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Abstract— One deadly aspect of COVID-19 is that those
infected can often be contagious before exhibiting overt
symptoms. While methods such as temperature checks and sinus
swabs have aided with early detection, the former does not
always provide a reliable indicator of COVID-19, and the latter
is invasive and requires significant human and material
resources to administer. This paper presents a non-invasive
COVID-19 early screening system implementable with
commercial off-the-shelf wireless communications devices. The
system leverages the Doppler radar principle to monitor
respiratory-related chest motion and identifies breathing rates
that indicate COVID-19 infection. A prototype was developed
from software-defined radios (SDRs) designed for SG NR
wireless communications and system performance was
evaluated using a robotic mover simulating human breathing,
and using actual breathing, resulting in a consistent respiratory
rate accuracy better than one breath per minute, exceeding that
used in common medical practice.

Clinical Relevance—This establishes the potential efficacy of
wireless communications based radar for recognizing
respiratory disorders such as COVID-19.

I. INTRODUCTION

COVID-19 symptoms on average start five to six days after
exposure (incubation period) [1]. Generally, a person infected
with COVID-19 is most contagious 1 to 2 days before
experiencing symptoms [2], as illustrated in Fig. 1. The peak
contagiousness during this period combined with virtually
undetectable symptoms has contributed to the rapid spread of
COVID-19. Recent research has found that an increase in
respiratory rate is one of the earliest indicators of COVID-19,
taking place before the more obvious symptoms set in.
Normally, people take about 12 breaths per minute (0.2 Hz)
with a peak to peak chest displacement of 1 cm [3]. People
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Fig.1. Timeline for COVID-19 infection.
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infected with COVID-19 typically exhibit breathing above 20
breaths per minute (0.5 Hz) [4-5]. One recent study showed
that respiratory patterns derived from wrist-worn straps
estimated respiratory rate based on heart rate can be used to
detect COVID-19 before and during the early onset of other
symptoms [6]. A radar-based method that directly measures
respiration without wearing sensors in contact with the body
would offer great potential for improving detection rates.

The Doppler radar principle can be used to detect heart rate
and breathing by measuring the phase shift resulting from
respiratory body motion [7]. If two wireless communications
devices are positioned such that their radio link bounces off a
subject, the small fluctuations in the wireless channel state
information (CSI) caused by body motion would contain the
phase of the breathing pattern, as illustrated in Fig. 2. This
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Fig. 2. Channel State Information (CSI) Doppler radar explanatory
diagram. A transmitted signal, TX, is reflected from a breathing chest
and shifts phase in proportion to the breathing motion. The received
reflection, RX, is compared to TX, to output a displacement signal.

principle has been used to measure respiration using wireless
network interface cards (NICs) [8], which allow breathing
detection at distances greater than 6 feet and remote operation
that minimizes contagion exposure to the person administering
the test. As the channel estimation process is common among
various wireless communication protocols, the CSI data can be
easily accessed to measure respiratory rate without
modifications to the underlying hardware [8]. Thus, an
effective method for assessing human respiration can be
achieved using commonly available low-cost equipment that
can be used to test many people in a wide range of
circumstances. This includes leveraging systems that support
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wireless communications standards including Bluetooth, Wi-
Fi, 4G LTE, and the emerging 5G NR (new radio) standard
which can up-convert signals to millimeter wavelengths to
support beamforming. Such systems would have the extreme
advantage of allowing non-contact wireless sensing and health
monitoring in many homes, workplaces, and public spaces
without the need for introducing any new radar equipment.

II. EXPERIMENTAL SET-UP

The wireless-communications-based sensing system used
was a customized 28 GHz OFDM 5G NR communication
system, consisting of one pair of transmitter and receiver
implemented with LabView and Ettus N210 Universal
Software Radio Peripheral (USRP) with an output power of
15 dBm. The customized OFDM system had 32 pilot
subcarriers and 128 data subcarriers, spanning half of the
transmission bandwidth. The rest of the band was occupied by
guard and cyclic prefix symbols. The bandwidth was set to
500 kHz during the experiment, resulting in 1.5626 kHz
subcarrier spacing, 32 traces of accurate CSI measurements
from pilot subcarriers separated by 7.8125 kHz intervals. The
system was connected to a millimeter-wave beamforming
development kit (BBox one/UD box from TMYTEK). The kit
consisted of a 16-channel 24-31GHz phased array antenna,
and a frequency up/down converter. The 3-dB beam aperture
was 13 degrees horizontally and 14 degrees vertically. The
angle coverage was +/-45 degrees horizontally and +/-60
degrees vertically.

The robotic mover consisted of a metallic target
mechanically attached to a translation stage with one motion
axis. The experimental setup is shown in Fig. 3. The target
was a spherical shape with about a 5-cm diameter. The stage
consisted of a via stepper drive mount controlled via a serial
interface, which permitted automated movement sequences.
The mount was a Griffin Motion LNS-100 Series Linear Stage
with a Galil DMC30010. The position resolution, measured as
commanded position vs. reported position, was typically
within 1 pm. The robotic mover was moved sinusoidally at 10
different frequencies, and there were 2 trials per frequency.
The robotic mover moved with an amplitude of 5 mm for all
the trials. The frequencies tested were 0.2, 0.25, 0.3, 0.317,
0.333, 0.35, 0.367, 0.4, 0.45, and 0.5 Hz. The 6 middle
frequencies are only 1 breath per minute apart. The signal was
sampled at a rate of 10 samples per second, and the data were

Fig. 3. Experimental set-up for robotic mover experiment. Both 5G NR
wireless communications cards were 2 m away from the robotic mover.

recorded for 120 seconds for each trial. The 5G NR cards were
positioned at a distance of 2 meters from the robotic mover.

III. DATA ANALYSIS

The CSI was recorded and analyzed for 32 channels, as
shown in Fig. 4. Since phase shift caused by one breath spans
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Fig. 4. Noise measured for all 32 channels plotted in time (a) and frequency
(b) domains. Note channels 15, 16, and 17 are among those that contain
significantly less noise.



multiple periods for the 28-GHz carrier signal, the phase angle
was initially unwrapped. All channels were bandpass filtered
between 0.195 and 0.6 Hz. However, it can be observed that
there was still significant noise between 0.2 and 0.5 Hz that
could not be filtered out since those frequencies are within the
range of possible respiratory rates. In order to reduce noise, the
individual channels of the wireless communications cards
were examined with data from a trial where the mover was not
moving, so that only noise was measured. Because each
channel from the cards operates at a slightly different
frequency, the frequency domain signals for each channel
contained different magnitudes of noise, with some channels
detecting very little noise. After examining noise levels in all
32 channels, it was concluded that channels 15, 16, and 17
recorded the least noise. After adjusting the algorithm to only
operate on channels 15, 16, and 17, the algorithm was tested
on the robotic mover data. The mode of the extracted
frequencies was taken from the 3 channels with minimal noise
because if one of the frequencies was different than the others,
it was most likely because the algorithm identified a noise peak
as the breathing frequency. In this case, the frequencies should
not be averaged, but the most frequently occurring frequency
should be regarded as the respiratory rate.

The algorithm used for recognizing rates indicative of
COVID-19 goes as follows. First, the algorithm converts the
signal from the time domain to the frequency domain by
performing an FFT and then taking the absolute value. Then,
a peak finder function is used to determine the frequency
component with the highest peak. After the fundamental
frequency is determined, the algorithm indicates that the
respiratory rate is indicative of COVOD-19 if the frequency is
above twenty breaths per minute. The prototype algorithm was
first tested on 12 sinusoidal code-generated signals. Using a
threshold of 0.333 Hz (20 breaths per minute) as the minimum
frequency indicative of COVID-19 breathing, the algorithm
was able to classify the 12 different signals with 100%
accuracy. The artificial sampling rate was 10 frames per
second and 1200 samples were taken. Each signal was a
combination of a pure sinusoid and random noise generated by
the digital signal processing software.

IV. RESULTS

Respiratory rate accuracy results for the robotic mover
experiment are shown in Fig. 5. Despite the presence of
significant noise, the results show that algorithm measured
rates had an average frequency difference of about 0.0003 Hz
compared to the programmed value, which is much better than
the 0.01667-Hz value corresponding to 1 breath per minute
accuracy.

The same algorithm was used in another experiment to
measure human respiration, illustrated in Fig. 6. The wireless
communications cards were set up in the same way as the
robotic mover experiment. To be as close to the same
frequencies as the robotic mover, the subject breathed with the
help of a metronome. A piezoelectric chest belt was also used
on the subject to attain a comparative measurement. The
average difference between the frequency of the actual
breathing and the extracted frequency across all 20 trials was
0.007650 Hz, which is less than 1 breath per minute (0.01667
Hz). The confidence interval, or range around the averages for
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Fig. S. Frequency difference for 20 robotic mover trials. All error was
less than one breath/minute. The solid yellow line represents the average
error, and the dashed yellow lines represent the 95% confidence interval.

which there is a 95% chance that the true value lies within, was
+/- 0.003274. These results are summarized in Fig. 7.

This study was limited to measurements made with only a
single sedentary subject within the field of view of the radar
system. While the results represent a useful scenario, a system
that can accommodate multiple subjects would be more robust.
Physiological radar has been demonstrated to be effective in
the presence of multiple subjects using various signal
processing approaches including independent component
analysis and blind source separation, which may be combined
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with the approach reported here to broaden scenarios of
applicability [9,10].

V. CONCLUSION

The data supports that Doppler radar implemented with
wireless communications cards can be used to create a
COVID-19 screening mechanism that can be administered at
a safe distance. The created algorithm differentiated between
frequencies that only varied by 1 breath per minute, showing
that it is sensitive to small changes that could be early
indicators of a COVID-19 infection. The average frequency
error was about 0.082%, much less than the 5% maximum
stated in the engineering goal and lower than the typical error
in medical settings. Measuring respiratory rate the traditional
way, by counting breaths for 15 seconds, is not very accurate
due to the small number of samples and potential for human
error. The system created in the project provides an objective
method, less subject to human error, for measuring respiratory
rate. In addition, the system can leverage existing
communication devices that most people already have within
their own homes. This technology could serve as a practical,
safe, and accurate COVID-19 screening device to help stop the
spread and enable society to return to normal life.
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