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Abstract—As Federated Learning (FL) has been widely used
for collaborative training, a considerable computational straggler
issue emerged: when FL deploys identical neural network models
to heterogeneous devices, the ones with weak computational
capacities, referred to as stragglers, may significantly delay
the synchronous parameter aggregation. Although discarding
stragglers from the collaboration can relieve this issue to a certain
extent, stragglers may keep unique and critical information
learned from the non-identical dataset, and directly discarding
will harm the overall collaboration performance. Therefore, in
this paper, we propose Helios — a heterogeneity-aware FL
framework to tackle the straggler issue. Helios identifies indi-
vidual devices’ heterogeneous training capability, and therefore
the expected neural network model training volumes regarding
the collaborative training pace. For straggling devices, a “soft-
training” method is proposed to dynamically compress the orig-
inal identical training model into the expected volume through
a rotated neuron training approach. With extensive algorithm
analysis and optimization schemes, stragglers can be accelerated
while retaining the convergence for local training as well as feder-
ated collaboration. Experiments show that Helios can provide up
to 2.5x training acceleration and maximum 4.64% convergence
accuracy improvement in various collaboration settings.

I. INTRODUCTION

In the past few years, a lot of attention is paid to “training-
on-edge”, which is highly promoted by intelligent edge ap-
plications. As one of the most well-recognized edge training
techniques, Federated Learning (FL) expects to unit multiple
resource-constrained edge devices to collaboratively train iden-
tical neural network models with their local dataset [1]. By
aggregating the parameter updates from each device, a global
model can be collaboratively trained efficiently and securely.

When applying FL into practical edge training, a serious
problem emerges: although edge devices train the same model
structure and identical workload, they may have distinct com-
putation resources (e.g., memory size, CPU/GPU bandwidth,
etc). Therefore, like the “shortest board in barrel”, the devices
with extremely weak computation capacities will take much
longer time for local training. These devices are referred to as
stragglers in FL. One example is demonstrated by Fig. 1: with
synchronous FL aggregation setting, stronger collaboration
nodes (Jetson Nano and Rasberry Pi) have to keep an idle
status to wait for the straggler (DeepLens) in every cycle and
prolong the training cycle from 2.3 to 7.7 hours.

Intuitively, changing the synchronous FL aggregation into
an asynchronous manner can directly kick out the stragglers
from most aggregation cycles and accelerate the training
cycles [2]-[6]. However, in FL settings where most local
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Fig. 1: The Straggler Issue in Original FL

dataset are non-identical distributed (Non-IID), the stragglers
may learn unique and critical information. And dramatically
asynchronous collaboration may defect both local and global
convergence performance [7], [8].

To solve the FL straggler issue, we propose Helios, a
heterogeneity-aware FL framework. Helios identifies the strag-
glers regarding the collaborative training pace and specify
the expected neural network model training volumes. For
straggling devices, a soft-training method is proposed to
dynamically compress the original identical training model
into the expected volume through a rotated neuron training
approach. With extensive algorithm analysis and optimization
schemes, the stragglers can be accelerated while retaining the
convergence for local training and federated collaboration.

Our paper has the following three main contributions:

o The straggler identification methodology we proposed
incorporates different approaches (i.e., time-based ap-
proximation and resource-based profiling) for various FL.
deployment contexts, offering outstanding feasibility for
FL straggler research works;

e A collaborative training method — “soft-training” is
proposed to keep different part of model parameters on
the stragglers alternately join the training cycles, which
not only maintains synchronized FL with accelerated
stragglers to preserve learning information integrity from
every node, but also preserves straggler model integrity
without unrecoverable compression;

o Dedicated optimization schemes are proposed based on
extensive algorithm analysis and proof to enhance the
overall performance.

Experiments show that Helios can provide up to 2.5
training speed-up and maximum 4.64% convergence accuracy
improvement in various FL settings with stragglers.
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II. PRELIMINARY
A. Federated Learning on Heterogeneous Edge Devices

In practical FL implementation, multiple edge devices col-
laboratively train the identical models on their local training
data with two kinds of heterogeneities:

Hardware Resource Heterogeneity: Since various edge
devices participate in FL, they have heterogeneous hardware
resources in terms of memory size, CPU bandwidth, and efc.
Given a certain edge device in FL, the training consumption
of its CNN model can be generally evaluated as the training
cycle time cost. However, the mismatches between the model’s
computation consumption and device’s resource capacities will
increase the model training time.

Information Heterogeneity: In FL process, every edge
device will constantly learn the information from local train-
ing data and contribute to the final global model [9], [10].
Although lagging the FL efficiency, stragglers still have im-
portant learned information. This phenomenon becomes more
prominent in the Non-IID setting [1]. The critical information
learned from stragglers are distinct and cannot be ignored from
the perspective of the entire collaboration process.

Based on the above two heterogeneity analysis, it is essential
to eliminate stragglers’ delay while preserving their learned
information in FL process.

B. Federated Learning Straggler Issue

Some works are proposed to solve the straggler issue:

Asynchronous Methods: these works only aggregate param-
eters of stragglers at certain cycles [3], [11]-[13]. Nishio et
al. proposed an optimized FL protocol (i.e., FedeCS) to kick
out straggled devices from the learning collaboration [11].
Wang et al. introduced a dedicated collaboration method
to reduce the training loss introduced by the asynchronous
stragglers [13]. Although showing acceleration performance,
they cannot fundamentally eliminate stragglers and even cause
information degradation and stale parameter updating [7], [8].
Fig. 2 shows an analysis for two collaborative devices under
three settings. We can easily find that, the original synchronous
FL achieves the best convergence accuracy. However, when the
asynchronous straggler parameter aggregation cycle increases
from 2 epochs (setting 2) to 3 epochs (setting 3), both the
converge accuracy and speed will decrease.

Synchronous Methods: these works leveraged local training
optimization methods to accelerate stragglers’ training cycles
so as to achieve synchronous aggregation [14], [15]. Jiang
et al. used model pruning to compress the original models
to smaller ones which can satisfy the given constraints [14].
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Jeong et al. reduced the model size in edge nodes based on
knowledge distillation [15]. However, due to the permanent
model structure losing, the information capacity of stragglers
will decrease and may face converge degradation. As shown
in [16], when introducing models with diverged structures, the
global model accuracy would drop as much as 10%.

III. FRAMEWORK OVERVIEW

The overall concept of Helios is shown in Fig. 3. In order
to accelerate stragglers, the proposed framework is aiming to
optimize the model training on stragglers.

Initialized Stragglers Identification: Since the straggler
issue is caused by devices’ heterogeneous resources, we pro-
posed two straggler identification approaches for various FL
deployment contexts to improve framework flexibility, which
will be discussed in Section IV. B.

Optimization Target Determination: In Section IV. C, the
initialized stragglers’ optimization targets (i.e. the expected
model volumes) are further determined, which can reduce
models’ training consumption and achieve acceleration.

Soft-training: Guided by the expected model structure
volumes, “soft-training” method is introduced. In each training
cycle, the proposed method can let different part of model
parameters (e.g. neurons) alternately join the training, which
maintains a complete model parameter updating for collab-
oration. As Fig. 3 shows: in the i*" training cycle, neurons
indicated by red crosses are skipped to achieve training accel-
eration. However, in the (i + l)th training cycle, a different
set of neurons (yellow squares) are skipped. Such a training
method can guarantee each model parameter on stragglers has
opportunities to make a contribution to the collaboration.

Optimizations for Soft-training: We further propose several
dedicate optimization schemes in Section VI, which can en-
hance the overall convergence performance and collaboration
scalability based on the extensive algorithm analysis and proof.

IV. POTENTIAL STRAGGLER IDENTIFICATION IN
HETEROGENEOUS COLLABORATION

In this section, we will discuss potential straggler identifica-
tion and the corresponding optimization target determination
in the heterogeneous collaboration setting.
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A. Heterogeneous Federated Learning Setup

In the heterogeneous FL, multiple edge devices with distinct
computation resources collaboratively train the identical mod-
els with their local datasets. After each local training, they
upload the local model parameters to the global device for
global model updating. Once obtaining a new global model,
the global device sends the model parameters back to each
local device. During this process, the devices with extremely
weak computation capacities will take a much longer local
training time, becoming stragglers in FL.

B. Straggler Identification

Since the straggler has a much longer training time cost than
the normal devices (35x in Fig. 1), identifying it only after
FL process will introduce a high time overhead. Therefore, the
potential stragglers need to be initially detected by comparing
the computation resources of each device. Two approaches
are discussed in this paper: time-based approximation and
resource-based profiling.

Time-based Approximation: If partial/all devices’ hardware
configurations cannot be obtained (Black Box), we can lever-
age the proposed time-based approximation to fast identify the
stragglers. In this case, our approach will assign each device
with a lightweight test bench (only train few iterations) and
quickly record their training time cost. Then the approach
ranks all devices based on their training time cost values and
obtain an approximate index T' = {Ty,T5, ..., Tn }, where T}
represents the longest time cost. Based on FL requirement, the
top-k devices in the index are identified as potential stragglers.

Resource-based Profiling: If all devices’ hardware con-
figurations can be obtained (White Box), we can leverage
the proposed resource-base profiling to accurately identify the
stragglers. First, the scheme will investigate the computation
resource of each device in terms of computation bandwidth,
memory size, communication bandwidth, etc. Next, we can
leverage resource models in [17] to fully profile each de-
vice’s model training consumption. For example, straggler’s
training time cost 7T'e can be exactly formulated by the
training computation workload W, memory usage M as:
Te = W/Cepu + M/Vine + M/Bn, where Cepy, Vine, and
B,, represent device computation bandwidth, data transmitting
speed, and communication bandwidth. Finally, we can identify
the stragglers based on each device’s computation ability.

C. Optimization Target Determination

After finding the potential stragglers, it is important to
identify the optimization target, namely, the expected model
volumes of stragglers in each training cycle to achieve accel-
eration. The expected model volume can be selected with a
pre-define volume or adapted to a specific value according to
the resource constraints.

For the first one, we can define multiple model volume
levels in advanced and assign each straggler with a model
volume level according to the training time cost index 7'. The
model volume will be dynamically adjusted to an optimal point
during the first several training cycles in FL process.
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Fig. 4: Soft-Training Scheme Flow

If the model volumes of stragglers need to be accurately
determined before the training, we can leverage the profiling
models we built in the Resource-based profiling. Specifically,
we select each layer with P;n,; neurons simultaneously until
the model consumption approaches to the resource constraints,
where n; is the total neuron number in the i layer and P; is
a ratio between (0,1). Hence, the optimized model volumes
can ensure training acceleration during FL process.

V. SOFT-TRAINING ON STRAGGLING EDGE DEVICES

With identified potential straggler and corresponding model
volumes from initialization, we propose “soft-training” scheme
to adapt the optimized model to specific resource constraints
while guaranteeing converge effectiveness.

A. Soft-training Process under Optimization Targets

Fig. 4 shows the entire “soft-training” flow and we take
neurons as our minimum model parameter structure. The entire
“soft-training” can be divided into three steps:

Step 1. Straggler Model Shrinking: In order to meet the
optimization targets (the expected model volume), we only
select a set of neurons from stragglers’ models to join the
training cycle. As aforementioned, methods in Section IV only
approximately identify stragglers and their expected mode
volume. Therefore, Helios needs first few training cycles to
finalize the stragglers and model volumes by dynamically
adjusting the model volumes to accommodate normal devices
w.r.t. training time cost.

During the partial training, two types of neurons are selected
to achieve an optimized convergence performance: the neurons
with the higher contributions to the collaboration convergence
(primary converge guarantee) and some other random neurons
(further converge optimization). Then we define the contribu-
tion metric by leverage the assumption in [18] that the neurons
with larger weight parameter changing values will provide
larger impacts to the global model. We assume the weight
parameters of the 7 neuron in the i layer after training epoch
Sk as 0%, ,,(Sk), and the neuron’s collaboration contribution
U (S},) will be calculated by the summation of useful changes
in the current training cycle as:

U (S1)=02, ,(S0)=0, (St 1) M

where a larger U% represents the target neuron has a higher
collaboration contribution. We will elaborately show how to
select these two types of neurons in each training cycle in Step
2 and Step 3.

Step 2. Neuron Rotation for Model Integrity: With partial
training in Step 1, model training consumption on stragglers
can be adapted to the specific device resource constraints.
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Some previous methods leverage fixed model pruning to
achieve partial training [14], [15]. However, without an op-
timized training algorithm to keep a rather complete model
structure, the pruned model parameters will permanently lose
their contribution to the collaboration, thereby inevitably hurt
convergence accuracy and speed.

Therefore, in our “soft-training”, we solve the conflict
between the optimization targets and model integrity by letting
different part of model parameters (i.e. neurons) alternately
join training cycles. As Fig. 4 illustrates, in the i*" training
cycle, we first choose P, percentage neurons' which have
the highest changing values U% and randomly select other
(1 — Ps)P;n; neurons from the rest (n; — PsP;n;) ones which
have relative lower contributions. Value of P, will be discussed
in Section VI. A Therefore, the total parameter changing on
a straggler is:

O(Sk)-O(S( 1))=TopK(U”) U Rand(U"), where K=PsP;in;, (2)

where O(S},) represents the model parameter of the straggler
and Rand operation is randomly selecting (1 — Ps)Pin;
neurons’ U/, Next, in the (i + 1)** training cycle, since the
neurons with the highest contributions don’t change, we still
select them in the training to provide the primary converge
guarantee. On the contrary, a different set of neurons with
lower contributions will be selected. By alternately joining
each training cycle, every neuron on a straggler has opportu-
nity to keep model integrity.

Step 3. Aggregation and Local Model Updating: After
finishing a local training cycle, each local edge device will
upload the gradients of the selected neurons to the global
device during the aggregation cycle. Meanwhile, the global
device will average the uploaded model parameters to update
the global model, which will be further discussed in Section
VL. B. Once the new global model parameters are obtained,
they will be sent to each local device for local model updating
and the local edge devices can start the next training cycle.

With the above three steps, models on the stragglers
adapted to the optimization targets while still maintain a rather
complete model structure and balanced contribution, thereby
guarantees the global model convergence performance.

B. Convergence Proof and Conditions Analysis

Consider federated learning with N nodes, the training
dataset and loss function for each device is {x,} and {f,},
respectively. Let © € R represents the model parameter and
m indicates the total neuron number.

The FL optimization %oal can be formulated as:

%an(@% O:4+1=0¢—1:9:(O1), 3
n=1

where ¢ is the current training epoch number (equals to Sy in

Eq. 2), and g;(-) represents the gradients.

ngn f(©):=

Proposition-1: Convergence Bounded by Gradient Variance.
Based on previous work [19], the global model convergence
loss is proved to be bounded by the variance of gradient
g+ (©4) across different nodes:

'We empirically evaluate overhead of such sorting operation and find it can
be ignored compared to the training cost (e.g. 18ms vs 12mins).

ELf (O] < £ (00 =i 95 @I + ZnEllge @OIF

Therefore, in our soft-training algorithm, we regulate the
third term, which is the gradient variance to achieve the desired
model convergence. Such theoretical convergence boundary
can be also applied to Non-IID situation, where the gradient
variance E ||g; (6,)]|* can still find a upper boundary.

Proposition-2: Bounded Gradient Variance in Soft-Training.
The gradient variance in soft-training is bounded by (1 + p)v
if we can maintain at least v neurons with the highest gradient
contribution, thus ensuring the convergence of soft-training.

Proof: In soft-training, we select partial neurons to join each
training cycle for acceleration. Denote the neurons’ gradient
in soft-training as ST (g (©;)) and simplify ¢; (6©;) as g. Each
neuron’s g has a probability p; to be selected in each cycle.
Therefore, the gradient variance could be reformulated as:
92 ,Ddgg] ,

P DPa

ST(g) = [Dl 2 p, ®)
P1

b2
where D; € {0,1} is the mask indicating the selection
results of each neuron, and each gradient term g; divided by
probability p; denotes the unbiased estimation of g;. Moreover,
p; cannot be 0 therefore each neuron shouldn’t be inactivated
for a long-term. Thus, the variance of ST(g) could be then
reformulated as:

m m 2

BY [sT@)?] = [f}—z X pi +0x (1 - pi) :Z%, ©

i=1 i=1 i i=1 ¢
which shows the variance of gradient is related to the prob-
ability p;. Therefore, the trade-off between p; and gradient
variance could be formulated as an optimization problem:

m

m 2 m
mindopi st 3o 0L <1493 gl @)
i=1 * i=1

=1

where € controls the variance of gradient.

Condition of Convergence. The convergence of soft-training
could then be ensured with the following neuron selection
criteria. During each soft-training cycle, we keep the Pyn,.
neurons with highest convergence contributions joining the
next training cycle. Let C represents the set of such high
contribution neurons and their total number is v, i.e., p; = 1
for 7 < v. In order to determine the value of v, we have:

m

3 @7(1%)29? =0.®
i=1

i=vt1

m 2 m v

S L 0>t =3+
i=1 £ i=1 i=1
Thus according to [19], we can guarantee the convergence
with v and p = € and E [||ST(g)||o] is bounded by:

ZZHJr ZP,

i€Cy

E[IST(g)llo] = > pi =
i=1 ig€Cy
2 2 (9)
p*vllge, II3
pllgc, I3 + (1 +p) llge, 13

< (1 +p)v.

Applying the aforementioned dynamic neuron selection, the
gradients in the soft-training will be bounded by Eq. 9 and
thus soft-training convergence could be achieved.

VI. OPTIMIZATIONS FOR SOFT-TRAINING
In this section, we propose several schemes to enhance

overall performance based on the algorithm analysis and
improve collaboration scalability.
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TABLE I: 4 Stragglers with Heterogeneous Resource

Constraints (Igi;;% Raspberry ?g:l?[l;n D(f?gtf):n
Comp. W (GFLOPS) 7 6 5.5 4.5
Mem. U (MB) 252 150 100 110
Tim. C (Mins) 20.6 23.8 272 34

Comp. W: Computation Workload; Mem. U: Memory Usage; Tim. C: Time cost;

A. Neuron Rotation Regulation

According to the proposition-2 and the corresponding con-
dition, the gradient variance of soft-training is bounded by P,
which is the ratio of neurons with the highest contribution U%/.
If P, =1, p will equal 0, which means the local training with
full neurons on a normal device. According to the previous
works [18], [20], Ps usually can be selected from 0.05 to 0.1
for stragglers during FL process.

Another condition requirement is: neurons should not be
inactivated for the long-term, which may introduce O for p;
and stale parameter issue. In order to avoid this, we pull
the long-term skipped neurons back to training cycles timely.
Specifically, during aggregation, each straggler will send its
partial updated gradients index to the global device. The global
device will record all currently skipped neurons and update
their skipped cycles value C;. In every aggregation cycle, once
a certain neuron’s C exceeds a pre-define threshold (we set as
1+ s~7--), the global device will inform the corresponding
stragéier and the targeted neuron will rejoin the training.

B. Model Aggregation Optimization with Heterogeneity

From the perspective of the overall collaboration process,
the proposed soft-training can maintain a balanced model up-
dating of the stragglers. However, diving into each parameter
aggregation cycle, multiple stragglers will introduce various
partial models with diverged structures. Such a limited model
size will bring additional errors to the global model. Hence, we
introduce heterogeneous model aggregation scheme: according
to the updating model size of device, assign each device with
different weights to adjust their contributions:

N
min  £(6) = % 3 anfa(©) (10)
N n=1

where «, is the adjusting ratio, Y, o, = 1 and av =1, /> 7.
ry, is the ratio of neurons selected on each device. A larger
«a, means a more complete model structure will have more
contributions to the collaboration performance.
C. Collaboration Scalability Optimization

During the practical FL process, more devices will dynam-
ically join the collaboration. We leverage the following steps
to improve the collaboration scalability of our method: once
Helios detecting a new device is added into FL, it will first
fetch device’s hardware computation resources and compare
them with the existed stragglers. During this step, both ap-
proximation and profiling approaches can be used to identify
the new adding device based on whether the FL has enough
profiling budgets. If the new device is identified as a straggler,
Helios will assign it with a pre-defined model volume or adapt
its model size based on the resource constraints.

VII. EXPERIMENT
A. Experiment Setup
Testing Platform Setting: In our experiment, we leverage
resource-based profiling to identify the stragglers. We first
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Fig. 5: Soft-training Effectiveness Evaluation

profile the several edge devices’ resource configurations. Then,
by adjusting the configuration of CPU/GPU bandwidth and
memory availability, we can simulate these edge devices’
training performance on multiple Nvidia Jetson Nano de-
velopment boards and let them as stragglers with different
resource capabilities. The details of these straggler settings
when running AlexNet on CIFAR-10 are shown in Table. L.

CNN Models and Dataset: In the experiment, three CNN
models are used as our testing targets, namely, LeNet, AlexNet,
and ResNet-18. The above three CNN models are trained on
MNIST, CIFAR-10, and CIFAR-100, respectively.

Baseline Methods: In order to exhibit the superiority of
Helios, we re-implement five other FL schemes for compar-
ison: (1) Synchronized FL (Syn. FL): All devices (including
stragglers) update their parameters synchronously. (2) Asyn-
chronous FL (Asyn. FL) Normal edge devices update their
parameters immediately after local training without waiting
for stragglers. (3) Random [12]: In each training, the stragglers
randomly select partial model with the expected model struc-
ture volume. (4) AFO [6]: A optimized asynchronous method
aiming to reduce staleness issue of stragglers.

B. General Helios Performance Evaluation

We evaluate Helios in terms of the converge accuracy and
speed by comparing the above baselines in this part. As shown
in Table. I, there are two straggler settings involved: (1) Four
devices join in the FL with two capable devices and two
straggled devices as Strag. 1 and Strag. 2. (2) Six devices
join in the FL with three capable devices and three straggled
devices as Strag. 1, Strag. 2, and Strag. 3.

Accuracy Evaluation.: Fig. 5 illustrates the experimental
results on converge accuracy. The X-axis represents the ag-
gregation cycles of capable edge devices. We can find that
Asyn. FL always achieves the lowest accuracy due to the
information degradation. As for Syn. FL, since its training
cycle is determined by the stragglers, it shows a much lower
aggregation speed than other methods. Helios always shows
the best accuracy compared to all the baseline methods. Specif-
ically, for LeNet, AlexNet, and ResNetl8, Helios achieves at
most 0.24% to 4.64% accuracy improvement on two kinds of
straggler settings.

1001

Authorized licensed use limited to: George Mason University. Downloaded on January 02,2022 at 02:47:04 UTC from IEEE Xplore. Restrictions apply.



1 Straggler 2 Stragglers 3 Stragglers 4 Stragglers
1.0
Z
Z
2 7~ /\/'\/m’_
-5
- 0
= 1 10 20 1 10 20 1 10 20 1 10 20
Lo
9 =0.
<&
o}
Z
z W
<0.4
1 15 30 1 15 30 1 15 30 1 15 30

Parameter Aggregation Cycles === S.T.Only === Helios

Fig. 6: Model Aggregation Optimization Evaluation

Convergence Speed Evaluation: 1t is clear that Asyn. FL
has the worst converge speed, and even fail to converge due
to the staleness parameters and information loss. Although
AFO optimizes the asynchronous updates, its convergence
is still affected by the staleness parameters of stragglers.
On the contrary, Helios shows the fastest converge speed,
especially for the FL with more stragglers. For the experiments
of 6 nodes on MNIST, CIFAR-10, and CIFAR-100, Helios
approaches convergence after 4, 12, and 40 aggregation cycles
respectively. On the contrary, other methods need at least 10,
18, and 50 aggregation cycles. Overall, Helios can achieve at
most 2.5x speedup than the state-of-the-art methods.

C. Model Aggregation Optimization Evaluation

In this part, the effectiveness of model aggregation op-
timization scheme is also evaluated under the same setting
(stragglers are increasing from 1 to 4). We use soft-training
without aggregation optimization as the baseline, which is
represented as S.7. Only . Fig. 6 illustrates the comparison
results between Helios and S.T. Only. We can see that Helios
achieves at most 17.37% accuracy improvement and reduce the
accuracy variance caused by partial model aggregation while
accuracy curve of S.7. Only still has obvious fluctuations.

D. Non-IID Setting Evaluation

In this part, we evaluate the effectiveness of Helios with
a Non-IID setting (though our proposed technique is more
oriented by computational heterogeneity rather than data het-
erogeneity). Specifically, Non-1ID capability is evaluated with
4 and 6 edge devices with 2 and 3 stragglers, respectively.
We use the same Non-IID data generation method in [1].
Fig. 7 shows the evaluation results. We can find that Non-IID
data brings performance degradation for all methods. However,
compared with other methods, Helios can always obtain a
better converge accuracy and speed.

VIII. CONCLUSION

In this work, we proposed Helios — a heterogeneous-
aware FL framework with dynamically balanced collaboration.
Leveraging on-device model training consumption profiling
and the innovative “soft-training” training scheme, Helios can
introduce effective local CNN model optimization into FL to
eliminate stragglers, while maintaining expected collaborative
convergence across all edge devices. Experiments demon-
strated that the proposed Helios achieves superior training
accuracy, speed, as well as Non-IID setting resistance. Helios
significantly enhanced the applicability and performance of
federated learning for training-on-edge.
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Fig. 7: Helios Evaluation with Non-IID Data
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