
  

  

Abstract— One deadly aspect of COVID-19 is that those 
infected can often be contagious before exhibiting overt 
symptoms. While methods such as temperature checks and sinus 
swabs have aided with early detection, the former does not 
always provide a reliable indicator of COVID-19, and the latter 
is invasive and requires significant human and material 
resources to administer. This paper presents a non-invasive 
COVID-19 early screening system implementable with 
commercial off-the-shelf wireless communications devices. The 
system leverages the Doppler radar principle to monitor 
respiratory-related chest motion and identifies breathing rates 
that indicate COVID-19 infection. A prototype was developed 
from software-defined radios (SDRs) designed for 5G NR 
wireless communications and system performance was 
evaluated using a robotic mover simulating human breathing, 
and using actual breathing, resulting in a consistent respiratory 
rate accuracy better than one breath per minute, exceeding that 
used in common medical practice.  
 

Clinical Relevance—This establishes the potential efficacy of 
wireless communications based radar for recognizing 
respiratory disorders such as COVID-19. 

I. INTRODUCTION 

COVID-19 symptoms on average start five to six days after 
exposure (incubation period) [1]. Generally, a person infected 
with COVID-19 is most contagious 1 to 2 days before 
experiencing symptoms [2], as illustrated in Fig. 1. The peak 
contagiousness during this period combined with virtually 
undetectable symptoms has contributed to the rapid spread of 
COVID-19. Recent research has found that an increase in 
respiratory rate is one of the earliest indicators of COVID-19, 
taking place before the more obvious symptoms set in. 
Normally, people take about 12 breaths per minute (0.2 Hz) 
with a peak to peak chest displacement of 1 cm [3]. People 
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infected with COVID-19 typically exhibit breathing above 20 
breaths per minute (0.5 Hz) [4-5]. One recent study showed 
that respiratory patterns derived from wrist-worn straps 
estimated respiratory rate based on heart rate can be used to 
detect COVID-19 before and during the early onset of other 
symptoms [6]. A radar-based method that directly measures 
respiration without wearing sensors in contact with the body 
would offer great potential for improving detection rates.  

The Doppler radar principle can be used to detect heart rate 
and breathing by measuring the phase shift resulting from 
respiratory body motion [7]. If two wireless communications 
devices are positioned such that their radio link bounces off a 
subject, the small fluctuations in the wireless channel state 
information (CSI) caused by body motion would contain the 
phase of the breathing pattern, as illustrated in Fig. 2. This 

principle has been used to measure respiration using wireless 
network interface cards (NICs) [8], which allow breathing 
detection at distances greater than 6 feet and remote operation 
that minimizes contagion exposure to the person administering 
the test. As the channel estimation process is common among 
various wireless communication protocols, the CSI data can be 
easily accessed to measure respiratory rate without 
modifications to the underlying hardware [8]. Thus, an 
effective method for assessing human respiration can be 
achieved using commonly available low-cost equipment that 
can be used to test many people in a wide range of 
circumstances. This includes leveraging systems that support 
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Fig.1. Timeline for COVID-19 infection. 

 
Fig. 2. Channel State Information (CSI) Doppler radar explanatory 
diagram. A transmitted signal, TX, is reflected from a breathing chest 
and shifts phase in proportion to the breathing motion. The received 
reflection, RX, is compared to TX, to output a displacement signal. 
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wireless communications standards including Bluetooth, Wi-
Fi, 4G LTE, and the emerging 5G NR (new radio) standard 
which can up-convert signals to millimeter wavelengths to 
support beamforming. Such systems would have the extreme 
advantage of allowing non-contact wireless sensing and health 
monitoring in many homes, workplaces, and public spaces 
without the need for introducing any new radar equipment. 

 

II. EXPERIMENTAL SET-UP 

The wireless-communications-based sensing system used 
was a customized 28 GHz OFDM 5G NR communication 
system, consisting of one pair of transmitter and receiver 
implemented with LabView and Ettus N210 Universal 
Software Radio Peripheral (USRP) with an output power of 
15 dBm. The customized OFDM system had 32 pilot 
subcarriers and 128 data subcarriers, spanning half of the 
transmission bandwidth. The rest of the band was occupied by 
guard and cyclic prefix symbols. The bandwidth was set to 
500 kHz during the experiment, resulting in 1.5626 kHz 
subcarrier spacing, 32 traces of accurate CSI measurements 
from pilot subcarriers separated by 7.8125 kHz intervals. The 
system was connected to a millimeter-wave beamforming 
development kit (BBox one/UD box from TMYTEK). The kit 
consisted of a 16-channel 24-31GHz phased array antenna, 
and a frequency up/down converter. The 3-dB beam aperture 
was 13 degrees horizontally and 14 degrees vertically. The 
angle coverage was +/-45 degrees horizontally and +/-60 
degrees vertically.  

The robotic mover consisted of a metallic target 
mechanically attached to a translation stage with one motion 
axis. The experimental setup is shown in Fig. 3. The target 
was a spherical shape with about a 5-cm diameter. The stage 
consisted of a via stepper drive mount controlled via a serial 
interface, which permitted automated movement sequences.  
The mount was a Griffin Motion LNS-100 Series Linear Stage 
with a Galil DMC30010. The position resolution, measured as 
commanded position vs. reported position, was typically 
within 1 µm. The robotic mover was moved sinusoidally at 10 
different frequencies, and there were 2 trials per frequency. 
The robotic mover moved with an amplitude of 5 mm for all 
the trials. The frequencies tested were 0.2, 0.25, 0.3, 0.317, 
0.333, 0.35, 0.367, 0.4, 0.45, and 0.5 Hz. The 6 middle 
frequencies are only 1 breath per minute apart. The signal was 
sampled at a rate of 10 samples per second, and the data were 

recorded for 120 seconds for each trial. The 5G NR cards were 
positioned at a distance of 2 meters from the robotic mover. 

  

III. DATA ANALYSIS 

The CSI was recorded and analyzed for 32 channels, as 
shown in Fig. 4. Since phase shift caused by one breath spans 
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Fig. 4. Noise measured for all 32 channels plotted in time (a) and frequency 
(b) domains. Note channels 15, 16, and 17 are among those that contain 
significantly less noise.  
 

 
Fig. 3. Experimental set-up for robotic mover experiment. Both 5G NR 
wireless communications cards were 2 m away from the robotic mover. 



  

multiple periods for the 28-GHz carrier signal, the phase angle 
was initially unwrapped. All channels were bandpass filtered 
between 0.195 and 0.6 Hz. However, it can be observed that 
there was still significant noise between 0.2 and 0.5 Hz that 
could not be filtered out since those frequencies are within the 
range of possible respiratory rates. In order to reduce noise, the 
individual channels of the wireless communications cards 
were examined with data from a trial where the mover was not 
moving, so that only noise was measured. Because each 
channel from the cards operates at a slightly different 
frequency, the frequency domain signals for each channel 
contained different magnitudes of noise, with some channels 
detecting very little noise. After examining noise levels in all 
32 channels, it was concluded that channels 15, 16, and 17 
recorded the least noise. After adjusting the algorithm to only 
operate on channels 15, 16, and 17, the algorithm was tested 
on the robotic mover data. The mode of the extracted 
frequencies was taken from the 3 channels with minimal noise 
because if one of the frequencies was different than the others, 
it was most likely because the algorithm identified a noise peak 
as the breathing frequency. In this case, the frequencies should 
not be averaged, but the most frequently occurring frequency 
should be regarded as the respiratory rate.  

The algorithm used for recognizing rates indicative of 
COVID-19 goes as follows. First, the algorithm converts the 
signal from the time domain to the frequency domain by 
performing an FFT and then taking the absolute value. Then, 
a peak finder function is used to determine the frequency 
component with the highest peak. After the fundamental 
frequency is determined, the algorithm indicates that the 
respiratory rate is indicative of COVOD-19 if the frequency is 
above twenty breaths per minute. The prototype algorithm was 
first tested on 12 sinusoidal code-generated signals. Using a 
threshold of 0.333 Hz (20 breaths per minute) as the minimum 
frequency indicative of COVID-19 breathing, the algorithm 
was able to classify the 12 different signals with 100% 
accuracy. The artificial sampling rate was 10 frames per 
second and 1200 samples were taken. Each signal was a 
combination of a pure sinusoid and random noise generated by 
the digital signal processing software.  

   

IV. RESULTS 

Respiratory rate accuracy results for the robotic mover 
experiment are shown in Fig. 5. Despite the presence of 
significant noise, the results show that algorithm measured 
rates had an average frequency difference of about 0.0003 Hz 
compared to the programmed value, which is much better than 
the 0.01667-Hz value corresponding to 1 breath per minute 
accuracy.  

The same algorithm was used in another experiment to 
measure human respiration, illustrated in Fig. 6. The wireless 
communications cards were set up in the same way as the 
robotic mover experiment. To be as close to the same 
frequencies as the robotic mover, the subject breathed with the 
help of a metronome. A piezoelectric chest belt was also used 
on the subject to attain a comparative measurement. The 
average difference between the frequency of the actual 
breathing and the extracted frequency across all 20 trials was 
0.007650 Hz, which is less than 1 breath per minute (0.01667 
Hz). The confidence interval, or range around the averages for 

which there is a 95% chance that the true value lies within, was 
+/- 0.003274. These results are summarized in Fig. 7.  

This study was limited to measurements made with only a 
single sedentary subject within the field of view of the radar 
system. While the results represent a useful scenario, a system 
that can accommodate multiple subjects would be more robust. 
Physiological radar has been demonstrated to be effective in 
the presence of multiple subjects using various signal 
processing approaches including independent component 
analysis and blind source separation, which may be combined 

 
Fig. 6. Experimental set-up for respiration measurement. Both Tx and Rx 
cards were about two meters away from the subject. 

 
Fig. 7. Frequency difference in 20 respiration trials. Average error is less 
than one breath/minute. The solid yellow line represents the average 
error, and the dashed yellow lines represent the 95% confidence interval. 

 
Fig. 5. Frequency difference for 20 robotic mover trials. All error was 
less than one breath/minute. The solid yellow line represents the average 
error, and the dashed yellow lines represent the 95% confidence interval. 



  

with the approach reported here to broaden scenarios of 
applicability [9,10]. 

 

V. CONCLUSION 
The data supports that Doppler radar implemented with 

wireless communications cards can be used to create a 
COVID-19 screening mechanism that can be administered at 
a safe distance. The created algorithm differentiated between 
frequencies that only varied by 1 breath per minute, showing 
that it is sensitive to small changes that could be early 
indicators of a COVID-19 infection. The average frequency 
error was about 0.082%, much less than the 5% maximum 
stated in the engineering goal and lower than the typical error 
in medical settings. Measuring respiratory rate the traditional 
way, by counting breaths for 15 seconds, is not very accurate 
due to the small number of samples and potential for human 
error. The system created in the project provides an objective 
method, less subject to human error, for measuring respiratory 
rate. In addition, the system can leverage existing 
communication devices that most people already have within 
their own homes. This technology could serve as a practical, 
safe, and accurate COVID-19 screening device to help stop the 
spread and enable society to return to normal life.  
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