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ABSTRACT

Federated learning learns from scattered data by fusing collabora-
tive models from local nodes. However, conventional coordinate-
based model averaging by FedAvg ignored the random information
encoded per parameter and may suffer from structural feature mis-
alignment. In this work, we propose Fed?, a feature-aligned feder-
ated learning framework to resolve this issue by establishing a firm
structure-feature alignment across the collaborative models. Fed? is
composed of two major designs: First, we design a feature-oriented
model structure adaptation method to ensure explicit feature alloca-
tion in different neural network structures. Applying the structure
adaptation to collaborative models, matchable structures with simi-
lar feature information can be initialized at the very early training
stage. During the federated learning process, we then propose a
feature paired averaging scheme to guarantee aligned feature distri-
bution and maintain no feature fusion conflicts under either IID or
non-IID scenarios. Eventually, Fed? could effectively enhance the
federated learning convergence performance under extensive homo-
and heterogeneous settings, providing excellent convergence speed,
accuracy, and computation/communication efficiency.

CCS CONCEPTS
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1 INTRODUCTION

Federated Learning (FL) has achieved great popularity among vari-
ous distributed deep learning frameworks due to its superior col-
laboration flexibility, communication efficiency, and performance
robustness in vision and language learning scenarios [4, 7, 16, 17]. It
is commonly achieved by multiple FL nodes’ collaboration through
Federated Averaging (FedAvg), which generates a global model by
periodically averaging local models’ parameters. Specifically, Fe-
dAvg follows a coordinate-based weight averaging manner [7, 14].
Different local models’ weights in the same layer and same index
(i.e., coordinates) are averaged to be the global model’s weight.

Although widely adopted, FedAvg still suffers from accuracy
drop due to a common issue called weight divergence [6, 20, 23].
Especially in non-IID scenarios, highly skewed data distribution
across nodes can cause distinct weight values at the same coor-
dinates, thus hurting the model averaging performance. Recent
works elaborate one potential reason of such weight divergence is
the DNN “permutation invariance” property. Specifically, given a
DNN model, the set of parameters in its convolutional and fully-
connected layers could be arbitrarily permuted with different per-
mutation sequences, while still yielding the same computational
results [14]. Due to the permutation invariance property, weight
matrices of different local FL models may not be fully-aligned by
coordinates. Thus, coordinate-based FedAvg will incur weight av-
eraging conflicts and lead to sub-optimal FL accuracy, which is
commonly observed as the weight divergence issue.

Many optimization methods are proposed to alleviate the weight
divergence issue by parameter-oriented weight matching, such as
representation matching [8], Bayesian matching [21], FedMA [14],
etc. Although these works have different designs, such as weight
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Figure 1: Feature encoding visualization of one sampled convolutional layer across ten clients during FL. The color of each neuron is deter-
mined by its top response class to indicate its learned feature. (a) The original FedAvg with chaotic feature encoding can suffer from feature
averaging conflicts among different nodes. (b) & (c) In contrast, our framework enforces structurally-aligned feature encoding by adopting
group convolution and alleviates the averaging conflicts in both IID and non-IID cases. Experiments are conducted with ten collaborative
nodes (VGG9 on CIFAR10). IID: Each node has local data of 10 classes. Non-IID: Each node has local data of only 5 classes.

aligning by minimizing MSE distance [14], or activation aligning [8],
they share the similar methodology: After each local model training
epoch, they first evaluate the parameter similarity across local mod-
els, and then re-permute the weight matrices so that approximate
weights could be averaged together.

Although outperforming native FedAvg, these methods still have
certain limitations, such as inaccurate parameter similarity, extra
computation/communication overhead and compromised data pri-
vacy, etc. Specifically, current methods’ matching accurateness
highly depends on the selected similarity metric and the operation
targets. For example, [11, 18] use MSE loss with Euclidean distance
in weight or activation matrices. But two weight matrices with
a small distance may not necessarily mean they carry the same
information and feature. Therefore, common parameter matching
methods can still suffer from the feature-level misalignment.

To tackle these limitations, we propose Fed?, a feature-aligned
federated learning framework. Fig. 1 demonstrates a set of feature
visualization and illustrates the different feature alignment effect
between FedAvg and our proposed Fed? framework. As shown in
Fig. 1 (a), FedAvg’s local models suffer from significant feature-
level mismatching. The coordinate-based FedAvg in such case will
thus incur dramatic feature conflicts and cause convergence per-
formance degradation. By contrast, with the proposed Fed?, our
models’ learned feature distribution conform to strict structural
alignment without any averaging conflicts. Even in extreme non-
IID scenarios, Fed? still maintains consistent feature alignment
among local models, thus providing superior federated learning
performance than prior works including higher convergence rate,
accuracy, etc.

Specifically, we make the following contributions:

o First, we promote the previous weight-level matching meth-
ods to a feature-level alignment method by defining an fea-
ture interpretation method. Such a method analyzes and
qualitatively shows the feature-level misalignment issue in
current coordinate-based FedAvg algorithm;

e We then propose a controllable feature allocation methodol-
ogy by combining feature isolation and gradient redirection
techniques. Such controllable feature allocation is achieved
by a group-wise convolution and fully-connected structure
adaptation, which can pre-align the feature and model struc-
ture even before the training process;

e Eventually, we design a feature-aligned FL framework —
Fed?, which is composed of feature-oriented structure adap-
tation and model fusion algorithm. By maintaining consis-
tent feature alignment throughout FL training, Fed? could
achieve superior performance than FedAvg and other weight-
matching methods.

We conduct extensive experiments on general datasets (CIFAR10,
100) with varied architectures (VGG9, VGG16 and MobileNet). The
experimental results of Fed? demonstrate significant improvement
in both convergence speed and accuracy, outperforming previous
state-of-the-art works by large margins (+2.5%~4.6%) while having
smaller computation and communication cost. Even under highly-
skewed non-IID scenarios, our work still performs effective and
robust feature alignment and ensures the near-optimal FL conver-
gence accuracy when most previous methods fail to do so.

2 BACKGROUND AND RELATED WORK
2.1 Federated Learning with FedAvg

Conventional FL frameworks usually adopt the Federated Averag-
ing algorithm (FedAvg) [7] to collect distributed weight parameters
from local nodes and fuse for the global DNN model:

+1 _ N 1
A = Do 3 “lntiy (W)

where Q and w; are the global weights and local weights from the
n'" node (N nodes in total), I and i denote the layer and weight in-
dexing for parameter coordination. e denotes the epoch-wise weight
averaging cycle, which FL leverages to facilitate the communication
efficiency compared to iteration-wise averaging.



The FedAvg formulation in Eq. 1 implicitly defines a coordinate-
based parameter averaging for distributed local DNN models, i.e.,
weights of the same coordinates (I, i) in these models are strictly
designated to be averaged across the collaborative training process.

2.2 Neural Network Permutation Invariance

However, recent research works have proved that parameter co-
ordination is an inaccurate DNN model fusion guidance by re-
vealing a particular DNN property — weight permutation invari-
ance [14, 20, 21]. Such a property shows that the DNN weight
matrix can be structurally shuffled while maintaining lossless cal-
culation results.

Specifically, a weight matrix « can be decomposed as wII, where
o indicates the parameter value only and IT defines the coordinate
permutation matrix. When IT = 1 (identity matrix), no coordinate
permutation is applied to the weight matrix, i.e., 1 = ©. While 1
can be further decomposed a pair of permutation matrices (IT TI7)!,
the lossless permutation can be formulated as:

wl=ell! = . 2)

Without loss of generality, considering a DNN model composed of
two consecutive layers (layer weights as w; and wy, 1) as an example,
the output F(X) could be formulated as?:

F(X) = wpy1 (07 X). (3

According to Eq. 2, applying any permutation matrix together with
its transpose onto w1 incurs no output influence:

F(X) = (01 iy T ) (07 X) = (041 Tpep) (07 o) X (4)

Therefore, the original DNN weights of two layers w1, w; could
be losslessly re-permuted as (w;y1 I1;41) and (HIT+1 wy), resulting
in individual weight w;’s allocation variation in a layer.

2.3 FedAvg vs. Permutation Invariance

The permutation invariance property implies that a weight param-
eter could be permuted with arbitrary coordinates in a layer, which
conflicts with the coordinate-based parameter averaging in FedAvg.

Specifically, suppose the DNN models of two consecutive layers
(I,1+ 1) from N local nodes all learn the same function F(-):

F(-) =(w(0,1+1)IT0) (ng(o,l)) = = (0(n1+1)In) (H,le(n,z))

=+ = (o) IIN) [Thonp). 1€ (0N).
(5)

Even we assume N models can have the same weight values com-
position (i.e., w(n,1) = wj), their coordinate matrices I, could be
highly different as these models are trained separately during the
local training epoch:

Ho# ... #1y # ... #1Ix, n e (O,N). ©)

Therefore, the weight parameter learning a particular information
may have diverse in-layer coordinate i across different local models.

1We could construct any permuted identity matrix IT by shuffling the 1 elements to be
non-diagonal but maintains the full rank.

2We use fully connected layers as an example. Convolutional layers could also be
transformed to similar matrix multiplication calculation by im2col.

As FedAvg still conducts rigid coordinate-based averaging:

N 1 N 1
Qr1,i) = anl N Qb Ini Qi = anl N L0 (n 1)
™)
the averaged weights can hardly match with each other, nor the
corresponding information across N models.

The permutation invariance gives a new explanation perspective
to commonly-known FL issues, such as weight divergence and ac-
curacy degradation, especially in non-IID data distributions where
local models are even learning non-uniform information [5, 6, 23].

2.4 Weight-Level Alignment (WLA)

The permutation invariance not only explains the FedAvg issues,
but also serves as a DNN model configuration tool to motivate
many FL optimization works [8, 14, 20, 21]. These works identify
the parameters with corresponding information across local DNN
models with certain similarity metrics (e.g., MSE) and leverage a
lossless permutation matrix to structurally align the parame-
ters’ allocation for matched information fusion.

Taking the two-layer DNN model as an example, this process can
be formulated as re-permuting the I layer weight matrix (1)
on the n'" node with a re-permutation matrix Il;,qns to minimize
the selected distance metric — D with the global weight Q;:

aligned aligned

(ni+1) ~@ni+1lltrans,s.t. D (w(n,lﬂ) Q1) — 0. .
aligned _ T aligned
w(n’l) —Htmnsw(n’l),s.t. D (a)(n’l) ,Qp) — 0.

With the minimum layer-wise matrix similarity distance, the dis-
tributed weights @, ;) with corresponding information are ex-
pected to be generally aligned by identifying the re-permutation
matrix II;rgns before each global averaging operation. This can be
translated to an optimization problem and be resolved by differ-
ent algorithms like Bipartite matching, Wassertein barycenter and
Hungarian matching [13, 14].

2.5 Limitations of WLA

Although current WLA works’ significant performance escalation
demonstrated the necessity of parameter alignment for FL, there
is an essential question: Does the weight matrix distance really
reflect the information mismatching across distributed DNN
models? Current methods’ alignment accurateness highly depends
on the selected similarity metrics and their operation targets, e.g.,
MSE and Euclidean distance on weight or activation matrices [8, 14].
However, these quantitative alignment criteria may not fully match
the weights carrying the same learning feature information. Many
recent works have demonstrated the necessity of qualitative param-
eter interpretation and feature visualization for DNN design and
optimization [1, 9, 10]. Furthermore, the practical FL may involve
non-IID local data and even non-IID learning classes across nodes.
In such cases, parameters will encode non-uniformed information
and can be not fully-matched at all [23], and a forced value-based
matching can cause catastrophic performance degradation.
Besides the alignment criteria, we would like to ask another ques-
tion: How to effectively and efficiently guarantee the align-
ment across the federated learning process? Most prior works
adopt a post-alignment method [8, 14, 20, 21], which analyzes and



match parameters across models before every global averaging
operation, resulting in heavy computation workloads. And the pa-
rameter similarity analysis also requires activation data sharing
that can compromise the input data privacy.

3 FEATURE-LEVEL ALIGNMENT (FLA):
A NEW PERSPECTIVE

We expect to address the above problems through a series of tech-
nical contributions: We first answer the “what-to-align” question
by promoting the previous weight-level similarity-based parameter
alignment to a feature level; We then answer the “how-to-align”
question by proposing a feasible feature allocation scheme to estab-
lish firm correlations between DNN structures and their designated
assigned learning features; Eventually, we design a feature-aligned
FL framework — Fed?, which enables accurate feature alignment
and thus achieves superior performance than FedAvg as well as
other WLA methods. Specifically, in this section, we interpret the
feature information learned by DNN parameters and propose a
novel feature-aligned learning objective for FL frameworks.

3.1 Feature Definition and Interpretation

Many prior works have elaborated neural networks’ feature in-
formation from many perspectives>. For example, [18] utilizes ac-
tivation maximization to visualize each neuron’s preferred input
pattern, [24] introduces the activation-based attention mechanism
to illustrate neuron’s region of interest in the input, and [9-11, 24]
uses the learning class preference to illustrate the neuron function-
ality. Unlike conventional quantitative approaches, these feature-
oriented analysis methods provide qualitative and explicit interpre-
tations of the DNN learning process’s intrinsic mechanism.

In this work, we adopt neurons as the basic feature learning
units?, and practice the feature interpretation as follows: As shown
in Fig. 2, one individual neuron’s learning preference can be mea-
sured by observing the neuron’s activation response A(x.) on in-
puts x from different C classes, as well as its gradients 9Z./9A(x.)
towards a class ¢’s prediction confidence Z.. Combining these two
factors and further generalizing to a multi-layer convolutional neu-
ral network, a neuron’s learned feature information can be formu-
lated as a class preference vector:

Zc

a
aA(xc,b) ’ ©)

B
P=[p1,.--.pc,---.pc]l, where p. = ZA(xc,b) *
b

where A (x, ) denotes activations and 9Z./dA(x. ) denotes gra-
dients from class ¢’s confidence, both of which are averaged on
B batch trials. For each neuron, the largest index Argmax;(P;) of
feature vector P indicates its primary learning class target. Assem-
bling all neurons’ top preferred classes together, a layer’s feature
encoding vector could be then obtained.

As an example, we visualize two convolutional layers’ learned
feature information in Fig. 3. Similar to Fig. 1, each neuron is repre-
sented by one vertical color bar, while the color denotes different
primary preferred classes. In practice, we find such a feature inter-
pretation method aligns well with previous AM visualization [18],
which demonstrates the effectiveness of our feature interpretation.

3Here we consider image classification as our major deep learning task.
“Here the neuron is defined one convolutional filter if in the convolutional layer, or
one neuron if in the fully connected layer.
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Figure 3: Class Preference Vector Visualization (VGG16 on CI-
FAR10).

3.2 Feature-Aligned FL Objective

Based on such a feature interpretation perspective, we can re-
examine the model fusion process, starting with the coordinate-
based FedAvg method: Across the y-dimension of Fig. 1 (a), we
sample and visualize the neuron learning class preferences from the
same layer’s feature encoding across all ten local DNN models. As
we could see, neurons with the same coordinates show dramatically
different class preferences. Since FedAvg adopts a coordinate-based
averaging, massive feature averaging conflicts can happen. The
encoded information from partial nodes can thus be lost, leading
to a slower convergence rate or lower accuracy.

To alleviate the feature fusion conflicts, we propose to conduct
feature-level alignment during the FL model averaging process. For-
mally, the feature-aligned federated learning objective could be
defined as minimizing the total feature-level parameter variance
among N collaborative nodes :

Minimize ZD (P(ny,Li)s P(noLi))s Yn1,n2 € (1, N), n1 # na,
(10)
where p(p, 1 ;) is the feature learned by the it" neuron of the I-th
layer from the n*" node, and D is an appropriate distance metric
for feature vector similarity evaluation.

Naively, to solve Eq. 10, we could calculate the feature vector
of each neuron p(, ;) and then conduct post-alignment by neu-
ron re-permutation just like previous weight-matching methods.
However, such an approach suffers from the same limitations like
inaccurate feature similarity metrics and heavy post-matching com-
putation overheads, etc. Therefore, we propose a set of novel feature
alignment method by establishing firm correlations between DNN
structures and their designated assigned learning features without
tedium feature allocation and analysis effort.

4 STRUCTURAL FEATURE ALLOCATION

In this section, we then answer the “how-to-align” question, i.e.,
to design effective ways for feature-level alignment. Specifically,



we propose a “structural feature allocation” scheme to establish
firm correlations between DNN structures and their designated
learning features: Given a DNN model, we adapt the model struc-
ture by constructing separated parameter groups with the group
convolution method; Different learning classes are then assigned
into individual parameter groups through a gradient redirection
method; Therefore, we enforce one parameter group to learn a set
of designated classes, thus achieving the structural feature alloca-
tion at the early stage of model training. When deployed into an
FL scenario, such a structural feature allocation can guide explicit
feature-level alignment with parameter structure group matching
and provide the methodology foundation for later feature-aligned
federated model fusion.

4.1 Feature Isolation by Group Convolution

How to guide particular features to be learned by designated pa-
rameters is the key to structural feature allocation. And the primary
motivation of such an approach is that we notice the group convolu-
tion structure could isolate the feature distributions with separated
activation forwarding and gradient backwarding processes [3, 22].

Fig. 4 illustrates the model structure difference between common
convolution and group convolution. Regular convolution (Fig. 4 (a))
follows a densely-connected computational graph. By contrast, the
group convolution structure (Fig. 4 (b)) separates the convolution
operations into groups. The input/output feature maps are therefore
mapped only within their current group. The group convolution
is first proposed in AlexNet [3] by using two groups to relieve
the computational burden of single GPU. But after training, the
model learns distinct features in two convolution groups (i.e., shape-
oriented and color-oriented features) [3]. Similar phenomenon is
observed in ShuffleNet [22] that features become biased within
each different convolutional group without shuffling. Although
initially designed for computational benefits, the grouped structure
naturally demonstrates feature regulation and isolation effects in
both models, which have been rarely explored in priori works.

Our hypothesis of such feature isolation phenomenon is due to
the gradient isolation effect incurred by the separable computational
graph in group convolution. As different groups are forwarding
separately, the backward gradients carrying feature information
also flows only within their own groups, thus gradually leading to
feature isolation. Formally, in the regular densely-connected con-
volution, each output feature map OF; (i € [1 : d,]) is calculated
by convolving on all input feature maps IF; (j € [1 : d;]):

OF1.p = {w1 # IF1.m, w2 * IF1.m, ..., wn % IF1.;m}, (11)

where d, and d; are the output/input feature map depth, w; is
weights for the ith convolution filter, and * is the convolution
operation. The gradients of input feature IF; can be formulated as:

60F;
VIF; = Zi cSI_FJl i€ (1, do). (12)

That is, the gradient of IF T fuses the information from all out-
put features (OF;). Due to the interleaved and fused gradients, the
input layer’s feature encoding can be highly non-predictable. In dis-
tributed FL, such random encoding thus incurs feature mismatches
and averaging conflicts, lead to sub-optimal convergence.

Input Output Input Output
Feat-maps Filters Feat-maps

Feat-maps Filters Feat-maps

Gradidnt
edireckion

(a) Convolution (b) Group Convolution

Figure 4: We achieve structural feature allocation by adopting group
convolution and decoupled logit (fully-connected) layers. Specifi-
cally, we use group convolution for feature isolation and combine
it with decoupled logit layers for feature allocation.

By contrast, the group convolution separates the computational
graph, as well as the convolutional inputs & outputs into different
groups G. The grouped output feature maps (OF) are:

OF1.g, ={w1 *IF1 .G, ... WG, *IF1.G,} -
s WGy *¥1FG; : Gy } oo (13)
5 Wn *IFGg_l ‘mt}

OFG,:Giy = WG, *1FG; : Gyy» -
OFg, ;:n={wg, , *IFG, | : m: -

As each input feature map contributes to the within-group output
feature maps only, i.e., OFg,.G,,,, the backward gradient for IF;
will only fuse the information within the current group Gy;.

S0OF; .
VIF; = Zi TF]" i € (Gy;, Gy;41)- (14)

In this case, the group convolution structure builds implicit bound-
aries between groups, and achieves the feature isolation effect.

4.2 Feature Allocation by Gradient Redirection

Building upon such a feature isolation effect, we then propose
a gradient redirection method to control the feature allocated in
each convolution group. Our main idea is first separating the gra-
dient components carrying different classes’ features, and then
redirecting them into different groups. Specifically, this is done
by the decoupled fully-connected layer, in which different class
logits are connected only to their corresponding group. Combining
both feature isolation and allocation, we are able to achieve struc-
tural feature allocation and facilitate our feature-aligned federated
learning framework.

As shown in Fig. 4 (a), traditional logit layers (i.e., the last fully-
connected layer) usually fully connect all input feature maps (con-
volutional filters) with the logits. The gradients carrying features
from each logit thus flow through all output feature maps (OF;):

OF1..n < Vlogit., c € (1, C). (15)

C is the number of logits. Due to the fully-connected computational
graph, the feature encoding in each layer becomes non-predictable.

Different from that, we decouple the original logit layer into
groups as well. An example is shown in Fig. 4 (b). Each sub-layer
maps the class logit(s) to one corresponding convolutional group
only, enforcing the gradients flowing backwards to the mapped
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Figure 5: Our proposed Fed? framework includes two major steps: (i) We utilize group-convolution based structure to conduct feature-to-
structure allocation; (ii) We then propose a feature paired averaging policy to enforce the feature alignment during federated model averaging.

structure group without any leakage:

OFg, . G;,, < VLogity, g is a subset of (1, C). (16)

Here OFg; . G,,, is one group of output feature maps, and Logity is
the group of class logits that are assigned to this structure group.

By the gradient redirection, each structure group acts as the
anchor for the allocated features. During the FL training process,
the feature of these classes will be continuously contained within
the group, thus enforcing the structural feature allocation.

5 FED2 FRAMEWORK

Based upon the structural feature allocation methodology, we then
propose Fed?, a feature-aligned federated learning framework,
which further enhanced the feature-level alignment with a par-
ticular DNN structure design and model fusion scheme for FL.

5.1 FLA-Enhanced DNN Structure Design

Fig. 5 (a) shows the overview of our model structure adaptation.
For common DNN models like VGG [12] and MobileNets [2], our
structural adaptation splits the model into two parts: For the lower
convolutional layers, we maintain the densely-connected structures
as shared layers. For the higher convolutional and fully connected
layers, we transform them into the group-wise structure.

Shared Layers for Feature Sharing: The design of lower con-
volutional layers to be shared is due to the shallow layers learn
mostly basic shared features, which shows few feature averaging
conflicts [1, 9, 10]. In such cases, blindly separating these layers into
groups can prevent low-level neurons receiving gradients from all
groups, leading to bad learning performance. Our empirical study
also verifies such conclusion (as we will show later). Therefore, we
reserve shallow layers as the shared layers.

Decoupled Layers for Feature Isolation: By contrast, for the
deeper convolutional layers, the encoded features diverges more
and are easier to conflict with each other during averaging [8, 19].
Therefore, we adopt group convolution and construct separable
structure groups in these layers for further feature alignment.

To determine an appropriate number of decoupled layers, we
evaluate the feature divergence of layer [ by the total variance (TV)
of all neurons’ feature vectors Py ; (defined in Eq. 9) in this layer:

Il
i = Zi 7P = E(PLi)ll2. (17)

I is the number of neurons in layer . Such layer-wise feature total
variance usually maintains low in the lower layers and surge high
in later layers. We therefore determine an appropriate decoupling
depth by thresholding the TV for the group-wise transformation.

Feature-to-Structure Allocation Enhancement: After determin-
ing the decoupled layers, we construct convolution groups and con-

ducts gradient redirection by logit(s) allocation in Eq. 16. Such a step

accomplishes an explicit feature-to-structure allocation. One illus-

trative example is shown in Fig. 5 (a)®. For future feature alignment,

we thus can easily match different convolution group structures by

the learning tasks (i.e., logits) mapped to them.

Another optimization is we replace the batch normalization (BN)
to be group normalization (GN) [15]. Previous works have shown
that BN can influence the distributed training performance as dif-
ferent local models tend to collect non-consistent batch mean and
variance (especially in non-IID cases) [6]. Our structure design, by
enforcing feature allocation, alleviates the feature statistics diver-
gence within each group. Therefore, we incorporate the GN layer
and further improve the model convergence performance. We will
demonstrate the effectiveness of GN layers in later experiments.

By the proposed structure adaptation, Fed? enables structure-
feature alignment before the training process. Such structure-feature
pre-alignment also greatly simplifies the following matching pro-
cess, which alleviates the heavy distance-based optimization com-
putation and achieves better feature alignment effect.

5.2 Feature-Aligned Federated Model Fusion

With the feature-to-structure pre-alignment, Fed? can then pro-
mote previous weight-level matching methods to the feature-level.
Specifically, we propose the feature paired averaging algorithm.
Firstly, the shared layers will be averaged among N collaborative
nodes. As they extract fundamental shared features with less feature
conflicts, the coordinate-based FedAvg can be directly applied:

Qshared = E(w:hared)’ ne (1’ N)> (18)
where " denotes the weights of the shared layers from the
shared

n-th local model, and Qg 4,4 is the averaged global model weight.
For decoupled layers, as different groups are assigned with dif-
ferent class logits, weight averaging should be conducted within

SFor simplicity, Fig. 5 (a) shows a one-class to one-group mapping example. For large
datasets with more classes (e.g., 100 classes), multi-classes to one-group is achievable
and also yields similar feature alignment benefits, as we will evaluate later.



the groups that share the same learning tasks. That is, only the
groups that have the paired learning class are averaged together:

QI = E(w‘Z}.), iff Logits(a)?) = Logits(a)?),

(19)
Vi, je (LN), i #j.

Here QY denotes the global weights of the g-th group structure,
and wig ; are the local model weights of group g on nodes i and j.

The gt* group’s weights from two local models will be averaged if
and only if they are paired, i.e., Logits(w_(i]) = Logits(a)_(j]).

The proposed feature paired averaging method accomplishes
the last step for feature aligned averaging in Fed?. Benefited from
the explicit feature-to-structure pre-alignment, our group pairing
process only needs to match the learning logits (an one-hot class
vector). This greatly simplifies the matching complexity than pre-
vious parameter matching like weights and activations [8, 14, 20].
Therefore, Fed? also alleviates the heavy computation and commu-
nication overhead of traditional post-alignment methods.

6 EXPERIMENT

We evaluate Fed? with image classification tasks on CIFAR10 and
CIFAR100. Three DNN models (VGG9 [14], VGG16 [12], and Mo-
bileNetv1 [2]) are adopted to evaluate the generality of our structure
adaptation method. Without specific mentioning, all baselines use
the original network, while Fed? adopts a general decoupling step,
i.e., decoupling the last 6 layers with 10 convolution groups for
three networks. For local data distributions, we consider both IID
and non-IID scenarios. State-of-the-art (SOTA) works including Fe-
dAvg [7], FedMA [14] and FedProx [5] are compared to demonstrate
the training efficiency and convergence benefits of our framework.

6.1 FL Convergence Performance

We first compare the convergence performance of Fed? with other
SOTA methods. The experimental settings are kept same with [14]
using VGGY9 on CIFAR10 dataset. The heterogeneous data partition
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Table 1: Data Heterogeneity (N: # of nodes. C: # of classes).

CIFAR10 N*C 10x3  10x4 10x5  10x10
FedAvg [7] 82%  84%  85%  88%

VGG Ours 83%  88%  88%  90%
FedAvg [7] 67%  71%  19%  85%
MbNet Ours 86%  88%  90%  91%

CIFAR100 N*C 1030 10x40 10x50 10x100

FedAvg [7] 61%  64%  65%  66%
Ours 64%  67%  68%  70%

VGG16

with J (J = 16) clients are adopted by sampling p. ~ Dir;(0.5)
and allocating a p,j proportion of the training data of class c to
local client j, where Dir;(0.5) is the dirichlet data distribution.
We evaluate the FL convergence performance from two aspects:
(1) convergence rate: accuracy w.r.t. communication rounds; and
(2) computation efficiency: accuracy w.r.t. computational efforts.

Convergence Rate. Fig. 6 compares the test accuracy curves w.r.t
communication rounds between Fed? (red line) and other methods.
As we can see, our Fed? shows superior convergence rate compared
to the other three methods. With roughly 40 rounds, our method
achieves the best accuracy 88.29%. In contrast, other methods can
take 100 rounds but still achieve lower accuracy, e.g., FedMA (87.53%,
-0.76% than ours) and FedAvg (86.29%, -2.0% than ours).

Computation Efficiency. We further demonstrate the computa-
tion efficiency of Fed? by comparing the model accuracy w.r.t the
overall computational workloads. Here the computational work-
loads are measured by the overall local training epochs on all nodes.
The results are shown in Fig. 7. As other methods’ accuracies re-
ported in [14] are with varied local epoch settings (E), we conduct
Fed? in different settings for fair comparison.

Fed? achieves better accuracy (89.1%) than FedAvg and FedProx
under E=20 settings, and meanwhile use less computation efforts
(1200 vs. 2000 epochs). Compared to FedMA under E=150 setting,
Fed? finally achieves 88.29% accuracy, +0.76% better than FedMA
(87.53%) with slightly higher training efforts (2000 vs. 1500 epochs).
Furthermore, Fed?’s optimal model accuracy achieves 89.96% at
E=1 setting, which surpasses all other methods’ accuracy by large
margins (e.g., +2.32% than FedMA) and meanwhile consumes the
least training workloads (1000 epochs).

6.2 Scalability Evaluation

We then conduct scalability evaluation to demonstrate the general-
ity of Fed? in varied experimental settings. Specifically, we consider
four scalability dimensions: (i) data heterogeneity scaling from IID
to Non-IID; (ii) learning task complexity with different number of
leaning classes; (iii) FL system complexity with different number
of nodes; and (iv) low to high FL communication frequencies.

Data Heterogeneity (IID to Non-IID). We first show that Fed?
provides consistent accuracy improvement under full-spectrum
data heterogeneity in Table 1. The experimental setting N * C
indicates there are N nodes, and each node has only C classes
present in the local data. A smaller C means the data distribution
on local nodes are more skewed, which usually leads to lower
accuracy in FL.
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Figure 8: Convergence Speed Comparison between FedAvg and our proposed framework (VGG16 on CIFAR100).

Table 2: Node Scalability (N: # of nodes. C: # of classes).

N*C 10x5  20x5  50x5 1005
FedAvg [7]  85%  86%  83%  83%
VGG9 Ours 88%  88%  86%  87%
FedAvg [7]  79%  85%  81%  78%
MbNet Ours 90%  90%  89%  88%

Table 1 shows the FL performance of VGG9 and MobileNet on
CIFAR10. Our Fed? framework consistently outperforms FedAvg
by large margins. Specifically on VGG9, Fed? achieves +1%~+4%
accuracy improvement across all heterogeneity settings. Meanwhile,
we notice that MobileNet suffers more from the highly-skewed non-
IID data. Under the 10 X 3 setting, FedAvg on MobileNet only
achieves 67% accuracy. By contrast, Fed? achieve 86% accuracy,
+19% than FedAvg (67%). The underlying reasons of the accuracy
improvement is due to the structurally aligned feature distribution
across different local models, as demonstrated in Fig. 1 (c). Such
feature alignment alleviates the feature-level averaging conflicts
and thus provides models higher convergence accuracy.

Classification Complexity. We then evaluate Fed? using VGG16
on CIFAR100 with more classification classes. Full-spectrum data
heterogeneity settings from 10 X 30 to 10 x 100 are used. As we
can see from Table 1, similar conclusion could be drawn that Fed?
consistently outperforms FedAvg by +3%~+4% accuracy.

Besides that, Fig. 8 shows the test accuracy curves in the training
process for both methods. In all non-IID settings (a-c), Fed? consis-
tently shows higher convergence speed using only 50-80 rounds
to achieve convergence, while FedAvg usually needs at least 100
rounds. One exception is the 10x100 IID setting (d), the initial con-
vergence rate of FedAvg is slightly faster, potentially because the
IID data distribution leads to less feature divergence in the begin-
ning stage of FL. Nevertheless, our method soon exceeds FedAvg
after 50 epochs and finally achieves +4% accuracy than FedAvg,
showing the necessity of feature alignment in achieving the optimal
model convergence accuracy.

Node Scalability. We then evaluate the scalability of Fed? with
the increasing number of FL nodes. Specifically, we scale up the
number of collaborative nodes from 10 to 100 with one medium
data heterogeneity setting (each node only have 5 classes in the
local data distribution). The results are shown in Table 2. Without
loss of generality, Fed? provides consistently better performance
ranging from +2%~4% on VGG9 and +5%~11% on MobileNetV1.

Communication Frequency. We finally evaluate the performance
of Fed? under different communication frequencies. Here we use
communication per epochs (E) to indicate the frequency. A larger E
indicates a lower frequency. In such cases, FL performance usually
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Figure 9: Communication Frequency Comparison.

becomes worse since the model collaboration are less frequent,
which can incur severer feature divergence.

Fig. 9 compares Fed? with other methods under different com-
munication frequencies. All models are trained with 54 rounds as
per settings in [14]. As we can see, FedAvg (blue bar) shows lower
accuracy (85.7%—78.5%) when the frequency decreases from once
per 20 epochs to once per 100 epochs. In contrast, Fed? with feature
alignment averaging is not affected by the lower communication
frequency, showing continuously the best performance (88%~90%)
and improving FedMA by +3.4%~5.1% accuracy under all settings.

6.3 Sensitivity Analysis

We finally conduct sensitivity analysis on three design components
in Fed?, including different sharing layer depth, different number
of groups, and the group normalization optimization.

Sharing Depth Analysis. We first demonstrate that our frame-
work’s performance is robust to the sharing depth hyper-parameter
selection in Fig. 10. As we could observe, the total variance of the
layers (from a pre-trained model with 50 epoch pre-training) offers
good indication of the layer-wise feature divergence. The results
also show that it is necessary to keep enough layers (4~6) shared so
that the fundamental features could be better learned by all nodes’
collaboration. By retaining enough shared layers in our design,
Fed?’s performance is highly robust to the sharing-depth hyper-
parameter selection, achieving consistently better accuracy than
original non-grouped model in a wide range (e.g., 6 ~ 13).

Grouping Number Analysis. Similar analysis shows Fed?’s per-
formance robustness w.r.t different number of groups selection. The
results are shown in Fig. 11 (VGG16 on CIFAR100, N*C:10x50).
We evaluate three group settings (G=10, 20, 100). Overall, three
settings all show better accuracy than FedAvg, demonstrating the
effectiveness of using group convolution for feature alignment.
Among them, G=10 and G=20 achieve the optimal accuracy at ~68%,
+2.7% than FedAvg with non-grouped structure (65.3%). G=100 set-
ting, though achieving sub-optimal accuracy improvement (+1.9%
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Figure 12: Normalization Strategy Analysis.

than FedAvg), shows the best convergence speed in the early stage
(the green curve). We hypothesize this is due to its most fine-grained
feature allocation and alignment effect (The G=100 settings enable
one-class to one-group mapping, while others are multi-class to
one-group mapping). However, with too many groups split, the per-
group capacity (e.g., # of neurons in each group) becomes limited,
which slightly hinders the final convergence accuracy.

Normalization Strategy Analysis. We finally conduct analysis
on our normalization strategies (VGG9, CIFAR10, N*C:10x4) in
Fig. 12. The baseline FedAvg without norm achieves 84.13% ac-
curacy. FedAvg+GN hurts the model performance, degrading the
accuracy to 83.34%. By contrast, ours+GN achieves the best accu-
racy 88.26%, +2.8% than ours+BN (85.46%). This implies that our
grouped model structure indeed incurs less statistics divergence
within each group, thus GN could boost the FL performance.

7 CONCLUSION

In this paper, we proposed Fed?, a feature-aligned federated learn-
ing framework to resolve the feature fusion conflicts problem in
FedAvg and enhance the FL performance. Specifically, a feature
interpretation method is first proposed to analyze the feature fusion
conflicts. To alleviate that, we propose a structural feature allocation
methodology by combining feature isolation and gradient redirec-
tion. The Fed? framework is then proposed, which composed of
(i) model structure adaptation and (ii) feature paired averaging,
to achieve firm feature alignment throughout the FL process. Ex-
periment demonstrates significant improvement in convergence

speed, accuracy and computation/communication efficiency than
state-of-the-art works.
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