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Abstract – Nowadays, the evolution of deep learning and
cloud service significantly promotes neural network based
mobile applications. Although intelligent and prolific, those
applications still lack certain flexibility: For classification
tasks, neural networks are generally trained with vast
classification targets to cover various utilization contexts.
However, only partial classes are practically inferred due
to individual mobile user preference and application speci-
ficity, which causes unnecessary computation consumption.
Thus, we proposed CaptorX – a class-adaptive convolu-
tional neural network (CNN) reconfiguration framework
to adaptively prune convolutional filters associated with
unneeded classes. CaptorX can reconfigure a pre-trained
full-class CNN model into class-specific lightweight models
based on the visualization analysis of convolutional filters’
exclusive functionality for a single class. These lightweight
models can be directly deployed to mobile devices without
the retraining cost of traditional pruning-based reconfigu-
ration. Furthermore, we can apply the CaptorX framework
into a distributed collaboration setting. With dedicated
local training regulation and collaborative aggregation
schemes, the class-adaptive models on individual mobile
devices can further contribute back to the central full-
class model. Experiments on representative CNNs and
image classification datasets show that, CaptorX can re-
duce the CNN computation workload up to 50.22% and
save 46.58% energy consumption for varied local devices,
meanwhile improving accuracy for their targeted classes
with better task focus. With our distributed collaboration
paradigm, CaptorX also provides further potential to
enhance the central model accuracy, while reducing up
to 37.58% communication cost compared to traditional
distributed learning methods.

Index Terms—CNN Reconfiguration, CNN Visualization, Mo-
bile Computing, Distributed Learning
⇤The first two authors contributed equally to this work.

I. INTRODUCTION

Promoted by the evolution of artificial intelligence and
cloud services, more and more intelligent applications have
emerged on mobile devices. As one of the most representative
deep learning technologies, Convolutional Neural Network
(CNN) has been widely adopted by those applications for
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classification tasks [1]–[4]. For common CNN-based mobile
applications, most of current CNN models are pre-trained with
vast classification targets to cover as much application tasks
as possible (e.g., ImageNet with 1.2 million training images
from 1,000 different classes). However in most real-world
cases, only partial classes are practically inferred depending
on individual users’ preference and application specificity.
For example, we analyzed the “Top 100 Intelligent Android
Applications” and found that over 22% of the applications
only focus on a specific kind of classification task (e.g.,
animals, plants, books recognition, etc.) [5]. Therefore, a large
amount of classes are actually unneeded regarding the well-
trained full-class model. As a result, the class-level function-
ality redundancy introduces considerable computation costs,
which restricts the deployment of CNN models on resource-
constrained mobile devices.

To adapt CNN models for different mobile applications,
conventional approaches either manually train a specialized
neural network from scratch or fine-tune the existing pre-
trained CNN model on specific data set for each application
scenario [6]. However, considering vast mobile applications
types and diverse user preferences, the computationally ex-
pensive and time-consuming training efforts still hinder the
scalability of such class-adaptive CNN reconfiguration, bring-
ing insufficient feasibility issues [?], [7].

To meet the flexibility requirements of class-oriented recon-
figuration, one potential way is to conduct class-level CNN
reconfiguration, i.e., to adaptively reduce unneeded classifica-
tion targets of a pre-trained full-class model without affecting
the remaining classes’ functionalities [8]. For example, Guo
et al. have proposed a class-adaptive CNN pruning method
based on filter sensitivity analysis [9]. By applying a certain
amount of perturbation to each filter, they measured the
corresponding network output score of each class target. The
filter causing a smaller output score to a certain class target can
be pruned when this class is unneeded. SaiRam et al. utilized
a similar filter analysis method and trained CNN models into
class-specific tree structures, which can be reconfigured to a
different subset of class targets [10].

Although these methods addressed the class-level CNN
computation optimization to some extent, they still have cer-
tain shortcomings: First, these methods lack sufficient theoretic
support and the reconfigured models usually suffer from
significant accuracy drop. To achieve satisfying classification
accuracy without retraining, the computation reduction of the
above methods is limited. Second, it’s a challenge to find
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an optimal setting for the pruning thresholds for choosing
how many filters to prune. Setting the same threshold for all
layers may not be appropriate because the different layers have
varying sensitivities to the classification targets, depending on
their position in the network (shallow versus deep layers).

To achieve the goal of class-level CNN reconfiguration, the
first challenge is the lack of understanding of CNN component
functionality, or their relationships with various classification
targets. Although some CNN visualization works have been
proposed with certain interpretation, the functionality iden-
tification of the CNN components is still hard to achieve
for different application tasks [11]. Besides the difficulty
in functionality interpretation, the second challenge is the
optimization design for removing functionality redundancy.
Although there are many model compression methods, such
as weight sparsity and filter pruning, these methods only
focus on weight/neuron removal and cannot well adapt to the
class-level optimization context. Meanwhile, such methods’
inevitable time-consuming retraining process also cannot meet
the flexible deployment requirement of mobile applications.

To tackle the above challenges, we proposed CaptorX –
a class-adaptive CNN reconfiguration framework for efficient
mobile application deployment. CaptorX takes advantage of
CNN visualization analysis, where convolutional filters’ exclu-
sive activation preference (i.e., filter functionality) to specific
classification targets is identified. The filters with the same
functionality are then grouped into independent clusters and
identified as the functional meta-component for this class.
After the functionality components identification, CaptorX can
adaptively prune the filter clusters associated with unneeded
classes and reconfigure a general pre-trained full-class CNN
to class-specific lightweight models for dedicated mobile
applications. Benefited from the precise filter functionality
identification, the reconfigured lightweight models can still
function well on the reserved classification targets without
harming the accuracy. Thus, such class-specific models can be
directly deployed onto mobile devices without any expensive
retraining, bringing great flexibility advantages than previous
retraining-based reconfiguration methods.

Furthermore, our CaptorX supports the model collaborative
learning paradigm in a distributed manner to utilize the mobile
devices’ available training capability and further improve
central model’s accuracy. Specifically, with a dedicated local
training algorithm, mobile devices can conduct training to
improve the performance of the local class-specific models.
Then through a novel collaboration policy, these distributed
class-specific models can contribute back to the central full-
class model, while achieving optimal accuracy for better
inference and further deployment.

The contribution of this work can be summarized as follows:

• We analyzed convolutional filters’ class activation prefer-
ence through CNN visualization analysis, and identified
filters’ exclusive functionality. Then individual class-
specific meta-component is identified by filter clustering
to precisely group filters with the similar functionality;

• We then proposed a class-level CNN reconfiguration
framework. By pruning filter clusters of the unneeded
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Fig. 1: CNNs Computation Load and Energy Consumption.

classes, the pre-trained full-class CNN model can be
reconfigured into class-specific models without losing
accuracy and thus no retraining effort is caused;

• We applied our class-level reconfiguration framework
in a distributed manner. With the novel local training
regulation and collaborative paradigm, we show that we
could utilize vast mobile device’s computing capability
to further enhance the central model’s performance.

Experiments show that, CaptorX can effectively reconfigure
a CNN model into class-specific models with any small
subset of classification targets from different datasets, such
as CIFAR10, CIFAR100, and ImageNet. Notably, CaptorX

can reduce the CNN computation load up to 50.22% and
save 46.58% energy consumption, while achieving even higher
accuracy than the pre-trained models due to fewer class
targets and better classification focus. In the distributed setting,
CaptorX can reduce up to 37.58% communication cost without
defecting accuracy.

II. BACKGROUND

A. Mobile CNN Computation Consumption
The sophisticated CNN structure consists of multiple con-

volutional layers (CLs), pooling layers (PLs), and fully-
connected layers (FLs). Such a high volume structure enables
outstanding performance for cognitive tasks, but at the cost
of intensive computation load and energy consumption [12],
[13]. Among these CNN components, the multiplication and
addition operations in CLs and FLs account for over 99% of
total CNN computation load, making those two types of layers
the major optimization targets [14].

Fig. 1 analyzes the computation load and energy consump-
tion of CLs and FLs with three representative CNNs on a
Google Nexus 5X, i.e., LeNet [15], AlexNet [16], and VGG-

16 [17]. Fig. 1 demonstrates that: Although the three network
have different structures, CLs contribute the most computation
load (i.e., 76.8%⇠99.2%) as well as energy consumption (i.e.,
64.1%⇠92.3%). As the model becomes deeper from LeNet to
VGG-16, the cost of CLs also significantly increases.

While mobile storage space issue is relative ignorable
nowadays [18], the computation load and energy consumption
remain the major concerns for mobile applications. Therefore,
we take CLs as our major optimization target in this work.

B. CNN Reconfiguration for Efficient Computing
To resolve the conflict between the massive computation

load required for CNN inference and the limited computa-
tion resources on mobile devices, many CNN reconfiguration
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Fig. 2: Filter Pruning for CNN Reconfiguration.

works have been proposed, such as weight sparsity [19],
[20], filter pruning [21]–[25], low-rank decomposition [26],
[27], quantization [28], [29], etc. As shown in later of this
work, we consider the convolutional filter as the fundamental
interpretable component, and mainly leverage the filter pruning
based methods as the primary reconfiguration approach.

Filter pruning methods identify the convolutional filters with
the least significance based on different metrics. By removing
these filters and repeatedly retraining the model, CNN model
volume can be significantly reduced and therefore decrease the
computation load. For example, Li et al. ranked convolutional
filters with their absolute values to identify and prune the
least significant filters [21]. Inspired by the weight pruning
method [30], [31], Molchanov et al. pruned filters based on
the Taylor expansion that evaluates the significance of the filter
by their second-order derivatives [32].

Fig. 2 demonstrates the mechanism of the filter pruning
through three consecutive CLs. Given a lth CL consisting of
a set of filters F l

i 2 Rkl⇥kl⇥nl
CL (represented by blue and

green blocks). Each filter also contains multiple convolutional
kernels of K 2 Rkl⇥kl

. The convolutional operation generates
and passes feature maps between layers (i.e., N l 2 Rhl⇥wl⇥nl

and N l+1 2 Rhl+1⇥wl+1⇥nl+1

as the input and output of lth
layer). The convolutional filter pruning scheme aims to prune
certain “insignificant” filters in the layer of lth (represented
by green blocks). As a filter in the lth layer is pruned, its
connected output feature maps and the corresponding convolu-
tional kernels in (l+1)th layer’s filters are also pruned. Mean-
while, the filter number in (l+1)th remains the same as well
as the output feature map size of N l+2 2 Rhl+2⇥wl+2⇥nl+2

in
(l+2)th. Therefore the pruned filters and feature maps could
effectively reduce certain computation load.

Assume the total computation load for ith CL as:

WCLlth
= nl+1

CL ⇥ (nl
CL ⇥ (kl)

2
)⇥ (hl+1 ⇥ wl+1), (1)

where nl is the total amount of filters and output feature
maps. By pruning each filter in lth CL, the computation load
reduction can be formulated as:

W�
CLlth

=(nl
CL⇥(kl)

2
)⇥(hl+1⇥wl+1)+

nl+1
CL⇥(k

l+1)
2⇥(hl+2⇥wl+2).

(2)

As shown above, such a significance-ranking based filter
pruning method only considers the per-filter significance and
has no connection with the actual interpretable functionality.
Therefore, they cannot be directly used for our class-adaptive
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Fig. 3: Filter Visualization in AlexNet.

reconfiguration. Instead, we prefer to prune filters associated
with unneeded classes as “insignificant” ones to achieve the
class-level CNN reconfiguration. In the next section, we will
introduce the CNN visualization to identify filters’ function-
ality preference for dedicate classification target.

C. CNN Filter Functionality Interpretation

In CNN models, the convolutional filters are designed to
capture certain input features. As a result, the semantics of the
captured features can indicate the functionality of each filter.
However, as a 3D weight matrix, the semantics of a filter is
also usually hard to be directly interpreted.

Recently, more and more research works started to interpret
the functionality of convolutional filters [33]. Zhou et al.

demonstrated that convolutional filters have dedicated activa-
tion preferences for particular features in the input [34]. Such
a feature preference can be defined as a filter’s functionality.
Yosinski et al. illustrated the divergence of the activation
preference across convolutional layers [35]. Bau et al. further
verified that, after a certain degree of functionality divergence,
the convolutional filter in deep layers only extract class-
specific features eventually [11].

To illustrate convolutional filters’ functionality for qualita-
tive analysis, most aforementioned methods utilized the CNN
visualization technique. The CNN visualization technique was
firstly introduced by Erhan et al. as the Activation Maximiza-
tion (AM) method, which synthesizes the most preferred input
pattern of a particular convolutional filter (with the largest
activation value) [36]. Later, Simonyan et al. extended the AM
method beyond the input patterns and identify the preferred
class target for each convolutional filter [37].

Fig. 3 shows the visualized analysis of AlexNet – one of the
most representative CNNs for image classification, which is
composed of 5 CLs and 3 FLs. From the visualization analysis,
we can see that the CNN visual feature abstraction starts with
local fine details in the very first CL, then progresses into
general textures and partial objects with deep layers, and ends
in class determination with FLs.

In this work, we will utilize the AM method for con-
volutional filter functionality analysis. Specifically, we will
qualitatively identify certain convolutional filters’ exclusive
activation preference to the individual classification target.
Then, we will leverage the filter pruning with the interpretable
filter functionality to reconfigure the CNN model.
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D. Distributed CNN Collaborative Learning
Distributed CNN collaborative learning has draw great

attention recently with the advantages of harvesting vast edge
computation resources, protecting local data privacy, etc. Many
distributed learning frameworks have been proposed, such as
Parameter Server [38] and Federated Learning [39]–[41]. By
training locally on the distributed devices, these distributed
models could contribute back by gradient or weight aggrega-
tion, and thus improve the performance of the central model.

In this work, we can also apply our class-adaptive recon-
figuration framework in a distributed learning manner. In our
framework, as each mobile device is deployed with a light-
weight class-specific model, we conduct collaborative learning
with these class-specific models in a distributed manner. With
the dedicated local training and collaboration policy, CaptorX

is able to aggregate these lightweight models to the central
full-class model and thus improve the global full-class CNN
model’s performance.

III. FRAMEWORK OVERVIEW OF CaptorX

This section presents an overview of our proposed CaptorX

framework. CaptorX aims to quickly reconfigure a pre-trained
CNN model into lightweight class-specific models for mobile
applications with dedicated classification tasks. Moreover,
these lightweight models can be trained on devices, and
contribute back to the full-class model. As shown in Fig. 4, a
pre-trained CNN model can be reconfigured by the CaptorX

and achieve further collaborative learning through following
three stages: CNN Model Interpretation, Class-adaptive Model
Reconfiguration, and Distributed Collaboration.
(1) CNN Model Functionality Interpretation. This stage
identifies the functionalities of different convolutional filters.
Given a generally pre-trained CNN model that covers a large
number of the classification targets, we interpret the convolu-
tional filters’ functionality by CNN visualization. Specifically,
Activation Maximization (AM) is used to identify the convolu-
tional filters’ exclusive activation preferences to specific class
targets. The filters with same functionality will be grouped

into filter clusters for later reconfiguration (This part will be
detailedly shown in Sec. IV).
(2) Class-adaptive Model Reconfiguration. This stage recon-
figures a pre-trained model into class-specific models. Based
on the CNN functionality analysis, we have identified the filter
clusters’ dedicated functionality for specific classification tar-
get. Then we reconfigure the pre-trained model by preserving
the filter clusters associated with the required classification
targets while pruning out the rest. As the functionality of each
filter cluster is relatively independent, all the filter clusters
can be removed in a parallel manner with minor accuracy
defection. Then, our reconfigured class-specific models can be
directly deployed to mobile devices without retraining, achiev-
ing both optimal computation efficiency and reconfiguration
feasibility. (This part will be detailedly shown in Sec. V).
(3) Distributed Model Collaborative Learning. In this stage,
we applied our class-adaptive CNN reconfiguration framework
in a distributed manner, in which the class-specific distributed
models can contribute back to full-class model. As each model
is deployed to distributed mobile devices, CaptorX conducts
local training for all class-specific models and then collects
the corresponding filter clusters from different class-specific
models to a full class model. The aggregated model could well
recognize all the class targets with improved model accuracy,
and can be used for further model reconfiguration. (This part
will be detailedly shown in Sec. VI).

IV. VISUALIZATION ANALYSIS OF FILTER
FUNCTIONALITY

To identify the functionalities of different filters towards
specific class targets, we first analyze convolutional filters’
exclusive activation preferences by using CNN visualization.
Regarding the massive volume of convolutional filters, we
introduce a clustering scheme that groups the filters based on
their similarity and then identify their shared functionality.

A. Filter Functionality Visualization
As the fundamental feature extract components, convolu-

tional filters have dedicated activation preference for different

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:31:12 UTC from IEEE Xplore.  Restrictions apply. 



0278-0070 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3061520, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATE CIRCUITS AND SYSTEMS, VOL. XX, NO. XX, DEC 2020 5

Selected AM Visualized Patterns: Filter Functionality Divergence

CL 4-2 CL 5-2CL 1-1 CL 2-1 CL 2-2 CL 3-1 CL 4-1 CL 5-1

car
airplane

dog
bird

horse
cat

ship
frog

deer
truck

Fig. 5: Synthesized Patterns of Convolutional Filters with
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input features. We define such a characteristic of extracting
specified features as filters’ functionality. To analyze the
feature extraction preference (i.e., functionality), CNN visual-
ization has been proposed in many previous works [34], [35].
In our work, we adopt the Activation Maximization (AM) vi-
sualization technique to qualitatively analyze the functionality
of convolutional filters [35].

Formally, the feature extraction preference of the ith filter
F l

i in the lth layer is represented by a synthesized input pattern
V (F l

i ) that can cause the maximum activation of F l
i (i.e.,

the convolutional feature map value). The synthesis gradient
ascent process of such an input pattern can be formulated as:

V (Fl
i ) = argmax

X
Al

i(X), X  X + ⌘ ·
@Al

i(X)

@X
, (3)

where Al
i(X) is the activation of filter F l

i from an input image
X , ⌘ is the gradient ascent step size. With X initialized as
an input image of random noises, each pixel is iteratively
changed along @Al

i(X)/@X increment direction to achieve the
maximum activation. Eventually, X demonstrates a specific
visualized pattern V (F l

i ), which contains the filter’s most
sensitive input features with certain semantics, and represents
the filter’s functional preference.

To interpret all the filters’ functionality, we apply AM
visualization to filters in different layers and qualitatively
analyze the convolutional filter functionality divergence. Note
that the major reconfiguration overhead of CaptorX comes
from the AM pattern generation, which can be ignored by
only conducting once by a powerful server.

Algorithm 1 k-means based Filter Clustering Scheme
Input: CNN, Layers number L, and filter number in each layer Il
Output: L Clusters

1: Graphic pattern synthesizing:
for each Layer Ll do Listl=[];

for each Filter F l
i do V (F l

i )=Xl
i ;

Listl.append(V (F l
i )); # Store the graphic patterns

2: Graphic pattern clustering:
for each Layer Ll do

c = Il/2, Cl=kmeans.cluster(Listl, c);
for Cc

l in Cl do Cl
locked = [];

if Len(Cl
c)== 1 then # Merge single filter clusters

Cl
locked.append(Cl

c);
c=c-1;

c=Max(c)
return Cl

c

Fig. 5 illustrates some AM visualized input patterns, which
come from 8 selected convolutional layers (CLs) trained with
VGG-16 model and CIFAR-10 dataset [42]. From Fig. 5, we
can see that: (1) The functionality visualization of filters in
shallow layers (e.g., CL1 1 and CL2 1) tend to be colors
or simple shapes, which are mostly basic features and have
no clear class activation preference. (2) As the layer goes
deeper, the complexity and variation of visualized patterns
increase. The visualized patterns can contain clear class object
patterns (e.g., “car” and “bird”), indicating that these filters
begin to form activation preference for dedicated classification
targets. (3) For each class, there are certain groups of convolu-
tional filters with similar dedicated class activation preference
(indicated by the red rectangles), which can compose of a
determinant meta-component for this class activation across
deep layers. (4) After the CNN is well trained on specific
datasets, these phenomena are universal for all classes (i.e.,
10 classes in the CIFAR-10).

Based on this observation, we found that many filters
may share dedicated class activation preferences w.r.t. filter
functionality. To further prepare those filters for class-adaptive
reconfiguration, we also cluster them based on the AM visu-
alized patterns.

B. Filter Functionality-oriented Clustering
The visualized input patterns demonstrate certain filters’

class activation preference and similarity. To briefly interpret
the connections between filters and specific class targets, we
therefore conduct clustering upon the visualized input patterns.

As illustrated in Algorithm 1, we first utilize the AM to
obtain the visualized input patterns of each convolutional filter.
Then, we adopt k-means algorithm with pixel-level Euclidean-

distance between the AM visualized input patterns of filter F l
k

and F l
i :

SE [V (Fl
i ), V (Fl

k)] = kV (Fl
i )� V (Fl

k)k
2, (4)

which we use to indicate the functionality similarity of any
two convolutional filters.

To determine the proper cluster number (i.e. c) in each
layer, we first choose the cluster number as half of the total
filter number (i.e., Il/2) in each layer. Then, during running
the k-means clustering algorithm, many clusters may only
contain one filter with extremely minimal similarity with
others. These non-clustered filters are merged in a special
cluster Cl

locked, which is considered to have unique features
and won’t participate the later class adaptive filter pruning.
Finally, the final maximal c after merging the one filter clusters
is selected as final cluster number for each layer.

To demonstrate the effectiveness of our proposed clustering
method, we compare with the functional similarity evaluation
of filters based on cosine similarity and Euclidean-distance
between the filter weights. As shown in Fig. 6 the visualized
filter pattern in the first column is visually similar to the
second column one. However, their cosine similarity score
did not truly reflects this visual similarity. For instance, the
filter’s visualized pattern in the first column of Fig. 6 has
large invariant compared to the fourth pattern while filter’s
cosine similarity is smaller than the other three patterns.
This indicates the cosine similarity of filter’s weight fails to
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Filter Index 154 163 174 185
Cosine Similarity 0.62 0.62 0.53 0.74 
Weight Distance 1.448 1.468 1.451 1.481
Pattern Distance 10018 10376 10308 10160
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Fig. 6: The evaluation of filter similarity by different distance
metrics (i.e. cosine similarity of filter weights and euclidean
distance of filter weights and AM pattern) for filters in CL5 2
of VGG-16.

represent the function of convolutional filter from humans
perspective. Although the Euclidean-distance between filter
weights could also reflect the functioanlity similarity between
filters to some extent, the distance difference between filter
weights is much smaller. Hence, in our work, we utilized the
Euclidean-distance between the AM pattern for clustering.

In addition, we evaluate the activation (feature map) of the
selected filter by feeding in the testing images. As shown is the
fifth row of Fig. 6, the x-axis is the class index and the y-axis
is average filter activation on corresponding test images. We
can see that each filter can be activated by their corresponding
class images with distinctive high confidence. In other words,
the filter can only be activated by one specific classes. This
also proves the correctness and effectiveness of our AM pattern
based filter functionality identification.

In Table. I, we show the filter cluster distribution based on
k-means analysis. For a VGG-16 model with 13 convolutional
layers, the filters in each layer are grouped into 14 to 61
clusters. With the layer depth increment, the cluster number
also becomes larger: in layer Conv5 2, the cluster number is as
large as 61. This is because of the feature complexity increases
with more divergent visualized activation preference patterns.
Meanwhile, our proposed method can effectively cluster most
filters. The minimum cluster ratio across all convolutional lay-
ers remains above 85%. In average, about 93% filters are well
clustered through the whole model, indicating our method’s
sufficient filter functionality similarity analysis capability.

C. Clusters’ Class Activation Preference Identification
Based on the visualized patterns, we have clustered the

filters in each convolutional layer based on their feature

TABLE I: Filter Cluster State of VGG16 Model.

Layer K Filters Ratio Layer K Filters Ratio
Conv1 1 15 62 96.8% Conv4 1 27 447 87.3%
Conv1 2 17 64 100% Conv4 2 28 437 85.4%
Conv2 1 20 128 100% Conv4 3 38 439 85.7%
Conv2 2 31 121 94.5% Conv5 1 46 500 97.7%
Conv3 1 26 251 98.0% Conv5 2 61 503 98.2%
Conv3 2 24 251 98.0% Conv5 3 40 506 98.8%
Conv3 3 14 239 93.4% Sum 387 3942 93.3%

preference similarity. And from the observation from Fig. 5,
we can also find that the feature preference may demonstrate
certain class-related patterns, e.g., car, bird, etc. Therefore, in
this part, we aim to quantitatively identify the class activation
preference for filter clusters to associate each of them with its
dedicated classification functionality.

Specifically, we evaluate the class activation impact of
each filter cluster by examining their backward-propagation
gradients from different class logits, which demonstrate the
impact of each convolutional filter towards a given class:

�i,yj =
1

N

NX

n=1

����
@P (yj)

@Ai(xn)

���� , (5)

where P (yj) is the output probability of a sample image n
corresponding to the class yj , and Ai(xn) is the activation
(output feature map) of filter Fi for each test image n.
@P (yj)/@Ai(xn) is the backward-propagation gradient of
class yi to filter Fi, which indicates the activation contribution
of filter Fi to class yj . Specifically, the gradient calculation
is conducted on a large batch (N) of samples in the training
dataset so as to get an unbiased estimation of the gradient.
And the averaged value of �i,yj on all tested samples will be
considered the filter’s activation preference to a certain class.

For each individual cluster, the class activation preference of
all I filters are averaged, and the largest activation class target
is considered as the cluster’s class functionality preference:

�c,yj =
1

I

IX

i=1

�i,yj . (6)

By doing so, we utilized the class activation preference to
quantitatively associated each filter cluster with their dedicated
classification target (i.e., a class label, maximum �c,yj ), thus
identifying their functionalities.

In the next section, we will introduce how to reconfigure
a pre-trained model in class-level by removing filter clusters
associated with unneeded classification targets.

V. CLASS-ADAPTIVE MODEL RECONFIGURATION

This section illustrates our class-adaptive CNN reconfigura-
tion framework. Specifically, we design a set of class-adaptive
CNN filter pruning methods for our reconfiguration. After that,
we deploy the light-weight and class-adaptive models onto the
mobile devices based on their specific application.

A. Class-adaptive CNN Filter Pruning
Based on our previous filter clustering and class activation

preference identification, most convolutional filter clusters are
associated with certain dedicated class targets. Based on the
visualization analysis, different layers demonstrate various
class activation preference divergence. Meanwhile, in each
layer, filter clusters with same class label also have different
activation preference strength. Therefore, we introduce CNN
layer-level and cluster-level pruning schemes in order to main-
tain the optimal pruned model accuracy.

Layer-level: We first introduce the CNN layer-level pruning
for different convolutional layers. Our design motivations
come from the visualization results in Fig. 5. Through the
feature preference visualization, we find the filters demonstrate
stronger class activation preferences in deep CLs. Therefore,
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Fig. 7: The Evaluation of Class Activation Preferences of
Different CLs in VGG-16 and AlexNet model.

CaptorX should conduct filter pruning from the deep CLs to
shallow CLs since filters in deep CLs are more class-specific.

Quantitatively, to evaluate the class activation preference
differences, we define the class activation preferences level of
lth CL as:

Ll =

vuut 1

C

CX

c=1

Sc,l, Sc,l =

vuut 1

J

JX

j=1

(�c,yj�µ)2, (7)

where C is the total cluster amount in lth layer, and Sc,l is the
standard deviation of each filter’s class activation towards dif-
ferent classes in one cluster. By such a definition, the standard
deviation could indicate how much the filter clusters differ
in their class activation preference: The larger the standard
deviation, the more distinct class activation preference that
different filter clusters would have. Ll is the average standard
deviation of all filter cluster activation preference on different
classes. Thus, the layer has larger Ll indicate stronger class
functionality divergence, which should be pruned first.

Fig. 7 shows the normalized layer class activation preference
level versus different CLs in VGG-16 and AlexNet model. The
layer number of AlexNet is represented with brackets in the x-
axis. We can observe that: (1) As the layer number increases,
the layer class activation preference level becomes larger,
which indicates deeper CLs have stronger classes activation
divergence. (2) For the VGG-16 and the AlexNet model, layer
class activation preference level become larger starting from
CL4-1 and CL4 respectively. This preliminary analysis justifies
our pruning scheme design.

Cluster-level: As there are a large number of independent
clusters distributed in each layer, varied functionality strength
also presents in different filter clusters. Therefore, a carefully-
managed cluster-level pruning is also necessary to maintain
the optimal model accuracy.

Considering the filter cluster volume and class activation
importance, we define the functionality importance of one
cluster c in layer Il as:

Lc,l = ↵ · length(Cl
c)⇥ � · Sc,l, (8)

where the length(Cl
c) calculates the cluster volume size. The

design heuristic is as follows: We first select the unneeded
filter clusters based on their cluster label. For these unneeded
clusters, two factors are taken into consideration. First, the
cluster with larger cluster volume counts for more classifica-
tion contribution to the unneeded classes. Second, the cluster
with a larger standard deviation among unneeded classes
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Fig. 8: Class-adaptive CNN Reconfiguration Framework.

should have certain stronger functionalities towards one or
more unneeded class targets. Thus, we normalize two factors
into the same scale and take these two factors into importance
consideration. And finally, the clusters with larger Lc,l would
be first pruned since their functionality mainly focuses on
unnecessary class targets. Although pruning unneeded clusters
will also affect the ability to classify needed classes only
if the reconfigured model needs to distinguish between the
needed classes and unneeded classes at the same time. Since
our reconfigured model is target to classify the needed classes,
so pruning the pruning unneeded clusters will not affect the
performance of the reconfigured model.

B. Class-adaptive Model Reconfiguration
With the defined layer-wise class activation preference level

Ll and cluster-wise class activation preference level Lc,l, we
can conduct our proposed class-adaptive model reconfiguration
framework for local class-specific model deployment.

Fig. 8 shows the detailed implementation of our class-
adaptive reconfiguration. Based on the filter clustering through
filter visualization and class activation preference identifica-
tion, the filters are associated with certain class targets. Such
CNN interpretation results for model configurations are stored
in a look-up table (LUT) with the general model online. When
the local mobile devices request certain CNN with dedicated
classification targets, the general model can be intuitively
reconfigured according to the LUT for local deployment.
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Specifically, CaptorX have great reconfiguration flexibility,
which can reconfigure a pre-trained full-class model into single
class-specific models or with certain class combinations. In
the reconfiguration, CaptorX finely prunes the unneeded filters
cluster from the deep layers to shallow layers. The first several
layers (i.e., shared layers indicated by the blue rectangle in
Fig.8) extract the basic features are shared by all the class-
specific models. Meanwhile, class-specific meta-components
in the deep layer are preserved for dedicated class targets.

For example, Fig. 9 shows the accuracy drop and pruned
filters when the pre-trained full-class AlexNet and VGG-16 are
reconfigured to 5 class-specific model on CIFAR10. According
to the LUT, CaptorX prunes all the unneeded clusters from
deep CLs to shallow CLs and examine the classification
accuracy. As a result, CaptorX can prune 851 unneeded filters
in total from CL5-3 to CL3-3 without accuracy drop in VGG-

16, marked by the green “⇥”, which indicates the optimal
reconfiguration setting without model retraining. The AlexNet

model has a more compact network structure, but as shown in
the Fig. 9, CaptorX can still prune many unneeded filters in
AlexNet model with optimal accuracy maintained. Therefore,
the reconfigured class-specific models can be directly used for
application deployment, enabling outstanding reconfiguration
flexibility and feasibility.

We also compared our reconfiguration method with previous
works [9] and [21] by pruning same amount of filter in each
layer. Guo et al. [9] proposed to select filters based on the
sensitivity analysis. Different with our method, they pruning
filter without clustering filters, but the filters are ranked by
the sensitivity score. As shown in the Fig. 9, our method
can maintain higher accuracy when pruning same amount of
filters. While, in the [21], Li et al. [9] pruning filter that are
unimportant in general (i.e., L1 norm ranking of filter weights).
We can see that the accuracy drop is much larger without
considering the filter’s class preference.

VI. DISTRIBUTED MODEL COLLABORATION

In this section, we apply CaptorX in a distributed manner
and demonstrate an efficient distributed collaborative training
application built upon our reconfiguration framework. In this
application, the reconfigured class-specific models can be
further trained on distributed mobile devices. Meanwhile, with
our collaboration policy, the class-adaptive models can be
collected back and further improve the performance of the
central full-class model.

A. Further Performance Improvement by Local Training
By aforementioned class-adaptive reconfiguration, the class-

specific lightweight models can be directly deployed to mobile
devices for inference. Furthermore, leveraging the local device

TABLE II: Different Local Training Configs. for 5 Classes.

Configuration 0 100 300 500 700 1k 8k
Tune FC layer 83.8 84.3 85.6 84.9 85.1 84.1 92.1

Tune Class-Specific
& FC layer

83.8 84.5 85.7 85.1 85.6 85.8 93.3

Tune All layer 83.8 84.0 84.7 84.5 83.7 84.1 91.4

computation capability, we can prune the pre-trained full-
class model more aggressively to achieve more computation
reduction. After the reconfigured class-specific light-weight
model was deployed to the local devices, the filter clusters
in the class-specific layers can be quickly trained locally (i.e.,
conducting on-device learning).

In CaptorX, different class-specific models are deployed
onto distributed mobile devices with shared layers and class-
specific meta-components. Therefore, we need certain training
regulation for the distributed collaboration so as to avoid
training divergence.

Specifically, our local training regulation freezes the filter
weights of the first several layers (the shared layers learned)
of the class-specific models, and trains the deep layers (class-
specific layers). Such a design motivation is because the first
several layers capture basic features like edges, lines, and
colors, which are not very specific to a particular classification
target. To prove our regulation’s effectiveness, Table II shows
the on-devices training results of a local 5 class model under
different training regulations. In the first regulation setting
(Tune FC layer), the shared layers and class-specific layers are
frozen while only the final classifier are trained. In the second
regulation setting (Tune Class-specific & FC layer), only the
shared layers are frozen. The class-specific layers and final
classifier are trained. In the third regulation setting (Tune All
layers), all the layers are trained. As shown in the Table II,
we can achieve best classification accuracy with 8K retraining
iterations when freezing the shared layers and training the
class-specific and fully-connected layers. However, training all
layers demonstrate the lowest classification accuracy. Thus, in
our distributed collation we only train the class-specific and
fully-connected layers.

Meanwhile, to show the generality of our local training
framework, Fig. 10 compares the local training process when
we deploy the class-adaptive VGG-16 with different number of
classification targets. In the Fig. 10 (a), each mobile device was
deployed a single class target model. While in the Fig. 10 (b),
the pre-trained VGG-16 are reconfigured into 2 to 10 classes
models. We can see that: (1) Both fine-tuning processes can
quickly recover reconfigured class-adaptive model’s accuracy.
(2) And when the local device decoupled with single class to
perform one-vs-all classification, the model can achieve up to
98% classification accuracy. (3) With more class targets in the
class-adaptive models, the accuracy will be closed to the pre-
trained model with optimal accuracy. This demonstrates the
effectiveness of our local training policy, which could utilize
distributed mobile devices’ training capability to improve the
local model accuracy.

B. Distributed Model Collaboration Policy
With the local class-specific models well trained, CaptorX

is also able to collaboratively improve the central full-class
model. The underlying foundation of this scheme is to collect
shared layers and different class-specific meta-components
back to the central model.

Figure 11 shows the full-class model aggregation process
in distributed collaboration. In the training process, each
mobile device can communicate and share their class-specific
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updated weight parameters with the central full-class model.
Therefore, the central model doesn’t require the local training
data from the distributed devices. After each training round
(E epochs), each mobile device would also download the
most updated weight parameters from the central model, and
thus indirectly collaborate and achieve consensus with other
device during the collaborative training. As a result, all local
participants would collaboratively produce a more accurate
full-class model which is better than any local model produced
by their standalone training.

Specifically, algorithm 2 shows our distributed model col-

Algorithm 2 Distributed Model Collaboration with
Class-specific Filter Cluster Average

1: CaptorX On-Device Training:
for each round 1, ..., t in T; do

for each mobile device 1, ..., k in K; do
Receive wsl(t) and wcls(t) from CaptorX Cloud;
Set wk

cls(t) = wcls(t);
Set wk

sl(t) = wsl(t);
Perform local update and obtain wk

sl(t) and wk
cls(t);

Send wk
sl(t) and wk

cls(t) to CaptorX Cloud;

2: CaptorX Cloud Aggregation:
Reconfigure the pre-trained full-class CNN according to LUT;
Send shared layers wsl(t) and selected class-specific clusters
wcls(t) to local devices;

repeat
Receive wk

sl(t) and wk
cls(t) from each local devices k;

Average shared weights and all identical filter clusters;
Send averaged parameters to local devices;

return Enhanced Cloud Central Model;
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Accuracy with Different Subset of Class Targets.

laboration policy utilizes the weight average policy as used
in the the Federated Learning [39]. First, the CaptorX cloud
needs the initialization of class-specific models by model
reconfiguration to start the training. According to LUT and
classification tasks, each local mobile device was sent the
shared layers wsl and the selected class-specific filter clusters
wcls(t). Second, each local device trains the class-specific
model on the local data and calculates the updates of the filter
clusters in parallel. Since our distributed models are hetero-
geneous, our weight averaging policy are thus different from
previous ones: (1) We average the shared layers’ parameters
for all local models since they are shared by all models; (2) For
the class-specific filter clusters, we average such filter clusters
only among models who share this class. Finally, the cloud
collects the parameters of all local devices, aggregates the
updates with the average of all corresponding filter clusters,
then updates the cloud full-class model.

VII. EXPERIMENTS AND EVALUATION

In this section, a series of experiments are conducted to
evaluate the effectiveness of the proposed CaptorX framework
from three perspectives: (1) Class-adaptive model reconfigu-
ration without local training. (3) Class-adaptive model perfor-
mance improvement with local training. (3) Distributed model
collaboration evaluation.

A. Experiment Setup
To enable the class-adaptive CNN model reconfiguration

framework, we implement the model reconfiguration of Cap-

torX on a desktop PC with dual NVIDIA GTX 1080. For the
mobile deployment, we implement the CaptorX on Google
Nexus 5X mobile phones to demonstrate its reconfiguration
feasibility and efficiency.

Datasets We select three commonly used computer vision
datasets, namely CIFAR10, CIFAR100 and ImageNet10, con-
taining a small, and a large number of class targets, represent-
ing an easy, and a difficult classification task correspondingly.

• CIFAR10: This dataset contains 50K training images and
10K testing images belonging to 10 class targets.
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TABLE III: Comparison between the original 10-class VGG-

16 model and a reconfigured 5-class VGG-16 model on
reduced percentage of FLOPs from the pruned filters.

Layers Before After
#Filters #FLOPs #Filters #FLOPs FLOPs Pruned

CL1 1 64 1.84e+06 64 1.84e+06 0%
CL1 2 64 3.78e+07 64 3.78e+07 0%
CL2 1 128 1.89e+07 128 1.89e+07 0%
CL2 2 128 3.78e+07 89 2.63e+07 30.47%
CL3 1 256 1.89e+07 231 1.19e+07 37.23%
CL3 2 256 3.78e+07 203 2.70e+07 28.44%
CL3 3 256 3.78e+07 245 2.87e+07 24.10%
CL4 1 512 1.89e+07 424 1.50e+07 20.74%
CL4 2 512 3.78e+07 473 2.89e+07 23.49%
CL4 3 512 3.78e+07 343 2.34e+07 38.10%
CL5 1 512 9.44e+06 383 4.73e+06 49.88%
CL5 2 512 9.44e+06 387 5.55e+05 43.45%
CL5 3 512 9.44e+06 344 4.79e+05 49.21%
Liner 10 5.13e+03 5 1.75e+02 66.37%
Total 4234 3.13e+08 3383 2.34e+08 25.21%

• CIFAR100: This dataset contains 50K training images
and 10K testing images belonging to 100 class targets.

• ImageNet10: This dataset is a subset of the ILSVRC
ImageNet. It contains 13K training images and 5K testing
images belonging to top 10 most popular classification
categories based on the popularity ranking provided by
the official ImageNet website.

CNN Models Three representative CNN models, namely
AlexNet, VGG-16, and MobileNet, are used as implementation
targets with task-adaptive reconfiguration. To get the baseline
accuracy for each network, we train each model from scratch.

• AlexNet: This model has the same number of layer and
filter as the original AlexNet that is designed for the
ImageNet datasets. While we modified the all original
filters’ size to 3⇥3 while keeping the number of filters in
each layer as the same as the original model, which can
be trained with the CIFAR10 datasets and achieve 90.6%
classification accuracy.

• VGG-16: This model contains 13 convolutional layers,
which is widely used in various computer vision tasks.
This model can achieve 93.1%, 72.5%, and 92.8% clas-
sification accuracy on the CIFAR10, CIFAR100 and Ima-

geNet10 datasets respectively.
• MobileNet: The MobileNet is a family of mobile-first

computer vision models [2]. We adopt the MobileNetV1

for our class-adaptive model reconfiguration. This model
can achieve 67.3% and 85.7% classification accuracy on
the CIFAR100 and ImageNet10 datasets respectively.

Since our framework relies on the output feature maps
to calculate the class activation preference – �c,yj , we use
the training images for both the model reconfiguration and
the class-adaptive model training. All accuracy numbers are
measured by the testing images. By using mobile support from
the PyTorch and Android studio development platform, we are
able to deploy the class-specific models to mobile devices.

B. Model Reconfiguration without Local Training
In this section, we first evaluate our class-adaptive model

reconfiguration framework without local training capability.
1) Classification Accuracy Evaluation

We evaluate the classification accuracy in different class
target number for VGG-16 and AlexNet, respectively. Fig. 12
shows the classification accuracy and computation load reduc-
tion when the CNN model is reconfigured to class-specific
model from 1 class to 9 class targets. For each test case
with certain class number, we randomly choose 10 different
combinations of classes to test the pruned models.

As shown in Fig. 12, for the different number of class
targets, the length of orange bars demonstrate classification
accuracy of 10 repeated experiment. The length of green bars
shows the computation load (FLOPs) reduction under different
class target number. The average value is demonstrated by
the solid lines. We can observe that: (1) Even with 40% of
the FLOPs reduction, the reconfigured 2 and 3-class model
on average still achieve an optimal accuracy for both VGG-

16 and AlexNet. (2) Models for different combinations of
classes with the optimal accuracy maintained vary in FLOPs
reduction, especially when the network is reconfigured to
a small number of class target. For instance, the FLOPs
reduction in a reconfigured 2-classes VGG-16 model varies
from 24% to 58%. That is because different class depends
on the different subset of clusters. Some classes depend on
fewer clusters which can achieve more aggressively FLOPs
reduction.

2) Computation Load Reduction
To clearly illustrate the model reconfiguration setting and

computation load reduction from each layer, we present a
reconfigured 5-class VGG-16 model on CIFAR10 as a case
study. We compared a pre-trained 10-class VGG-16 model
with our reconfigured 5-class VGG-16 model in FLOPs reduc-
tion percentage layer by layer. The original architecture and
reconfigured architecture of the VGG-16 model is shown in the
Table III. The convolutional layers of VGG1-6 can be divided
into 5 groups and more filers are contained in the higher
groups. Since the higher convolutional layers demonstrate
stronger exclusive activation preference, more filters can be
removed in the higher layer, which benefits for our framework.

We can see that CaptorX achieves 25.21% FLOPs reduction
in total with optimal accuracy maintained. Moreover, the
FLOPs reduction from the lower CLs is relatively small, and
there are even no pruned filters in the first three CLs. That is
because the filters in the first few layers extracted the basic
features, and have more balanced class activation preference
on different class targets.

3) Computation Resource Reduction Evaluation
Table IV shows the average energy consumption and

inference time per sample under the different number of
class targets. For the reconfiguration configuration, D Fr

mens the last D convolutional layers are reconfigured (class-
specific layers) with Fr% of class related filters are preserved.
Since this reconfiguration does not require model retraining to
compensate the accuracy drop, we preserve all class related
filters. We can see that: (1) For energy consumption, when
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TABLE IV: Average Computation Resource Reduction Per Sample Under Different Class Targets w/o Retraining.
Classes 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Configuration (D Fr%) 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 - 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 3 100 -

V
G

G
-1

6

FLOPs Pruned 32.9% 40.53% 38.79% 33.79% 25.29% 23.01% 22.71% 14.13% 7.49% 0%

A
le

xN
et

42.83% 41.08% 38.61% 37.62% 34.75% 32.13% 30.83% 24.13% 14.79% 0%

Energy(mJ) 1351 1170 1280 1346 1460 1510 1532 1651 1755 1885 752 772 802 816 857 902 919 977 1070 1205

Energy Saved 28.3% 37.9% 32.1% 28.6% 22.5% 19.9% 18.7% 12.4% 6.9% - 37.6% 35.9% 33.4% 32.2% 28.9% 25.1% 23.7% 18.9% 11.2% -

Inference Time(ms) 44.8 47.2 50.4 53.3 60.6 61.7 62.1 67.6 72.9 80.7 26.2 27.6 29.3 29.4 30.7 32.8 33.1 35.1 38.1 42.4

Time Saved 44.5% 41.5% 37.5% 31.4% 24.9% 23.5% 23.0% 16.2% 9.7% - 38.2% 34.9% 30.8% 30.7% 27.6% 22.6% 21.9% 17.2% 10.1% -

*VGG Baseline: Accuracy (93.1%), Latency (80.7 ms), Energy (1885.4 mJ), Memory (149.2 MB). *AlexNet Baseline: Accuracy (90.1%), Latency (42.4 ms), Energy (1250.7 mJ), Memory (157.4 MB).
*(D Fr%): last D layers are reconfigured (class-specific layers) with Fr% class related filters are preserved.

TABLE V: Average Computation Resource Reduction Per Sample of MobiNetV1 Under Different Class Targets w/o Retraining.
Classes 10 15 20 25 30 35 40 45 50 100 1 2 3 4 5 6 7 8 9 10

Configuration (D Fr%) 8 100 8 100 8 100 8 100 8 100 8 100 8 100 8 100 8 100 - 8 100 8 100 8 100 8 100 8 100 8 100 8 100 8 100 8 100 -

C
ifa

r1
00

FLOPs Pruned 28.12% 26.21% 25.54% 24.53% 23.23% 22.31 % 19.22% 17.11% 16.81% 0%

Im
ag

eN
et

10

23.94% 22.17% 16.24% 14.41% 10.23% 9.51% 7.92% 6.13% 5.32% 0%

Energy(mJ) 201.2 204.7 217.4 218.5 219.6 222.5 226.7 230.2 231.8 265.8 255.5 259.8 274.4 280.9 291.9 292.6 302.6 308.8 312.4 324.7

Energy Saved 20.8% 20.0% 15.5% 13.5% 10.1% 19.9% 6.8% 4.9% 3.8% - 21.3% 20.0% 15.5% 13.5% 10.1% 9.9% 6.8% 4.9% 3.8% -

Inference Time(ms) 15.2 15.3 15.5 15.6 15.7 15.8 15.9 16.0 16.3 18.3 192.4 200.3 206.9 208.6 216.9 219.1 226.0 227.9 230.8 238.4

Time Saved 17.2% 16.6% 15.1% 14.9% 14.2% 13.4% 12.9% 12.4% 11.2% - 19.3% 16.0% 13.4% 12.5% 9.0% 8.1% 5.2% 4.4% 3.2% -

*MobileNetV1 CIFAR100 Baseline: Accuracy (67.3%), Latency (18.3 ms), Energy (265.8 mJ), Memory (35.2 MB). *MobileNetV1 ImageNet10 Baseline: Accuracy (85.2%), Latency (238.4 ms), Energy (324.7 mJ), Memory (63.4 MB).
*(D Fr%): last D layers are reconfigured (class-specific layers) with Fr% class related filters are preserved.

the class number choose from 1 to 9, CaptorX can achieve at
most 37.9% energy consumption reduction for VGG-16 and
37.6% for AlexNet. (2) For the inference time, when the class
number choose from 1 to 9, CaptorX can save at most 44.5%
time for VGG-16 and 38.2% time for AlexNet. Therefore,
CaptorX can be well deployed on the mobile device and save
both energy and inference time to satisfy various resource-
constrained mobile scenarios.

Table V shows the average energy consumption and in-
ference time per sample for MobiNetV1 on CIFAR100 and
ImageNet10. Since MobileNet spends most portion of com-
putation time and parameters in 1 ⇥1 convolutions [2], our
reconfiguration mainly focus on the 1⇥1 stand convolutional
layers rather than depth-wise convolutional layers. We can
see that: (1) For the CIFAR100, when the class number
choose from 50 to 10, CaptorX can achieve at most 28.12%
energy consumption reduction and 20.8% for inference time
reduction. (2) For the ImageNet10, when the class number
choose from 9 to 1, CaptorX can achieve at most 21.3%energy
consumption reduction and 19.3% inference time reduction.

C. Model Reconfiguration with Local Training
In this section, we further evaluate class-adaptive model

performance acceleration with local training. By leveraging

the local device computation capability, we can prune the pre-
trained full-class model more aggressively to achieve more
computation reduction.

1) Classification Accuracy Evaluation
We evaluate the classification accuracy in different class

reconfiguration for AlexNet and VGG-16 respectively. Fig. 13
shows the classification accuracy when the CNN model is
reconfigured to different class targets (CIFAR10: 2 to 10, and
ImageNet10: 2 to 10, CIFAR100: 10 to 50). Same as the
evaluation without model retraining, for certain number of
class target, we evaluate average inference accuracy of the
10 random combinations.

As shown in Fig. 13, for different number of class targets,
we demonstrate the classification accuracy of our proposed
reconfiguration method, training from scratch and baseline
accuracy. The training from scratch is based on a original full-
size model but trained on the specific number class targets. The
original accuracy is the original pre-trained model accuracy on
the specific number class targets.

We can observe that: (1) Compared with the the training
from scratch, our method can achieve comparable accuracy.
However, our method only requires only one-tenth retraining
epochs to reconfigure the pre-trained model to any small
models. (2) Our reconfigured model can achieve higher ac-
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Model Testing on Subset of Classes.
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Fig. 14: Distributed Model Collaboration Evaluation.
Solid Line: Accuracy of Aggregated Full-class Model; Dash Line: Accuracy of Class-specific Models on Device Training.

curacy than the full-class model (original) testing accuracy
under all different subset of classes, especially when the
CNN model is reconfigured with a small number of class
target. For instance, 2-classes VGG-16 on the CIFAR10 model
can achieve up to 98.35%. Note that the full-class model
classification is much harder than the reconfigured model.
The accuracy improvement is mainly benefit from the specific
utilization scenario.

2) Computation Resource Reduction Evaluation
In this section, we will further evaluate the computation

resource reduction in terms of inference latency, energy con-
sumption, and memory occupation in mobile devices.

Table VI shows the computation resource reduction per
sample under the different number of class targets for the
AlexNet and VGG-16 on CIFAR10. For the AlexNet, the
optimal class adaptive configuration is D=3, Fr = 4%. For
the VGG-16, the the optimal class adaptive configuration is
D=7, Fr = 4%. We can see that: (1) For energy consumption,
when the class targets choose from 2 to 10, CaptorX can
achieve at most 41.2% energy consumption reduction for
AlexNet and 61.4% for VGG-16. (2) For the inference time,
when the class number choose from 2 to 10, CaptorX can
save at most 66.5% time for AlexNet and 42.6% time for
VGG-16. (3) For the memory occupation, when the class
number choose from 2 to 10, CaptorX can save at most 19.5%

time for AlexNet and 72.5% time for VGG-16. (4) Note that,
when the number of class target is 10, our methods can be
viewed as tradition model compressing without class-adaptive
reconfiguration. However, our method can still significantly
reduce the computation resource consumption.

Table VII shows the computation resource reduction per
sample under the different number of class targets for the
VGG-16 on CIFAR100 and ImageNet10. With more class
composition (i.e., CIFAR100), the filters clusters in meta-
component becomes less. The optimal class adaptive configu-
ration is D=6, Fr = 1%. With more input image complexity
(i.e., ImageNet10), each meta-component needs more filter
clusters to extract input features. As a result, the the optimal
class adaptive configuration is D=6, Fr = 10%. We can see
that: (1) When the class targets choose from 10 to 50, CaptorX

can achieve at most 59.4% energy consumption reduction,
38.9% inference time reduction and 70.6% memory reduction
for VGG-16 on CIFAR100. (2) When the class targets choose
from 2 to 10, CaptorX can achieve at most 32.1% energy
consumption reduction, 37.1% inference time reduction and
6.9% memory reduction for VGG-16 on ImageNet10.

Therefore, CaptorX can be well deployed on the mobile
device and save both energy and inference time to satisfy
various resource-constrained mobile scenarios.

TABLE VI: Average Computation Resource Reduction for AlexNet and VGG-16 on CIFAR10 with Retraining.

Classes 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10

Configuration (D Fr%) 3 4% 3 4% 3 4% 3 4% 3 4% 3 4% 3 4% 3 4% 3 4% 7 4% 7 4% 7 4% 7 4% 7 4% 7 4% 7 4% 7 4% 7 4%

A
le

xN
et

on
C

IF
A

R
10 FLOPs Pruned (%) 70.86 69.75 68.64 67.53 66.42 65.31 64.20 63.09 61.98

V
G

G
-1

6
on

C
IF

A
R

10 50.13 49.60 49.07 48.54 48.01 47.48 46.49 46.42 45.89

Energy(mJ) 320.74 324.61 328.49 332.36 336.23 340.10 343.97 347.84 351.72 140.76 141.15 141.54 141.93 142.31 142.70 143.09 143.48 143.87

Energy Saved (%) 41.2 40.5 39.8 39.1 38.4 37.6 36.9 36.3 35.6 61.4 61.3 61.2 61.1 61.0 60.9 60.8 60.7 60.6

Inference Time(ms) 72.35 74.6 76.86 79.11 81.36 83.61 85.87 88.12 90.37 50.42 50.82 51.21 51.61 52.0 52.4 52.8 53.19 53.59

Time Saved (%) 66.5 65.5 64.4 63.4 62.3 61.3 60.2 59.2 58.2 42.6 42.1 41.7 41.2 40.8 40.3 39.8 39.4 38.9

Memory(MB) 131.66 132.03 132.41 132.78 133.15 133.52 133.9 134.27 134.64 40.96 41.32 41.68 42.04 42.4 42.76 43.12 43.48 43.84

Memory Saved (%) 19.5 16.1 15.8 15.6 15.4 15.1 14.9 14.7 14.5 72.5 72.3 72.0 71.8 71.5 71.3 71.0 70.8 70.6

*AlexNet Baseline: Accuracy (90.1%), Latency (216.2 ms), Energy (545.7 mJ), Memory (157.4 MB). *VGG Baseline: Accuracy (93.1%), Latency (87.84 ms), Energy (365.4 mJ), Memory (149.2 MB).
*(D Fr%): last D layers are reconfigured(class-specific layers) with Fr% class related filters are preserved.
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TABLE VII: Average Computation Resource Reduction for VGG-16 on CIFAR100 and ImageNet10 with Retraining.

Classes 10 15 20 25 30 35 40 45 50 2 3 4 5 6 7 8 9 10

Configuration (D Fr%) 7 4% 7 4% 7 4% 7 4% 6 1% 6 1% 6 1% 6 1% 6 1% 6 10% 6 10% 6 10% 6 10% 6 10% 6 10% 6 10% 6 10% 6 10%

V
G

G
-1

6
on

C
IF

A
R

10
0 FLOPs Pruned (%) 45.91 43.26 40.60 37.94 37.43 37.15 36.86 36.57 36.28

V
G

G
-1

6
on

Im
ag

en
N

et
10 37.23 36.30 35.38 34.45 33.52 32.59 31.66 30.74 29.80

Energy(mJ) 148.12 148.4 148.69 148.97 149.25 149.54 149.82 150.10 150.39 1736.2 1759.9 1783.6 1807.3 1831.0 1854.6 1878.3 1902.0 1925.7

Energy Saved (%) 59.4 59.3 59.3 59.2 59.1 59.1 59.0 58.9 58.8 32.1 32.2 30.3 29.3 28.4 27.5 26.5 25.6 24.7

Inference Time(ms) 53.59 55.57 55.57 55.57 60.01 60.24 60.47 60.7 60.94 924.6 938.2 951.8 965.4 979.0 992.6 1006.2 1019.8 1033.4

Time Saved (%) 38.9 36.5 36.5 36.5 31.5 31.3 31.2 30.6 30.6 37.1 38.0 35.3 34.3 33.4 32.5 31.5 29.72 29.04

Memory(MB) 43.84 45.64 47.44 49.24 48.22 48.74 49.26 49.79 50.31 238.18 241.26 244.35 247.43 250.51 253.59 256.68 259.76 262.84

Memory Saved(%) 70.6 69.4 67.9 66.1 66.8 66.5 67.0 64.0 66.4 6.9 5.8 4.6 3.5 2.1 0.9 - - -

*VGG Baseline: Accuracy (72.15%), Latency (87.8 ms), Energy (365.5 mJ), Memory (149.5 MB). *VGG Baseline: Accuracy (92.8%), Latency (1470.1 ms), Energy (2558.2 mJ), Memory (255.93 MB).
*(D Fr%): last D layers are reconfigured(class-specific layers) with Fr% class related filters are preserved.

D. Distributed Model Collaboration Evaluation
In this section, we further evaluate the effectiveness of

our full-class model aggregation scheme. Two implementation
scenarios are designed in this part. (1) The CIFAR10 training
dataset is deployed to 4 mobile devices, and the two CNN
model are reconfigured into 4 class-specific model that each
has two three random class targets. (2) We randomly select 35
class targets from CIFAR100, and the total 100 class targets
are deployed on 4 mobile devices.

Fig. 14 shows the full-class model aggregation evaluation
for the AlexNet and VGG on the CIFAR10 and CIFAR100

dataset. For the AlexNet, the last 3 convolutional layers are
reconfigured with 4% of class related filters for each clas-
sification targets. For the VGG-16, the last 7 convolutional
layers are reconfigured with 4% of class related filters for each
classification targets. In our distribute training, we set E=1,
which means in each communication round the local devices
train the reconfigured model on their local for 1 epoch.

As shown in Fig. 14, the horizontal axis indicates the
communication round between the cloud server and each local
mobile devices, and the vertical axis indicates the local and
global training accuracy. We can see that, different local de-
vices demonstrate different classification performance on their
local training data due to different class targets combination.
However, for the AlexNet model on CIFAR10, the central
model can achieve 90.2% classification accuracy under 60
communication round. For the VGG-16 model on CIFAR10,
the global model can achieve 90.5% classification accuracy un-
der 50 communication round. After 50 communication round,
the VGG-16 model CIFAR100 can achieve 70.1% classification
accuracy while reducing up to 37.58% communication cost
compared to traditional distributed learning methods without
model reconfiguration.

Therefore, CaptorX can be well deployed on the mobile
device for distributed training scenario. The local private data
doesn’t need to upload to the cloud server while the global
model can still achieve optimal performance as the centralized
trained model.

E. Comparison with Related Works
In this section, we compared our proposed CaptorX with

other class-level reconfiguration methods in terms of classifi-
cation accuracy in the table VIII. We can see that our proposed
method outperforms the Tree-CNN in in both CIFAR10 and
CIFAR100 datasets. In addition, the model design in the

Tree-CNN is not fixed, it is computationally expensive and
time-consuming in designing and training new models [43].
However, our proposed CaptorX can quickly reconfigure the
pre-trained model into any small models. For the HSD-CNN,
SaiRam et al. measured the activation difference on each class
target by applying a certain amount of perturbation to each
filter [10]. They trained CNN models into class-specific tree
structures, which can be reconfigured to a different subset
of class targets. However, when the number of class targets
become larger, the computation increased significantly. Hence,
the HSD-CNN only reconfigure the pre-trained CNN with
relatively small subset of classification targets. Also, our
method still outperforms HSD-CNN in CIFAR100 dataset.

VIII. CONCLUSION

In this paper, we proposed CaptorX – a class-adaptive
CNN reconfiguration framework for high-performance mobile
computing. CaptorX can reconfigure the general pre-trained
full-class CNN model to class-specific CNN models for dedi-
cated mobile applications. In this framework, we identify the
convolutional filters’ exclusive activation preference to specific
class targets by CNN visualization, and propose a novel CNN
reconfiguration method based on the filters’ functionality.
With our layer-wise and cluster-wise model reconfiguration
optimization scheme, the reconfigured class-specific CNN
models can be well offloaded to mobile devices for optimal
computation efficiency and utilization feasibility. In addition,
we can also leverage the local computation capability to further
improve the local model computation efficiency. Furthermore,
CaptorX framework was implemented in a distributed col-
laboration setting, which can collaboratively update a central
model for inference and future reconfiguration.

In our future work, we will further examine the close com-
bination of the neural network visualization and the mobile
system features for more performance escalation.

TABLE VIII: Comparison of our proposed CaptorX frame-
work with other CNN class-oriented reconfiguration methods.

Datasets CIFAR10 CIFAR100

Classes 10 10 11 13 16 20 30 50

Tree-CNN [43] 86.24 85.2 * * * 82 79.2 69.0

HSD-CNN [10] 93.33 84.9 85 85.8 72.8 * * *

CaptorX 92.1 91.1 90.1 87.3 85.3 83.3 80.0 72.1

*Not reported in the original paper.
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