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Abstract—The increasingly sophisticated at-home screening
systems for obstructive sleep apnea (OSA), integrated with
both contactless and contact-based sensing modalities, bring
convenience and reliability to remote chronic disease manage-
ment. However, the device pairing processes between system
components are vulnerable to wireless exploitation from a non-
compliant user wishing to manipulate the test results. This work
presents SIENNA, an insider-resistant context-based pairing
protocol. SIENNA leverages JADE-ICA to uniquely identify a
user’s respiration pattern within a multi-person environment
and fuzzy commitment for automatic device pairing, while using
friendly jamming technique to prevent an insider with knowledge
of respiration patterns from acquiring the pairing key. Our
analysis and test results show that SIENNA can achieve reliable
(> 90% success rate) device pairing under a noisy environment
and is robust against the attacker with full knowledge of the
context information.

I. INTRODUCTION

Over twenty-five million adults in the US suffer from ob-
structive sleep apnea (OSA), an airway muscle-related breath-
ing condition that involuntarily causes respiratory cessations
during sleep. Poor treatment can lead to excessive daytime fa-
tigue, high blood pressure, cardio-metabolic conditions, along
with a myriad of health problems [1]. A traditional diagnos-
tic procedure, known as polysomnography (PSG), requires
the patient to be in a laboratory overnight with instruments
of multiple sensors/electrodes to track various sleep-related
physiological parameters. However, PSG is highly obtrusive,
expensive, and scarce.

At-home OSA monitoring systems leverage contactless
and/or contact-based sensing technologies to monitor respi-
ratory symptoms related to OSA. They allow users to conduct
self-administered tests prescribed by their doctors and are
considered economical alternatives for PSG. However, At-
home OSA tests are subject to test fraud, as several profes-
sions within the patient population are deeply concerned that
positive OSA test results will jeopardize their careers. As a
result, an OSA patient may exploit the unsupervised at-home
environment to manipulate the OSA test results. Specifically,
the device pairing processes between the OSA screening
system components are often the target of eavesdropping and
spoofing from a non-compliant user.

To combat these malicious behaviors, we introduce SI-
ENNA: inSIder rEsistaNt coNtext-based pAiring for unobtru-
sive at-home OSA screening. SIENNA works with a multi-
modality OSA screening system consisting of one data aggre-
gate, e.g., the user’s mobile phone, and two sensing modalities,
e.g., a respiratory belt and a physiological radar monitoring
system (PRMS). It leverages the respiration patterns collected
by the respiratory belt to allow automatic pairing between the
PRMS and the phone. The design of SIENNA uses a novel
combination of JADE-ICA [2], [3], fuzzy commitment, [4],
and friendly jamming [5], [6], [7]. The JADE-ICA allows the
PRMS to identify the unique patterns of a person’s breathing
from a multi-person environment. The fuzzy commitment
leverages the user’s breathing patterns to establish a shared
secret key between the PRMS and the mobile phone. And the
friendly jamming prevents insiders, e.g., a non-compliant and
unsupervised user with knowledge of the breathing patterns,
from learning the security key.

We formally analyzed the security of SIENNA based on
the attacker’s knowledge of the context information, and
implemented a laboratory prototype consisting of a mmWave
PRMS (implemented with SDR and mmWave radio heads), a
wireless respiratory belt, and a Android-based OSA app. We
conducted an evaluation consisting of 20 subjects spanning
over one month. The results show that SIENNA achieves
reliable device pairing within a noisy at-home environment
with multiple free moving persons in the background. It
also prevents unauthorized receivers from retrieving the secret
key, regardless of their locations or knowledge of the user’s
respiration patterns.

II. PRELIMINARY

Before introducing SIENNA, we briefly review the mech-
anisms of two common at-home OSA screening modalities:
respiratory belt and non-contact PRMS. An external motion
respiratory belt sensor utilizes a transducer to generate a
substantial linear signal in response to changes in thoracic
circumference associated with respiration (Fig. 1a). The linear
signal is first sampled by a analog-to-digital converter (com-
monly at 100 Hz), then transmitted to a mobile OSA app.
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Fig. 1: Left to right: (a) The respiratory belt detects chest
displacement (breathing) through changes in thoracic or ab-
dominal circumference; (b) The PRMS detects displacement
(breathing) in patient’s chest through phase offset between the
TX and RX signal.

The PRMS (Fig. 1b) utilizes Continuous Wave (CW)
Doppler radar technology to detect the phase shift of reflected
signals from the patient’s chest movements. Let the distance
offset due to chest movements be x(t), and the in-phase (I)
and quadrature phase (Q) can expressed as:

BI(t) = AI cos

(
θ0 +

4πx(t)

λ
+ δθ(t)

)
BQ(t) = AQ sin

(
θ0 +

4πx(t)

λ
+ δθ(t)

)
where λ is the signal wavelength, θ0 is the phase delay due
to the nominal distance between the radar transmitter and the
user’s torso, surface scattering, and radar’s RF chains, and
δθ(t) is the residual phase noise. The phase shift corresponds
to the respiratory movement and can be computed via arctan-
gent demodulation:

θ(t) = θ0 +
4πx(t)

λ
= arctan

(
AIBQ(t)

AQBI(t)

)
.

III. PROBLEM DESCRIPTION

A respiratory belt and a PRMS need to pair with the user’s
mobile phone before an OSA test. A respiratory belt is often
paired with the user’s phone by a medical technician during
a clinic visit. The PRMS is usually shipped directly to the
user’s home and paired without supervision. The unsupervised
pairing process is subject to exploitation from a non-compliant
user. Assuming the respiratory belt has successfully paired
with the phone, we aim to enable automatic device paring
between the PRMS and the phone via the shared context
information, e.g., the user’s respiratory patterns observed by
the belt and PRMS. Unlike previous works on context-based
zero-effort pairing, our pairing protocol must pair two devices
securely in the presence of a co-located adversary who can
also observe the context information.

A. System Model

We consider a multimodality OSA screening system with
three modules: (1) A mobile phone that aggregates the screen-
ing data, a PRMS, and a wireless respiratory belt, and assume
the following. (1) Wireless interface: The phone, PRMS, and

belt are equipped with radio interfaces such as Bluetooth. (2)
Computation: The PRMS and belt can perform computational
inexpensive cryptographic algorithms, such as SHA-256 hash
and AES. (3) Tamper-proof: The phone, PRMS, and belt are
tamper-proof. Any attempts to physically modify the circuit
would nullify the test. (4) Security: The phone, PRMS, and
belt do not have any prior security associations. Secret keys
are established between the belt and the user’s phone by a
medical technician (Fig. 2a).

B. Adversary Model

A distinguishing feature of our adversary model is that
the system’s legitimate user could also be an insider attacker
(non-compliant user). The attacker’s objective is to either
eavesdrop on the communication between the system modules
or manipulate the system into accepting false data.

Eavesdrop. A non-compliant user may seek to eavesdrop on
the pairing communication between the PRMS and the phone,
aiming to extract the security context. For instance, the patient
may intercept the key exchanged between the PRMS and the
phone to decrypt and review all data records before a doctor
examines. If patterns related to OSA symptoms were found,
the patient would have time to come up with false excuses.

Spoofing. A non-compliant user may leverage the eaves-
dropped key to transmit false data to the mobile device and
manipulate the OSA test outcome. For instance, the patient
may use a third device to collect normal patterns prior to the
test and replay the normal data records to the phone during
the test.

IV. SIENNA

We present SIENNA: inSIder rEsistaNt coNtext-based
pAiring. SIENNA leverages the user’s respiratory patterns ob-
served by both the respiratory belt and the PRMS. To defense
against an insider attack, SIENNA employs a combination
of fuzzy matching and friendly jamming to prevent a non-
compliant user from obtaining the pairing key using the same
context.

A. Overview

The pairing procedure of SIENNA is shown in Fig. 2.
It begins when the user visits a doctor to obtain the test
authorization. During the visit, the doctor attaches a respiratory
belt to the patient, and pairs it to the user’s mobile device OSA
app (Fig. 2a). Once arriving home, the user lies in bed and
the PRMS automatically pairs with the mobile device based
on the respiration pattern observed by both the PRMS and the
respiratory belt (Fig. 2b). Once the pairing completes, both
links from the PRMS and respiratory belt to the mobile device
are secure. The user can freely choose either the respiratory
belt or PRMS for OSA screening, and the selected modality
communicates encrypted OSA data to the mobile device (Fig.
2c). Once testing is completed, the user revisits the doctor and
uploads the OSA screening from the mobile device. The doctor
runs a compliance check and examines whether there were any
significant gaps or inconsistencies with the OSA data. Based



Fig. 2: Left to right: (a) In hospital: a medical technician places a respiratory belt on a user and pairs it with the user’s phone;
(b) At home: a user pairs the PRMS with the user’s phone; (c) User switches to PRMS for OSA screening; (d) Doctor verifies
OSA data for any abnormalities.

on the compliance check report, the doctor decides whether to
accept or reject the OSA screening (Fig. 2d).

B. Insider Resistant Device Pairing

The core of SIENNA is a context-based secure key es-
tablishment (Fig. 3), which allows two devices, a and b, to
securely exchange and update a symmetric key in the presence
of a nearby eavesdropper by utilizing the context (user’s
breathing patterns) observed by both devices at the moment of
exchange. In the OSA scenario above, a represents the mobile
device connected to a respiratory belt, b represents the PRMS.

Fig. 3: Pairing protocol for two devices observing similar data
to establish a symmetric key in the presence of an adversary.

Traditional context-based key establishment protocols are
not secure when eavesdroppers are nearby to observe the
context. Many of such protocols assume that the adversary
cannot be near paring devices over extended periods of time
[8]. SIENNA addresses this shortcoming through a cross-layer
design that employs two security primitives: fuzzy commit-
ment [4] and and dialog-codes-based friendly jamming [5], [6],
[7]. The former is a cryptographic scheme that allows secure
commit and de-commit of a secrete similar-but-not-identical
open value. The latter is a friendly jamming scheme at the
receiver by jamming the transmitted signal to flip specific bits
in the message. Together, this ensures that an eavesdropper

with the right context will not be able to recover the key
exchanged between the pairing devices.

First we define the fuzzy commitment scheme [4]. Let σ be
a secret value. A fuzzy commitment transforms a secret value
σ into a commitment {χ,H(σ)} using an opening feature, φ,
and a hash function, H(·):

{χ,H(σ)} = COMMIT(σ, φ),

such that χ appears random and devoid of any information
about σ. And all open features φ̂ reveals σ via

σ = OPEN(χ, φ̂),

if and only if the Hamming distance HAM(φ, φ̂) ≤ τ , where
τ is a parameter denoting the maximum allowable Hamming
distance between φ̂ and φ to reveal σ.

To initiate the key establishment protocol, a broadcasts
a message, {H(k), tstr, tend}, where k denotes the key of
the previous iteration. tstr and tend denotes the starting and
ending timestamps of a and b’s captures of the respiratory
patterns. During the first round, H(k) is replaced with a public
parameter known to all parties.

From respiratory patterns ra(tstr, tend) and rb(tstr, tend) cap-
tured within the specified time interval, the two devices
extract breathing fingerprints fa = EXT (ra(tstr, tend)) and
fb = EXT (rb(tstr, tend)), via a fingerprint extraction function
EXT(·) : {1, 0}∗ 7→ {1, 0}M∗2K (detailed in Sec. IV-D). In
case a, e.g., PRMS, observes a breathing mixture of multiple
subjects, the mixture is first separated into the breathing
patterns of individual subjects (detailed in Sec. IV-C), which
are processed by EXT(·) to create multiple fingerprints, one
for each subject.

Once the breathing fingerprints are generated, a randomly
selects a key salt, s ∈ {1, 0}N∗2K , and transforms it into
a commitment {c ∈ {1, 0}M∗2K ,H(s)} using the breathing
fingerprint, fa. Specifically, a encodes s via the Reed-Solomon
(RS) encoding function

l = RS(2K ,M,N, s) ∈ FM
2K

and compute:
c = l 	 fa,



with 	 denoting exclusive OR (XOR).
Henceforth, a and b exchange c through dialog codes to de-

fend against insider attack. First, a converts the commitment,

{c,H(s)},

into OFDM symbols, duplicates each symbol back-to-back,

DUPSYM ({c,H(s)}) ,

and broadcasts all the symbols. In parallel to a’s broadcast, b
randomly jams either the original symbol or its repetition [6],
[5],

PHYJAM (‖DUPSYM ({c,H(s)}) ‖) ,

To jam a symbol, b transmits a signal that is drawn randomly
from a zero-mean Gaussian distribution whose variance is
the same as the OFDM signal with the same modulation.
Since b knows which symbols are jammed, it stitches the
unjammed symbols together to create a clean version of the
OFDM transmission and decodes the signal to obtain the clear
message.

Upon receiving {c,H(s)}, b computes

l̂ = fb 	 c

and decommits the salt by decoding l̂ using the Reed-Solomon
(RS) decoding function:

ŝ = RS(2K ,M,N, l̂).

Due to the error correction capability of Reed–Solomon codes,
s equals to ŝ if and only if l and l̂ differ in less than 2K−1(M−
N) bits. Since l = fa 	 d and l̂ = fb 	 d, it is equivalent in
saying that fa and fb must differ in less than T bits for b to
retrieve s.

To confirm whether the retrieval were successful, b com-
putes H(ŝ) and compares it with H(s). Depending on whether
they were equal, an ACK or a NAK message is transmitted
from b to a, with the former initiating the final step of the key
establishment protocol and the latter initiating the reattempts.

To conclude the key establishment, both a and b applies a
key derivation function

k′ = KDF(k, s),

to obtain the new key.

C. Breathing Separation with JADE-ICA

Home environments are noisy and unpredictable, with the
possibility of irrelevant individuals in close vicinity from the
user. To retrieve the correct context in an environment with
potentially multiple subjects, SIENNA augments the PRMS
modality with a breathing separation module, which recon-
structs the breathing signals of multiple co-located individuals
to select the correct target. The goal of the separation module
is to reconstruct a set of source signals from a set of mixtures,
without knowing the properties of the sources and the mixing
proportion. Since respiration signals are non-Gaussian and
independent from individuals, whilst mixed linearly at the
PRMS receiver, one can recover the source signals using

independent component analysis (ICA) [9], which is formu-
lated as the following: assume N independent time varying
sources si(t), i = 1 . . . N , and M different observations
xi(t), i = 1 . . .M . For T time units (t = 1 . . . T ), we can
define the source signal as a N × T matrix,

SN×T =

s11 s12 . . .
...

. . .
sN1

sNT

 ,
and the observed mixtures as a M × T matrix,

XM×T =

 x11 x12 . . .
...

. . .
xM1 xMT

 .
The mixtures are produced as the product of the source and a
mixing matrix WM×N , e.g.,

XM×T = WM×N × SN×T .

The goal of ICA is to recover SN×T and WM×N given only
XM×T , assuming the si(t), i = 1 . . . N are independent and
non-Gaussian. We employ the joint approximate diagonaliza-
tion of eignematrices (JADE) algorithm [2] to perform ICA,
with the details omitted to conserve space??.

D. Fingerprinting with Level-Crossing Quantization

Once the devices obtain breathing patterns of individual
targets, they apply EXT(·) to extract the binary breathing
fingerprints. The binary strings must meet two criteria for
the two to agree on the patient’s identity and evolve the
shared security key: (1) they should look sufficiently similar in
Hamming space if they represent the breathing process of the
same person, and (2) they should preserve the uniqueness of
the breathing dynamic that distinguishes among individuals.

To achieve these objectives, EXT(·) applies level-crossing
quantization to sample the continuous breathing patterns with
two predefined thresholds. Let q+, q− be the thresholds values
such that q+ > q−, we define a quantizer QTZ(·):

QTZ(x) =

10 if x ≥ q+
01 if x ≤ q−
00 if q− < x < q+

Let T be the time interval between adjacent sampling instants.
The binary sequence obtained by EXT(·) is

f = EXT (r(tstr, tend)) = [QTZ (r(tstr)) , ...,

QTZ

(
r(tstr + b

tend − tstr

T
cT
)
],

which can be compared in Hamming space.
However, the result of a single level-crossing quantization

loses details in the original breath pattern and fails the second
objective. To address this issue, we apply multiple passes of
level-crossing binary quatizations, each at a distinct pair of
levels, qi+, qi−. Intuitively, it is equivalent to create a pair-
wise linear approximation of the original breathing pattern,
with quantization error equal to the level density.



If the binary fingerprints after the multi-level quantization
is longer than ‖l‖, we pad and divide it into multiple subse-
quences, f = [f1, f2, ..., fn] to commit

c = f1 	 f2 	 ...	 fn 	 l,

and decommit

l = f1 	 f2 	 ...	 fn 	 c.

V. SECURITY ANALYSIS

The security of SIENNA can be formally analyzed based
on the property of a fuzzy commitment, and extended into
three cases according to the attacker’s knowledge on the user’s
breathing fingerprint, f . In the following, we omit the proof
of the first two cases and focus on the third one to conserve
space.

Attacker without Knowledge of f . When the eavesdropper
does not have the correct context, SIENNA inherits the secu-
rity properties of a fuzzy commitment, in terms of concealment
and binding [4].

Attacker with General Knowledge of f . By knowing
the distribution of f , the attacker can have computationally
less expensive strategies to determine l̂. One way to enhance
SIENNA’s security is to commit and decommit l via multiple
samples/segments of f as shown in Section IV-D. Yao’s XOR
lemma [10] indicates that the attacker’s advantage due to bias
in f ’s distribution diminishes as we increase the number of fs
in the XOR chain, with the diminishing rate defined in [10].

Attacker with Perfect Knowledge of f . The XOR-chain
trick would not prevent an attacker with perfect knowledge of
f to retrieve s. For a malicious patient capable of measuring
his own breathing patterns. When he is also able to capture the
commitment message, {c,H(s)}, he can accurately compute
l = c	 f and decode to obtain s.

To prevent such an insider attack, SIENNA leverages
friendly jamming to obfuscate the commit message for any
unintended receivers, and we can analyze the security of it
based on a wiretap channel model [11]. Consider a non-
compliant patient using an unauthorized receiver to intercept
the commit message X . We denote the main channel as the
wireless channel between a and b and the wiretap channel as
the one between the unauthorized receiver and a or b. Then
the frequency-domain representation of the main channel and
the wiretap channel is,

Ymain = X +
P0

P1
N (0, σ2

0), Ytap = X +
P

P2
N (0, σ2)

respectively, where P0 and σ2
0 denote the average power and

variance of the intrinsic wireless noise, P1 and P2 denote the
average powers of the OFDM signal observed by the receiver
and the unauthorized receiver, and P and σ2 denote average
power and variance of the jamming signal observed by the
unauthorized receiver.

[6] has shown that the jamming scheme works at its
optimal when the OFDM system operates with high order

modulation (at least QPSK), and 1 < P/P2 < 9.1 Therefore,
SIENNA prohibits the transmit in BPSK at any SNR. Due
to the FFT/IFFT operations in the OFDM system, X is a
pseudorandom Gaussian signal according to the central limit
theorem. The bit error probability for such an OFDM system,
allowing only M-QAM transmission, is

Bmain '
4

log2M
Q

(√
3P1 log2M

P0(M − 1)

)
for the main channel and

Btap '
4

log2M
Q

(√
3P2 log2M

P (M − 1)

)
,

for the wiretap channel, where Q(·) denotes the the tail
distribution function of the standard normal distribution. The
receiver may adjust P to elevate Btap beyond the error
correction capability of the fuzzy commitment, and prevent
an insider attack. The issue is that the jamming is only
effective when 1 < P/P2 < 9, but P2 depends on the
location of the unauthorized receiver and is unknown to the
receiver. Our solution is to have the transmitter create L
commitments, each with one sub-salt, and transmit them one
by one, while the receiver jams at L different power levels,
{Pmax, Pmax/9, . . . , Pmax/9

L−1}. Given the fact that Bmain is
not affected by P , the receiver can recover all sub-salts
and XOR them together to obtain the key evolution salt. In
contrast, the unauthorized receiver will fail to decode at least
one sub-salt, therefore, cannot recover the key evolution salt.
The number of jamming levels, L, can be computed based
on the upper bound (the maximum power supported by the
hardware, Pmax) and lower bound (the noise floor, P0) on the
OFDM signal power.

VI. EVALUATION

We empirically evaluated the performance of SIENNA,
which consists of a PRMS implemented with mmWave
transceivers/radio heads, one respiratory belt sensor imple-
mented with a piezo-electric respiration transducer, and one
Android-based OSA application. We conducted laboratory and
field experiments over one month with the SIENNA prototype
and 20 subjects selected through a random sample recruitment
process. All experiments with human subjects are approved by
the Institutional Review Board (IRB).

We designed the eavesdropping and spoofing attacks with
BLE sniffer and spoofer, implemented via Ubertooth and
Kismet. During each experiment, the subject was asked to
wear a respiratory belt and lie under a PRMS. A third party
manually executes the pairing process, and the packets com-
municated between the mobile OSA app and the PRMS were
identified based on their Bluetooth Device Addresses (BDAs)
obtained before the experiment. During the eavesdropping

1The jamming signal is too weak to degrade the OFDM signal when
P/P2 ≤ 1, and too strong to be indistinguishable from the OFDM signal
when P/P2 ≥ 9.
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Fig. 4: Left to right: (a) Signal reconstructed after 64-level-crossing quantization with vital related dynamic features preserved;
(b) Similarity between belt-based and PRMS-based breathing patterns, measured with the same subject; (c) Similarity
between belt-based and PRMS-based breathing patterns, measured with different subjects; (d) Performance of SIENNA against
eavesdropper with full knowledge of breathing patterns, measured in aggregated BER.

attack, the host’s codes on the BLE sniffer record the pack-
ets containing the fuzzy commitment, which were analyzed
offline to deduce the keys. During the spoofing attacks, an
attacker-generated compliance tracking data encrypted with
the deduced key was transmitted at higher power when the
PRMS uploads the data to the mobile OSA app to manipulate
the latter into accepting the fraudulent data, which was verified
during offline analysis.

SIENNA’s performance against eavesdropping and spoofing
is evaluated by comparing the aggregated bit error rate (BER)
at the receiver versus the aggregated BER at the attacker
side. Due to the application of fuzzy commitment, the key
establishment protocol allows a maximum of 27% BER in
the breathing fingerprints (when using (28, 255, 201) Reed-
Solomon codes) to recover the key salt. Compared to Fig.
4c, such a BER alone prevents any outside attackers who
cannot observe and mimick the patient’s breathing patterns
from stealing the key salt. Our experiment further showed
that the jamming signal could suppress the attacker’s BER
to approximately 50% within the PRMS’s transmission range
(Fig. 4d). The CDF of the accumulated BERs for attackers at
any locations within the PRMS’s transmission range concen-
trated between 41% to 50% (Fig. 4d) and is well beyond the
correctable range of the selected Reed-Solomon codes.

VII. CONCLUSION

We presented SIENNA, a novel insider-resistant context-
based pairing scheme for multi-modality OSA screening
systems. By merging fuzzy commitment, friendly jamming,
and JADE-ICA, SIENNA leverages the unique patterns of
a person’s breathing dynamics for secure pairing with the
presence of co-located attackers. We formally analyzed the
security of SIENNA according to the attacker’s knowledge
of the extracted binary sequence. Our results show that the
combination of fuzzy commitment, friendly jamming, and
JADE-ICA in SIENNA can protect the security key during
the pairing process against an attacker equipped with complete
knowledge of the context information, and is robust within a
noisy at-home environment with multiple persons.
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