246 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

DiReCtX: Dynamic Resource-Aware CNN
Reconfiguration Framework for Real-Time
Mobile Applications

Zirui Xu , Fuxun Yu

Abstract—Although convolutional neural networks (CNNs)
have been widely applied in various cognitive applications, they
are still very computationally intensive for resource-constrained
mobile systems. To reduce the resource consumption of CNN
computation, many optimization works have been proposed for
mobile CNN deployment. However, most works are merely target-
ing CNN model compression from the perspective of parameter
size or model structure, ignoring different resource constraints
in mobile systems with respect to memory, energy, and real-
time requirement. Moreover, previous works take accuracy as
their primary consideration, requiring a time-costing retrain-
ing process to compensate the inference accuracy loss after
compression. To address these issues, we propose DiReCtX—a
dynamic resource-aware CNN model reconfiguration framework.
DiReCtX is based on a set of accurate CNN profiling models for
different resource consumption and inference accuracy estima-
tion. With manageable consumption/accuracy tradeoffs, DiReCtX
can reconfigure a CNN model to meet distinct resource con-
straint types and levels with expected inference performance
maintained. To further achieve fast model reconfiguration in
real-time, improved CNN model pruning and its corresponding
accuracy tuning strategies are also proposed in DiReCtX. The
experiments show that the proposed CNN profiling models can
achieve 94.6% and 97.1% accuracy for CNN model resource
consumption and inference accuracy estimation. Meanwhile, the
proposed reconfiguration scheme of DiReCtX can achieve at
most 44.44% computation acceleration, 31.69% memory reduc-
tion, and 32.39% energy saving, respectively. On field-tests with
state-of-the-art smartphones, DiReCtX can adapt CNN models to
various resource constraints in mobile application scenarios with
optimal real-time performance.

Index Terms—Convolutional neural network (CNN), mobile
device, model reconfiguration, neuron pruning, resource-aware.

I. INTRODUCTION

N THE past few years, convolutional neural networks
(CNNs) have been widely applied in various intel-
ligent applications, such as image classification [1]-[3],

Manuscript received October 14, 2019; revised January 7, 2020 and March
16, 2020; accepted May 3, 2020. Date of publication May 20, 2020; date of
current version January 20, 2021. This work was supported in part by NSF
under Grant 1717775. This article was recommended by Associate Editor
J. Xu. (Corresponding author: Xiang Chen.)

Zirui Xu, Fuxun Yu, Zhuwei Qin, and Xiang Chen are with the Department
of Electrical and Computer Engineering, George Mason University, Fairfax,
VA 22030 USA (e-mail: zxu2l @gmu.edu; fyu2@gmu.edu; zqin@gmu.edu;
xchen26 @gmu.edu).

Chenchen Liu is with the Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore, MD 21201 USA (e-mail:
ccliu@umbc.edu).

Digital Object Identifier 10.1109/TCAD.2020.2995813

, Zhuwei Qin, Chenchen Liu, and Xiang Chen

speech recognition [4]-[6], etc. Benefited by complex model
structures with massive parameters, CNNs achieve high recog-
nition inference accuracy. However, such model structures
also hinder CNN applications’ performance on resource-
constrained computing platforms, especially mobile systems.
For example, when implementing a CNN-based augmented
reality application on a Nexus 5x, about 700-M memory,
45% CPU utilization, and 1860-mW battery power will be
consumed [7]. Considering mobile systems are featured with
multitasking, dynamic application utilization, and specific user
interaction, such conspicuous resource consumption signifi-
cantly compromises the system performance.

To reduce the resource consumption of CNN computation,
it is intuitive to generate smaller model to replace the orig-
inal one. Many “model-oriented” optimization works have
been proposed, which mainly reconfigure CNN models in
terms of parameter settings and model structures [7]-[11].
For example, Meng et al. [8] utilized parameter quantiza-
tion method for model parameter size reduction; Li er al. [9]
pruned part of the neurons with insignificant absolute val-
ues to reduce model computation workload. Although these
model-oriented methods can reduce the CNN computation
consumption with smaller model structure and less parameter
size, they did not take specific resource constraints into con-
sideration during optimization process. Therefore, they failed
to continuously control the model resource consumption below
the budgets given by model platform, resulting ineffective
adaptability even to a single resource constraint’s varying
levels.

Recently, a series of “resource-aware” optimization works
emerged. Different with previous ones, resource-aware meth-
ods directly took the specific computation resource levels
as the optimization targets for CNN model configuration
[11], [12]. Therefore, they can achieve a controllable model
resource consumption after the optimization. For example,
Wang et al. [12] added an energy loss into the accuracy loss,
which guided the CNN training for particular system energy
budgets; Yang et al. [11] associated the convolutional neu-
rons with processor-specific inference time, and then utilized
the greedy search algorithm to prune convolution filters for
real-time requirement. However, these works also had certain
limitations: On the one hand, they usually only took one single
type of resource constraint as the optimization target, ignoring
various resources in mobile systems, e.g., energy and real-time
requirement. On the other hand, most of them set accuracy
with highest priority, hence required another time-consuming
retraining processes to compensate the inference accuracy loss
after compression. However, tens of minutes of retraining is
not affordable for mobile computation scenarios.

0278-0070 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3556-9358
https://orcid.org/0000-0002-4880-6658

Resource-Aware

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 247

Reconfigured Models

Real-time Optimization

I
I
Computation Original Model Reconfiguration ! o
Consumption Profiling O . !
o oy Lateny o) Primary Resource ! Neuron Group o‘gg o
o =) o ORSO Constraint Priority : Pruning > RS J
Inference Accuracy & O"O O . ' B Naiom B o .
Profiling X7 P40 Neuron Pruning : Rt > ron o
o O o Ranking | etrieving Gefe W
Lt 1
I o\ p
1 L> Sg‘éfg n

Fig. 1. Framework overview.

In this article, we will tackle these challenges by answering
the following questions.

1) How to develop a generic CNN reconfiguration method
that can control the model resource consumptions to
distinct resource types and levels on mobile systems?

2) How to enable fast CNN reconfiguration to adapt
dynamic resource constraint change in real-time com-
putation scenarios?

Specifically, we proposed DiReCtX, an optimized dynamic
resource-aware CNN model reconfiguration framework for
real-time CNN-based mobile applications.

DiReCtX is based on a set of accurate CNN profiling models
for resource consumption and inference accuracy estimation.
With the above profiling models, we can easily estimate a
reconfigured CNN model’s resource consumption and infer-
ence accuracy, achieving a manageable consumption/accuracy
tradeoffs. Therefore, DiReCtX can leverage neuron! pruning to
reconfigure a pretrained CNN model to meet distinct resource
constraints with expected inference performance maintained.
To further achieve fast model reconfiguration for real-time
requirement, improved CNN model pruning and accuracy tun-
ing strategies are also proposed in DiReCtX. The framework
overview of DiReCtX is shown in Fig. 1. With the neu-
ron pruning-based reconfiguration scheme and corresponding
optimization strategies, DiReCtX can real-timely reconfigure
CNN models for different mobile computation scenarios, such
as Web-browsing, video streaming, etc.

The contributions of this article are shown as follows.

1) We analyze individual CNN neuron’s impact to dif-
ferent resource consumption types, with respect to the
overall energy cost, memory usage, and computation
time. Based on the analysis, we build multiple profiling
models to estimate the resource consumption of CNN
computation.

2) We analyze individual CNN neuron’s impact to the over-
all inference accuracy and build a profiling model to
estimate a CNN model’s accuracy with various neuron
configurations.

3) We propose a resource-aware CNN model reconfigura-
tion scheme. With dedicated neuron pruning method,
pretrained CNN models can be reconfigured into man-
ageable computation consumption and inference accu-
racy, adapting to different resource constraint types and
levels.

4) We further propose two optimization strategies for the
CNN model reconfiguration scheme, namely, ‘“neuron

Twe collectively refer convolutional filters and fully connected layer neu-
rons as ‘“neurons”, as both of them will be optimized together in this
article.

group pruning” for fast reconfiguration and “pruned
neuron retrieving” for inference accuracy tuning. These
two strategies effectively reduce the neuron pruning
and accuracy tuning effort and, therefore, significantly
improve the reconfiguration performance in real-time.

5) We comprehensively integrate the proposed DiReCtX

into a state-of-the-art smartphone application. The appli-
cation can real-timely reconfigure CNN models in
various mobile computation scenarios for performance
optimization and evaluation.

The experimental results show that: the proposed CNN pro-
filing models can achieve expected accuracy of 94.6% and
97.1% for CNN model computation consumption and infer-
ence accuracy estimation. With LeNet, CaffeNet, and VGG-13
as the major CNN models for evaluation, the proposed recon-
figuration scheme can achieve at most 44.44% computation
acceleration, 31.69% memory reduction, and 32.39% energy
saving, respectively. On-field tests with state-of-the-art smart-
phones, DiReCtX can effectively adapt CNN models to various
resource constraints in dynamic mobile application scenarios
with optimal real-time performance.

II. PRELIMINARY
A. CNN Model Computation Consumption

A typical CNN model usually consists of a set of layers,
i.e., convolutional layers, fully connected layers, pooling lay-
ers, and nonlinear layers (e.g., ReLu layers) [2]. Since pooling
layers and nonlinear layers occupy a small portion of model
components, we only consider the computation optimization
in convolutional layers and fully connected layers.

1) Convolutional Layers: The computation in each convo-
lutional layer involves multiple neurons, input feature
maps, and output feature maps. Each single neuron in
convolutional layers is denoted as a convolutional fil-
ter, which represents a group of weights and usually
plays as the fundamental computation component in
convolutional layers. Leveraging the 2-D convolution
operation between convolutional filters and input fea-
ture maps, each convolutional layer can achieve input
feature extraction and generate output feature maps for
following layers.

2) Fully Connected Layers: Fully connected layers trans-
form the output feature maps from the last convolutional
layer into linear vectors and performance the final
confidence evaluation for each inference class.

When executing a CNN model in mobile systems, the
computation in both kinds of layers are usually conducted
by CPUs and measured with the amount of multiply accu-
mulate operations (MACs). Fig. 2 depicts our evaluation of

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

248 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

Overall Workload (MACs) Overall Storage Size(MB)

13M_ 720M_ 15472M 26 230 540
o
sg 040, 992% L2 | 984% 95.9% g4
S 5 :
g % 76.8% 28
=R g o
&5 g &
SE | | 23.2% £5
“z L% [osw| @ |Levam 4198 '%

LeNet AlexNet VGG-16 LeNet AlexNet VGG-16

Convolutional Layer M Fully-Connected Layer

Fig. 2. Mobile CNN computation consumption analysis.

both convolutional layers and fully connected layers regard-
ing computation workload and parameter size. Three typical
CNN models for image classification task are evaluated, i.e.,
LeNet [13], AlexNet [2], and VGG-16 [14].

1) The three CNN models’ overall computation workloads
are 13 M, 720 M, and 15472 M MAC:s, respectively.
Convolutional layers contribute most of the computation
workload (76.8% ~99.2%). Considering the maximum
mobile computing bandwidth is around 1~2G MACs,
such a computation workload may occupy the majority
of computation resources [15].

2) Different with convolutional layers, fully connected
layers contribute the most memory occupancy
(89.4%~98.4%). When computing fully connected
layers, a large volume of system memory is required
not only for native CNN model parameters but also for
dynamically generated feature maps [16]. According
to our evaluation, the real-time memory occupancy
of LeNet, AlexNet, and VGG-16 are at least 26 MB,
230 MB, and 540 MB for a single image inference,
while the available run-time memory in a mobile system
(esp. smartphone) is usually under 1 GB [15].

From the above analysis, we find distinct computation char-
acters between convolutional layers and fully connected layers.
In later sections, we will focus on these two kinds of layers
to investigate expected CNN reconfiguration schemes.

B. Model-Oriented CNN Computation Optimization

To improve CNN computation performance on resource-
constrained systems, a lot of CNN optimization methods are
proposed. Most of these works fall into a “model-oriented”
approach, which optimize CNN models in different model
aspects, e.g., CNN model structure, parameter setting, and
computation process.

1) Model design, such as ShuffleNet [17], SqueezeNet [18],
and Xception [19]. These optimized CNN models adopt
slim model structures or small model components to
reduce computation workload.

2) Parameter compression, such as filter pruning [9]
and weight sparsity [20]. These optimization methods
identify and remove insignificant model components
and, therefore, reduce both computation workload and
memory occupancy.

3) Computation approximation, such as low-rank computa-
tion [21] and quantization [22]. These methods alleviate
the CNN computation complexity by decoupling model
structures with approximate computations.

However, since these works are mainly oriented by

CNN model optimization perspectives, they overlook spe-
cific hardware and system constraints associated with diverse

Original A . .

L Fil L +1 Fil
Model ayer i F1 :ers ayer i ; ters

] Layer i Output - [} Layer i+1
Feature Maps Output
. ; Feature Maps
* %

Pruned ']]
Model

Fig. 3. Neuron pruning in convolutional layers.

computation scenarios. In other words, these works did
not take the specific resource constraints into optimization
process. Therefore, many model-oriented works fail to
optimize the model’s resource consumption to specific
constraints.

For example, Yang et al. [23] showed that, even SqueezeNet
can reduce parameter size to 50x less than traditional CNN
(i.e., AlexNet), it still consumes even more computation energy.
Moreover, most works reconfigure CNN models targeting a
certain accuracy expectation with a singular model configura-
tion approach. Therefore, when different resource constraint
levels exist, these works fail to achieve feasible manageability
to dynamic consumption/accuracy tradeoff [23].

C. Resource-Aware CNN Computation Optimization

To achieve comprehensive performance enhancement in
practical CNN computation, many resource-aware CNN model
configuration works are proposed. Rather than merely focus-
ing on CNN model parameter and structure optimization, these
resource-aware works extend the configuration methodolo-
gies in model-oriented to more practical computing scenarios,
directly setting various resource constraints, with respect to
energy cost, memory occupancy and computation time as
model configuration targets.

Gordan et al. [24] leveraged single resource constraint
regularizer to automatically determine the layer-wise shrink
rate with regarding to computation workload optimization
or model size optimization. Yang et al. [23] identified
the CNN layer-wise energy cost and implemented cor-
responding filter pruning schemes for energy-constrained
systems. Liu et al. [25] considered memory constraint as
optimization targets and leveraged reinforcement learning
techniques to configure CNN model to meet certain memory
budgets.

Although achieving effective computation optimization
regarding resource consumption, these existing resource-aware
CNN model optimization works usually focus on a sin-
gle resource constraint type and static level, which can be
hardly applied to practical computation scenarios with various
dynamic constraints.

D. Neuron Pruning for CNN Reconfiguration

As aforementioned, the resource-aware optimization meth-
ods are based on the above model-oriented methods, such
as parameter compression and computation approximation.
Among those model-oriented CNN model configuration
works, “neuron pruning” is considered as one of the most effi-
cient and effective methods. It can directly reconstruct CNN
models on neuron level. By removing insignificant neurons,

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 249

Total RAM size: 2GB

Gaming [l CNN AlexNet
Photo/Video |
Social Media] Wos Facebook
Total Battery Budget: 3000J B WeChat Camera
Gaming
Photo/Video — [Game: Need for Speed

Social Media (NN NN

Fig. 4. Different application scenarios on an Android smartphone nexus 5x.

the model structure and functionality is trimmed with optimal
performance retained.

Fig. 3 illustrates a pruning process targeting convolution
filters in convolutional layers [26]. In the ith convolutional
layer, the insignificant filters are identified by ranking their
absolute filter matrix values. By pruning the insignificant fil-
ters, corresponding output feature maps will be also removed.
As the ith layer’s output feature maps are the inputs of
the (i + 1)th layer, all filters in the (i + 1)th will have less
sizes and, therefore, less computation workload. Such a prun-
ing process can also apply to neurons in fully connected
layers.

In this article, we combine the pruning schemes targeting
convolutional filters and fully connected neurons together as
the major configuration method for the proposed resource-
aware CNN model reconfiguration.

III. MOTIVATION

Although resource-aware optimization methods directly
alleviate CNN computation consumption to a certain degree,
complex mobile systems and various computation scenarios
introduce more critical challenges.

Challenges:

1) Distinct Resource Constraints: In mobile systems, due
to diverse mobile application scenarios, the computation
resource constraints have distinct types and levels. One
example is shown in Fig. 4: when deploying AlexNet
on a Nexus 5x with different mobile applications in
background, we can see distinct energy and memory
budgets with different levels. The computation resource
constraints for Gaming scenario are memory usage and
energy cost while constraint for Social Media scenario
is only memory usage. As for photograph/video sce-
nario, it is only constrained by the energy. However,
previous works only considered a singular type of
resource constraint with a static level, lacking capability
for distinct resource budgets under various computation
scenarios.

2) Real-Time Reconfiguration: In mobile systems, the com-
putation resource constraints are dynamically changed
with varying computation scenarios. Therefore, the
ideal CNN model optimization requires real-time model
reconfigurations for different computation consump-
tion adaptation. However, most existing CNN model
optimization works take accuracy as the highest priority,
which is aiming to obtain as high as possible accuracy.
Therefore, they usually obey a reconfiguration-retraining
strategy which requires an extra time-consuming retrain-
ing process after model reconfiguration. In that case,
such methods cannot be well applied for dynamic mobile
computation scenarios.

Proposed Solutions:

1) To address the first challenge, we build multiple pro-
filing models to estimate CNN models’ computation
consumption and inference accuracy in Sections IV
and V. With thorough understanding of CNN computa-
tion consumption/accuracy tradeoffs, we further propose
a dedicated CNN model reconfiguration scheme based
on neuron pruning in Section VI, which is designed to
address distinct resource constrains with minimum CNN
model reconfiguration effort. Specifically, we evaluate
each neuron’s importance not only from the perspective
of accuracy contribution to the entire model but also
considering its resource consumption.

2) To address the second challenge, we further improve the
neuron pruning-based reconfiguration scheme with two
optimization strategies: a) the neuron group pruning and
b) pruned neuron retrieving in Section VII. The neuron
group pruning can effectively enhance the reconfigura-
tion speed and satisfy the real-time requirement. The
pruned neuron retrieving can achieve fast accuracy tun-
ing by recovering a few unnecessary pruned neurons
removed by the first strategy.

By tackling the aforementioned challenges, we propose
DiReCtX in Section VIII. DiReCtX integrates our resource-
aware CNN model reconfiguration scheme and the two
optimization strategies. DiReCtX can real-timely reconfigure
a CNN model to dynamic and distinct computation resource
constraints in mobile systems. The effectiveness and efficiency
of DiReCtX is comprehensively evaluated in Section IX.

IV. MOBILE CNN COMPUTATION
CONSUMPTIONS PROFILING

To achieve manageable tradeoffs between CNN computation
consumption and inference accuracy, a set of comprehen-
sive CNN profiling models is highly required. Although some
previous works have proposed certain models to profile CNN
computation consumption, they merely focus on CNN models’
inner parameter settings and structure designs, ignoring actual
mobile system overheads [10], [25].

By taking mobile system computation overheads into con-
sideration, we build three dedicate resource consumption
profiling models for CNN consumption. The proposed profil-
ing models can measure arbitrarily configured CNN models,
with respect to the overall energy cost, memory usage, and
computation time under various mobile computation scenarios.

These models are developed based on a general CNN
design: 1) a CNN model has I convolutional layers and J
fully connected layers; 2) for the ith convolutional layer, there
are néonv filters with a size of n’c_oiw x s' x r!. During the con-
volution process, "E)Lv input feature maps are fed from the
(i — Dth layer to generate ng output feature maps with a
dimension of A' x w'; and 3) the jth fully connected layer is
composed of ”]FC neurons.

A. Memory Usage Profiling Model for CNN Computation

1) Neuron-Level Memory Usage Profiling: Memory is one
of the primary computation resources in mobile systems [27],
which is mainly occupied by storing neurons’ weights and
generated feature maps. As our primary model configuration
method is based on the neuron pruning, we first build profiling
models to evaluate the memory usage when adding/removing
individual CNN neurons.

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

250 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

Since neurons in the same layer have the identical memory
consumption, we can formulate the memory usage Mcony and
Mgc for a single neuron in either convolutional layer or fully
connected layer as

Mcony = By (r's'nlcoiw + it ’Hn'ct)iw) + B W (1)

Myc = By (’IlI;C + n];él> 2)
where By and B, are data bandwidths, which equal to 16-bit
or 32-bit in common mobile systems. Equations (1) and (2)
can be only used to evaluate the single neuron’s occupancy on
system memory without considering practical mobile system
overheads yet.

2) CNN Model-Level Memory Usage Profiling: Based
on (1) and (2), the overall memory usage from a CNN model
can be formulated as

1
_ idi—1
Mcnn = By Z rs nConanonv + ZnFCnFC
i=1

1
+ By Y hiwingp,. 3)

However, when executing a CNN model in practical mobile
systems, certain overheads are introduced.

As the CNN model is programed into specific C++
libraries in mobile applications, these libraries will occupy
extra system memory [28]. According to our preliminary
experiments, the above overhead is linearly determined by
the CNN model memory usage McnN. Therefore, we formed
it as O.. Meanwhile, since CNN-based mobile applications
have specific user interfaces, graphic computation will also
introduce certain overhead. Moreover, the mobile applications
are developed with Java and native C/C++-. Above two con-
stant overheads for graphic computing and codes allocating
are formed as O,. Therefore, (3) can be improved as

M = a(Mcnw + Oc) + 0, “)

where o, is the coefficient parameter decided by the specific
CNN-based application and the mobile device.

With these models, we can estimate the practical memory
usage of a CNN model running in practical mobile systems.

B. Energy Cost Profiling Model for CNN Computation

Due to the limited mobile battery capacity, energy cost is
also considered as one of the primary resource constraints [29].
Usually, the energy consumed by a CNN model includes
two major parts: the computation energy cost Ecpy and the
memory access energy cost Epem.

Mobile CPU Computation Energy Cost: Ecpy directly
relates to the CNN model’s total inference computation work-
load. Since most of the off-the-shelf mobile devices have
not equipped with CNN-specific GPU or neural processing
unit (NPU), they mainly compute CNN inference on CPUs.
Therefore, certain CPU parameters, such as computation band-
width and utilization rate, need to be taken into account.
Considering mobile system is a dynamic process with change-
able CPU utilization values. To simplify the modeling, we
divide the total computation workload W into N parts and
assume each part has an average utilization rate 7n,. In that

case, Ecpy can be modeled as following:

o W i
ECPU—Z —— X Pepy

CPU

N
Peak
= Z(BE%% (PC?>U X ”n)>
n=1
N Peak
P
_ CPU
- Z n X gPeak)
n=1 CPU

where Bcpy (MACs per second) and Pcpy (mW) are the acces-
sible CPU computation bandwidth and the practical system
power consumption; According to the [30], we can assume
the current CPU computation bandwidth BZPU equals to the
product of CPU peak bandwidth and 7,. Moreover, if ignore
the power overhead (we consider it can be included into total
energy overhead in (11)), the current CPU power PZPU equals
to the product of CPU peak power and 7,,. By offsetting 1, in
both numerator and denominator, Ecpy is directly affected by
peak CPU bandwidth, peak CPU power consumption, and total
workload W. Since the peak CPU bandwidth and the power
consumption are device-specific constants, the computation
energy cost is mainly subject to the workload W.

Mobile Memory Access Energy Cost: During executing
CNN model inference task, model weights and feature maps
will introduce considerable memory access and, therefore,
corresponding energy cost.

In mobile systems, the CNN model inference process obeys
a layer by layer computing scheme. As aforementioned, since
most off-the-shelf mobile systems still use normal CPUs for
CNN computing, we consider a fundamental memory access
scheme in here: during each layer’s computing, the weights
and feature maps are fetched from DRAM to the on-chip
cache and the generated feature maps will be stored back to
DRAM [31]. Also, unlike the advanced data reuse strategy in
some latest NPUs [32], we adopt a simple yet widely used data
reuse strategy mentioned in [33] to mimic the CNN inference
flow in most of mobile systems: Each weight is reused A'w'
times for the same feature map. Meanwhile, each feature map
pixel value is reused r's' times for the same neuron. Therefore,
for each layer computing, we consider the weights are trans-
ferred from DRAM to Cache once and the feature maps are
transferred twice between DRAM and Cache. Therefore, the
memory access consumption Epem is determined by the total
weight bit number M,, and feature map bit number My

EMem = 2(8]‘ + 8a)BfMact + (gf + 8u)BaMw (6)

where ¢, and &4 denote the energy cost per bit when accessing
on-chip cache and DRAM memory, respectively.

1) Neuron-Level Memory Access Energy Cost Profiling:
Based on the above analysis, the energy cost caused by a
single neuron in a convolutional layer or a fully connected
layer can be formulated as Econy and Epc

PVI
__ " CPU({(.i i i+1 z+1 z+1 i+1 z+1
Econy = —; (ranOnvhw +r NG)
CPU

+ &By (r’s’neolw + ri+1si+1ni+1) + e,Bhiw (7)

Ploy - .
EFC = BSPU "]FC] + 8fonj l. (8)

CPU

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 251

2) CNN Model-Level Energy Cost Profiling: We further
propose the overall energy cost profiling model of a certain
CNN model running on mobile systems. The energy cost Ecpy
is determined by CNN model’s total computation workload,
which can be formulated as

1 J
PPeak L . .
— i i—1 i7i —1
ECPU BPea_k Z rs nConv"ConVW h+ Z n]FC n]FC (9)
CPU \ ;=1 =1

i i—1

where Zl 1 s nConanoan h + Z
the total computation workload W.

Also, the memory access energy cost Epem can be mod-
eled as

lnl FC is the term of

1
EMem = 2(?/" + 5a)Bf Z rlslnlCo:wnConv
i=1

io0i
Zh W Cony-

Besides the energy cost formulated in (9) and (10), we also
take practical mobile system overheads into account. In mobile
systems, a certain amount of energy is also consumed by
basic CPU running consumption and mobile application inner
processes, such as calling camera components for image recog-
nition, executing Java code for run-time support, etc. We define
such overheads as E,, which will be determined by practi-
cal measurement with specific mobile devices. Therefore, the
practical energy cost E of a CNN-based application running
on the mobile system is modeled as

Z n] 1nlConV
j=1

(e + £)B (10)

E = Ecpu + EMem + Eo. (11)

For different CNN-based applications, the E, will be different,
causing various E value.

C. Computation Time Profiling Model for CNN Computation

Computation time is considered as one comprehensive
performance evaluation criterion for CNN computation, which
involves with computation bandwidth, computation workload,
and real-time constraints. To profile the entire CNN model
computation time, we first propose time-centric models based
on (9), which evaluate a single neuron’s computation time. We
then estimate the practical computation time of a CNN model
running on mobile systems with certain mobile system over-
heads involved. We borrow the insights from roofline model
in [34] and assume the models we discuss in this article are
in the compute-bound area. Therefore, the computation time
cost is mainly affected by the computation workload.

1) Neuron-Based Computation Time Profiling: We
formulate the theoretical computation time changes by
adding/removing a single neuron in convolutional layer and
fully connected layer as Tcony and Trc

1
- TR RN S S R
Tcony = BpT(’JS nConvth + s lonvh[w')
cpU X Na
(12)
1 i
Trc = e —— Fcl 13)
Bepy X Na

where 1, is the average CPU utilization rate for a specific
mobile system.

2) CNN-Based Computation Time Profiling: By consider-
ing practical computation scenarios, we define R as a certain
CNN model’s execution number in a mobile application.
Therefore, the computation time for the entire CNN model
computation can be modeled as (14)

R . o
m (rlslnlCo:wnCOanlhl + nIFCI n]FC) + Tg (14)
cpu * Mla

where T} is the current computation time overhead introduced
by mobile systems. For mobile CNN-based image classifi-
cation applications, such overheads might be caused by the
time delay of calling camera components and transmitting
image data between processors and memory components [35].
According to our preliminary experiments, 7, can be consid-
ered as a fixed value for each CNN-based application. Please
be noted that the proposed time profiling model is suitable for
both serial computing and parallel computing since the CPU
average computing bandwidth value exactly reflects the com-
puting configuration. In other words, serial computing leads
a lower CPU average computing bandwidth while parallel
computing leads a higher bandwidth.

Equations (4), (11), and (14) provide the precise compu-
tation consumption profiling for various CNN models with
arbitrary neuron configurations in practical mobile systems.
When CNN models are reconfigured, the proposed models
can help to reestimate resources required on mobile systems,
with respect to memory usage, energy cost, and computa-
tion time. However, as many mobile system overheads are
taken into consideration, we further introduce particular mea-
surement process to determine the overhead parameters under
specific CNN-based mobile application scenarios.

D. Mobile-Specific Overhead Parameter Retrieval

Certain overhead parameters, such as «,, and O, in proposed
profiling models are specified by CNN-based application and
the mobile system specifications, therefore, we conduct on-
device computation consumption measurement for parameter
retrieval.

1) Mobile-Specific Parameter Test Platform Setup: We
employ a Google Nexus 5x smartphone as the test platform
as shown in Fig. 5. A Monson power monitor is used to mea-
sure the practical overall device energy cost [36]. Meanwhile,
an Android kernel analysis tool is modified to breakdown the
overall power consumption and monitor the real-time system
resource automatically, such as memory usage and CPU usage
rate [37].

2) Overhead Model Parameter Retrieval: Since above
defined overhead parameters and coefficient parameters are
usually constant values regarding certain mobile applications
and mobile systems, they can be calculated by conducting
multiple CNN model computation consumption measurements
for a given application and mobile system.

Therefore, we use Tensorflow [38] to generate 200 CNN
models with random structure configurations (i.e., layer num-
ber, neuron sizes, neuron amount per layer, etc.), regardless
of actual network functionalities. All these 200 CNN models
are further converted to flatbuffers-based model files through
Tensorflow Lite [39] and deployed into a real-time image
classification application on the Nexus 5x smartphone. The
real-time image classification application can capture images
through on-board camera and further crop them to the size of
32 x 32 for CNN inference.

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

252 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

RAM: 2GB
CPU: Snapdragon 808 4 Cores

s NexEls

Mobile Devices

Fig. 5. Mobile-specific parameter test platform setup.

TABLE I
MODEL PARAMETERS RETRIEVED FROM MEASUREMENT

Parameter Value Parameter Value
By 32bit B, 32bit
Qm 1.53 O. 16.2MB
O, 7.1MB €a 18pJ
ef 450pJ T4 13.2 ms

For Nexus 5X, PEg%F = 5100mV BEEF = 4.5 MACs.

With sufficient measurement, the CNN-based model appli-
cation’s energy cost, memory usage, and computation con-
sumption are well recorded by a set of automatic measurement
scripts. Based on the measured data, model parameter val-
ues are calculated. Table I shows the retrievaled coefficient
parameters in the proposed computation consumption profil-
ing models. We can find that o, is 1.53 for the under-test
mobile system, whereas it equals to 1 in previous memory
usage estimation models [25]. It shows that the actual memory
usage for CNN-based mobile application is 1.53x than the
pure CNN’s memory usage. Therefore, our profiling models
have better computation consumption profiling ability than the
previous works on the practical mobile computation scenarios.
The retrieved profiling models’ estimation accurateness and
effectiveness will be further evaluated in Section IX.

V. MOBILE CNN MODEL INFERENCE ACCURACY
ANALYSIS AND PROFILING

Besides the CNN models’ computation consumption pro-
filing, we further conduct the CNN models’ inference accu-
racy profiling to obtain thorough CNN model consump-
tion/accuracy tradeoff analysis. Specifically, by evaluating
each neuron’s impact to the overall CNN model inference
accuracy, we are able to profile the inference accuracy of
arbitrarily configured CNN models.

A. Neuron-Level Inference Accuracy Impact Evaluation

We first evaluate the accuracy changes introduced by a
single neuron’s configuration. However, different from the
computation consumption profiling, each single neuron in a
CNN model has different inference accuracy impact, even they
are in the identical layer. Such impact differences come from
neurons’ different matrix size, weight distribution, layer loca-
tion, feature extraction preference, etc. Considering the neuron
differences, we propose a normalized accuracy contribution
index (ACI). ACI is defined by the accuracy impact from a

100%
>
2
5 50%
3
<
0%
(@)
100%
=
; '—.\.\.
5 50%
3
<
0% = B
a v R nB B %R
> - o o - T - & 5 T o - =

Neuron Pruning Ratio

(b)

Fig. 6. Gradient-based neuron pruning and inference accuracy approximation.
(a) Accuracy change regarding pruning ratio. (b) Original accuracy loss curve
can be approximated as multiple lines.

neuron’s absence to the CNN model’s final loss Z

Z(4+8) = z(a]) + @ A

- (15)
oA!

‘ 0z (4))
ACY, = Z i (16)
i

where A]l: denotes the activation of the jth neuron in the

ith layer; Z(A]l-) means its corresponding final CNN model
loss from the inference loss function; the coefficients matrix
([BZ(AJi)] / 8A§) represents the neuron’s differential impact to
the final classification target.

Based on (16), we use the average £1-norm of coefficients
as ACI, which can indicate the neuron’s average impact to the
final accuracy. With higher ACI value, the neuron is considered
having more accuracy impact.

To directly examine each neuron’s actual accuracy impact,
we prune neurons in both convolutional layers and fully con-
nected layers in the entire CaffeNet model on CIFAR-10
according to the ACI and the pruning result is shown in
Fig. 6(a). The figure demonstrates the relationship between the
inference accuracy loss and the neuron pruning ratio, reflecting
each neuron’s actual accuracy impact.

B. Configured CNN Inference Accuracy Profiling

Although we can evaluate the accuracy impact for every
single neuron theoretically, it is hard to precisely measure it
practically, since the inference accuracy change generated by
pruning a single neuron is negligible. Therefore, we group N;
neurons together according to the calculated ACI ranking and
measure the total accuracy loss of N; neurons. Furthermore,
we consider each neuron in the same group has the identi-
cal accuracy impact. Based on the above analysis, the CNN
accuracy loss result obtained from ACI analysis can be approx-
imated as the combination of m linear accuracy loss lines (m is
the number of neuron group). Fig. 6(b) shows the approxima-
tion result for CaffeNet. We replace the original accuracy loss
curve with m = 13 green lines, and each line represents the
accuracy loss caused by pruning a group of neurons. It should
be noticed that, the inference accuracy will drop more signifi-
cantly when the model size becomes smaller. In other words,

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 253

the accuracy estimation error will gradually increase with a
larger neuron pruned ratio. Therefore, in order to keep high
profiling accurateness, our proposed method is supposed to
profile the neuron’s accuracy impact below n% pruning ratio.
According to our empirical study, the value of n can be set
as 60 for most of CNN models, such as LeNet, CaffeNet, and
VGG-13.

Supported by the above approximation process, the config-
ured CNN model’s inference accuracy can be formulated as

1
AC = AC, — ZalNi (17)
1

where AC, is the accuracy of the original CNN model. /
represents the number of green lines that compose the accu-
racy loss curve. g; is the average accuracy impact for a single
neuron in group N;. Through (17), we can build the config-
ured CNN inference accuracy profiling model and its profiling
performance will be evaluated in Section IX.

VI. RESOURCE-AWARE MOBILE CNN MODEL
RECONFIGURATION SCHEME

In former sections, we build profiling models for both CNN
model computation consumption and inference accuracy for
thorough analysis. Based on the above analysis, we propose
a resource-aware CNN model reconfiguration scheme in this
section. It leverages neuron pruning methodology to recon-
figure CNN models with manageable consumption/accuracy
tradeoffs, and therefore adapts to distinct resource constraint
types and levels with expected inference performance.

To accomplish such a scheme, we first build a neuron prun-
ing priority to guide the CNN model reconfiguration process
by considering each neuron’s computation consumption and
accuracy impact.

Second, considering distinct resource constraint types and
levels in different model computation scenarios, the proposed
CNN model reconfiguration scheme leverages various resource
constraint priorities to reconfigure CNN model with minimum
optimization effort. More specifically, the proposed recon-
figuration scheme can set different resource constraints as
the primary optimization targets according to specific model
computation scenarios.

A. Resource-Aware Neuron Pruning Priority

Since we already evaluated each neuron’s significance in
terms of computation consumptions and inference accuracy,
we leverage the manageable consumption/accuracy tradeoffs to
determine the neuron pruning priority during the CNN model
reconfiguration.

According to neuron-level CNN model computation con-
sumption profiling, each neuron’s computation consumption
can be profiled and mapped. Fig. 7(a)-(c) represents each
neuron’s corresponding energy cost, memory usage, and com-
putation time in CaffeNet, respectively. We can find that all
eight layers in CaffeNet have distinct computation consump-
tion focus. For example, pruning one neuron in the first fully
connected layer can lead the largest energy cost and memory
usage reduction. On the contrary, pruning a neuron in the
first convolutional layer will provide a largest benefit to the
computation time.

Since the accuracy impact of each neuron (which is referred
as ay) has been analyzed and profiled in Section V, we can

153
=3
(=]

M 60

kB
s
Energy(ul)
S o
(=) f=]
Latency(us)
&

Memory(

Fig. 7. Neuron resource consumption analysis. (a) Memory. (b) Energy.
(c) Latency.

directly define each neuron’s pruning priority as

norm(ay)
Pl = (18)
Benorm(Ey) + Bumorm(My) + fmorm (Ty)

where norm(Ey), norm(My), and norm(7}) are normalized
memory, energy, and time consumption, respectively. B, B,
and B; are computation consumption weights determined by
the distinct practical resource constraints. We will specifically
discuss how to determine their values for different resource
constraint types and levels in the following part.

With the established neuron pruning priority, the neuron
with a lower PI; value is predicted that has less accuracy
impact but higher computation consumption, which can be
pruned first during the CNN model reconfiguration process.

B. Model Reconfiguration for Distinct Constraints

As aforementioned, during CNN-based mobile applications
execution, the primary computation resource constraint will
be changed for different computation scenarios because of
their distinct demand preferences. For example, in the gam-
ing scenario, the energy cost will become the primary concern
because of the high energy requirement from CPU and GPU
computation. On the contrary, the primary constraint in the
mobile system changes to the memory usage for VR video
scenario because of huge graphic rendering and caching
load [40]. Therefore, it is critical to take the distinct compu-
tation resource constraint priorities into account for particular
CNN model optimization targets.

To achieve effective reconfiguration for different computa-
tion scenarios, we set consumption weights B, B., and B;
in (18) with different values, with respect to various computa-
tion resource constraint priorities. For example, we assume the
energy constraint has highest priority while the memory con-
straint has lowest priority in the gaming scenario. Therefore,
the values of 8., B, and B, can be set as 3, 2, and 1, sepa-
rately. Neuron with smallest PI value (the larger energy cost
and the lower accuracy impact) will be first pruned during the
CNN model reconfiguration process.

Table II is the reconfigured CNN model’s computation
consumption performance under three different primary com-
putation resource constraint priorities. VGG-13 is feeding
with images from CIFAR-10 for 1000 times and we measure
the average computation consumption. The results show that
our model reconfiguration can always achieve corresponding
distinct computation consumption reduction for different com-
putation resource constraint priorities. For example, when the
pruning ratio equals to 60%, the energy cost under the energy
priority reconfiguration will decrease to 290 mlJ, while the

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

254

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

TABLE II
RESOURCE CONSUMPTIONS FOR VARIOUS CONSTRAINT PRIORITIES IN VGG-13

Memory Priority

Pruning Ratio MMB) E(mJ) L(ms) A M(MB)
15% 118 384 79 89.85% 119
30% 87 357 70 88% 89
45% 62 340 62 81.52% 65
60% 49 321 55 55.74% 51

Energy Priority Time Priority

E(mJ) L(ms) A M(MB) E@mJ) L(ms) A
382 78 89.77% 119 383 78 89.77%
350 68 87.59% 89 358 67 87.47%
331 58 80.78% 66 336 56 80.66%
309 47 56.47% 51 319 46 55.60%

Original VGG-13 computation cost baseline: Memory(M):151MB; Energy(E):448mJ; Computation Time(L):88ms; Accuracy(A):91.00%.

100%

90% —
80% \
— Memory Priority

70% \\

L, %
iy o

Accuracy

Energy Priority
60%

Latency Priority

50%

g g g

Yo Gy Ly 0y oy Vo Ty Do Dy,
T T % R

Neuron Pruning Ratio

Fig. 8. Pruning accuracy performance for various primary constraint priorities
in VGG-13.

memory priority and the time priority reconfiguration still have
308 mJ and 299 mJ energy cost, respectively. Therefore, the
proposed resource-aware CNN model reconfiguration scheme
can lead to a specific computation resource reduction under
certain resource constraint priority.

To evaluate the accuracy retaining capability of the proposed
CNN model reconfiguration scheme, we conduct the prelimi-
nary evaluation and Fig. 8 shows the inference accuracy results
comparison between three different primary resource con-
straint priority settings for VGG-13 in CIFAR-10. We can find
that accuracy loss rates are similar under three different pri-
ority settings. Only the reconfiguration with memory priority
can achieve slightly higher prediction accuracy when the neu-
ron pruning ratio less than 52%. Therefore, distinct resource
constraint priorities will not affect the inference accuracy of
our resource-aware reconfiguration scheme.

C. Model Reconfiguration Inference Accuracy Analysis

To further investigate the inference accuracy performance of
the proposed resource-aware CNN model reconfiguration, we
compare it in VGG-13 with the global £;-norm-based pruning
and gradient-based pruning [41], two of the state-of-the-art
CNN model configuration methods [42]. The dataset is still
CIFAR-10. For the global ¢;1-norm-based pruning, it calcu-
lates the £;-norm value of each neuron in the entire CNN
model and iteratively prunes the neuron with the currently
lowest £1-norm value. For the gradient-based pruning, it cal-
culates each neuron’s impact to the final logits and iteratively
prunes the neuron with the lest impact. Since the global £1-
norm-based method and gradient-based method do not take the
computation resource constraint priority into consideration, we
set all three resource constraints with equivalent priorities in
our scheme to achieve a more equitable comparison.

Fig. 9 illustrates the comparison results regarding infer-
ence accuracy and neuron pruning ratio between our proposed
reconfiguration scheme and the other two methods. From the
figure we can find, our proposed resource-aware reconfigura-
tion scheme always demonstrates a better inference accuracy
performance than the global ¢;-norm-based method with

100%

90%

80%

Accuracy

70% J|— Global L1-norm

0% Activation-based
o

Proposed Resource-Aware

50%

> 7, % Ty % %
o o g

=
Oy s 0
a o o o

Neuron Pruning Ratio

Fig. 9. Accuracy performance comparison between conventional £1-norm
method and the proposed schemes.

neuron pruning ratios increasing from 0% to 60%. Meanwhile,
compared with gradient-based method, our method can
achieve a comparable accuracy performance. When the neu-
ron pruning ratio approximates to 47%, the inference accu-
racy difference between our propose scheme and the global
£1-norm-based method achieves a largest value. Therefore,
comparing to the global ¢;-norm-based pruning and gradient-
based pruning, our proposed method not only considers the
distinct computation resource constraints in different types and
levels, but also shows an optimal performance on inference
accuracy.

VII. CNN MODEL RECONFIGURATION OPTIMIZATION
FOR REAL-TIME MOBILE SYSTEMS

The proposed scheme is still based on iterative single neuron
pruning which is time-consuming since it need to continuously
calculate CNN model’s latest computation consumption and
inference accuracy.

To improve the proposed reconfiguration scheme to meet
the real-time challenge, we further propose two optimization
strategies targeting neuron pruning: 1) neuron group pruning
and 2) pruned neuron retrieving. The key methodology of
these two strategies is pruning neuron as groups to achieve
faster reconfiguration performance while recovery few unnec-
essary pruned neurons for slightly accuracy compensation. It
is notable that we did not take the regular retraining process
into account after the reconfiguration like other works. This is
because the real-time requirement is our main concern while a
regular time-consuming retraining is not practical for dynamic
mobile computation scenarios.

A. Neuron Group Pruning for Fast Reconfiguration

Pruning neurons individually ensures a accurate inference
accuracy loss during reconfiguration process. However, it hurts
the CNN-based application’s real-time ability because the
CNN model’s current computation consumptions are estimated
after pruning each neuron, which is extremely time-consuming
if neuron number is large. Therefore, to solve the above

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 255

TABLE III
PERFORMANCE EVALUATION FOR TWO OPTIMIZATION STRATEGIES

LeNet CaffeNet VGG-13
Time Accuracy Time Accuracy Time Accuracy
Original 820ms 94% 1610ms 65% 2340ms 82.5%
S1 330ms 93.3% 730ms 64.4% 1170ms 82.1%
S1+S2 380ms 94% 800ms 65% 1210ms 82.5%

Neuron Pruning Ratio is set as 45%. S1 represents the first strategy ("Neuron Group Pruning”) and S2 represents the second strategy ("Unnecessary Pruned Neuron Recovery”).

O
_og‘o .vOgO.c.).":O
CNN “ff og /2 RN
|
model %, 0405 I N
K D00 RSO NP
o0 . %%
15 Group Pruning 2" Group Pruning \Recovered Neuron

Coarse-grained Pruning

'
|
|
I
|
|
I
|
I Fine-grained Recovery

4 1 4
|
|
|
I
|
I
I
|
|

N

! [

- Pruned Neuron in
- 15t Group

Inference

Accuracy — Resource Constraints

Pruned Neuron in

Unnecessa;
2" Group B

Aecuracy Thed — Computation Consumption

Fig. 10. Neuron group pruning and pruned neuron retrieving.

problem, we introduce the neuron group pruning strategy,
which simultaneously prunes a group of neurons instead of
a single one during each pruning process.

The methodology of neuron group pruning strategy is shown
in the left part of Fig. 10. We group N neurons together accord-
ing to the pruning priority PI built in Section VI. Therefore,
all neurons in the CNN model can be classified to [,,, groups.
In Fig. 10, the red nodes and the purple nodes represent
the first group and second group, respectively. During the
reconfiguration, we prune all neurons in the same group simul-
taneously. Based on the resource consumption profiling models
and inference accuracy profiling models, we can fast esti-
mate the pruned CNN model’s resource consumptions and
inference accuracy after each pruning iteration. Therefore,
without accounting other overheads, the computation work-
load introduced by estimating computation consumption will
approximately decrease N times, leading a significant recon-
figuration time cost reduction. The number of neurons in
each group is different regarding various CNN model types.
Usually, to ensure the real-time reconfiguration, CNN models
with more neuron numbers have larger N values.

B. Pruned Neuron Retrieving for Accuracy Compensation

Sine the neurons are pruned as groups, more neurons are
pruned than actually required in the last pruned group, causing
an unnecessary inference accuracy loss (shown as the gray line
in Fig. 10). To recovery such accuracy loss, we further propose
pruned neuron retrieving strategy.

The right part of Fig. 10 illustrates the optimization process
of the proposed strategy. After pruning the second group, we
identify that the estimated CNN model computation consump-
tions are below the system resource constraints. It is clear to
see, we pruned extra neurons than actual required. Therefore,
we recovery the unnecessary pruned neurons in the second
pruning group one by one according to their inverted prun-
ing order PI. After this recovery process, the CNN model’s
inference accuracy can be slightly compensated.

We conduct the preliminary experiment to evaluate the
optimal performance of our optimization strategies and the
result is shown in Table III. From the table we can find
that: under 45% neuron pruning ratio setting with affordable
accuracy loss (approximate 5% drop), neuron group prun-
ing can accelerate the CNN reconfiguration around 2.48x for
LeNet, 2.21x for CaffeNet, and 2x for VGG-16 with at most
0.7% extra accuracy loss. When combining the two strategies
together, the extra inference accuracy loss will be compensated
and the two strategies can achieve an average 2.2x speedup.

VIII. DiReCtX FRAMEWORK INTEGRATION

In this section, we propose a comprehensive reconfig-
uration paradigm to integrate the proposed resource-aware
CNN model reconfiguration scheme and two optimization
strategies into DiReCtX. Before introducing the integration
design, we need to identify computation resource constraints
in the real-time mobile system to enable DiReCtX’s practical
deployment.

A. Mobile Computation Resource Constraints Analysis

We first define several mobile system variables as references
as follows.
1) E4(t): Available mobile battery energy at time .
2) Ejp: Average energy cost for the nth background appli-
cation.
3) My(t): Available memory at time ¢.
4) Tymar: Maximum tolerant latency for the CNN-based
application.
Based on the definitions of these system variables, we model
mobile system computation resource constrains as

Ex(t) =Y EjT>E (19)
Ma() > M (20)
Tviax > T 2D

where) ERT indicates the total amount of energy consumed
by other background applications in the CNN-based applica-
tion executing time. E4(7), E%, and M4(f) can be obtained by
calling the inner components in the mobile system. For exam-
ple, we can leverage ComponentCallbacks2 in the Android
system to fetch memory footprints.

B. DiReCtX Reconfiguration Paradigm

For a mobile system with various and dynamic computa-
tion resource constraints analyzed above, we propose DiReCtX
to integrate the resource-aware CNN model reconfiguration
scheme and two optimization strategies. Algorithm 1 illustrates
the DiReCtX reconfiguration process for a given CNN-based
application in the mobile system.

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

256 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

Algorithm 1 DiReCtX Resource-Aware CNN Reconfiguration

Paradigm

Input: 1.0riginal model Mody. 2.Specific scenario time constraint
Thmax-

Output: model, with highest accuracy and can meet all system
constraints.

: Determine resource constraint priorities, e.g., E > M > T.
Pl = norm(CI)

— Benorm(E)+Bmnorm(M)+Bnorm(T)
Group neurons as Ny, ..., Nj, ..., Np.

for all N; in Ni, Ny, ..., Ny, do
Neuron group pruning
if (E5(t) — Y_ERT) > E, Ma(t) > M, Tpyqx > T then
Stop neuron group pruning.
for all neuron in N; do
Pruned neuron retrieving.
end for
end if
: end for
: return : Mod, or stop

A A S ey

_—
W s o

DiReCtX will first identify the current computation scenario
and corresponding computation resource constraints includ-
ing Tmax, Ma(1), and (Ea(t) — ZEZT) through system APIs.
According to the specific application scenario, the primary
computation resource constraint will be also determined. Next,
DiReCtX calculates the pruning priority PI for each neuron
and groups all neurons into m groups, namely, N1, No, ...,
and N,,. The proposed resource-aware reconfiguration scheme
with neuron group pruning method is applied to optimize
the original model Model, in the CNN-based application.
Groups Np to N, are pruned consecutively until the recon-
figured CNN model’s resource consumptions meet all three
constraints. Once the resource-aware reconfiguration with neu-
ron group pruning finished, pruned neuron retrieving strategy
is further executed to compensate the prediction accuracy by
recovering those unnecessary pruned neurons.

IX. EXPERIMENT AND EVALUATION

In this section, we comprehensively evaluate the effec-
tiveness of the proposed DiReCtX framework from four
perspectives.

1) The accurateness of computation consumption profiling

models for reconfigured CNN model.

2) The preciseness of inference accuracy profiling models.

3) The performance of the proposed CNN reconfiguration

scheme in terms of energy cost, memory usage, and
computation time reduction.

4) The adaptability to different

scenarios.

The performance is evaluated with the state-of-the-art smart-
phone, and the experiment setup is shown as following.

mobile application

A. Experimental Setup

1) Testing Platform: As aforementioned in Section IV, a set
of Android smartphones—Google Nexus 5x, are used as the
test platform. On these smartphones, we implement DiReCtX
with Tensorflow Lite [39] and integrate it into an image classi-
fication application with Android Studio [43]. The integrated
application will be tested with other mobile applications to
mimic various practical computation scenarios.

2) CNN Models and Dataset: In the experiment, three
CNN models are used as our testing targets, namely, LeNet,

—— Actual Estimated
7 LeNet 200 CaffeNet 156 VGG-13
z 2| P
E g \‘\ ~y ;0: % i _— é@ \\
5 ’ 5 . 5
=9 =~ i = v
\ v\v \
40! 50 40!
14 00 500,

G
]
/
[

=
=)

iy
/

S
S

2 % %
aaaaaa

> % % 2% 2 2 % % % 2
aaaaaaaaaaaaa

Neuron Pruning Ratio

Fig. 11. Computation consumption models evaluation.

CaffeNet, and VGG-13. For LeNet, we train it on handwrit-
ing dataset MNIST and the baseline accuracy is 98.89%. For
CaffeNet and VGG-13, we adopt ten class image classification
dataset CIFAR-10 and the accuracy baselines of two models
are 90.57% and 91.00%, separately. We also apply VGG-13
with larger dataset CIFAR-100 and ImageNet-10 to evaluate
DiReCtX’s reconfiguration ability in Section IX-D.

B. CNN Computation Consumption Models Evaluation

We first evaluate the accurateness of proposed mobile CNN
computation consumption models, by comparing estimated
results with realistic measurements. The realistic measure-
ments are based on the 1000 times tests for LeNet, CaffeNet,
and VGG-13 and we calculate the average values.

Fig. 11 illustrates comparison results with respect to three
CNN models and three kinds of computation consumptions
(energy, memory, and time). The figures in each column rep-
resent different models while the figures in each row represent
different kinds of computation consumptions. According to the
accuracy analysis in Section V, the inference accuracy will
drop dramatically after neuron pruning ratio exceeds 60%.
Therefore, each CNN model is pruned with the proposed
resource-aware reconfiguration scheme from 0% to 60% (0%,
10%, 20%, 30%, 40%, 50%, 60%, separately). According to
Fig. 11, we can find that the following.

1) For memory estimation model, it has accuracies of

95.4% ~ 99.9% for LeNet, 93.8% ~ 99.3% for CaffeNet,
and 87.7% ~ 99.1% for VGG-13, averaging 96.0%.

2) The energy estimation model can achieve 87.1%~97.1%
estimation accuracy for LeNet, 94.3% ~ 97.4% esti-
mation accuracy for CaffeNet and 96.1% ~ 98.7%
estimation accuracy for VGG-13, with an average rate
of 93.4%.

3) For latency estimation model, it has estimation accu-
racies of 94.1% ~ 98.9% for LeNet, 93% ~ 97% for
CaffeNet, and 92.5% ~ 99.7% for VGG-13, averaging
94.5%.

Overall, three CNN model computation consumption esti-
mation models have an average estimation accuracy of 94.6%,
demonstrating the optimal performance of our computation
consumption estimation models.

C. Reconfigured CNN Accuracy Profiling Evaluation

We further evaluate the accurateness of the proposed recon-
figured CNN accuracy profiling. The estimated CNN profiling
results are compared with realistic measurements for CNN

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS 257

TABLE IV
RECONFIGURED CNN ACCURACY PROFILING EVALUATION

LeNet 0% 10% 20% 30% 40% 50% 60%
Actual 98.0% 97.9% 97.1% 939% 902% 80.8% 63.3%
Profiled 98% 97.0% 955% 91.1% 873% 79.5% 63.0%
CaffeNet 0% 10% 20% 30% 40% 50% 60%

Actual 90.6% 90.3% 89.3% 88.0% 84.0% 742% 55.6%
Profiled 90.6% 90.2% 88.1% 852% 80.8% 70.0% 56.2%
VGG-13 0% 10% 20% 30% 40% 50% 60%
Actual 91.0% 91.0% 89.1% 87.8% 85.0% 762% 55.6%
Profiled 91.0% 89.1% 862% 82.4% 78.7% 75.1% 56.0%

models which are reconfigured by our proposed resource-
aware reconfiguration method. Table IV illustrates the com-
parison results with respect to LeNet, CaffeNet, and VGG-13.
According to our previous analysis, the reconfigured model’s
accuracies under different computation resource constraint pri-
orities only have slight difference. Moreover, since we aim
to evaluate the accurateness of our proposed CNN accuracy
profiling model, it is unnecessary to take resource-awareness
into consideration. Therefore, for fair and simplicity, we set
three computation resource constraints with equal priorities in
this experiment. In Section IX-E, we will evaluate DirectX’s
reconfiguration performance with different resource constraint
priorities. Moreover, we set n as 60 for each CNN model.
According to Table IV, we can find that the following.

1) For LeNet, the total number of neurons in the first 60% is
180. We divide them into 10 groups with 18 neurons in
each group. Thus, the original accuracy loss curve can be
converted to the combination of ten linear lines. The pro-
filing accurateness are from 96.7% ~ 100%, averaging
98.4%.

2) For CaffeNet, we divided the first 60% neurons in 20
groups with around 50 neurons in each group. The
profiling results achieve accurateness from 94.6% ~
100%, with an average rate of 97.8%.

3) For VGG-13, the total number of neurons in the first
60% is 3000 and those neurons can be divided into
30 groups. Therefore, the original accuracy loss curve
can be approximated to the combination of 30 linear
lines. The profiling results can achieve accurateness from
92.3% ~ 100%, averaging 95.2%.

Overall, profiling results on three CNN models have
an average accurateness of 97.1%, demonstrating the good
estimation performance of our reconfigured CNN profiling
analysis.

D. DiReCtX Reconfiguration Effectiveness

As aforementioned, our method can achieve comparable
accuracy performance with previous gradient-based method.
At the same time, it is designed to optimize entire network
with respect to computation resource consumption. Therefore,
in this section, we evaluate DiReCtX’s model reconfiguration
effectiveness by comparing with two state-of-the-art methods,
NetAdapt and global €1-norm [11], [42].

Fig. 12 first shows the comparison results of three network
(LeNet, CaffeNet, and VGG-13) in terms of energy, memory,
and time consumption. Ay, A, and A3 represent 1%, 3%,
and 5% accuracy loss separately while Am,x indicates the
maximum accuracy loss for the given CNN-based application

= DiReCtX Global L,[36] NetAdapt[11]
150 6 3
=130 28 60| ~
E e | g 30
Py =5 Ny b LeNet
2 90 S 50 g,
2 70 5 45 = B
23] S|
0! = 40 20l
100 al 0 0
E = S0 z
Booo| gl TE?O CaffeNet
<|.=) . llE)IZ() = 19¢
I 550) ? |S100 ° |18
500! 80 171
450 160 90| \
20 140 2
?:‘400) o \ Z 80 N
20 2 70, = VGG-13
245 ,§10° \ E \ oo
= g 80 ~—g |T
300 p P
2 e U A S Vo A Sl 3 4 %1, BT,
& K %, “ (> 3
%, %, %,
Fig. 12. Reconfiguration performance comparison for LeNet, CaffeNet, and
VGG-13.

during its practical using. We assume Amax equals to 10% in
this experiment.

According to the figure, both DiReCtX and NetAdapt
can always achieve better computation resource reduction
performance than global £i-norm method. Since NetAdapt
only focuses on computation time optimization, it can achieve
at most 3% extra computation time reduction compared
with DiReCtX. However, compared to NetAdapt, DiReCtX
can reconfigure CNN models targets multiple resource con-
sumption optimization, which can achieve better reduction
performance in all of three resource types. In that case, it
can achieve better optimization effectiveness on energy cost
and memory usage than NetAdapt.

As mentioned, we extend the reconfiguration effective-
ness evaluation to larger datasets, including CIFAR-100 and
ImageNet-10. The baseline accuracies of VGG-13 on these
two datasets are 71.60%, and 93.70%, separately.

According to Table V, we can find that: For VGG-13
on CIFAR-100-based mobile application, the original energy,
memory and time costs are 448 mJ, 151 MB, and 88 mis,
respectively. In terms of the energy cost, a significant energy
reduction of 13.85% is introduced (i.e., from 448 ml] to
373 mJ) with an accepted maximum accuracy loss Apmax of
10%. In terms of the memory usage, reconfiguration with 1%,
3%, and 5% accuracy loss can let the application’s memory
usage decrease to 128 MB, 115 MB, and 111 MB, respectively.
Furthermore, DiReCtX can achieve at most 37.08% memory
reduction with an maximum accuracy loss of 10%. In terms of
the time cost, reconfiguring the model with 1%, 3%, and 5%
accuracy loss can reduce the application’s computation cost to
84 ms, 80 ms, and 78 ms, respectively. When getting maximum
accuracy loss of 10%, DiReCtX can achieve 21.59% com-
putation time reduction without any retraining. For VGG-13
on ImageNet-10-based mobile application, the original energy,
memory and time costs are 7150 mJ, 1120 MB, and 3600 ms,
respectively. In the condition of the 10% maximum accu-
racy loss, DiReCtX can significantly reconfigure VGG-13 with
32.39% energy cost, 31.69% memory usage, and 44.44% time
cost reduction.

We also evaluate DiReCtX reconfiguration effectiveness on
MobileNetVI and ResNet-18, two widely used CNN mod-
els for mobile computing scenarios. For MobileNetVI, the
accuracy baseline on CIFAR-10 is 86%. The original energy,
memory and time costs are 265 mJ, 35 MB, and 18 ms, respec-
tively. With 10% maximum accepted accuracy loss, DiReCtX

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

258 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 40, NO. 2, FEBRUARY 2021

TABLE V
DiReCtX’s RECONFIGURATION PERFORMANCE FOR VGG-13 ON
CIFAR-100 AND ImageNet-10

CIFAR-100 Energy(mJ) Memory(MB) Computation Time(ms)
Original 448 151 88
Ay 431 128 84
Az 411 115 80
As 386 111 78
Amag 372 95 69
ImageNet-10 Energy(mJ) Memory(MB) Computation Time (ms)
Original 7150 1120 3600
Ay 6740 1032 3100
Az 6140 941 2700
As 5630 850 2500
Amaz 4850 765 2100
Original DiRectX
S pp—— [Eelaboguli LI Bt 1T 180 -
%‘g 1 o130 1 1o ! : :
ES ' —100 1 . L 1
=7 ! [b 'y |
" "FMR45 | | FMR25 ' ! EMR35 ' 1 No.
oL__ADR:10_ | | ADR:2 ' | ADR:5 ! . Constraints .|
450, ; [v T 440 1
1 [by —
5’?@ : I o : 1 : 1 1
Bl Bt 1N !
! 1 1 1
320L. [L ! : :
£ o L T
E\W/ 1 1] 1
2z | DS ' :
g2 |1 o o =20 | X
3 =00 __, 1o [|
5oL [11 1,
' Gaming _I L ntemet ' ' VR Camera! | Social Media,

FMR: Neuron Pruning Ratio}%)
ADR: Accuracy Drop Rate (%)

Fig. 13. Mobile computation optimization under different application
scenarios with VGG-13.

can achieve 23% energy reduction, 35% memory decrease and
28% time saving. For ResNet-50, the accuracy baseline on
CIFAR-10 is 93%. Due to the shortcut connections, the output
channel numbers of each block need to be fixed. Therefore,
we conduct the neuron pruning by following the same set-
ting mentioned in [9]. Finally, our method achieves at most
20% energy reduction, 29% memory decrease, and 22% time
saving the maximum accuracy decrease.

The above results prove that DiReCtX can effectively
reconfigure the CNN model in the given CNN-based appli-
cation with an acceptable accuracy loss. Compared with other
state-of-the-art methods, DiReCtX can achieve better overall
computation consumption reduction performance.

E. Mobile Computation Scenario Adaptability

The adaptability of the proposed DiReCtX is also eval-
vated in four mobile computation scenarios featured with
popular mobile applications. In Fig. 13, we investigate the
dynamic resource-aware CNN reconfiguration with DiReCtX
for adapting different computation resource budgets. The
experiment results are obtained based on 1000 times VGG-13
task executions with a battery capacity of 5400 J.

From Fig. 13, we can observe that different mobile computa-
tion scenarios have distinct energy, memory, and time budgets.
Some scenarios can not afford the computation resource for the
original VGG-13 execution, such as Gaming, Internet, and VR
applications. Taking the energy cost of Gaming as an example,
VGG-13 execution requires 448 J for 1000 times execution,

while the mobile platform needs approximate 4952 J to support
the entire system. In such case, the energy budget for VGG-
13 is only 370 J. Meanwhile, the memory and computation
time budgets are 100 MB and 60 s, respectively. Therefore,
the primary computation resource constraint is energy. With
the proposed DiReCtX framework, VGG-13 is automatically
reconfigured to a scheme with FMR (Neuron Pruning Ratio) of
45% and 9.8% accuracy loss based on the precise computation
consumptions estimation. Hence, VGG-13 related applications
can be well balanced with an acceptable accuracy performance
and manageable resources. For other two computation scenar-
ios, such as Internet and VR Camera, we set memory and
computation time as primary constraints and DiReCtX can
also reconfigure VGG-13 to adapt corresponding computation
resource constrains.

Above results demonstrate that DiReCtX can effectively
adapt the CNN configuration to dynamic mobile scenarios.

X. CONCLUSION

In this article, we proposed DiReCtX, a resource-aware CNN
reconfiguration framework, which adapts various CNN models
to dynamic mobile computation scenarios. DiReCtX is com-
posed of a set of CNN profiling models for computation con-
sumption and inference accuracy estimation, a resource-aware
CNN reconfiguration scheme, and two post-reconfiguration
optimization strategies for real-time mobile implementation.
With these technical efforts, DiReCtX can dynamically recon-
figure a CNN model with manageable resource consumption
and accuracy tradeoffs. It can be well implemented on state-
of-the-art smartphones for CNN computation optimization.

REFERENCES

[11 F. Wang et al., “Residual attention network for image classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu,
HI, USA, 2017, pp. 3156-3164.

[2] K. Alex, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1106-1114.

[3] G. Ross, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis., Santiago,
Chile, 2015, pp. 1440-1448.

[4] J. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), 2015, pp. 577-585.

[5] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke,
“The microsoft 2017 conversational speech recognition system,” in Proc.
IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Calgary, AB,
Canada, 2018, pp. 5934-5938.

[6] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn,
and D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 22, no. 10,
pp. 1533-1545, Oct. 2014.

[7] Z. Xu, Z. Qin, E. Yu, C. Liu, and X. Chen, “DiReCt: Resource-
aware dynamic model reconfiguration for convolutional neural network
in mobile systems,” in Proc. Int. Symp. Low Power Electron. Design
(ISLPED), 2018, pp. 1-6.

[81 W. Meng, Z. Gu, M. Zhang, and Z. Wu, “Two-bit networks for deep
learning on resource-constrained embedded devices,” 2017. [Online].
Available: arXiv:1602.07360.

[9] H.Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters

for efficient convnets,” 2016. [Online]. Available: arXiv:1608.08710.

Z. Xu, F. Yu, C. Liu, and X. Chen, “ReForm: Static and dynamic

resource-aware DNN reconfiguration framework for mobile device,” in

Proc. 56th Annu. Design Autom. Conf., Las Vegas, NV, USA, 2019,

p. 183.

T. Yang et al., “NetAdapt: Platform-aware neural network adaptation for

mobile applications,” Energy, vol. 41, p. 46, Oct. 2018.

Y. Wang, T. Nguyen, Y. Zhao, Z. Wang, Y. Lin, and R. Baraniuk,

“EnergyNet: Energy-efficient dynamic inference,” in Proc. 32nd Conf.

Neural Inf. Process. Syst., 2018.

[10]

(1]

[12]

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

XU et al.: DiReCtX: DYNAMIC RESOURCE-AWARE CNN RECONFIGURATION FRAMEWORK FOR REAL-TIME MOBILE APPLICATIONS

[13]

[14]

[15]
[16]

[17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]
(36]
(371

(38]

(391

Y. LeCun et al.. (2015). LeNet-5, Convolutional Neural Networks.
[Online]. Available: http://yann. lecun. com/exdb/lenet

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2014. [Online]. Available:
arXiv:1409.1556.

Nexus5 Performance, Geekbench, Toronto, ON, Canada, 2017. [Online].
Available: https://browser.geekbench.com/

J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in Proc. Int. Conf. Artif. Neural Netw., 2014, pp. 281-290.
N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2: Practical guide-
lines for efficient CNN architecture design,” 2018. [Online]. Available:
arXiv:1807.11164.

F. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and less 0.5mb model size,” 2016. [Online]. Available:
arXiv:1602.07360.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” 2017. [Online]. Available: arXiv:1610.02357.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2015. [Online]. Available: arXiv:1510.00149.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” 2014. [Online]. Available:
arXiv:1405.3866.

M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or —1,” 2016. [Online]. Available:
arXiv:1602.02830.

T. Yang, Y. Chen, and V. Sze, “Designing energy-efficient convolutional
neural networks using energy-aware pruning,” 2016. [Online]. Available:
arXiv:1611.05128.

A. Gordon et al., “MorphNet: Fast & simple resource-constrained
structure learning of deep networks,” 2017. [Online]. Available:
arXiv:1711.06798.

S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in Proc. 16th Annu. Int. Conf. Mobile Syst. Appl. Service,
2018, pp. 389-400.

J. Luo and J. Wu, “An entropy-based pruning method for CNN
compression,” 2017. [Online]. Available: arXiv:1706.05791.

A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y. Wang, “Fine-grained
power modeling for smartphones using system call tracing,” in Proc. 6th
Conf. Comput. Syst., 2011, pp. 153-168.

Neural Networks Usage at Mobile Development, Dashdevs, Wilmington,
DE, USA, 2019. [Online]. Available: https://codeburst.io/neural-
networks-usage-at-mobile-development-e9de81d25f18

M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proc. 9th Int. Conf.
Mobile Syst. Appl. Services, 2011, pp. 335-348.

M. Kim, J. Kong, and S. W. Chung, “Enhancing online power estimation
accuracy for smartphones,” IEEE Trans. Consum. Electron., vol. 58,
no. 2, pp. 333-339, May 2012.

C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 38, no. 11, pp. 2072-2085, Nov. 2019.

A. Ignatov et al., “Al benchmark: All about deep learning on smart-
phones in 2019,” 2019. [Online]. Available: arXiv:1910.06663.

Y. H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,” in
Proc. IEEE/ACM 43rd Annu. Int. Symp. Comput. Architect., Seoul,
South Korea, 2016, pp. 367-379.

S. Williams, A. Waterman, and D. A. Patterson, “Roofline: An insight-
ful visual performance model for floating-point programs and multicore
architectures,” Dept. Elect. Eng. Comput. Sci., Univ. California,
Berkeley, CA, USA, Rep. UCB/EECS-2008-134, 2009.

S. Swanson and M. B. Taylor, “Greendroid: Exploring the next evolution
in smartphone application processors,” IEEE Commun. Mag., vol. 49,
no. 4, pp. 112-119, Apr. 2011.

Monsoon Power Monitor, M. S. Inc., Attleboro, MA, USA, 2010.
WeTest Smartphone Analysis Tool, Air T, Inc., Maiden, NC, USA, 2017.
[Online]. Available: https://github.com/Tencent/WeTest-Assistant/

M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Oper. Syst. Design Implement., 2016,
pp. 265-283.

Tensorflow Lite, G. Inc., Mountain View, CA, USA, 2018. [Online].
Available: https://www.tensorflow.org/lite

[40]

[41]

[42]

[43]

259

A. Carroll and G. Haiser, “An analysis of power consumption in a
smartphone,” in Proc. USENIX Annu. Techn. Conf., 2010, p. 21.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convo-
lutional neural networks for resource efficient inference,” 2016. [Online].
Available: arXiv:1611.06440.

A. Salama, O. Ostapenko, M. Nabi, and T. Klein, “Pruning at a glance:
A structured class-blind pruning technique for model compression,” in
Proc. Conf. Adv. Neural Inf. Process. Syst., 2018.

Android Studio, Android Studio, Mountain View, CA, USA, 2016.

Zirui Xu received the B.S. and M.S. degrees
from Beijing Jiaotong University, Beijing, China,
in 2014 and 2017, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Electrical and Computer Engineering, George
Mason University, Fairfax, VA, USA, under the
supervision of Prof. X. Chen.

His current research interests include high
performance mobile computing system, neural
network model optimization, and mobile intelligent
application robustness and security.

Fuxun Yu received the B.S. degree from the
Harbin Institute of Technology, China, in 2017. He
is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
George Mason University, Fairfax, VA, USA, under
the supervision of Prof. X. Chen.

His current research directions include deep learn-
ing security, adversarial attacks and defenses on neu-
ral network, high-performance deep neural network
on mobile devices, and interpretability and explain-
ability of deep learning.

Zhuwei Qin received the B.S. degree from the
Tianjin University of Science and Technology,
Tianjin, China, in 2014, and the M.S. degree from
Oregon State University, Corvallis, OR, USA, in
2017. He is currently pursuing the Ph.D. degree with
ECE Department, George Mason University, Fairfax,
VA, USA, under the supervision of Prof. X. Chen.

His current research directions include deep neu-
ral network compression, interpretable deep neural
network for mobile application.

Chenchen Liu received the M.S. degree from
Peking University, Beijing, China, in 2013, and the
Ph.D. degree from the ECE Department, University
of Pittsburgh, Pittsburgh, PA, USA, in 2017.

She is currently an Assistant Professor with the
Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore, MI,
USA. Her current research interests include brain-
inspired computing system and security, integrated
circuits design, and emerging nonvolatile memory
technologies.

Xiang Chen received the M.S./Ph.D. degrees
from the ECE Department, University of
Pittsburgh, Pittsburgh, PA, USA, in 2012 and 2016,
respectively.

In 2016, he joined the Department of the
Computer Engineering, George Mason University,
Fairfax, VA, USA, as an Assistant Professor. His
research interests are in the low-power mobile
system, high-performance mobile computing,
machine learning, and secure computing system.

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:34:00 UTC from IEEE Xplore. Restrictions apply.

