (b = 1) does not
hold, which implies that

(0w o=1) <= (0FwW06=1)

Towards the counterexample for (IND-CPA), let

mo = 0°:0
m; = 0f:1
which gives
Co = ko o kl b ko
c1 = ko:uky o —ko
and
(co) E Wo(b=1)
(1) E Wi(b=1)

O

3We assume that the coin is fair. If it is biased, the argument goes through for any
probability p instead of %, provided that p # 0 and p # 1.

11



4.2 El-Gamal

Let G be a cyclic group? of order n with a generator g. In other words, the
elements of G can be listed in the form g, g2, ¢°,...,¢" ', 1. The types of the
El-Gamal cryptosystem are taken to be

K = GxZ,
R = Z,
M = G
C = GxG

The keys (k, k) = Gen(a) are set to be

E = g¢°
k = a

and the encryption and decryption functions are

E(k,r,m) = (9", k"-m)
D(F,e) = =
€1

where ¢ = (c1, co). This defines a cryptosystem because

D (k,E(k,r,m)) = = = T"a =m
( ) ()" g

Definition 4.3. The Diffie-Hellman decision is the predicate DHd : G> —
{0,1} defined by

DHd(z,y,2) <= 3a,b€Zp.x=g"ANy=g"Nz=g"

where we abbreviate DHd(x,y,z) = 1 to DHd(x,y, z), and write -DHd(z, y, z)
when DHd(z,y,z) = 0. The Decision Diffie-Hellman problem concerns the
guessing algorithms for the Diffie-Hellman decision, i.e. the feasible algorithms
with random seeds. The problem is that an algorithm should do better than a
coin flip, and output more than half true decisions for a given length of the seeds.
Formally, this means that for all a,b € Z,, a DHd algorithm should satisfi®

Pr (DHd (9*,9"9") ) > %

4Here we hide away some details. G is usually taken to be a cyclic subgroup of the
multiplicative group of a field Z,. But while the reader familiar with the system, or a student
of any cryptography textbook, will have no trouble recovering the details swept under the
carpet, carrying them around here would distract from the main idea.

51t is required that the chance of DHd (ga7 gb,g“b) = 1 is feasibly distinguishable from %,
i.e. greater by a feasible function. It follows that the chance of DHd (ga, g, gd) = 1ford # ab
is also significantly smaller than % by a feasible function.

12



The Decision Diffie-Hellman (DDH) assumption is that the Diffie-Hellman prob-
lem has no solution, i.e. that no feasible algorithm for guessing the Diffie-
Hellman decision can do better than the coin flip.

Proposition 4.4. The El-Gamal cryptosystem is semantically secure if and
only if the Decision Diffie-Hellman assumption is true.

Proof. To model the (IND-CPA)-testing of the El-Gamal cryptosystem, i.e.
choosing the plaintexts that will yield distinguishable ciphertexts, we use as the
states in S the substrings of the tuples

<<k,E>,r,m0,m1,b,c> EKL xR x M?*x{0,1} xC

where k = ¢g* and ¢ = (¢", k" - my). Each state can be construed as the record
of a testing session, where the keys k and k are generated, the first one is sent
from Gen to Enc, the second one is announced publicly; the messages mg, m;
are chosen and sent from Att to Enc, the bit b and the ciphertext ¢ are generated
and sent from Enc to Att and Dec.

For each agent X € {Gen, Enc, Dec, Att} we define the view function S % S
to be

<k,E, T, mo,ml,b,c>Gen = <k,E>
{k,k,r, mo,ml,b,c>Enc = (k,r,mp,c)
<k,E, r, mg, M1, b, C>Dec = <E, mb,c>
(k,k,r,mo,m1,b, c>Att = (k,mg,m1,c)

Suppose that for the El-Gamal El-Gamal cryptosystem holds
CEW, (b=1) = OEW,(b=1) (- IND-CPA)

Since for a fair coin (i.e. uniformly distributed) b € {0,1} it is certainly true
that O |= W, (b=1). The assumption (- IND-CPA) thus means that there is
an attack that makes C' = Wy (b= 1) false. There are thus algorithms

Atty : M? and Att; : G x M? x C — {0,1}

such that for Attg = (mg, m1) and any b € {0, 1} holds

1
Pr (Attl (k,mo,m1, (g7, k" - mp)) = b) > 5

The Diffie-Hellman decision DHd(z,y, z) can now be computed for any given
z,y and z from G as follows:

e Set and announce the public key to be k = z.
o Let Atty generate and send the messages mg, and m;.

13



e Pick any b € {0,1} and announce ¢ = (y, z - my).
e Set DHd(z,y,2) =1 if and only if Att; correctly guesses b.

In summary,

1 if  Atty (k,mg,m1,(y,z-mg)) =0
DHd(z,y, 2) = and Atty (k,mo, m1, {y,z-mq)) =1 (- DDH)
0 otherwise

The other way around, assuming (— DDH) with a Diffie-Hellman decision algo-
rithm DHd significantly better than a coin flip, the attacker Atty may generate
mgo and m; randomly, since Att; can always use DHd to decide which of the
messages has been encrypted

b if DHd (k,co, C—l)
Attl (k7m05m17<00701>) = "
1 otherwise
Checking that this yields (- IND-CPA) is straightforward. O

Proposition 4.5. The El-Gamal cryptosystem is not adaptively secure, i.e. it
can be broken by a chosen ciphertext attack.

Proof. To model the (IND-CCA) (chosen ciphertext) testing of the El-Gamal
cryptosystem, we use as the states in S the substrings of the tuples

((k,k),r,mg,m1,b,q,c, ¢, d) ELXRx M?*x{0,1} x R xC? x M

where k = ¢g* and ¢ = (9", k" -my), ¢ # ¢, and d = D(k,c’). The projections
can be

<kE7’m0,m1,b q,c,c, d>Gen = < >
(k,k,r,mo,m1,b,q,c,c d>Enc = (k,r,my,c)
{(k,k,r,mo,m1,b,q,c,c ) = (k,d,d)
<kErm0,m1,b q,cc, d>Att = (k,mo,m1,q,c,c,d)

In order to gain advantage in determining b, the Attacker just needs to generate
q # 1, and for ¢ = (c1,¢2) set ¢ = {¢1,q-¢2) . Then d = q - mp, and b can be
determmed with certainty, by comparing my = 4 with mg and m;. (I

4.3 Towards protocols for noisy muddy mistrustful chil-
dren

In some cryptanalytic attacks, the Attacker is a distributed system, consisting of
several processes which locally make different observations, and send messages

14



to each other. The Muddy Children Puzzle can be viewed as a rudimentary
example of such a situation. An unknown bitstring m € M = {0,1}¢ can be
thought of as denoting which members of a group of ¢ children have a muddy
forehead. The fact that each child only sees other children’s foreheads, but not
its own, corresponds to the fact that an Attacker may consist of £ observers
Att;, i =1,...,¢, and each Att; sees the bits my for k = ¢ but does not see m;.

In the usual version of the puzzle, the father tells the children that at least
one of them has a muddy forehead, and asks each child whether it knows if its
forehead is dirty. He asks them in rounds: after they all say "No", he asks them
all again, and so on. Using their view of other childrens’ foreheads, and hearing
their answers, each child can at some point tell whether its forehead is dirty. It
is assumed that each child is a perfect reasoner: it will prove everything that
can be proved at that point in time. At each point in time, each child either
knows with certainty whether his forehead is muddy or does not know it at all.

In the probabilistic version, each child is trying to estimate the probability that
his forehead is muddy. Initially, having finished playing together, the children
have an estimate of the distribution p : n — [0, 1], where py, is the probability
that exactly k of them have a dirty forehead. If a child sees k dirty foreheads,
then it knows for sure that there are either k or k+1 dirty foreheads alltogether.

. . 1. . . . . pk+1
So the initial probability that its own forehead is dirty is PIST.

Like in the usual version, each child then proceeds to announce, in rounds,
whether it knows the state of its forehead. Knowing each other, they all also
have an estimate of the probability that the statement that each of them is
making is false (for one reason or another).

In other words, the Attackers initially know the probability py that there are
exactly k 1s in m. Then each Att; is allowed to broadcast to all Atts a message,
telling whether he knows m; or not. These broadcasts continue in rounds. After
a finite number of such broadcasts, all Atts can compute all of the bitstring m.

The reasoning that allows this is one of the motivating examples behind knowl-
edge logics. Generalizing the knowledge modality into the probability modality
allows refined reasoning, where unreliability of the Attacker’s communications
can be taken into account: their broadcast bits can be flipped, with a given
probability. This probability can be thought of as a measure of noise, or of
mistrust among the children.

To be continued

While gathering the references, in particular those that I missed during the years
of missed Protocol eXchanges, I encountered reports about the extensions of
strand spaces, bundles, and shapes that support quantitative and hybrid forms
or reasoning about security [9, 14, 18]. The tradition of Joshua explaining to
me how what I presented could be done using the strand space model is hoped
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to be continued in the future.
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