
Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things

Rouzbeh Behnia

University of South Florida

Sarasota, Florida, USA

behnia@usf.edu

Attila A. Yavuz

University of South Florida

Tampa, Florida, USA

attilaayavuz@usf.edu

ABSTRACT
A digital signature is an essential cryptographic tool to offer authen-

tication with public verifiability, non-repudiation, and scalability.

However, digital signatures often rely on expensive operations

that can be highly costly for low-end devices, typically seen in the

Internet of Things and Systems (IoTs). These efficiency concerns

especially deepen when post-quantum secure digital signatures are

considered. Hence, it is of vital importance to devise post-quantum

secure digital signatures that are designed with the needs of such

constraint IoT systems in mind.

In this work, we propose a novel lightweight post-quantum

digital signature that respects the processing, memory, and band-

width limitations of resource-limited IoTs. Our new scheme, called

ANT, efficiently transforms a one-time signature to a (polynomially-

bounded) many-time signature via a distributed public key com-

putation method. This new approach enables a resource-limited

signer to compute signatures without any costly lattice operations

(e.g., rejection samplings, matrix multiplications, etc.), and only

with a low-memory footprint and compact signature sizes. We also

developed a variant for ANT with forward-security, which is an

extremely costly property to attain via the state-of-the-art post-

quantum signatures.

KEYWORDS
Digital signatures; post-quantum security; authentication

ACM Reference Format:
Rouzbeh Behnia and Attila A. Yavuz. 2021. Towards Practical Post-quantum

Signatures for Resource-Limited Internet of Things. In Proceedings of ACM
Conference (Conference’21). ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Efficient authentication and integrity are vital requirements to pro-

tect emerging IoT systems and cyber-critical infrastructures against

common attacks such as man-in-the-middle, impersonation, data

tampering, and many others. A reasonable measure to provide

these properties is via message authentication codes. However, this

symmetric primitive, while very efficient, requires pair-wise key

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’21, June 2021, ,
© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

distribution and storage, and fails to provide non-repudiation and

public verifiability which are often required by many IoT applica-

tions like medical devices [1] and payment systems [2].

Digital signatures provide public verifiability and non-repudiation

while being widely scalable, therefore an ideal solution to provide

authentication and integrity for IoT applications. However, such

schemes usually require expensive operations that can make the

cryptographic overhead intolerable for some IoT applications, espe-

cially with those involving battery-powered and/or low-end devices

(e.g., [1]).

Following Shor’s algorithm [3], cryptosystems based on con-

ventional hard problems such as elliptic curve discrete logarithm

problem (e.g., ECDSA [4]) will be broken with the emergence of

quantum computers. Therefore, NIST has started rounds of stan-

dardizations for post-quantum cryptography.
1
Hence, to ensure

long-term security, resistance to quantum attacks should be consid-

ered. However, following NIST’s third round of standardizations,

the most efficient signature schemes currently in the competition

(e.g., Dilithium [5]), could be very expensive for some IoT applica-

tions. For instance, for a resource-limited battery-powered medical

sensor [6], that periodically generates and signs sensitive medical

readings to be verified by a cloud service provider, the efficiency of

the signing algorithm directly translates to a longer battery life.

Therefore, an ideal post-quantum secure signature for low-end

IoT settings (e.g., battery-powered devices) should have the follow-

ing desired properties: (i) High computation, memory, and band-

width efficiency to minimize the burden of cryptography on the

intended IoT application. This may, for instance, translate into a

longer operation time for battery-powered devices due to the re-

duced energy consumption. (ii) It is not uncommon for low-end

IoT devices to operate in an adversarial environment where they

may be breached by an attacker via malware infiltration or physical

means. To this end, providing compromise-resiliency features such

as forward-security and side-channel resiliency are important.

The main goal of this paper is to create post-quantum signer-
efficient and compact digital signature schemes with forward-security
to meet the computation, memory, bandwidth, and battery needs of
resource-limited IoT devices while minimizing the interventions and
the cryptographic overhead.

1.1 Research Gap
In the classical domain (i.e., cryptosystems based on conventional

hard problems), there have beenmany successful algorithmic and/or

implementation attempts in proposing efficient signature schemes

that are designed with signer efficiency in mind. However, as al-

luded to, in the case of post-quantum secure schemes, the existing

1
https://csrc.nist.gov/projects/post-quantum-cryptography

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://csrc.nist.gov/projects/post-quantum-cryptography

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

Table 1: Performance comparison of ANT and its lightweight counterparts on 8-bit Microcontroller

Scheme
Signing
Cycles

Private Key
(KB)

Signature
(KB)

Post-Quantum
Promise Device

Rejection/Gaussian
(Sampling)

ECDSA [7] 81, 324, 870 0.03 0.06 × ATmega2560 (16 MHz) ×

Ed25519 [8] 33, 918, 780 0.03 0.06 × ATmega2560 (16 MHz) ×

SchnorrQ [9] 5, 211, 321 0.03 0.06 × ATmega2560 (16 MHz) ×

ESEM
†
[10] 616, 896 0.03 0.047 × ATmega2560 (16 MHz) ×

BLISS-I [11] 10, 537, 981 0.25 0.7 ✓ ATxmega128A1 (32 MHz) ✓

ANT-II 657, 517 0.03 0.432 ✓ ATmega2560 (16 MHz) ×

ANT-FS-II 718, 678 0.09 0.432 ✓ ATmega2560 (16 MHz) ×

† The current parameter sets of ESEM have be shown to be insecure. Further discussion is provided in Section 6.

post-quantum candidates (in the 3rd round of NIST post-quantum

standardization process) (e.g., [5, 12, 13]), while being elegant, are

not designed with resource-constrained IoT systems in mind. For

instance, while the current hash-based standards/candidates have

been extensively studied and improved both from the algorithmic

and implementation perspectives [14–17], the slow signing and

the large signature sizes may not be suitable for low-end devices

operating on low-bandwidth networks. For instance, SPHINCS+

[14] signature size is around 17, 000 KB while its signature genera-

tion (on commodity hardware) is about two magnitudes of times

slower than the lattice-based counterparts (e.g., Dilithium [5]). As

another example, one can also consider the lattice-based candidates

[5, 12] currently in the third round of standardization. They are

more efficient than their hash-based counterparts for the signing

speed and signature size, but they still require rather expensive

operations (e.g., vector-matrix multiplications). While there have

been attempts to enhance the performance, for instance, by im-

proving the Number Theoretic Transform (NTT) operation (e.g.,

in [5]), when these schemes are implemented on low-end devices,

they often incur high computation and communication overhead;

which aside from the high end-to-end delay, directly translates to a

lower operation time for battery-powered devices.

1.2 Our Contribution
We propose a new signer-efficient (lightweight) signature scheme

with post-quantum security called ANT. ANT is specifically designed

to provide computation and energy-efficient signing with com-

pact signatures for resource-limited IoT devices. The main idea is

to eliminate the public key generation, storage, certification, and

transmission from the signer while keeping the efficiency of a near-

optimal lattice-based one-time signature [18]. Another reason for

choosing this particular one-time signature is that it is based on a

very well-studied problem (e.g., shortest integer solution problem)

that a current lattice-based candidate [5] is also based on. Specifi-

cally, we introduce a distributed public key construction algorithm,

which exploits the key aggregation property of one-time lattice-

based signature via a set of honest-but-curious servers, without

requiring any intervention from the signer. This saves the signer

from the burden of generating and transmitting one-time public

keys, thereby offering a near-optimal yet polynomially-unbounded

number signing capability. We also propose a forward secure vari-

ation of ANT that vastly enhances its breach-resiliency. Lastly, we

propose a Merkle tree based variant to enable an efficient certifica-

tion , which is often omitted in the context of one-time signatures.

1.3 Desirable Properties
Some of the desirable properties of our schemes are as follows:

(i) Near-optimal signing efficiency: The signature generation of ANT is
almost as efficient as its underlying (near-optimal) one-time sig-

nature. This high signing efficiency directly translates to a lower

energy consumption and longer operation time when implemented

on battery-powered devices. As depicted in Table 1, ANT is 8× and

16× faster than its most efficient conventional (i.e., SchnorrQ [9])

and post-quantum (BLISS [11]) counterparts, respectively, when

implemented on 8-bit microcontroller. The signing of ANT is also
comparable to one of the most efficient conventional (EC-based)

signatures with distributed verification called ESEM [10], and this

is even without considering the recent attacks on the optimizations

used in ESEM. When implemented on commodity hardware (see

Table 2), ANT is at least 10× faster than its counterparts, currently

in the third round of NIST PQC standardization.

(ii) Memory efficiency: ANT is memory efficient for the signer. Firstly,

the private key size of ANT is as small as those in ECDSA and

SchnorrQ [9]. Secondly, since ANT does not require the signer to

compute a commitment (unlike done in BLISS [11] or Dilithium

[5]), it has minimal (compared to its post-quantum counterparts)

memory expansion at the signer’s side. Moreover, unlike some

online/offline and token-based schemes, ANT does not require the
signer to generate and store tokens that will be depleted after a

certain number of signatures are generated [19].

(iii) Compact signature: ANT and its variants, unlike its lattice-based
counterparts (BLISS [11] or Dilithium [5]), are not based on the

Fiat-Shamir with aborts (FSA) paradigm [20]. In the FSA paradigm,

the masking term, which directly affects the signature size, needs to

have a large norm to fully mask the private key. Therefore, ANT and
its variants enjoy from a smaller signature size than their post-

quantum counterparts. For instance, the signature size of ANT-II is
about 5.5× smaller than the ones in Dilithium-II.

(iv) Side-channel resiliency: Current lattice-based signatures [20]

(e.g., [5, 21]) based on the FSA paradigm rely on methods such as

Gaussian or rejection sampling that are shown to be prone against

side-channel attacks [22–24]. Moreover, there exist side-channel

attacks exploiting the weak random number generators (specially

in low-end devices) in signatures based on Fiat-Shamir transform

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things Conference’21, June 2021, ,

[25]. However, ANT does not require any Gaussian or rejection

sampling during the signing. Moreover, the private key components

are generated deterministically, and therefore, it is not prone to the

common side-channel attacks mentioned above.

(v) Forward Security: The forward security property ensures the au-

thenticity and integrity of the data items before an attack point. It

is achieved by evolving the secret key periodically (e.g., every hour

or per signing). Forward secure signatures can substantially en-

hance the breach resiliency of critical infrastructures, and therefore

have various applications in IoTs and forensics (e.g., [26]). To our
knowledge, ANT-FS is the first signer-optimal polynomially-bounded
lattice-based signature with forward security.
(v) Improved Post-quantum Security: ANT, unlike lattice-based sche-

mes [5, 21] relying on the FSA paradigm [20], does not use random

oracles model (ROM). As it is shown in [27], the transformation to

provide quantum security proof for signature schemes in the ROM

could incur some efficiency loss. Since ANT security is not based on

such assumption, the post-quantum security is achieved without a

significant efficiency loss.

1.4 Limitations
The high signer efficiency in ANT is achieved by moving the burden

of public key computation to a set of servers. More specifically,

the verifier needs to contact the server(s) to obtain the public key

of the signer corresponding to a particular signature. The high

bandwidth requirement for the servers and the verifier is due to

the fact that the public key communication overhead in the new

scheme is per signature. This should be particularly considered

for communication-heavy applications. However, as stated in our

use-cases, we assume the verifier’s machine is at least a commodity

hardware with a stable high-bandwidth connection. Note that in our

scheme, the signer does not need to interact with any party to gen-

erate the signature. We assume that servers are honest-but-curious

and t-private (Definition 4). That is, ANT will remain secure even if

(t − 1) parties collude. ANT is a suitable candidate for applications
where highly efficient signing is a priority and few milliseconds of

delay on the verifier’s side (due to the interaction with servers) is

tolerable.

2 PRELIMINARIES
Notation. We work on a ring R = Zq [x]/(x

n + 1) for a prime q
with n being a power-of-two. Each element of R is represented

as a polynomial of degree n − 1. The scheme is parametrized by

n,q,k, l , βxy, βc and βver. We denote vectors as bold letters (i.e., a)

while scalars are denoted non-bold. a
$

← D denotes a is being

sampled randomly from set the D. |a | denotes the bit length of a,
i.e., |a | = log

2
a. For a vector a = (a1, . . . ,an) we define ∥a∥∞ =

max{|ai | : i = 1, . . . ,n}. We use κ to denote our security parameter.

We define K ⊂ R with small coefficients (i.e., ≤ βxy) as our
private key space. S ⊂ R is defined as our signature space with

coefficients ≤ βver. We use H1(·) to map arbitrary length messages

to our message spaceM with vectors with exactly βc number of

1 or −1 with the rest fo the elements being 0. We also set H2 :

{0, 1}∗ × Zp → {0, 1}∗. We define a Pseudo Random Function

PRF1 : {0, 1}
∗ → {0, 1}∗.

Server 2 Server 3

Signer Verifier

� Sig(m, sk, c)
<latexit sha1_base64="RAWROWcIK9rqLK6KUo7fbYie44Y=">AAACCHicbVDLSgNBEJyNrxhfUY8eXAxClBB2RdBjwIvHiOYB2RBmJ53NkJndZaZXDEuOXvwVLx4U8eonePNvnDwOmljQUFR1093lx4JrdJxvK7O0vLK6ll3PbWxube/kd/fqOkoUgxqLRKSaPtUgeAg15CigGSug0hfQ8AdXY79xD0rzKLzDYQxtSYOQ9zijaKRO/tDTPJDUCwC1h/CAiOktD0ZFWdKDEjvp5AtO2ZnAXiTujBTIDNVO/svrRiyRECITVOuW68TYTqlCzgSMcl6iIaZsQANoGRpSCbqdTh4Z2cdG6dq9SJkK0Z6ovydSKrUeSt90Sop9Pe+Nxf+8VoK9y3bKwzhBCNl0US8RNkb2OBW7yxUwFENDKFPc3GqzPlWUockuZ0Jw519eJPWzsuuU3ZvzQuV0FkeWHJAjUiQuuSAVck2qpEYYeSTP5JW8WU/Wi/VufUxbM9ZsZp/8gfX5A9nUmcA=</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit>

� = (z, c)
<latexit sha1_base64="MFN1sHFt0Kw2hGFGMaFxShZnkgE=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGZQX7gCaUyXTSDs4kYWYi1NiFv+LGhSJu/Q13/o3TNgttPTBwOOde7pkTJJwp7TjfVmFhcWl5pbhaWlvf2Nyyt3eaKk4loQ0S81i2A6woZxFtaKY5bSeSYhFw2grursZ+655KxeLoVg8T6gvcj1jICNZG6tp7nmJ9gdFlxRNYD4IwexidkKOuXXaqzgRonrg5KUOOetf+8noxSQWNNOFYqY7rJNrPsNSMcDoqeamiCSZ3uE87hkZYUOVnk/wjdGiUHgpjaV6k0UT9vZFhodRQBGZyHFLNemPxP6+T6vDCz1iUpJpGZHooTDnSMRqXgXpMUqL50BBMJDNZERlgiYk2lZVMCe7sl+dJ87TqOlX35qxcO87rKMI+HEAFXDiHGlxDHRpA4BGe4RXerCfrxXq3PqajBSvf2YU/sD5/AP1clVk=</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit>

{0, 1} Ver(m,�, pkc)
<latexit sha1_base64="BS/Eq5t4KZfglsA8ccQHFDq/TvI=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBASCWFXBD0GvHiMYB6QDWF20kmGzOwuM71iWPINXvwVLx4U8erJm3/j5HHQxIKGoqqb7q4glsKg6347K6tr6xubma3s9s7u3n7u4LBuokRzqPFIRroZMANShFBDgRKasQamAgmNYHg98Rv3oI2IwjscxdBWrB+KnuAMrdTJFf3ULXn+mPp9QEN9hAdETOugxwVV8o3oK1aKhx1e7OTybtmdgi4Tb07yZI5qJ/fldyOeKAiRS2ZMy3NjbKdMo+ASxlk/MRAzPmR9aFkaMgWmnU5fGtNTq3RpL9K2QqRT9fdEypQxIxXYTsVwYBa9ifif10qwd9VORRgnCCGfLeolkmJEJ/nQrtDAUY4sYVwLeyvlA6YZR5ti1obgLb68TOrnZc8te7cX+crZPI4MOSYnpEA8ckkq5IZUSY1w8kieySt5c56cF+fd+Zi1rjjzmSPyB87nDxbAnQc=</latexit><latexit sha1_base64="lxMZwvn1XMQqoy7MsAFHSf4Jxs0=">AAACN3icjVC7SgNBFJ31GeMramkzGIREQtgVQcuAjaWCeUA2hNnJTTJkZneZuSuGJd/g11jY+BF2VjYitv6Bk0ehiYUHBg7nnMude4JYCoOu++osLa+srq1nNrKbW9s7u7m9/ZqJEs2hyiMZ6UbADEgRQhUFSmjEGpgKJNSDweXYr9+BNiIKb3EYQ0uxXii6gjO0UjtX9FO35Pkj6vcADfUR7hExrYEeFVTJN6KnWCketHmxncu7ZXcCuki8GcmTGf4Xb+de/E7EEwUhcsmMaXpujK2UaRRcwijrJwZixgesB01LQ6bAtNLJ3SN6bJUO7UbavhDpRP05kTJlzFAFNqkY9s28Nxb/8poJdi9aqQjjBCHk00XdRFKM6LhE2hEaOMqhJYxrYf9KeZ9pxtFWnbWne/OHLpLaadlzy97NWb5yMussQw7JESkQj5yTCrki16RKOHkgj+SZvDtPzpvz4XxOo0vObOaA/ILz9Q2cCKSA</latexit><latexit sha1_base64="lxMZwvn1XMQqoy7MsAFHSf4Jxs0=">AAACN3icjVC7SgNBFJ31GeMramkzGIREQtgVQcuAjaWCeUA2hNnJTTJkZneZuSuGJd/g11jY+BF2VjYitv6Bk0ehiYUHBg7nnMude4JYCoOu++osLa+srq1nNrKbW9s7u7m9/ZqJEs2hyiMZ6UbADEgRQhUFSmjEGpgKJNSDweXYr9+BNiIKb3EYQ0uxXii6gjO0UjtX9FO35Pkj6vcADfUR7hExrYEeFVTJN6KnWCketHmxncu7ZXcCuki8GcmTGf4Xb+de/E7EEwUhcsmMaXpujK2UaRRcwijrJwZixgesB01LQ6bAtNLJ3SN6bJUO7UbavhDpRP05kTJlzFAFNqkY9s28Nxb/8poJdi9aqQjjBCHk00XdRFKM6LhE2hEaOMqhJYxrYf9KeZ9pxtFWnbWne/OHLpLaadlzy97NWb5yMussQw7JESkQj5yTCrki16RKOHkgj+SZvDtPzpvz4XxOo0vObOaA/ILz9Q2cCKSA</latexit><latexit sha1_base64="lxMZwvn1XMQqoy7MsAFHSf4Jxs0=">AAACN3icjVC7SgNBFJ31GeMramkzGIREQtgVQcuAjaWCeUA2hNnJTTJkZneZuSuGJd/g11jY+BF2VjYitv6Bk0ehiYUHBg7nnMude4JYCoOu++osLa+srq1nNrKbW9s7u7m9/ZqJEs2hyiMZ6UbADEgRQhUFSmjEGpgKJNSDweXYr9+BNiIKb3EYQ0uxXii6gjO0UjtX9FO35Pkj6vcADfUR7hExrYEeFVTJN6KnWCketHmxncu7ZXcCuki8GcmTGf4Xb+de/E7EEwUhcsmMaXpujK2UaRRcwijrJwZixgesB01LQ6bAtNLJ3SN6bJUO7UbavhDpRP05kTJlzFAFNqkY9s28Nxb/8poJdi9aqQjjBCHk00XdRFKM6LhE2hEaOMqhJYxrYf9KeZ9pxtFWnbWne/OHLpLaadlzy97NWb5yMussQw7JESkQj5yTCrki16RKOHkgj+SZvDtPzpvz4XxOo0vObOaA/ILz9Q2cCKSA</latexit>

sk
<latexit sha1_base64="02td//HnNVnhy4WgwxqWh49NSwY=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GQxCqrBro50BG8sYzAWSJcxOzibDzs4uM7NCWPIGNhaK2Npb+xx2vo2TS6GJPwx8/P85zDknSAXXxnW/nbX1jc2t7cJOcXdv/+CwdHTc0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC20F0M83bD6g0T+S9Gafox3QoecgZNdZq6KhfKrtVdyayCt4Cytcfnw2wqvdLX71BwrIYpWGCat313NT4OVWGM4GTYi/TmFIW0SF2LUoao/bz2aQTcm6dAQkTZZ80ZOb+7shprPU4DmxlTM1IL2dT87+sm5nwys+5TDODks0/CjNBTEKma5MBV8iMGFugTHE7K2Ejqigz9jhFewRveeVVaF1UPbfq3bnlWgXmKsApnEEFPLiEGtxCHZrAIIRHeIYXJ3KenFfnbV665ix6TuCPnPcfRgKPRQ==</latexit><latexit sha1_base64="MOxoTc5ADj5gfDM3dSbeyzXyR84=">AAACDnicjVC7SgNBFL0bXzG+opaCDAYhVZi10c6AjaUR84BkCbOT2WTI7OwyMyuEJaWdhY2/YSkBEVtrO7/Bn3DyKDSx8MDA4ZxzuXOuHwuuDcafTmZpeWV1Lbue29jc2t7J7+7VdJQoyqo0EpFq+EQzwSWrGm4Ea8SKkdAXrO73L8Z+/ZYpzSN5YwYx80LSlTzglBgrXet+O1/AJTwBWiTujBTOn0aVr7vD0f/i7fxHqxPRJGTSUEG0bro4Nl5KlOFUsGGulWgWE9onXda0VJKQaS+d1BmiY6t0UBAp+6RBE/XnREpCrQehb5MhMT09743Fv7xmYoIzL+UyTgyTdLooSAQyERrfBnW4YtSIgSWEKm7/imiPKEKNvWDOVnfniy6S2knJxSW3ggvlIkyRhQM4giK4cApluIQrqAKFAO7hEV6cB+fZeXXeptGMM5vZh19w3r8BYliZAw==</latexit><latexit sha1_base64="MOxoTc5ADj5gfDM3dSbeyzXyR84=">AAACDnicjVC7SgNBFL0bXzG+opaCDAYhVZi10c6AjaUR84BkCbOT2WTI7OwyMyuEJaWdhY2/YSkBEVtrO7/Bn3DyKDSx8MDA4ZxzuXOuHwuuDcafTmZpeWV1Lbue29jc2t7J7+7VdJQoyqo0EpFq+EQzwSWrGm4Ea8SKkdAXrO73L8Z+/ZYpzSN5YwYx80LSlTzglBgrXet+O1/AJTwBWiTujBTOn0aVr7vD0f/i7fxHqxPRJGTSUEG0bro4Nl5KlOFUsGGulWgWE9onXda0VJKQaS+d1BmiY6t0UBAp+6RBE/XnREpCrQehb5MhMT09743Fv7xmYoIzL+UyTgyTdLooSAQyERrfBnW4YtSIgSWEKm7/imiPKEKNvWDOVnfniy6S2knJxSW3ggvlIkyRhQM4giK4cApluIQrqAKFAO7hEV6cB+fZeXXeptGMM5vZh19w3r8BYliZAw==</latexit><latexit sha1_base64="kvLUQVSr+HzS6MA6VFtjfBNV79g=">AAACDnicjVC7SgNBFL0bXzG+Vi1tBoOQKuzaaBmwsVQxD0iWMDuZTYbMzi4zd4Ww5A8sbPwVGxFbazv/xkmyhSYWHhg4nHMud+4JUykMet6XU1pb39jcKm9Xdnb39g/cw6OWSTLNeJMlMtGdkBouheJNFCh5J9WcxqHk7XB8NfPbD1wbkah7nKQ8iOlQiUgwila6M+O+W/Xq3hxklfgFqUKB/8X77mdvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOfnTMmZVQYkSrR9Cslc/TmR09iYSRzaZExxZJa9mfiX180wugxyodIMuWKLRVEmCSZk1g0ZCM0ZyokllGlh/0rYiGrK0DZYsaf7y4euktZ53ffq/q1XbdSKzspwAqdQAx8uoAHXcANNYBDBIzzDq/PkvDhvzvsiWnKKmWP4BefjGxLUlMc=</latexit>

Server 1
sk1

<latexit sha1_base64="On8yH63z6R2CFC+uVRxOOsDjT5A=">AAAB63icbZC7SgNBFIbPxluMt6ilzWAQUoVdG+0M2FhGMBdIljA7mU2GzGWZmRXCklewsVDE1hfxEezsfBHB2SSFJv4w8PH/5zDnnCjhzFjf//QKa+sbm1vF7dLO7t7+QfnwqGVUqgltEsWV7kTYUM4kbVpmOe0kmmIRcdqOxtd53r6n2jAl7+wkoaHAQ8liRrDNLTPuB/1yxa/5M6FVCBZQufp+V18A0OiXP3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p16HEgpowm806RWfOGaBYafekRTP3d0eGhTETEblKge3ILGe5+V/WTW18GWZMJqmlksw/ilOOrEL54mjANCWWTxxgopmbFZER1phYd56SO0KwvPIqtM5rgV8Lbv1KvQpzFeEETqEKAVxAHW6gAU0gMIIHeIJnT3iP3ov3Oi8teIueY/gj7+0HOQaRPw==</latexit><latexit sha1_base64="ldYCq0dCcTfyH+OYeX0YJx2nRuQ=">AAACEHicjVC7SgNBFL3rM8ZX1EawGQxCqrBro50BG0sF84AkhNnJbDJkHsvMrBCW/IKFjb/gJ9iIaGlp5xf4FYKzSQpNLDwwcDjnXO6cG8acGev7H97C4tLyympuLb++sbm1XdjZrRmVaEKrRHGlGyE2lDNJq5ZZThuxpliEnNbDwXnm12+oNkzJazuMaVvgnmQRI9hmkhl0gk6h6Jf9MdA8CaakePb1qj73H8T/4p3Ce6urSCKotIRjY5qBH9t2irVlhNNRvpUYGmMywD3adFRiQU07HRcaoSOndFGktHvSorH6cyLFwpihCF1SYNs3s14m/uU1ExudtlMm48RSSSaLooQjq1B2HdRlmhLLh45gopn7KyJ9rDGx7oZ5Vz2YLTpPasflwC8HV36xUoIJcnAAh1CCAE6gAhdwCVUg0IdbuIcn78579J69l0l0wZvO7MEveG/fBcOZ7A==</latexit><latexit sha1_base64="ldYCq0dCcTfyH+OYeX0YJx2nRuQ=">AAACEHicjVC7SgNBFL3rM8ZX1EawGQxCqrBro50BG0sF84AkhNnJbDJkHsvMrBCW/IKFjb/gJ9iIaGlp5xf4FYKzSQpNLDwwcDjnXO6cG8acGev7H97C4tLyympuLb++sbm1XdjZrRmVaEKrRHGlGyE2lDNJq5ZZThuxpliEnNbDwXnm12+oNkzJazuMaVvgnmQRI9hmkhl0gk6h6Jf9MdA8CaakePb1qj73H8T/4p3Ce6urSCKotIRjY5qBH9t2irVlhNNRvpUYGmMywD3adFRiQU07HRcaoSOndFGktHvSorH6cyLFwpihCF1SYNs3s14m/uU1ExudtlMm48RSSSaLooQjq1B2HdRlmhLLh45gopn7KyJ9rDGx7oZ5Vz2YLTpPasflwC8HV36xUoIJcnAAh1CCAE6gAhdwCVUg0IdbuIcn78579J69l0l0wZvO7MEveG/fBcOZ7A==</latexit><latexit sha1_base64="9lK3jghpVIuorsSWkEC26RNKaQ8=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXZtTBmwsVQwD0iWMDu5mwyZnV1mZoWw5BcsbPwVGxFbSzv/xtlkC00sPDBwOOdc7twTJIJr47pfTmljc2t7p7xb2ds/ODyqHp90dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9zv3uAyrNY3lvZgn6ER1LHnJGTS7p6dAbVmtuw12ArBOvIDUo8L/4sPo5GMUsjVAaJqjWfc9NjJ9RZTgTOK8MUo0JZVM6xr6lkkao/Wxx0JxcWGVEwljZJw1ZqD8nMhppPYsCm4yomehVLxf/8vqpCZt+xmWSGpRsuShMBTExydshI66QGTGzhDLF7V8Jm1BFmbEdVuzp3uqh66Rz2fDchnfn1lr1orMynME51MGDK2jBDdxCGxhM4BGe4dV5cl6cN+d9GS05xcwp/ILz8Q1OJpVr</latexit>

sk2
<latexit sha1_base64="smSg3WegxIEa/VFUqr9LRmwFPJc=">AAAB63icbZC7SgNBFIbPxluMt6ilzWAQUoXdNNoZsLGMYC4QlzA7mU2GzGWZmRXCklewsVDE1hfxEezsfBHB2SSFJv4w8PH/5zDnnCjhzFjf//QKa+sbm1vF7dLO7t7+QfnwqG1UqgltEcWV7kbYUM4kbVlmOe0mmmIRcdqJxld53rmn2jAlb+0koaHAQ8liRrDNLTPu1/vlil/zZ0KrECygcvn9rr4AoNkvf9wNFEkFlZZwbEwv8BMbZlhbRjidlu5SQxNMxnhIew4lFtSE2WzWKTpzzgDFSrsnLZq5vzsyLIyZiMhVCmxHZjnLzf+yXmrjizBjMkktlWT+UZxyZBXKF0cDpimxfOIAE83crIiMsMbEuvOU3BGC5ZVXoV2vBX4tuPErjSrMVYQTOIUqBHAODbiGJrSAwAge4AmePeE9ei/e67y04C16juGPvLcfOoqRQA==</latexit><latexit sha1_base64="zdAh9fzXwEb9G7Ifh1yDLJ7uu0s=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoXdNNoZsLFUMA9IljA7mU2GzM4sM7NCWPILFjb+gp9gI6KlpZ1f4FcIziYpNLHwwMDhnHO5c24Qc6aN6344uaXlldW1/HphY3Nre6e4u9fQMlGE1onkUrUCrClngtYNM5y2YkVxFHDaDIbnmd+8oUozKa7NKKZ+hPuChYxgk0l62K12iyW34k6AFok3I6Wzr1f5efAQ/S/eLb53epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LBY6o9tNJoTE6tkoPhVLZJwyaqD8nUhxpPYoCm4ywGeh5LxP/8tqJCU/9lIk4MVSQ6aIw4chIlF0H9ZiixPCRJZgoZv+KyAArTIy9YcFW9+aLLpJGteK5Fe/KLdXKMEUeDuEIyuDBCdTgAi6hDgQGcAv38OTcOY/Os/Myjeac2cw+/ILz9g0HbJnt</latexit><latexit sha1_base64="zdAh9fzXwEb9G7Ifh1yDLJ7uu0s=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoXdNNoZsLFUMA9IljA7mU2GzM4sM7NCWPILFjb+gp9gI6KlpZ1f4FcIziYpNLHwwMDhnHO5c24Qc6aN6344uaXlldW1/HphY3Nre6e4u9fQMlGE1onkUrUCrClngtYNM5y2YkVxFHDaDIbnmd+8oUozKa7NKKZ+hPuChYxgk0l62K12iyW34k6AFok3I6Wzr1f5efAQ/S/eLb53epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LBY6o9tNJoTE6tkoPhVLZJwyaqD8nUhxpPYoCm4ywGeh5LxP/8tqJCU/9lIk4MVSQ6aIw4chIlF0H9ZiixPCRJZgoZv+KyAArTIy9YcFW9+aLLpJGteK5Fe/KLdXKMEUeDuEIyuDBCdTgAi6hDgQGcAv38OTcOY/Os/Myjeac2cw+/ILz9g0HbJnt</latexit><latexit sha1_base64="0zkig4Lr7o6zOr0hhU5f0H7TEEU=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXbTaBmwsVQwD0iWMDuZTYbMzi4zd4Ww5BcsbPwVGxFbSzv/xtlkC00sPDBwOOdc7twTJFIYdN0vp7SxubW9U96t7O0fHB5Vj086Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Ppde53H7g2Ilb3OEu4H9GxEqFgFHPJTIfNYbXmNtwFyDrxClKDAv+LD6ufg1HM0ogrZJIa0/fcBP2MahRM8nllkBqeUDalY963VNGIGz9bHDQnF1YZkTDW9ikkC/XnREYjY2ZRYJMRxYlZ9XLxL6+fYnjlZ0IlKXLFlovCVBKMSd4OGQnNGcqZJZRpYf9K2IRqytB2WLGne6uHrpNOs+G5De/OrbXqRWdlOINzqIMHl9CCG7iFNjCYwCM8w6vz5Lw4b877MlpyiplT+AXn4xtPz5Vs</latexit>

sk3
<latexit sha1_base64="7wuVovAwwIS01UzOFeboD8wesLI=">AAAB63icbZC7SgNBFIbPeo3xFrW0GQxCqrCrhXYGbCwjmAskS5idzCZD5rLMzAphySvYWChi64v4CHZ2vojgbJJCE38Y+Pj/c5hzTpRwZqzvf3orq2vrG5uFreL2zu7efungsGlUqgltEMWVbkfYUM4kbVhmOW0nmmIRcdqKRtd53rqn2jAl7+w4oaHAA8liRrDNLTPqnfdKZb/qT4WWIZhD+er7XX0BQL1X+uj2FUkFlZZwbEwn8BMbZlhbRjidFLupoQkmIzygHYcSC2rCbDrrBJ06p49ipd2TFk3d3x0ZFsaMReQqBbZDs5jl5n9ZJ7XxZZgxmaSWSjL7KE45sgrli6M+05RYPnaAiWZuVkSGWGNi3XmK7gjB4srL0DyrBn41uPXLtQrMVIBjOIEKBHABNbiBOjSAwBAe4AmePeE9ei/e66x0xZv3HMEfeW8/PA6RQQ==</latexit><latexit sha1_base64="s7tEPFMM7Efh4VjG57OAfltXBwM=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoVdLbQzYGOpYB6QLGF2MpsMmZldZmaFsOQXLGz8BT/BRkRLSzu/wK8QnE1SaGLhgYHDOedy59wg5kwb1/1wcguLS8sr+dXC2vrG5lZxe6euo0QRWiMRj1QzwJpyJmnNMMNpM1YUi4DTRjA4z/zGDVWaRfLaDGPqC9yTLGQEm0zSg85xp1hyK+4YaJ54U1I6+3qNPvcexP/ineJ7uxuRRFBpCMdatzw3Nn6KlWGE01GhnWgaYzLAPdqyVGJBtZ+OC43QoVW6KIyUfdKgsfpzIsVC66EIbFJg09ezXib+5bUSE576KZNxYqgkk0VhwpGJUHYd1GWKEsOHlmCimP0rIn2sMDH2hgVb3ZstOk/qRxXPrXhXbqlahgnysA8HUAYPTqAKF3AJNSDQh1u4hyfnznl0np2XSTTnTGd24Rect28JFZnu</latexit><latexit sha1_base64="s7tEPFMM7Efh4VjG57OAfltXBwM=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoVdLbQzYGOpYB6QLGF2MpsMmZldZmaFsOQXLGz8BT/BRkRLSzu/wK8QnE1SaGLhgYHDOedy59wg5kwb1/1wcguLS8sr+dXC2vrG5lZxe6euo0QRWiMRj1QzwJpyJmnNMMNpM1YUi4DTRjA4z/zGDVWaRfLaDGPqC9yTLGQEm0zSg85xp1hyK+4YaJ54U1I6+3qNPvcexP/ineJ7uxuRRFBpCMdatzw3Nn6KlWGE01GhnWgaYzLAPdqyVGJBtZ+OC43QoVW6KIyUfdKgsfpzIsVC66EIbFJg09ezXib+5bUSE576KZNxYqgkk0VhwpGJUHYd1GWKEsOHlmCimP0rIn2sMDH2hgVb3ZstOk/qRxXPrXhXbqlahgnysA8HUAYPTqAKF3AJNSDQh1u4hyfnznl0np2XSTTnTGd24Rect28JFZnu</latexit><latexit sha1_base64="8aIfAWABVEyh8UGKaQfRN0smUF4=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXa10DJgY6lgHpAsYXZyNxkyO7vMzAphyS9Y2PgrNiK2lnb+jbPJFppYeGDgcM653LknSATXxnW/nNLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBynfudB1Sax/LeTBP0IzqSPOSMmlzSk8HFoFpzG+4cZJV4BalBgf/FB9XP/jBmaYTSMEG17nluYvyMKsOZwFmln2pMKJvQEfYslTRC7Wfzg2bkzCpDEsbKPmnIXP05kdFI62kU2GREzVgve7n4l9dLTXjlZ1wmqUHJFovCVBATk7wdMuQKmRFTSyhT3P6VsDFVlBnbYcWe7i0fukra5w3PbXh3bq1ZLzorwwmcQh08uIQm3MAttIDBGB7hGV6dJ+fFeXPeF9GSU8wcwy84H99ReJVt</latexit>

pkc PKConstr(c, I)
<latexit sha1_base64="TbuD+67ymZYgpVgA39qcclghi+w=">AAACEnicbVBNixNBEK2JqxuzrkY97qXZsJDAEma86DGQi+IlgvmATAg9nZqkSU/P0F0jZof5DV78K1486C5ePXlY8N9s5+OwJj4oeLxXRVW9KFPSku//9SoPjh4+Oq4+rp08OX36rP78xcCmuRHYF6lKzSjiFpXU2CdJCkeZQZ5ECofRsrv2h5/QWJnqj7TKcJLwuZaxFJycNK23suVUhHMky0LCz0RU9N53U23JlE1xGSacFlFcvCtb03rDb/sbsEMS7EijU726vQaA3rT+J5ylIk9Qk1Dc2nHgZzQpuCEpFJa1MLeYcbHkcxw7qnmCdlJsXirZhVNmLE6NK01so96fKHhi7SqJXOf6RLvvrcX/eeOc4jeTQuosJ9RiuyjOFaOUrfNhM2lQkFo5woWR7lYmFtxwQS7Fmgsh2H/5kAxetQO/HXxwaTRhiyqcwTk0IYDX0IG30IM+CPgC3+AH/PS+et+9G+/XtrXi7WZewj/wft8B0AKgTw==</latexit><latexit sha1_base64="ocYnZCF20zPZGvzhIuZGdS+X0uw=">AAACN3icjVC7SgNBFJ31GeMramkzGIQEJOzaaCnYKDYRjQayIcxO7iZDZmeXmbtiXPINfo2FjT9gZyFY2YjY+gdOEgtfhQcGDufcy51zgkQKg6775ExMTk3PzObm8vMLi0vLhZXVMxOnmkONxzLW9YAZkEJBDQVKqCcaWBRIOA96+0P//AK0EbE6xX4CzYh1lAgFZ2ilVqGc9Frc7wAa6iNcImJWPdqPlUE9KPEtP2LYDcLscFBuFYpuxR2B/ibeJynu5a4e70+qc/8bbxUe/HbM0wgUcsmMaXhugs2MaRRcwiDvpwYSxnusAw1LFYvANLNR7gHdtEqbhrG2TyEdqV83MhYZ048COznMYX56Q/Evr5FiuNvMhEpSBMXHh8JUUozpsETaFho4yr4ljGth/0p5l2nG0Vadt9G9n0F/k7PtiudWvGNbWYmMkSPrZIOUiEd2yB45IFVSI5xckxtyR16cW+fZeXXexqMTzufOGvkG5/0D3vuofw==</latexit><latexit sha1_base64="ocYnZCF20zPZGvzhIuZGdS+X0uw=">AAACN3icjVC7SgNBFJ31GeMramkzGIQEJOzaaCnYKDYRjQayIcxO7iZDZmeXmbtiXPINfo2FjT9gZyFY2YjY+gdOEgtfhQcGDufcy51zgkQKg6775ExMTk3PzObm8vMLi0vLhZXVMxOnmkONxzLW9YAZkEJBDQVKqCcaWBRIOA96+0P//AK0EbE6xX4CzYh1lAgFZ2ilVqGc9Frc7wAa6iNcImJWPdqPlUE9KPEtP2LYDcLscFBuFYpuxR2B/ibeJynu5a4e70+qc/8bbxUe/HbM0wgUcsmMaXhugs2MaRRcwiDvpwYSxnusAw1LFYvANLNR7gHdtEqbhrG2TyEdqV83MhYZ048COznMYX56Q/Evr5FiuNvMhEpSBMXHh8JUUozpsETaFho4yr4ljGth/0p5l2nG0Vadt9G9n0F/k7PtiudWvGNbWYmMkSPrZIOUiEd2yB45IFVSI5xckxtyR16cW+fZeXXexqMTzufOGvkG5/0D3vuofw==</latexit><latexit sha1_base64="7FjCrY8kOHVuVugBwaioCrDLa2Y=">AAACN3icjVC7SgNBFJ2NrxhfUUubwSBEkLBro2UgjWKjYFTILsvs5G4yZHZ2mbkrhiXf4NdY2PgRdlY2Irb+gZOYwlfhgYHDOfdy55wok8Kg6z45pZnZufmF8mJlaXllda26vnFh0lxzaPNUpvoqYgakUNBGgRKuMg0siSRcRoPW2L+8Bm1Eqs5xmEGQsJ4SseAMrRRWd7NByP0eoKE+wg0iFqcnrVQZ1KM63/MThv0oLo5Hu2G15jbcCehv4k1JjUzxv/Gw+uh3U54noJBLZkzHczMMCqZRcAmjip8byBgfsB50LFUsARMUk9wjumOVLo1TbZ9COlG/bhQsMWaYRHZynMP89MbiX14nx/gwKITKcgTFPw/FuaSY0nGJtCs0cJRDSxjXwv6V8j7TjKOtumKjez+D/iYX+w3PbXhnbq1Zn3ZWJltkm9SJRw5IkxyRU9ImnNySO/JAXpx759l5dd4+R0vOdGeTfIPz/gFPmKVw</latexit>

Figure 1: System model with three public key servers

Definition 1. Given the ring R and a matrix A ∈ Rk×l , the
Small Integer Solution over Rings problem (Ring-SISq,n,k,l,βxy) asks

to find a non-zero vector s ∈ Rl such that ∥s∥∞ ≤ βxy and As = 0

mod q.

Definition 2. A signature scheme consists of four algorithms

SGN = (Setup,Kg,Sig,Ver) defined as follows.

– params ← SGN.Setup(1κ): Given the security parameter 1
κ
,

it sets up the systems by outputting the system parameters

params .
– (sk, pk) ← SGN.Kg(params): Given params , it outputs the
private and public key pair (sk, pk).

– σ ← SGN.Sig(m, sk): Given the messagem and the signer’s

private key sk, it outputs the signature σ .
– {0, 1} ← SGN.Ver(m,σ , pk): Given a message-signature pair

(m,σ), and the claimed signer’s public key pk, it outputs a
decision bit {0, 1}.

We define Lyubashevsky and Micciancio one-time signature

(LM-OTS) scheme [18] as follows.

Definition 3. Lyubashevsky and Micciancio one-time signature
LM-OTS = (Setup, Kg,Sig,Ver) is defined as follows.

– params ← LM-OTS.Setup(1κ): Given security parameter

κ, system setup starts by selecting the parameters q,n,k, l ,

and the ring R. It then selects A ∈ Rk×l and publishes

params = (q,n,k, l ,A) for all the users in the systems.

– (sk, pk) ← LM-OTS.Kg(params): The user selects [s1, s2] ∈
Kl×2

as their private key and compute t = As1 ∈ R, t′ =
As2 ∈ R. It sets sk ← [s1, s2] and pk ← (t, t′).

– z ← LM-OTS.Sig(sk,m): Given sk and m, the signer first

computes the signature as z← s1H1(m) + s2.
– {0, 1} ← LM-OTS.Ver(m, z, pk): Given a message-signature

pair (m, z) and the public key pk, the verifier checks if

AT z = tH1(m) + t′ holds, outputs 1, else outputs 0.

Definition 4. A protocol is called computational t-private [28] if
it is computationally hard for any subset of servers Γ where |Γ | ≤ t , to
produce/compute any information other than what could have been
computed individually from their set of private inputs.

3 MODELS
In this section, we define our system and security models.

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

3.1 System Model
Our system model is designed around heterogeneous IoT systems

where battery-powered and low-end devices, which may need to

operate for long periods of time, broadcast signed measurements

to the resourceful verifiers (e.g., a laptop). As shown in Fig. 1, there

are three type of entities in our system model: (i) The singer which

is deemed to be highly resource-limited. The signer is not expected
to store and/or communicate the public keys, it only uses its private

key to compute the signature σc , for period c . This is crucial to
enable efficient signing and meet the stringent requirements of the

low-end signer in our system model. (ii) The verifier is considered

to be a rather resourceful machine (e.g., commodity hardware) with

high bandwidth connection, capable of communicating with the

public key servers. (iii) Lastly, t distinct honest-but-curious (t = 3 in

Fig. 1) and t-private servers (Definition 4).

After the initialization step, we assume the existence of a network

that consists of a verifier and our servers. In our model, the public

key pkc is constructed in a distributed fashion. The verifier can

query for public key components pkj,c (for 1 ≤ j ≤ t) from the

distributed servers before or after receiving the signature σc from
the signer.

We call our model a signature scheme with distributed public key
computation (DPC). In addition to the algorithms defined in Defi-

nition 2, the new scheme has a public key construction algorithm

PKConstr(·) that enables the verifier to obtain the public key for

a particular signature. We will discuss different variations of our

models with different features/properties in Section 4.

Definition 5. A signature scheme with distributed public key

computation consists of four algorithms SGN-DPC =

(Kg,Sig,Ver,PKConstr) defined as follows.

– params ← SGN-DPC.Setup(1κ): Given the security param-

eter 1
κ
, it sets up the systems by outputting the system

parameters params .
– (sk, c .⟨sk1, . . . , skt ⟩) ← SGN-DPC.Kg(params): Given the pa-
rameter params , the signer computes the initial state c and
its private key sk. Using the private key sk it computes the t
private key components {sk1, . . . , skt } to be securely trans-

mitted to the servers. Note that this algorithm would only

takes place once to sign polynomial number of signatures.

– σ ← SGN-DPC.Sig(m, sk, c ′): Given amessagem, the signer’s

private key sk and the current state c ′, it outputs the signa-
ture σ = (z, c), where c is the updated state.

– pkc ← SGN-DPC.PKConstr(c, I): Given c and server indexes
I = ⟨1, . . . , t⟩, it queries the partial public key pkj,c that

corresponds to the cth signature, for each server in I and
computes the final public key pkc for state c .

– {0, 1} ← SGN-DPC.Ver(m,σ , pkc): Given amessage-signature

pair (m,σ), and the claimed signer’s public key pkc , obtained
from the above algorithm, it outputs a decision bit {0, 1}.

3.2 Security Model
Following the system model given above, we assume our t public
key servers are t-private (Definition 4). We also assume that our

servers are honest-but-curious where they follow the protocol but

strive to learn as much as possible from the information being

received, observed or shared.

In the following definition, we define the security of signature

schemes. Our only deviation of the standard EU-CMA definition

[29] is that we equip A with two additional oracles defined below.

– CrptServer(j): For 1 ≤ j ≤ t , this oracle provides A with

the secret seed associated with server j. This oracle can be

queried for up to t − 1 different servers and it is essential to

capture the t-private property of our DPC model.

– PKConstr(st , j): Given the state c , and 1 ≤ j ≤ t , this oracle
returns the partial public key pkj,c .

After the initialization phase (i.e., SGN-DPC.Setup(·) and

SGN-DPC.Kg(·)), A is given access to the signature generation ora-

cle, CrptServer(·) and PKConstr(·).
A wins, if it outputs a valid message-signature pair (that was not

previously outputted from the sign oracle) aftermaking polynomially-

bounded number of queries.

Definition 6. Existential Unforgeability under Chosen Mes-

sage Attack (EU-CMA) experiment for a signature scheme with

distributed verification ExptEU−CMA
SGN−DPC is defined as follows.

– params ← SGN-DPC.Setup(1κ)
– (sk, st) ← SGN-DPC.Kg(params)

– (m∗,σ ∗) ← ASGN-DPC.Sig(·),CrptServer(·),PKConstr(·)(·)

– If 1 ← SGN-DPC.Ver(m∗,σ ∗, pk), m∗ was not queried to

SGN-DPC.Sig(·), and CrptServer(·) has been only called on

maximum of t − 1 servers, return 1, else, return 0.

The EU-CMA advantage of A is defined as AdvEU-CMA
SGN-DPC. =

Pr[ExptEU−CMA
SGN-DPC = 1].

Forward Security. A forward secure (FS) signature scheme is a

key-evolving digital signature scheme where the operation of the

signature generation is divided into time periods, and each time

period uses a different private key to sign a message [30]. Hence,

FS signature scheme has an additional key update algorithm to

evolve the secret key at the end of each time period. In our model,

since we update the secret key after each instance of signature

generation, to reduce the complexity of our model, we incorporate

the private key update functionality in both SGN-DPC.Sig(·) and
SGN-DPC.PKConstr(·). Where in SGN-DPC.Sig(·) the update hap-
pens after every instance of signature generation algorithm and

in SGN-DPC.PKConstr(·), happens after each public key query on

distributed servers.

The security model of FS signatures is similar to the model in

Definition 6 except that the adversary is equipped with an addi-

tional oracle, BreakIn(·), which returns the current private key to

the adversary A . In the case of our scheme, if the adversary has

queried j signature queries to the signing oracle, the BreakIn(·)
oracle will return the (j + 1)-th private key to the adversary. In

addition to the winning condition in Definition 6, the secret key

corresponding to the forgery signature should have never been

outputted by BreakIn(·) (i.e., to prevent trivial forgery).

4 PROPOSED SCHEME
Themain requirement for our proposed scheme is to ensure commu-

nication, computation and storage efficiency for the signer, while

maintaining a reasonable overhead for the verifiers with a dis-

tributed public key computation. We assume that the verifiers are

resourceful, as it is typically the case for many IoT applications

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things Conference’21, June 2021, ,

(e.g., resourceful servers collect the data and verify it). Our design

objectives are as follows: (i) An efficient signing algorithm that

avoids costly operations (e.g., rejection sampling) and only requires

efficient symmetric key based operations and efficient arithmetics.

(ii) Avoiding online/offline methods that require the signer’s in-

tervention after a certain time period (e.g., singing T signatures).

(iii) The signer should not store precomputed tokens (e.g., unlike

online/offline signatures, optimization tables) for efficient memory

usage. (iv) The signature should be small-constant size.

We achieve the above properties by efficiently transforming an

efficient one-time signature [18] to a polynomially-bounded many

time signature. This is done by shifting the public key generation

and communication to a set of t public key construction servers

where the verifier would communicate with before attempting to

verify a signature. We emphasis that, after offline initialization

phase, the signer never interacts with the public key servers, and

operates as in traditional signature schemes. This is a key design

property for ANT to achieve near-optimal signer efficiency.

4.1 The Basic Scheme
In this section, we describe our basic scheme ANT, followed by its

forward security version ANT-FS and variations to allow for more

efficient public key certification methods. and Samp
1
: {0, 1}∗ →

K ′l and Samp
2
: {0, 1}∗ → K ′l . The distribution ofK ′ is computed

based on the number of public key servers and K .

We propose a distributed post-quantum signature scheme with

efficient signature generation for low-end devices. We present our

basic scheme ANT in Algorithm 1. As depicted in Algorithm 1, in

the ANT.Kg(·) algorithm, the signer will generate t private key

components (sk1, . . . , skt) and sends them to the t servers. Note
that the servers could also be preloaded with these secret keys,

upon the production of the low-end device.

The signature generation of the one-time scheme [18], presented

in Definition 3, requires the signer to generate a new public key

for each signature. This significantly increases signer computation

and transmission overhead (signature plus public key per message),

and likely inhibits its practice uses for low-end IoT systems. We

address this significant limitation by leveraging the additive ho-

momorphism of the keys in [18] to shift the public key generation

burden to the distributed servers in our model. Therefore, the sig-

nature generation algorithm ANT.Sig(·) is highly efficient and does

not require any involvement of the server and is completely non-

interactive. The verifier can initiate the ANT.PKConstr(·) algorithm
to obtain the public key pkc for the time period c by interacting

with the t servers. Note that the verifier can initiate this algorithm

at any time (e.g., before the time period c).
After obtaining the public key pkc , the verifier initiates ANT.Ver(·),

which is again non-interactive, to verify the signature.

4.2 The Forward Security Scheme
Forward secure signatures are designed to improve the breach re-

siliency of cyber infrastructures by mitigating the consequences of

attacks where private keys (signing keys) are compromised. The

main idea is therefore to update the private key(s) after each signa-

ture generation/public key query such that the new key cannot be

used to sign for past time periods.

Algorithm 1 ANT: Basic Scheme

(params) ← ANT.Setup(1κ): Given 1
κ
, generate the parame-

ters based on LM-OTS.Setup(1κ).
1: return params = (q,n,k, l , βxy, βver, βc,A ∈ Rk×lq)

(sk, c .⟨sk1, . . . , skt ⟩) ← ANT.Kg(params): Given 1
κ
, generate

the signer’s private key and the private seeds for the t servers.

1: sk
$

← {0, 1}κ

2: Set state c = 0

3: for j ∈ I where I = {1, . . . , t} do
4: skj ← PRF1(sk, j)

5: Send the private key components {sk1, . . . skt } to the t servers
6: return (sk, c)

σ ← ANT.Sig(m, sk, c): Run by the singer to issue a signature

onm.

1: c ← c + 1
2: for j = 1, . . . , t do
3: skj ← PRF1(sk, j)
4: xj,c ← Samp

1
(skj , c), yj,c ← Samp

2
(skj , c)

5: xc ← xc + xj,c , yc ← yc + yj,c
6: z← xcH1(m, c) + yc
7: return σ = (c, z)

pkc ← ANT.PKConstr(c, I): This algorithm is initiated by the

verifier. Given c and j ∈ I each server returns (tc, j , t′c, j) and
the verifier computes the full public key pkc .

1: At server j do:
2: xj,c ← Samp

1
(skj , c), yj,c ← Samp

2
(skj , c)

3: tj,c ← xj,cA, t′j,c ← yj,cA
4: Send pkj,c ← (tj,c , t′j,c) to the verifier

5: Verifier computes tc ← tc + tj,c , t′c ← t′c + t′j,c
6: return pkc = (tc , t′c)

{0, 1} ← ANT.Ver(m,σ ,pkc): Given pkc obtained from the

above algorithm, the verifier verifies the signature as follows.

1: if ∥z∥∞ ≤ βver then:
2: Parse pkc as (tc , t′c)
3: if Az = tcH1(m, c) + t′c holds, then return 1

4: else return 0

In this section, we present a forward secure variation of ANT, called
ANT-FS, in Algorithm 2. The initial seed is generated as a κ bit

string sk. sk is then used to generate server seeds skj,c (Step 4 in

ANT-FS.Kg(·)) and then deleted immediately (Step 5 in ANT-FS.Kg(·)).
ANT-FS achieves forward security by using a hash chain on the

server’s seeds on the signer’s side during signature generation and

evolving the seeds on the server’s sides using a new public key con-

struction algorithm ANT-FS.PKConstr(·). Additionally, ANT-FS en-

joys from a fast singing since it does not require the regenerating of

the server seeds via PRF calls. However, this comes with the cost of

having a linear (to the number of servers) private key size. Note that

the verification algorithm for ANT-FS is identical as in the original

scheme in Algorithm 1.

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

Signer Verifier

� Sig(m, sk, c)
<latexit sha1_base64="RAWROWcIK9rqLK6KUo7fbYie44Y=">AAACCHicbVDLSgNBEJyNrxhfUY8eXAxClBB2RdBjwIvHiOYB2RBmJ53NkJndZaZXDEuOXvwVLx4U8eonePNvnDwOmljQUFR1093lx4JrdJxvK7O0vLK6ll3PbWxube/kd/fqOkoUgxqLRKSaPtUgeAg15CigGSug0hfQ8AdXY79xD0rzKLzDYQxtSYOQ9zijaKRO/tDTPJDUCwC1h/CAiOktD0ZFWdKDEjvp5AtO2ZnAXiTujBTIDNVO/svrRiyRECITVOuW68TYTqlCzgSMcl6iIaZsQANoGRpSCbqdTh4Z2cdG6dq9SJkK0Z6ovydSKrUeSt90Sop9Pe+Nxf+8VoK9y3bKwzhBCNl0US8RNkb2OBW7yxUwFENDKFPc3GqzPlWUockuZ0Jw519eJPWzsuuU3ZvzQuV0FkeWHJAjUiQuuSAVck2qpEYYeSTP5JW8WU/Wi/VufUxbM9ZsZp/8gfX5A9nUmcA=</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit><latexit sha1_base64="BLd59+xmtwXoEIjaCjdOhcCr2tI=">AAACLXicjVC7SgNBFJ2NrxhfUUsLF4MQJYRdEbQM2FgqmgdkQ5id3GyGzOwuM3fFsKT0ayxs/BLBQhFbf8PJo9DEwgMDh3PO5c49fiy4Rsd5szILi0vLK9nV3Nr6xuZWfnunpqNEMaiySESq4VMNgodQRY4CGrECKn0Bdb9/MfLrd6A0j8JbHMTQkjQIeZczikZq5/c9zQNJvQBQewj3iJje8GBYlCXdL7Gjdr7glJ0x7HniTkmBTPG/eDv/4nUilkgIkQmqddN1YmylVCFnAoY5L9EQU9anATQNDakE3UrH1w7tQ6N07G6kzAvRHqs/J1IqtR5I3yQlxZ6e9UbiX14zwe55K+VhnCCEbLKomwgbI3tUnd3hChiKgSGUKW7+arMeVZShKThnTndnD50ntZOy65Td69NC5XjaWZbskQNSJC45IxVySa5IlTDyQB7JM3m3nqxX68P6nEQz1nRml/yC9fUN8tuhOQ==</latexit>

� = (z, c)
<latexit sha1_base64="MFN1sHFt0Kw2hGFGMaFxShZnkgE=">AAAB/3icbVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGZQX7gCaUyXTSDs4kYWYi1NiFv+LGhSJu/Q13/o3TNgttPTBwOOde7pkTJJwp7TjfVmFhcWl5pbhaWlvf2Nyyt3eaKk4loQ0S81i2A6woZxFtaKY5bSeSYhFw2grursZ+655KxeLoVg8T6gvcj1jICNZG6tp7nmJ9gdFlxRNYD4IwexidkKOuXXaqzgRonrg5KUOOetf+8noxSQWNNOFYqY7rJNrPsNSMcDoqeamiCSZ3uE87hkZYUOVnk/wjdGiUHgpjaV6k0UT9vZFhodRQBGZyHFLNemPxP6+T6vDCz1iUpJpGZHooTDnSMRqXgXpMUqL50BBMJDNZERlgiYk2lZVMCe7sl+dJ87TqOlX35qxcO87rKMI+HEAFXDiHGlxDHRpA4BGe4RXerCfrxXq3PqajBSvf2YU/sD5/AP1clVk=</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit><latexit sha1_base64="JyJ/D+bvvDwAQGfDsGDDIxA7d2w=">AAACJHicjVDLSsNAFL2pr1pfUcGNm8EiVJGSiKAboeDGpYJ9QBPKZDpph84kYWYi1NifceHGX3Gj4sKN3+K0zUKrCw8MHM65lzvnBAlnSjvOh1WYm19YXCoul1ZW19Y37M2thopTSWidxDyWrQAryllE65ppTluJpFgEnDaDwcXYb95SqVgc3ehhQn2BexELGcHaSB17x1OsJzA6r3gC634QZnejI3LQsctO1ZkA/SZuTsqQ43/jHfvV68YkFTTShGOl2q6TaD/DUjPC6ajkpYommAxwj7YNjbCgys8mIUdo3yhdFMbSvEijifp9I8NCqaEIzOQ4iZr1xuJfXjvV4ZmfsShJNY3I9FCYcqRjNG4MdZmkRPOhIZhIZv6KSB9LTLTptWSiu7NBf5PGcdV1qu71Sbl2mHdWhF3Ygwq4cAo1uIQrqAOBe3iAJ3ixHq1n6816n44WrHxnG37A+vwCfzWc0g==</latexit>

sk
<latexit sha1_base64="02td//HnNVnhy4WgwxqWh49NSwY=">AAAB6XicbZC7SgNBFIbPeo3xFrW0GQxCqrBro50BG8sYzAWSJcxOzibDzs4uM7NCWPIGNhaK2Npb+xx2vo2TS6GJPwx8/P85zDknSAXXxnW/nbX1jc2t7cJOcXdv/+CwdHTc0kmmGDZZIhLVCahGwSU2DTcCO6lCGgcC20F0M83bD6g0T+S9Gafox3QoecgZNdZq6KhfKrtVdyayCt4Cytcfnw2wqvdLX71BwrIYpWGCat313NT4OVWGM4GTYi/TmFIW0SF2LUoao/bz2aQTcm6dAQkTZZ80ZOb+7shprPU4DmxlTM1IL2dT87+sm5nwys+5TDODks0/CjNBTEKma5MBV8iMGFugTHE7K2Ejqigz9jhFewRveeVVaF1UPbfq3bnlWgXmKsApnEEFPLiEGtxCHZrAIIRHeIYXJ3KenFfnbV665ix6TuCPnPcfRgKPRQ==</latexit><latexit sha1_base64="MOxoTc5ADj5gfDM3dSbeyzXyR84=">AAACDnicjVC7SgNBFL0bXzG+opaCDAYhVZi10c6AjaUR84BkCbOT2WTI7OwyMyuEJaWdhY2/YSkBEVtrO7/Bn3DyKDSx8MDA4ZxzuXOuHwuuDcafTmZpeWV1Lbue29jc2t7J7+7VdJQoyqo0EpFq+EQzwSWrGm4Ea8SKkdAXrO73L8Z+/ZYpzSN5YwYx80LSlTzglBgrXet+O1/AJTwBWiTujBTOn0aVr7vD0f/i7fxHqxPRJGTSUEG0bro4Nl5KlOFUsGGulWgWE9onXda0VJKQaS+d1BmiY6t0UBAp+6RBE/XnREpCrQehb5MhMT09743Fv7xmYoIzL+UyTgyTdLooSAQyERrfBnW4YtSIgSWEKm7/imiPKEKNvWDOVnfniy6S2knJxSW3ggvlIkyRhQM4giK4cApluIQrqAKFAO7hEV6cB+fZeXXeptGMM5vZh19w3r8BYliZAw==</latexit><latexit sha1_base64="MOxoTc5ADj5gfDM3dSbeyzXyR84=">AAACDnicjVC7SgNBFL0bXzG+opaCDAYhVZi10c6AjaUR84BkCbOT2WTI7OwyMyuEJaWdhY2/YSkBEVtrO7/Bn3DyKDSx8MDA4ZxzuXOuHwuuDcafTmZpeWV1Lbue29jc2t7J7+7VdJQoyqo0EpFq+EQzwSWrGm4Ea8SKkdAXrO73L8Z+/ZYpzSN5YwYx80LSlTzglBgrXet+O1/AJTwBWiTujBTOn0aVr7vD0f/i7fxHqxPRJGTSUEG0bro4Nl5KlOFUsGGulWgWE9onXda0VJKQaS+d1BmiY6t0UBAp+6RBE/XnREpCrQehb5MhMT09743Fv7xmYoIzL+UyTgyTdLooSAQyERrfBnW4YtSIgSWEKm7/imiPKEKNvWDOVnfniy6S2knJxSW3ggvlIkyRhQM4giK4cApluIQrqAKFAO7hEV6cB+fZeXXeptGMM5vZh19w3r8BYliZAw==</latexit><latexit sha1_base64="kvLUQVSr+HzS6MA6VFtjfBNV79g=">AAACDnicjVC7SgNBFL0bXzG+Vi1tBoOQKuzaaBmwsVQxD0iWMDuZTYbMzi4zd4Ww5A8sbPwVGxFbazv/xkmyhSYWHhg4nHMud+4JUykMet6XU1pb39jcKm9Xdnb39g/cw6OWSTLNeJMlMtGdkBouheJNFCh5J9WcxqHk7XB8NfPbD1wbkah7nKQ8iOlQiUgwila6M+O+W/Xq3hxklfgFqUKB/8X77mdvkLAs5gqZpMZ0fS/FIKcaBZN8WullhqeUjemQdy1VNOYmyOfnTMmZVQYkSrR9Cslc/TmR09iYSRzaZExxZJa9mfiX180wugxyodIMuWKLRVEmCSZk1g0ZCM0ZyokllGlh/0rYiGrK0DZYsaf7y4euktZ53ffq/q1XbdSKzspwAqdQAx8uoAHXcANNYBDBIzzDq/PkvDhvzvsiWnKKmWP4BefjGxLUlMc=</latexit>

{0, 1} Ver(m,�, pkc,Authc)
<latexit sha1_base64="RwGVbAIfZ+QaxXiQN5qObnYhirM=">AAACIXicbVBNSyNBEK3xY41ZXbPu0UujLEQIYcaLHl324lHBRCEThp5OTdKke2borhHjMH9lL/tH9uDFgyIeFsQ/Yyfx4NeDgsd7VVTVi3MlLfn+o7ewuLT8ZaW2Wv+6tv5to/F9s2uzwgjsiExl5jzmFpVMsUOSFJ7nBrmOFZ7F499T/+wCjZVZekqTHPuaD1OZSMHJSVHjICz9VhBW4RDJspDwkojKLpqqqVuhlUPNW/k4Eq1QcxrZpPxV0KiKxG7U2PHb/gzsIwleyM5h7er/PwA4jhoP4SAThcaUhOLW9gI/p37JDUmhsKqHhcWcizEfYs/RlGu0/XL2YcV+OmXAksy4SonN1NcTJdfWTnTsOmd3vvem4mder6DkoF/KNC8IUzFflBSKUcamcbGBNChITRzhwkh3KxMjbrggF2rdhRC8f/kj6e61A78dnLg0mjBHDbZgG5oQwD4cwhEcQwcE/IFruIU776934917D/PWBe9l5ge8gff0DPGDpiY=</latexit><latexit sha1_base64="bvxRPa75OLFDXYdDoLK+CCPwj80=">AAACRnicjVBNa9tAFHxym8R2Puq2x1yWhoADxki51MeEXHpMSW0HLCNW6yd78a4kdp9CHKG/0l/TQ6H00kMhf6KXUnrN2s4hHz10YGGYmcfbN3GupCXfv/VqL15ubG7VG83tnd29V63XbwY2K4zAvshUZi5jblHJFPskSeFlbpDrWOEwnp8t/eEVGiuz9BMtchxrPk1lIgUnJ0WtXlj6nSCswimSZSHhNRGVAzRVW3dCK6ead/J5JDqh5jSzSXla0KyKxFHUOvC7/grsOQnuycFJ/ebnt4vzxv/Fo9aPcJKJQmNKQnFrR4Gf07jkhqRQWDXDwmLOxZxPceRoyjXacbmqoWKHTpmwJDPupcRW6sOJkmtrFzp2ydUxT72l+C9vVFDSG5cyzQvCVKwXJYVilLFlp2wiDQpSC0e4MNL9lYkZN1yQa77pTg+eHvqcDI67gd8NPrrK2rBGHfbhHbQhgPdwAh/gHPog4DN8ge/w2/vq/fL+eH/X0Zp3P/MWHqEGd8QdrVc=</latexit><latexit sha1_base64="bvxRPa75OLFDXYdDoLK+CCPwj80=">AAACRnicjVBNa9tAFHxym8R2Puq2x1yWhoADxki51MeEXHpMSW0HLCNW6yd78a4kdp9CHKG/0l/TQ6H00kMhf6KXUnrN2s4hHz10YGGYmcfbN3GupCXfv/VqL15ubG7VG83tnd29V63XbwY2K4zAvshUZi5jblHJFPskSeFlbpDrWOEwnp8t/eEVGiuz9BMtchxrPk1lIgUnJ0WtXlj6nSCswimSZSHhNRGVAzRVW3dCK6ead/J5JDqh5jSzSXla0KyKxFHUOvC7/grsOQnuycFJ/ebnt4vzxv/Fo9aPcJKJQmNKQnFrR4Gf07jkhqRQWDXDwmLOxZxPceRoyjXacbmqoWKHTpmwJDPupcRW6sOJkmtrFzp2ydUxT72l+C9vVFDSG5cyzQvCVKwXJYVilLFlp2wiDQpSC0e4MNL9lYkZN1yQa77pTg+eHvqcDI67gd8NPrrK2rBGHfbhHbQhgPdwAh/gHPog4DN8ge/w2/vq/fL+eH/X0Zp3P/MWHqEGd8QdrVc=</latexit><latexit sha1_base64="EdSp+WD4hVdZ+8iEpXsknS231uo=">AAACRnicjVDLattAFL1yX6mTNkq77GaoCThgjJRNvEzJpssU4gdYQozGV/bgGUnMXJUaoV/p13TRTTfd5Se6KSXbjh+LNs4iBwYO55zLnXvSUklLQXDrtZ48ffb8xcHL9uHRq9fH/smbkS0qI3AoClWYScotKpnjkCQpnJQGuU4VjtPl1doff0ZjZZHf0KrEWPN5LjMpODkp8QdRHfTCqInmSJZFhF+IqB6habq6F1k517xXLhPRizSnhc3qDxUtmkScJX4n6AcbsH0S7kgHdnhcPPF/RrNCVBpzEopbOw2DkuKaG5JCYdOOKoslF0s+x6mjOddo43pTQ8NOnTJjWWHcy4lt1H8naq6tXenUJTfH3PfW4kPetKJsENcyLyvCXGwXZZViVLB1p2wmDQpSK0e4MNL9lYkFN1yQa77tTg/vH7pPRuf9MOiHn4LOZXfX2QG8g/fQhRAu4BI+wjUMQcBX+AY/4Lf33fvl/fHuttGWt5t5C/+hBX8BNLqqSA==</latexit>

S2 S3S1

sk1
<latexit sha1_base64="On8yH63z6R2CFC+uVRxOOsDjT5A=">AAAB63icbZC7SgNBFIbPxluMt6ilzWAQUoVdG+0M2FhGMBdIljA7mU2GzGWZmRXCklewsVDE1hfxEezsfBHB2SSFJv4w8PH/5zDnnCjhzFjf//QKa+sbm1vF7dLO7t7+QfnwqGVUqgltEsWV7kTYUM4kbVpmOe0kmmIRcdqOxtd53r6n2jAl7+wkoaHAQ8liRrDNLTPuB/1yxa/5M6FVCBZQufp+V18A0OiXP3oDRVJBpSUcG9MN/MSGGdaWEU6npV5qaILJGA9p16HEgpowm806RWfOGaBYafekRTP3d0eGhTETEblKge3ILGe5+V/WTW18GWZMJqmlksw/ilOOrEL54mjANCWWTxxgopmbFZER1phYd56SO0KwvPIqtM5rgV8Lbv1KvQpzFeEETqEKAVxAHW6gAU0gMIIHeIJnT3iP3ov3Oi8teIueY/gj7+0HOQaRPw==</latexit><latexit sha1_base64="ldYCq0dCcTfyH+OYeX0YJx2nRuQ=">AAACEHicjVC7SgNBFL3rM8ZX1EawGQxCqrBro50BG0sF84AkhNnJbDJkHsvMrBCW/IKFjb/gJ9iIaGlp5xf4FYKzSQpNLDwwcDjnXO6cG8acGev7H97C4tLyympuLb++sbm1XdjZrRmVaEKrRHGlGyE2lDNJq5ZZThuxpliEnNbDwXnm12+oNkzJazuMaVvgnmQRI9hmkhl0gk6h6Jf9MdA8CaakePb1qj73H8T/4p3Ce6urSCKotIRjY5qBH9t2irVlhNNRvpUYGmMywD3adFRiQU07HRcaoSOndFGktHvSorH6cyLFwpihCF1SYNs3s14m/uU1ExudtlMm48RSSSaLooQjq1B2HdRlmhLLh45gopn7KyJ9rDGx7oZ5Vz2YLTpPasflwC8HV36xUoIJcnAAh1CCAE6gAhdwCVUg0IdbuIcn78579J69l0l0wZvO7MEveG/fBcOZ7A==</latexit><latexit sha1_base64="ldYCq0dCcTfyH+OYeX0YJx2nRuQ=">AAACEHicjVC7SgNBFL3rM8ZX1EawGQxCqrBro50BG0sF84AkhNnJbDJkHsvMrBCW/IKFjb/gJ9iIaGlp5xf4FYKzSQpNLDwwcDjnXO6cG8acGev7H97C4tLyympuLb++sbm1XdjZrRmVaEKrRHGlGyE2lDNJq5ZZThuxpliEnNbDwXnm12+oNkzJazuMaVvgnmQRI9hmkhl0gk6h6Jf9MdA8CaakePb1qj73H8T/4p3Ce6urSCKotIRjY5qBH9t2irVlhNNRvpUYGmMywD3adFRiQU07HRcaoSOndFGktHvSorH6cyLFwpihCF1SYNs3s14m/uU1ExudtlMm48RSSSaLooQjq1B2HdRlmhLLh45gopn7KyJ9rDGx7oZ5Vz2YLTpPasflwC8HV36xUoIJcnAAh1CCAE6gAhdwCVUg0IdbuIcn78579J69l0l0wZvO7MEveG/fBcOZ7A==</latexit><latexit sha1_base64="9lK3jghpVIuorsSWkEC26RNKaQ8=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXZtTBmwsVQwD0iWMDu5mwyZnV1mZoWw5BcsbPwVGxFbSzv/xtlkC00sPDBwOOdc7twTJIJr47pfTmljc2t7p7xb2ds/ODyqHp90dJwqhm0Wi1j1AqpRcIltw43AXqKQRoHAbjC9zv3uAyrNY3lvZgn6ER1LHnJGTS7p6dAbVmtuw12ArBOvIDUo8L/4sPo5GMUsjVAaJqjWfc9NjJ9RZTgTOK8MUo0JZVM6xr6lkkao/Wxx0JxcWGVEwljZJw1ZqD8nMhppPYsCm4yomehVLxf/8vqpCZt+xmWSGpRsuShMBTExydshI66QGTGzhDLF7V8Jm1BFmbEdVuzp3uqh66Rz2fDchnfn1lr1orMynME51MGDK2jBDdxCGxhM4BGe4dV5cl6cN+d9GS05xcwp/ILz8Q1OJpVr</latexit>sk2

<latexit sha1_base64="smSg3WegxIEa/VFUqr9LRmwFPJc=">AAAB63icbZC7SgNBFIbPxluMt6ilzWAQUoXdNNoZsLGMYC4QlzA7mU2GzGWZmRXCklewsVDE1hfxEezsfBHB2SSFJv4w8PH/5zDnnCjhzFjf//QKa+sbm1vF7dLO7t7+QfnwqG1UqgltEcWV7kbYUM4kbVlmOe0mmmIRcdqJxld53rmn2jAlb+0koaHAQ8liRrDNLTPu1/vlil/zZ0KrECygcvn9rr4AoNkvf9wNFEkFlZZwbEwv8BMbZlhbRjidlu5SQxNMxnhIew4lFtSE2WzWKTpzzgDFSrsnLZq5vzsyLIyZiMhVCmxHZjnLzf+yXmrjizBjMkktlWT+UZxyZBXKF0cDpimxfOIAE83crIiMsMbEuvOU3BGC5ZVXoV2vBX4tuPErjSrMVYQTOIUqBHAODbiGJrSAwAge4AmePeE9ei/e67y04C16juGPvLcfOoqRQA==</latexit><latexit sha1_base64="zdAh9fzXwEb9G7Ifh1yDLJ7uu0s=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoXdNNoZsLFUMA9IljA7mU2GzM4sM7NCWPILFjb+gp9gI6KlpZ1f4FcIziYpNLHwwMDhnHO5c24Qc6aN6344uaXlldW1/HphY3Nre6e4u9fQMlGE1onkUrUCrClngtYNM5y2YkVxFHDaDIbnmd+8oUozKa7NKKZ+hPuChYxgk0l62K12iyW34k6AFok3I6Wzr1f5efAQ/S/eLb53epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LBY6o9tNJoTE6tkoPhVLZJwyaqD8nUhxpPYoCm4ywGeh5LxP/8tqJCU/9lIk4MVSQ6aIw4chIlF0H9ZiixPCRJZgoZv+KyAArTIy9YcFW9+aLLpJGteK5Fe/KLdXKMEUeDuEIyuDBCdTgAi6hDgQGcAv38OTcOY/Os/Myjeac2cw+/ILz9g0HbJnt</latexit><latexit sha1_base64="zdAh9fzXwEb9G7Ifh1yDLJ7uu0s=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoXdNNoZsLFUMA9IljA7mU2GzM4sM7NCWPILFjb+gp9gI6KlpZ1f4FcIziYpNLHwwMDhnHO5c24Qc6aN6344uaXlldW1/HphY3Nre6e4u9fQMlGE1onkUrUCrClngtYNM5y2YkVxFHDaDIbnmd+8oUozKa7NKKZ+hPuChYxgk0l62K12iyW34k6AFok3I6Wzr1f5efAQ/S/eLb53epIkERWGcKx123Nj46dYGUY4HRc6iaYxJkPcp21LBY6o9tNJoTE6tkoPhVLZJwyaqD8nUhxpPYoCm4ywGeh5LxP/8tqJCU/9lIk4MVSQ6aIw4chIlF0H9ZiixPCRJZgoZv+KyAArTIy9YcFW9+aLLpJGteK5Fe/KLdXKMEUeDuEIyuDBCdTgAi6hDgQGcAv38OTcOY/Os/Myjeac2cw+/ILz9g0HbJnt</latexit><latexit sha1_base64="0zkig4Lr7o6zOr0hhU5f0H7TEEU=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXbTaBmwsVQwD0iWMDuZTYbMzi4zd4Ww5BcsbPwVGxFbSzv/xtlkC00sPDBwOOdc7twTJFIYdN0vp7SxubW9U96t7O0fHB5Vj086Jk41420Wy1j3Amq4FIq3UaDkvURzGgWSd4Ppde53H7g2Ilb3OEu4H9GxEqFgFHPJTIfNYbXmNtwFyDrxClKDAv+LD6ufg1HM0ogrZJIa0/fcBP2MahRM8nllkBqeUDalY963VNGIGz9bHDQnF1YZkTDW9ikkC/XnREYjY2ZRYJMRxYlZ9XLxL6+fYnjlZ0IlKXLFlovCVBKMSd4OGQnNGcqZJZRpYf9K2IRqytB2WLGne6uHrpNOs+G5De/OrbXqRWdlOINzqIMHl9CCG7iFNjCYwCM8w6vz5Lw4b877MlpyiplT+AXn4xtPz5Vs</latexit>

sk3
<latexit sha1_base64="7wuVovAwwIS01UzOFeboD8wesLI=">AAAB63icbZC7SgNBFIbPeo3xFrW0GQxCqrCrhXYGbCwjmAskS5idzCZD5rLMzAphySvYWChi64v4CHZ2vojgbJJCE38Y+Pj/c5hzTpRwZqzvf3orq2vrG5uFreL2zu7efungsGlUqgltEMWVbkfYUM4kbVhmOW0nmmIRcdqKRtd53rqn2jAl7+w4oaHAA8liRrDNLTPqnfdKZb/qT4WWIZhD+er7XX0BQL1X+uj2FUkFlZZwbEwn8BMbZlhbRjidFLupoQkmIzygHYcSC2rCbDrrBJ06p49ipd2TFk3d3x0ZFsaMReQqBbZDs5jl5n9ZJ7XxZZgxmaSWSjL7KE45sgrli6M+05RYPnaAiWZuVkSGWGNi3XmK7gjB4srL0DyrBn41uPXLtQrMVIBjOIEKBHABNbiBOjSAwBAe4AmePeE9ei/e66x0xZv3HMEfeW8/PA6RQQ==</latexit><latexit sha1_base64="s7tEPFMM7Efh4VjG57OAfltXBwM=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoVdLbQzYGOpYB6QLGF2MpsMmZldZmaFsOQXLGz8BT/BRkRLSzu/wK8QnE1SaGLhgYHDOedy59wg5kwb1/1wcguLS8sr+dXC2vrG5lZxe6euo0QRWiMRj1QzwJpyJmnNMMNpM1YUi4DTRjA4z/zGDVWaRfLaDGPqC9yTLGQEm0zSg85xp1hyK+4YaJ54U1I6+3qNPvcexP/ineJ7uxuRRFBpCMdatzw3Nn6KlWGE01GhnWgaYzLAPdqyVGJBtZ+OC43QoVW6KIyUfdKgsfpzIsVC66EIbFJg09ezXib+5bUSE576KZNxYqgkk0VhwpGJUHYd1GWKEsOHlmCimP0rIn2sMDH2hgVb3ZstOk/qRxXPrXhXbqlahgnysA8HUAYPTqAKF3AJNSDQh1u4hyfnznl0np2XSTTnTGd24Rect28JFZnu</latexit><latexit sha1_base64="s7tEPFMM7Efh4VjG57OAfltXBwM=">AAACEHicjVC7SgNBFL0bXzG+ojaCzWAQUoVdLbQzYGOpYB6QLGF2MpsMmZldZmaFsOQXLGz8BT/BRkRLSzu/wK8QnE1SaGLhgYHDOedy59wg5kwb1/1wcguLS8sr+dXC2vrG5lZxe6euo0QRWiMRj1QzwJpyJmnNMMNpM1YUi4DTRjA4z/zGDVWaRfLaDGPqC9yTLGQEm0zSg85xp1hyK+4YaJ54U1I6+3qNPvcexP/ineJ7uxuRRFBpCMdatzw3Nn6KlWGE01GhnWgaYzLAPdqyVGJBtZ+OC43QoVW6KIyUfdKgsfpzIsVC66EIbFJg09ezXib+5bUSE576KZNxYqgkk0VhwpGJUHYd1GWKEsOHlmCimP0rIn2sMDH2hgVb3ZstOk/qRxXPrXhXbqlahgnysA8HUAYPTqAKF3AJNSDQh1u4hyfnznl0np2XSTTnTGd24Rect28JFZnu</latexit><latexit sha1_base64="8aIfAWABVEyh8UGKaQfRN0smUF4=">AAACEHicjVC7SgNBFL0bXzG+opY2g0FIFXa10DJgY6lgHpAsYXZyNxkyO7vMzAphyS9Y2PgrNiK2lnb+jbPJFppYeGDgcM653LknSATXxnW/nNLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWBynfudB1Sax/LeTBP0IzqSPOSMmlzSk8HFoFpzG+4cZJV4BalBgf/FB9XP/jBmaYTSMEG17nluYvyMKsOZwFmln2pMKJvQEfYslTRC7Wfzg2bkzCpDEsbKPmnIXP05kdFI62kU2GREzVgve7n4l9dLTXjlZ1wmqUHJFovCVBATk7wdMuQKmRFTSyhT3P6VsDFVlBnbYcWe7i0fukra5w3PbXh3bq1ZLzorwwmcQh08uIQm3MAttIDBGB7hGV6dJ+fFeXPeF9GSU8wcwy84H99ReJVt</latexit>

p
k
1
,0 ,...,p

k
1
,2

�
<latexit sha1_base64="p2DwYXe4wIX/yC3EcrtRR6i8YRg=">AAACB3icbVC7TsMwFL0pr9LyCDAioYgKqUNVJV1grGBhLBJ9SG2IHNdprdpJZDtIVZSNhV9hYQAhVn6Bjd/gC3CbDtByJEvH59x77Xv8mFGpbPvLKKytb2xuFbdL5Z3dvX3z4LAjo0Rg0sYRi0TPR5IwGpK2ooqRXiwI4j4jXX9yNfO790RIGoW3ahoTl6NRSAOKkdKSZ57EEy91anZWGwwjJWv5tXE3GCHOUeaZFbtuz2GtEmdBKs3y9yVotDzzU8/BCSehwgxJ2XfsWLkpEopiRrLSIJEkRniCRqSvaYg4kW463yOzzrQytIJI6BMqa67+7kgRl3LKfV3JkRrLZW8m/uf1ExVcuCkN40SREOcPBQmzVGTNQrGGVBCs2FQThAXVf7XwGAmElY6upENwlldeJZ1G3bHrzo1Oowo5inAMp1AFB86hCdfQgjZgeIAneIFX49F4Nt6M97y0YCx6juAPjI8fm7KZ4w==</latexit><latexit sha1_base64="JXTkZ6m3Lc4+XGsMSRFGvlP01wQ=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+4lactNLthVpVsrZ22x0gzlHq2yWn6swKLgN3Dkr14ud5rvjw9T+7b7+YZTjmRGjMkFId14m0lyCpKWYkLXRjRSKER2hAOgYKxInyklnYFJ4Ypgf7oTRPaDhjf04kiCs15oFxcqSHalGbkn9pnVj3z7yEiijWROBsUT9mUIdwejnYo5JgzcYGICyp+SvEQyQR1ua+BRPdXQy6DJq1qutU3WtzsjLIKg8OwTEoAxecgjq4BFegATC4B4/gGUysJ+vVerPeM+uKNZ85AL/K+vgGGjui9g==</latexit><latexit sha1_base64="JXTkZ6m3Lc4+XGsMSRFGvlP01wQ=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+4lactNLthVpVsrZ22x0gzlHq2yWn6swKLgN3Dkr14ud5rvjw9T+7b7+YZTjmRGjMkFId14m0lyCpKWYkLXRjRSKER2hAOgYKxInyklnYFJ4Ypgf7oTRPaDhjf04kiCs15oFxcqSHalGbkn9pnVj3z7yEiijWROBsUT9mUIdwejnYo5JgzcYGICyp+SvEQyQR1ua+BRPdXQy6DJq1qutU3WtzsjLIKg8OwTEoAxecgjq4BFegATC4B4/gGUysJ+vVerPeM+uKNZ85AL/K+vgGGjui9g==</latexit><latexit sha1_base64="s2uNc/y1o1/wccWT/z9Qs3xsAPo=">AAACLHicjVDLSgMxFM34rPU16lKQYBG6KCXTjS4Lblwq2Ae045BJM21okhmSjFCG2fk1Ltz4J+KmiFu/w7SdhbYuvBA495xzuTk3TDjTBqGps7a+sbm1Xdop7+7tHxy6R8dtHaeK0BaJeay6IdaUM0lbhhlOu4miWIScdsLx9UzvPFKlWSzvzSShvsBDySJGsLFU4J4l4yDzaiiv9Qex0bVF23joD7EQOA/cCqqjecFV4BWgAor6nz1w3+wykgoqDeFY656HEuNnWBlGOM3L/VTTBJMxHtKehRILqv1sHjaHF5YZwChW9kkD5+zPiQwLrScitE6BzUgvazPyL62XmujKz5hMUkMlWSyKUg5NDGeXgwOmKDF8YgEmitm/QjLCChNj71u20b3loKug3ah7qO7doUqzWtysBE7BOagCD1yCJrgBt6AFCHgCz+AVTJ0X5935cD4X1jWnmDkBv8r5+gZ+i5/d</latexit>p
k
2
,0 ,...,p

k
2
,2

�
<latexit sha1_base64="iOss6l5mU3A1C0E/SXF6iwm3IvQ=">AAACB3icbVC7TsMwFL0pr9LyCDAioYgKqUNVJV1grGBhLBJ9SG2IHNdprdpJZDtIVZSNhV9hYQAhVn6Bjd/gC3CbDtByJEvH59x77Xv8mFGpbPvLKKytb2xuFbdL5Z3dvX3z4LAjo0Rg0sYRi0TPR5IwGpK2ooqRXiwI4j4jXX9yNfO790RIGoW3ahoTl6NRSAOKkdKSZ57EEy9t1OysNhhGStbya+NuMEKco8wzK3bdnsNaJc6CVJrl70vQaHnmp56DE05ChRmSsu/YsXJTJBTFjGSlQSJJjPAEjUhf0xBxIt10vkdmnWllaAWR0CdU1lz93ZEiLuWU+7qSIzWWy95M/M/rJyq4cFMaxokiIc4fChJmqciahWINqSBYsakmCAuq/2rhMRIIKx1dSYfgLK+8SjqNumPXnRudRhVyFOEYTqEKDpxDE66hBW3A8ABP8AKvxqPxbLwZ73lpwVj0HMEfGB8/nt2Z5Q==</latexit><latexit sha1_base64="nsxHmLpRaebVfDGd29a8mOv9W2w=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+Uqs4aaXbC7WqZG3ttjtAnKPUt0tO1ZkVXAbuHJTqxc/zXPHh6392334xy3DMidCYIaU6rhNpL0FSU8xIWujGikQIj9CAdAwUiBPlJbOwKTwxTA/2Q2me0HDG/pxIEFdqzAPj5EgP1aI2Jf/SOrHun3kJFVGsicDZon7MoA7h9HKwRyXBmo0NQFhS81eIh0girM19Cya6uxh0GTRrVdeputfmZGWQVR4cgmNQBi44BXVwCa5AA2BwDx7BM5hYT9ar9Wa9Z9YVaz5zAH6V9fENHbCi+A==</latexit><latexit sha1_base64="nsxHmLpRaebVfDGd29a8mOv9W2w=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+Uqs4aaXbC7WqZG3ttjtAnKPUt0tO1ZkVXAbuHJTqxc/zXPHh6392334xy3DMidCYIaU6rhNpL0FSU8xIWujGikQIj9CAdAwUiBPlJbOwKTwxTA/2Q2me0HDG/pxIEFdqzAPj5EgP1aI2Jf/SOrHun3kJFVGsicDZon7MoA7h9HKwRyXBmo0NQFhS81eIh0girM19Cya6uxh0GTRrVdeputfmZGWQVR4cgmNQBi44BXVwCa5AA2BwDx7BM5hYT9ar9Wa9Z9YVaz5zAH6V9fENHbCi+A==</latexit><latexit sha1_base64="b6Ft4jUixxH3pb8v9xk8NKGGdgM=">AAACLHicjVDLSgMxFM34rPU16lKQYBG6KCXTjS4Lblwq2Ae045BJM21okhmSjFCG2fk1Ltz4J+KmiFu/w7SdhbYuvBA495xzuTk3TDjTBqGps7a+sbm1Xdop7+7tHxy6R8dtHaeK0BaJeay6IdaUM0lbhhlOu4miWIScdsLx9UzvPFKlWSzvzSShvsBDySJGsLFU4J4l4yBr1FBe6w9io2uLtvHQH2IhcB64FVRH84KrwCtABRT1P3vgvtllJBVUGsKx1j0PJcbPsDKMcJqX+6mmCSZjPKQ9CyUWVPvZPGwOLywzgFGs7JMGztmfExkWWk9EaJ0Cm5Fe1mbkX1ovNdGVnzGZpIZKslgUpRyaGM4uBwdMUWL4xAJMFLN/hWSEFSbG3rdso3vLQVdBu1H3UN27Q5VmtbhZCZyCc1AFHrgETXADbkELEPAEnsErmDovzrvz4XwurGtOMXMCfpXz9Q2CAJ/f</latexit>p
k
2
,0 ,...,p

k
2
,2

�
<latexit sha1_base64="iOss6l5mU3A1C0E/SXF6iwm3IvQ=">AAACB3icbVC7TsMwFL0pr9LyCDAioYgKqUNVJV1grGBhLBJ9SG2IHNdprdpJZDtIVZSNhV9hYQAhVn6Bjd/gC3CbDtByJEvH59x77Xv8mFGpbPvLKKytb2xuFbdL5Z3dvX3z4LAjo0Rg0sYRi0TPR5IwGpK2ooqRXiwI4j4jXX9yNfO790RIGoW3ahoTl6NRSAOKkdKSZ57EEy9t1OysNhhGStbya+NuMEKco8wzK3bdnsNaJc6CVJrl70vQaHnmp56DE05ChRmSsu/YsXJTJBTFjGSlQSJJjPAEjUhf0xBxIt10vkdmnWllaAWR0CdU1lz93ZEiLuWU+7qSIzWWy95M/M/rJyq4cFMaxokiIc4fChJmqciahWINqSBYsakmCAuq/2rhMRIIKx1dSYfgLK+8SjqNumPXnRudRhVyFOEYTqEKDpxDE66hBW3A8ABP8AKvxqPxbLwZ73lpwVj0HMEfGB8/nt2Z5Q==</latexit><latexit sha1_base64="nsxHmLpRaebVfDGd29a8mOv9W2w=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+Uqs4aaXbC7WqZG3ttjtAnKPUt0tO1ZkVXAbuHJTqxc/zXPHh6392334xy3DMidCYIaU6rhNpL0FSU8xIWujGikQIj9CAdAwUiBPlJbOwKTwxTA/2Q2me0HDG/pxIEFdqzAPj5EgP1aI2Jf/SOrHun3kJFVGsicDZon7MoA7h9HKwRyXBmo0NQFhS81eIh0girM19Cya6uxh0GTRrVdeputfmZGWQVR4cgmNQBi44BXVwCa5AA2BwDx7BM5hYT9ar9Wa9Z9YVaz5zAH6V9fENHbCi+A==</latexit><latexit sha1_base64="nsxHmLpRaebVfDGd29a8mOv9W2w=">AAACLHicjVC7SgNBFJ31lZj4WLUUZDAIKULYTaNl0MZSwTwgWZfZySQZMjO7zMwKYdnO0i+xsPFPxCaIrR9gbeEkm0ITCy8MnHvOudw5N4gYVdpxJtbK6tr6Ri6/WShube/s2nv7TRXGEpMGDlko2wFShFFBGppqRtqRJIgHjLSC0cVUb90RqWgobvQ4Ih5HA0H7FCNtKN8+ikZ+Uqs4aaXbC7WqZG3ttjtAnKPUt0tO1ZkVXAbuHJTqxc/zXPHh6392334xy3DMidCYIaU6rhNpL0FSU8xIWujGikQIj9CAdAwUiBPlJbOwKTwxTA/2Q2me0HDG/pxIEFdqzAPj5EgP1aI2Jf/SOrHun3kJFVGsicDZon7MoA7h9HKwRyXBmo0NQFhS81eIh0girM19Cya6uxh0GTRrVdeputfmZGWQVR4cgmNQBi44BXVwCa5AA2BwDx7BM5hYT9ar9Wa9Z9YVaz5zAH6V9fENHbCi+A==</latexit><latexit sha1_base64="b6Ft4jUixxH3pb8v9xk8NKGGdgM=">AAACLHicjVDLSgMxFM34rPU16lKQYBG6KCXTjS4Lblwq2Ae045BJM21okhmSjFCG2fk1Ltz4J+KmiFu/w7SdhbYuvBA495xzuTk3TDjTBqGps7a+sbm1Xdop7+7tHxy6R8dtHaeK0BaJeay6IdaUM0lbhhlOu4miWIScdsLx9UzvPFKlWSzvzSShvsBDySJGsLFU4J4l4yBr1FBe6w9io2uLtvHQH2IhcB64FVRH84KrwCtABRT1P3vgvtllJBVUGsKx1j0PJcbPsDKMcJqX+6mmCSZjPKQ9CyUWVPvZPGwOLywzgFGs7JMGztmfExkWWk9EaJ0Cm5Fe1mbkX1ovNdGVnzGZpIZKslgUpRyaGM4uBwdMUWL4xAJMFLN/hWSEFSbG3rdso3vLQVdBu1H3UN27Q5VmtbhZCZyCc1AFHrgETXADbkELEPAEnsErmDovzrvz4XwurGtOMXMCfpXz9Q2CAJ/f</latexit>p
k
3
,0 ,...,p

k
3
,2

�
<latexit sha1_base64="aPMyxlkjvy0YAoiTJIwZW1hEfCg=">AAACB3icbVC7TsMwFL3hWVoeAUYkFFEhdaiqpAwwVrAwFok+pDZEjuu0Vu0ksh2kKsrGwq+wMIAQK7/Axm/wBbhNB2g5kqXjc+699j1+zKhUtv1lrKyurW9sFraKpe2d3T1z/6Ato0Rg0sIRi0TXR5IwGpKWooqRbiwI4j4jHX98NfU790RIGoW3ahITl6NhSAOKkdKSZx7HYy89q9pZtT+IlKzm1/pdf4g4R5lnlu2aPYO1TJw5KTdK35eg0fTMTz0HJ5yECjMkZc+xY+WmSCiKGcmK/USSGOExGpKepiHiRLrpbI/MOtXKwAoioU+orJn6uyNFXMoJ93UlR2okF72p+J/XS1Rw4aY0jBNFQpw/FCTMUpE1DcUaUEGwYhNNEBZU/9XCIyQQVjq6og7BWVx5mbTrNceuOTc6jQrkKMARnEAFHDiHBlxDE1qA4QGe4AVejUfj2Xgz3vPSFWPecwh/YHz8AKIImec=</latexit><latexit sha1_base64="AU2AZqsoICmb3EyS+W0jF8EZcVo=">AAACLHicjVC7TsMwFHXKo6XlEWBEQhEVUoeqSsoAYwULI0j0IbUhclyntWo7ke0gVVE2Rr6EgYU/QSwVYuUDmBlwmw7QMnAlS+eec66uz/UjSqSy7YmRW1ldW88XNoqlza3tHXN3ryXDWCDcRCENRceHElPCcVMRRXEnEhgyn+K2P7qY6u07LCQJ+Y0aR9hlcMBJQBBUmvLMw2jkJSdVO632+qGS1ayt3/YGkDGYembZrtmzspaBMwflRunzPF96+Pqf3TNf9DIUM8wVolDKrmNHyk2gUARRnBZ7scQRRCM4wF0NOWRYusksbGoda6ZvBaHQjytrxv6cSCCTcsx87WRQDeWiNiX/0rqxCs7chPAoVpijbFEQU0uF1vRyVp8IjBQdawCRIPqvFhpCAZHS9y3q6M5i0GXQqtccu+Zc65NVQFYFcACOQAU44BQ0wCW4Ak2AwD14BM9gYjwZr8ab8Z5Zc8Z8Zh/8KuPjGyElovo=</latexit><latexit sha1_base64="AU2AZqsoICmb3EyS+W0jF8EZcVo=">AAACLHicjVC7TsMwFHXKo6XlEWBEQhEVUoeqSsoAYwULI0j0IbUhclyntWo7ke0gVVE2Rr6EgYU/QSwVYuUDmBlwmw7QMnAlS+eec66uz/UjSqSy7YmRW1ldW88XNoqlza3tHXN3ryXDWCDcRCENRceHElPCcVMRRXEnEhgyn+K2P7qY6u07LCQJ+Y0aR9hlcMBJQBBUmvLMw2jkJSdVO632+qGS1ayt3/YGkDGYembZrtmzspaBMwflRunzPF96+Pqf3TNf9DIUM8wVolDKrmNHyk2gUARRnBZ7scQRRCM4wF0NOWRYusksbGoda6ZvBaHQjytrxv6cSCCTcsx87WRQDeWiNiX/0rqxCs7chPAoVpijbFEQU0uF1vRyVp8IjBQdawCRIPqvFhpCAZHS9y3q6M5i0GXQqtccu+Zc65NVQFYFcACOQAU44BQ0wCW4Ak2AwD14BM9gYjwZr8ab8Z5Zc8Z8Zh/8KuPjGyElovo=</latexit><latexit sha1_base64="NUKQC7Ss+2L/gGw6WNzSzUaDe9U=">AAACLHicjVDLSgMxFM3UV62vUZeCBIvQRSmZutBlwY1LBfuAdhwyadqGJpkhyQhlmJ1f48KNfyJuirj1O0zbWWjrwguBc885l5tzw5gzbRCaOoW19Y3NreJ2aWd3b//APTxq6ShRhDZJxCPVCbGmnEnaNMxw2okVxSLktB2Or2d6+5EqzSJ5byYx9QUeSjZgBBtLBe5pPA7SiyrKqr1+ZHR10dYfekMsBM4Ct4xqaF5wFXg5KIO8/mcP3De7jCSCSkM41rrrodj4KVaGEU6zUi/RNMZkjIe0a6HEgmo/nYfN4Lll+nAQKfukgXP250SKhdYTEVqnwGakl7UZ+ZfWTczgyk+ZjBNDJVksGiQcmgjOLgf7TFFi+MQCTBSzf4VkhBUmxt63ZKN7y0FXQate81DNu0PlRiW/WRGcgDNQAR64BA1wA25BExDwBJ7BK5g6L8678+F8LqwFJ585Br/K+foGhXWf4Q==</latexit>

CA

p
k
r
o
o
t

<latexit sha1_base64="Ekzx8HUg4h9Vwn1GC7ktrc8MzrI=">AAAB8HicbVDLSgNBEOxNfMT4inr0MhgCOYVdL3oMePEYwTwkCWF2MpsMmdlZZnqFsAQ/wosHRb36Od78GyePg0YLGoqqbrq7wkQKi77/5eXyG5tb24Wd4u7e/sFh6ei4ZXVqGG8yLbXphNRyKWLeRIGSdxLDqQolb4eTq7nfvufGCh3f4jThfUVHsYgEo+iku2QyyIzWOBuUyn7NX4D8JcGKlOv5ysMbADQGpc/eULNU8RiZpNZ2Az/BfkYNCib5rNhLLU8om9AR7zoaU8VtP1scPCMVpwxJpI2rGMlC/TmRUWXtVIWuU1Ec23VvLv7ndVOMLvuZiJMUecyWi6JUEtRk/j0ZCsMZyqkjlBnhbiVsTA1l6DIquhCC9Zf/ktZ5LfBrwY1LowpLFOAUzqAKAVxAHa6hAU1goOARnuHFM96T9+q9L1tz3mrmBH7B+/gGbq2SMw==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="eFB+158tzfTR0jyNWIXDlXIm8WI=">AAACFXicjVC7SgNBFL0bXzG+opY2i0FIFXZttAzYWCqYhyQhzE5mkyHzWGbuCmHJV1jY+Cs2IraCnX/jJNlCEwsPDBzOOZc790SJ4BaD4MsrrK1vbG4Vt0s7u3v7B+XDo6bVqaGsQbXQph0RywRXrIEcBWsnhhEZCdaKxlczv/XAjOVa3eEkYT1JhorHnBJ00n0y7mdGa5z2y5WgFszhr5IwJxXI8b94v/zZHWiaSqaQCmJtJwwS7GXEIKeCTUvd1LKE0DEZso6jikhme9n8qql/5pSBH2vjnkJ/rv6cyIi0diIjl5QER3bZm4l/eZ0U48texlWSIlN0sShOhY/an1XkD7hhFMXEEUINd3/16YgYQtEVWXKnh8uHrpLmeS0MauFtUKlX886KcAKnUIUQLqAO13ADDaAg4RGe4dV78l68N+99ES14+cwx/IL38Q1If5gl</latexit> p
k
r
o
o
t

<latexit sha1_base64="Ekzx8HUg4h9Vwn1GC7ktrc8MzrI=">AAAB8HicbVDLSgNBEOxNfMT4inr0MhgCOYVdL3oMePEYwTwkCWF2MpsMmdlZZnqFsAQ/wosHRb36Od78GyePg0YLGoqqbrq7wkQKi77/5eXyG5tb24Wd4u7e/sFh6ei4ZXVqGG8yLbXphNRyKWLeRIGSdxLDqQolb4eTq7nfvufGCh3f4jThfUVHsYgEo+iku2QyyIzWOBuUyn7NX4D8JcGKlOv5ysMbADQGpc/eULNU8RiZpNZ2Az/BfkYNCib5rNhLLU8om9AR7zoaU8VtP1scPCMVpwxJpI2rGMlC/TmRUWXtVIWuU1Ec23VvLv7ndVOMLvuZiJMUecyWi6JUEtRk/j0ZCsMZyqkjlBnhbiVsTA1l6DIquhCC9Zf/ktZ5LfBrwY1LowpLFOAUzqAKAVxAHa6hAU1goOARnuHFM96T9+q9L1tz3mrmBH7B+/gGbq2SMw==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="eFB+158tzfTR0jyNWIXDlXIm8WI=">AAACFXicjVC7SgNBFL0bXzG+opY2i0FIFXZttAzYWCqYhyQhzE5mkyHzWGbuCmHJV1jY+Cs2IraCnX/jJNlCEwsPDBzOOZc790SJ4BaD4MsrrK1vbG4Vt0s7u3v7B+XDo6bVqaGsQbXQph0RywRXrIEcBWsnhhEZCdaKxlczv/XAjOVa3eEkYT1JhorHnBJ00n0y7mdGa5z2y5WgFszhr5IwJxXI8b94v/zZHWiaSqaQCmJtJwwS7GXEIKeCTUvd1LKE0DEZso6jikhme9n8qql/5pSBH2vjnkJ/rv6cyIi0diIjl5QER3bZm4l/eZ0U48texlWSIlN0sShOhY/an1XkD7hhFMXEEUINd3/16YgYQtEVWXKnh8uHrpLmeS0MauFtUKlX886KcAKnUIUQLqAO13ADDaAg4RGe4dV78l68N+99ES14+cwx/IL38Q1If5gl</latexit>

p
k
r
o
o
t

<latexit sha1_base64="Ekzx8HUg4h9Vwn1GC7ktrc8MzrI=">AAAB8HicbVDLSgNBEOxNfMT4inr0MhgCOYVdL3oMePEYwTwkCWF2MpsMmdlZZnqFsAQ/wosHRb36Od78GyePg0YLGoqqbrq7wkQKi77/5eXyG5tb24Wd4u7e/sFh6ei4ZXVqGG8yLbXphNRyKWLeRIGSdxLDqQolb4eTq7nfvufGCh3f4jThfUVHsYgEo+iku2QyyIzWOBuUyn7NX4D8JcGKlOv5ysMbADQGpc/eULNU8RiZpNZ2Az/BfkYNCib5rNhLLU8om9AR7zoaU8VtP1scPCMVpwxJpI2rGMlC/TmRUWXtVIWuU1Ec23VvLv7ndVOMLvuZiJMUecyWi6JUEtRk/j0ZCsMZyqkjlBnhbiVsTA1l6DIquhCC9Zf/ktZ5LfBrwY1LowpLFOAUzqAKAVxAHa6hAU1goOARnuHFM96T9+q9L1tz3mrmBH7B+/gGbq2SMw==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="wLjT5LW0GiOPKRZVN4ysY4l0fZE=">AAACFXicjVC7SgNBFL2b+IjxFbW0GZRAqrBro2XAxlLBPCQJYXYymwyZxzIzK4Ql2PgHFiLY+BN2NiK2gp1/4+RRaGLhgYHDOedy554w5sxY3//yMtml5ZXV3Fp+fWNza7uws1szKtGEVoniSjdCbChnklYts5w2Yk2xCDmth4PTsV+/ptowJS/tMKZtgXuSRYxg66SreNBJtVJ21Ckc+mV/ArRIghk5rGSLN88Pt0//i3cKn62uIomg0hKOjWkGfmzbKdaWEU5H+VZiaIzJAPdo01GJBTXtdHLVCBWd0kWR0u5Jiybqz4kUC2OGInRJgW3fzHtj8S+vmdjopJ0yGSeWSjJdFCUcWYXGFaEu05RYPnQEE83cXxHpY42JdUXm3enB/KGLpHZUDvxycOEqK8EUOdiHAyhBAMdQgTM4hyoQEHAHj/Dq3Xsv3pv3Po1mvNnMHvyC9/ENRYebgA==</latexit><latexit sha1_base64="eFB+158tzfTR0jyNWIXDlXIm8WI=">AAACFXicjVC7SgNBFL0bXzG+opY2i0FIFXZttAzYWCqYhyQhzE5mkyHzWGbuCmHJV1jY+Cs2IraCnX/jJNlCEwsPDBzOOZc790SJ4BaD4MsrrK1vbG4Vt0s7u3v7B+XDo6bVqaGsQbXQph0RywRXrIEcBWsnhhEZCdaKxlczv/XAjOVa3eEkYT1JhorHnBJ00n0y7mdGa5z2y5WgFszhr5IwJxXI8b94v/zZHWiaSqaQCmJtJwwS7GXEIKeCTUvd1LKE0DEZso6jikhme9n8qql/5pSBH2vjnkJ/rv6cyIi0diIjl5QER3bZm4l/eZ0U48texlWSIlN0sShOhY/an1XkD7hhFMXEEUINd3/16YgYQtEVWXKnh8uHrpLmeS0MauFtUKlX886KcAKnUIUQLqAO13ADDaAg4RGe4dV78l68N+99ES14+cwx/IL38Q1If5gl</latexit>

(pkc,Authc) PKConstr(c, I)
<latexit sha1_base64="sRGFdbI9LzKJQztkHeHTSfJC2fE=">AAACI3icbVDLattAFL1yHnXcPNx02Y2oKdgQjNRNQ1cp3rRk40KcGCwjRuMre/BoJGauSl2hf+mm/9FVN12kmFLIIv/S8WOR2DkwcDjnXO7cE2VSGPK8O6eys7u3/6x6UHt+eHR8Un9xem3SXHPs8VSmuh8xg1Io7JEgif1MI0siiTfRtLPwb76gNiJVVzTLcJiwsRKx4IysFNbfN7NpyM+ChNHExMWHnCZlyFvBGMkEhF+JqOhedlJlSJfNdTCKi09lK6w3vLa3hLtN/DVpXFS//fsJAN2wPg9GKc8TVMQlM2bgexkNC6ZJcIllLcgNZoxP2RgHliqWoBkWyxtL941VRm6cavsUuUv14UTBEmNmSWSTy1s2vYX4lDfIKT4fFkJlOaHiq0VxLl1K3UVh7kho5CRnljCuhf2ryydMM0621potwd88eZtcv237Xtv/bNtowgpVeAWvoQk+vIML+Ahd6AGH7/ALbuGP88P57cydv6toxVnPvIRHcO7/A20sp4E=</latexit><latexit sha1_base64="0wpUzzj8e19JLQ7+n0LptUbVIzk=">AAACSHicjVDLSsNAFJ3UV62vqks3QREqSEncKK4UN4qbilaFpoTJ9KYdOpmEmRuxhvyLX+NCF4ILwb9wI+LO6WPha+GBgcM553LnniARXKPjvFiFsfGJyanidGlmdm5+oby4dK7jVDGos1jE6jKgGgSXUEeOAi4TBTQKBFwE3YO+f3EFSvNYnmEvgWZE25KHnFE0kl/erSRdn216EcWODrP9FDu5zza8NqD2EK4RMasdH8RSo8oro2AQZkf5hl9ec6rOAPZv4o7I2l7x5vnhtDb9v7hffvJaMUsjkMgE1brhOgk2M6qQMwF5yUs1JJR1aRsahkoagW5mgyJye90oLTuMlXkS7YH6dSKjkda9KDDJwcE/vb74l9dIMdxpZlwmKYJkw0VhKmyM7X6rdosrYCh6hlCmuPmrzTpUUYam+5I53f156G9yvlV1nap7YiqrkCGKZIWskgpxyTbZI4ekRuqEkVtyRx7Jm3VvvVrv1scwWrBGM8vkGwqFT29TrrI=</latexit><latexit sha1_base64="0wpUzzj8e19JLQ7+n0LptUbVIzk=">AAACSHicjVDLSsNAFJ3UV62vqks3QREqSEncKK4UN4qbilaFpoTJ9KYdOpmEmRuxhvyLX+NCF4ILwb9wI+LO6WPha+GBgcM553LnniARXKPjvFiFsfGJyanidGlmdm5+oby4dK7jVDGos1jE6jKgGgSXUEeOAi4TBTQKBFwE3YO+f3EFSvNYnmEvgWZE25KHnFE0kl/erSRdn216EcWODrP9FDu5zza8NqD2EK4RMasdH8RSo8oro2AQZkf5hl9ec6rOAPZv4o7I2l7x5vnhtDb9v7hffvJaMUsjkMgE1brhOgk2M6qQMwF5yUs1JJR1aRsahkoagW5mgyJye90oLTuMlXkS7YH6dSKjkda9KDDJwcE/vb74l9dIMdxpZlwmKYJkw0VhKmyM7X6rdosrYCh6hlCmuPmrzTpUUYam+5I53f156G9yvlV1nap7YiqrkCGKZIWskgpxyTbZI4ekRuqEkVtyRx7Jm3VvvVrv1scwWrBGM8vkGwqFT29TrrI=</latexit><latexit sha1_base64="hScYyny8J6uNURRXAKvqR/DGwhk=">AAACSHicjVBNS8NAFNzU7/pV9eglWIQKUhIviqdKL4oXBatCU8Jm+9Iu3WzC7otYQv6Lv8aDF8Gb/8KLiDe3NQdtPTiwMMzM4+2bIBFco+O8WqWZ2bn5hcWl8vLK6tp6ZWPzWsepYtBisYjVbUA1CC6hhRwF3CYKaBQIuAkGzZF/cwdK81he4TCBTkR7koecUTSSXzmuJQOf7XsRxb4Os5MU+7nP9rweoPYQ7hExuzhvxlKjymtFMAizs3zPr1SdujOGPU3cglRJgf/F/cqL141ZGoFEJqjWbddJsJNRhZwJyMteqiGhbEB70DZU0gh0JxsXkdu7RunaYazMk2iP1Z8TGY20HkaBSY4PnvRG4l9eO8XwqJNxmaQIkn0vClNhY2yPWrW7XAFDMTSEMsXNX23Wp4oyNN2Xzenu5KHT5Pqg7jp199KpNmpFZ4tkm+yQGnHJIWmQU3JBWoSRB/JInsm79WS9WR/W53e0ZBUzW+QXSqUv3+Grow==</latexit>

certroot
<latexit sha1_base64="I6LUx+00/D8RjTNxRZuwGejsa4s=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CRahqzLjRncW3LisYB/QDiWTZtrQTDIkGaEOxV9x40IRt+79BHfu/BHBdNqFth4IOZxzLzk5YcKZNp736Swtr6yurRc2iptb2zu77t5+Q8tUEVonkkvVCrGmnAlaN8xw2koUxXHIaTMcXk785i1VmklxY0YJDWLcFyxiBBsrdd3DTozNQEcZocqMu5mS0l5uyat4OdAi8WekdPH9Lr8AoNZ1Pzo9SdKYCkM41rrte4kJMqwMI5yOi51U0wSTIe7TtqUCx1QHWZ5+jE6s0kORVPYIg3L190aGY61HcWgn86zz3kT8z2unJjoPMiaS1FBBpg9FKUdGokkVqMcUJYaPLMFEMZsVkQFWmBhbWNGW4M9/eZE0Tiu+V/GvvVK1DFMU4AiOoQw+nEEVrqAGdSBwBw/wBM/OvfPovDiv09ElZ7ZzAH/gvP0ANr2ZQg==</latexit><latexit sha1_base64="R+uJsdbfm2XvvFVeKIWWqsi77ps=">AAACInicjVC7SgNBFL3rM8bX+igEm8UgpAq7NtoZsLFUMA9IljA7mU2GzGOZmRXikn+xsNDfsLQRtRLs/QrByaPQxMIDwxzOOZeZc6OEUW18/92Zm19YXFrOreRX19Y3Nt2t7aqWqcKkgiWTqh4hTRgVpGKoYaSeKIJ4xEgt6p0N/do1UZpKcWX6CQk56ggaU4yMlVrubpMj09Vxhokyg1ampLSXW/BL/gjeLAkmpHD69Sg/9+75/+It97XZljjlRBjMkNaNwE9MmCFlKGZkkG+mmiQI91CHNCwViBMdZqOKA+/QKm0vlsoeYbyR+nMiQ1zrPo9sclRo2huKf3mN1MQnYUZFkhoi8PihOGWekd5wX16bKoIN61uCsKL2rx7uIoWwsVvN2+rBdNFZUj0qBX4puPQL5SKMkYN9OIAiBHAMZTiHC6gAhhu4hQd4du6cJ+fFeRtH55zJzA78gvPxDRSOoe8=</latexit><latexit sha1_base64="R+uJsdbfm2XvvFVeKIWWqsi77ps=">AAACInicjVC7SgNBFL3rM8bX+igEm8UgpAq7NtoZsLFUMA9IljA7mU2GzGOZmRXikn+xsNDfsLQRtRLs/QrByaPQxMIDwxzOOZeZc6OEUW18/92Zm19YXFrOreRX19Y3Nt2t7aqWqcKkgiWTqh4hTRgVpGKoYaSeKIJ4xEgt6p0N/do1UZpKcWX6CQk56ggaU4yMlVrubpMj09Vxhokyg1ampLSXW/BL/gjeLAkmpHD69Sg/9+75/+It97XZljjlRBjMkNaNwE9MmCFlKGZkkG+mmiQI91CHNCwViBMdZqOKA+/QKm0vlsoeYbyR+nMiQ1zrPo9sclRo2huKf3mN1MQnYUZFkhoi8PihOGWekd5wX16bKoIN61uCsKL2rx7uIoWwsVvN2+rBdNFZUj0qBX4puPQL5SKMkYN9OIAiBHAMZTiHC6gAhhu4hQd4du6cJ+fFeRtH55zJzA78gvPxDRSOoe8=</latexit><latexit sha1_base64="dhr3+HufEccL59hD+bF5rDR/V18=">AAACInicjVC7TsMwFL3hWcorPDaWiAqpU5WwwFiJhREk+pDaqnLcm9aqY0e2g1Si/gsDC7/CgoAJiY/BTTNAy8CVLB+dc67sc8KEM218/9NZWV1b39gsbZW3d3b39t2Dw6aWqaLYoJJL1Q6JRs4ENgwzHNuJQhKHHFvh+Gqmt+5RaSbFnZkk2IvJULCIUWIs1XePuzExIx1lFJWZ9jMlpb3cil/z8/GWQVCAChTzP3vffe8OJE1jFIZyonUn8BPTy4gyjHKclrupxoTQMRlix0JBYtS9LI849c4sM/AiqewRxsvZnxsZibWexKF15oEWtRn5l9ZJTXTZy5hIUoOCzh+KUu4Z6c368gZMITV8YgGhitm/enREFKHGtlq20YPFoMugeV4L/Fpw61fq1aKzEpzAKVQhgAuowzXcQAMoPMAjPMOr8+S8OG/Ox9y64hQ7R/BrnK9vXPGdbg==</latexit>

(p
k
r
o
o
t ,cert

r
o
o
t)

M
T
C
o
n
s
t
r
(I,�

)
<latexit sha1_base64="xYLK3d/seJHPBTCBIjRb4ac0Yu0=">AAACM3icbVBNSxxBFHxjErOuUTfmmEsTEVaQZcaLHgUviRBQcFXYWZae3jdrs/0xdL8J2Qzzn3LJPb8hByHkkCC5+h/SO7uHRFPQUFS9x+uqrFDSUxx/j1aePH22+ry11l5/sbG51Xm5felt6QT2hVXWXWfco5IG+yRJ4XXhkOtM4VU2PZn7Vx/QeWnNBc0KHGo+MTKXglOQRp3TbjEdVc5aqvdTzenG55VAR/VS3EsnSJ6lhB+JqHp/cWKNJ1d3m+Esr96FvQnXmu+NOjtxL27AHpNkSXaOW59uvwLA2ajzLR1bUWo0JBT3fpDEBQ0r7kgKhXU7LT0WXEz5BAeBGq7RD6smc812gzJmuXXhGWKN+vdGxbX3M52FySbWQ28u/s8blJQfDStpipLQiMWhvFSMLJsXyMbSoSA1C4QLJ8NfmbjhjgsKNbdDCcnDyI/J5UEviXvJeWijCwu04DW8gS4kcAjH8BbOoA8CPsMt/IRf0ZfoR3QX/V6MrkTLnVfwD6L7PwzDrxE=</latexit><latexit sha1_base64="Jyrg+XME591e3c900G3IHCMXR7E=">AAACWHicjVHPSxtBGJ2sv5K01TQ9ehkUIUIJu17sMeClCoKlRoVsCLOTb+OQ+bHMfFuMy/5P/h/ePATspf9KJ5scrPbgBwOP997HzHuTZFI4DMPnWrC2vrG5VW80P3z8tL3T+ty+cia3HPrcSGNvEuZACg19FCjhJrPAVCLhOpmeLPTrX2CdMPoSZxkMFZtokQrO0FOj1lknm44KawyWX2PF8NalBQeL5Yo8jCeAjsYId4hYnF+eGO3Qlp3KnKTFqd+bMKXY4ai1H3bDauhbEK3Afq9+P3/8edF4n33UeorHhucKNHLJnBtEYYbDglkUXELZjHMHGeNTNoGBh5opcMOiKqakB54Z09RYfzTSin25UTDl3Ewl3lllf60tyP9pgxzTb8NC6CxH0Hx5UZpLioYuWqZjYYGjnHnAuBX+rZTfMss4+r9o+ujR66BvwdVRNwq70Q9fWYcsp052yR7pkIgckx75Ti5In3DyQObkT22j9jsgwVbQWFqD2mrnC/lngvZfgICyRg==</latexit><latexit sha1_base64="Jyrg+XME591e3c900G3IHCMXR7E=">AAACWHicjVHPSxtBGJ2sv5K01TQ9ehkUIUIJu17sMeClCoKlRoVsCLOTb+OQ+bHMfFuMy/5P/h/ePATspf9KJ5scrPbgBwOP997HzHuTZFI4DMPnWrC2vrG5VW80P3z8tL3T+ty+cia3HPrcSGNvEuZACg19FCjhJrPAVCLhOpmeLPTrX2CdMPoSZxkMFZtokQrO0FOj1lknm44KawyWX2PF8NalBQeL5Yo8jCeAjsYId4hYnF+eGO3Qlp3KnKTFqd+bMKXY4ai1H3bDauhbEK3Afq9+P3/8edF4n33UeorHhucKNHLJnBtEYYbDglkUXELZjHMHGeNTNoGBh5opcMOiKqakB54Z09RYfzTSin25UTDl3Ewl3lllf60tyP9pgxzTb8NC6CxH0Hx5UZpLioYuWqZjYYGjnHnAuBX+rZTfMss4+r9o+ujR66BvwdVRNwq70Q9fWYcsp052yR7pkIgckx75Ti5In3DyQObkT22j9jsgwVbQWFqD2mrnC/lngvZfgICyRg==</latexit><latexit sha1_base64="GWokW8zAsfdkAQwWK4h215HwES0=">AAACWHicjVHLSiNBFK2042gyD2NcuikmDEQYQvdsxqXgRgVhBPOAdAjVlduxSD2aqttiaPqf/BYXgm78lam0vXDiLOZCweGcc6k6p5JMCodh+NQItj5sf9zZbbY+ff7yda+93xk6k1sOA26kseOEOZBCwwAFShhnFphKJIyS5elaH92CdcLoa1xlMFVsoUUqOENPzdoXvWw5K6wxWP6IFcMblxYcLJY1eRQvAB2NEe4Qsbi8PjXaoS17lTlJi3O/t2BKsaNZuxv2w2roexDVoEvq+T/7rP0Qzw3PFWjkkjk3icIMpwWzKLiEshXnDjLGl2wBEw81U+CmRVVMSb97Zk5TY/3RSCv27UbBlHMrlXhnlX1TW5P/0iY5psfTQugsR9D89aI0lxQNXbdM58ICR7nygHEr/Fspv2GWcfR/0fLRo82g78HwZz8K+9FV2D3p1Z3tkkPyjfRIRH6RE3JGfpMB4eSePJKXxnbjOSDBTtB8tQaNeueA/DVB5w/xDq83</latexit>

Figure 2: Batch Certification with Merkle Tree

4.3 Signer independent offline certification
management

As discussed, the scheme proposed in Section 4 is the base ver-

sion of ANT, where the verifier contacts each server through the

ANT.PKConstr() algorithm to receive the corresponding public key

pkc . We do not consider public key certification in the base ver-

sion of the scheme proposed in Algorithm 1. In this section, we

provide two variations of ANT which focus on different public key

certification methods.

There has been a wide array works to efficiently transform one-

time signatures to multiple-time [31] or polynomially-bounded

many time signatures [32, 33]. However, generally, whenever a

one-time signature is used arbitrary number of times, it will require

arbitrary number of public keys and certificates. This problem is

addressed in hash-based signatures by bounding total number of

signatures (albeit polynomially-bounded in [32]) and building a

Merkle tree MT on top. This is the main reason that such schemes

suffer from very large signatures. Here, due to the main purpose of

the scheme to be suitable of resource-limited devices (often operat-

ing on low-bandwidth networks), we avoid very large signatures by

presenting two methods that enable public key certification with-

out the involvement or incurring additional costs on the (low-end)

signer in our design.

4.3.1 Individual Public Key Certification. In order to provide public

key certification, we propose a variation of the ANT.PKConstr(·) in
Algorithm 4. In the new ANT.PKConstr(·) algorithm, every server

j ∈ I computes their public key components pkj,c using the pro-

vided secret seed and sends it to all other servers. In the second step,

Algorithm 2 ANT-FS: The Forward Secure Variant

(params) ← ANT-FS.Setup(1κ): This algorithm is identical to

the one in Algorithm 1.

(c, ⟨sk1,c , . . . skt,c ⟩) ← ANT-FS.Kg(params): Given 1
κ
, gener-

ate the signer’s private key and the private seeds for the t
servers.

1: sk
$

← {0, 1}κ

2: Set state c = 0

3: for j ∈ I where I = {1, . . . , t} do
4: skj,c ← PRF1(sk, j)

5: delete sk
6: Send private key components for period c , {sk1,c , . . . skt,c }, to

the t servers.
7: return sk ← {sk1,c , . . . skt,c } and state c

σ ← ANT-FS.Sig(m, sk): Run by the singer to issue a signature

onm.

1: c ← c + 1
2: for j = 1, . . . , t do
3: xc, j ← Samp

1
(skj,c , c), yc, j ← Samp

2
(skj,c , c)

4: xc ← xc + xc, j , yc ← yc + yc, j
5: skj,c+1 ← H2(skj,c), delete skj,c
6: z← xcH1(m, c) + yc
7: return σ = (c, z)

pkc ← ANT-FS.PKConstr(c, I): This algorithm is initiated by

the verifier. Given c and j ∈ I each server returns (tc, j , t′c, j),
updates its private key component, and the verifier computes

the full public key pkc .
1: At server j do:
2: xj,c ← Samp

1
(skj,c , c), yj,c ← Samp

2
(skj,c , c)

3: tj,c ← xj,cA, t′j,c ← yj,cA
4: skj,c+1 ← H2(skj,c)
5: Send pkj,c ← (tj,c , t′j,c) to the verifier

6: Verifier computes tc ← tc + tj,c , t′c ← t′c + t′j,c
7: return pkc = (tc , t′c)

{0, 1} ← ANT-FS.Ver(m,σ ,pkc): This algorithm is identical to

the one in Algorithm 1.

all other servers would use these partial public key components

to compute the final public key pkc and send it to the certificate

authority (CA) to issue the certificate certc . While this method has

optimal communication overhead, it requires interaction with the

CA (by the distributed public key servers) for a verification request.

The unique design of the new scheme enables the utilization of a

precomputation method to improve the performance of the verifica-

tion algorithm in both ANT and ANT-FS. More specifically, given the

signer in our schemes is not involved in the verification algorithm

and since ANT.PKConstr(·) does not depend on the message, in the

certification methods in Algorithm 4, the servers can precompute

pkc for the future 2
γ
signatures (i.e., c = 1, . . . , 2γ). The public

keys pkc along with their corresponding certificate certc can then

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things Conference’21, June 2021, ,

Algorithm3 MT-ANT: Merkle Tree Based Schemewith Certification

(params) ← MT-ANT.Setup(1κ): This algorithm is identical to

the one in Algorithm 1 except, in addition to all the parameters

a parameter γ is also selected.

(sk, c) ← MT-ANT.Kg(params): This algorithm is identical to

the one in Algorithm 1.

(pkroot , certroot) ← MT-ANT.MTConstr(I,γ):
1: for j = 1, . . . , t do
2: for c = 0, . . . , 2γ do
3: xj,c ← Samp

1
(zj , c), yj,c ← Samp

2
(zj , c)

4: tj,c ← xj,cA, t′j,c ← yj,cA
5: pkj,c ← (tj,c , t′j,c)
6: Send pkj,c to other t − 1 servers

7: for c = 0, . . . , 2γ do
8: After receiving all pkj,c , each server computes:

9: tc =
∑j=t
j=0 tj,c and t′c =

∑j=t
j=0 t

′
j,c

10: pkc ← (tc , t′c)
11: (MT, pkroot) ← MT.Init(pkc , . . . , pk2γ)
12: All servers store the MTwith root pkroot
13: Send pkroot to the CA to obtain certroot
14: We assume all users are initialized by pkroot and certroot
15: return (pkroot , certroot)

σ ← MT-ANT.Sig(m, sk, c): Run by the singer to issue a signa-

ture onm.

1: c ← c + 1
2: for j = 1, . . . , t do
3: skj ← PRF1(sk, j)
4: xj,c ← Samp

1
(skj , c), yj,c ← Samp

2
(skj , c)

5: xc ← xc + xj,c , yc ← yc + yj,c
6: z← xcH1(m, c) + yc
7: return σ = (c, z)

(pkc ,Authc) ← MT-ANT.PKConstr(c, I): This algorithm is ini-

tiated by the verifier. Given c , the servers return the leaf pkc
and the corresponding authentication path.

1: A server j ∈ I works as follows:
2: Runs (pkc ,Authc) ← MT.Output(c)
3: return (pkc ,Authc)

{0, 1} ← MT-ANT.Ver(m,σ ,pkc ,Authc): Given pkc obtained

from the above algorithm, the verifier verifies the signature as

follows.

1: if 1← MT.Verify(pkroot , pkc ,Authc) then:
2: if ∥z∥∞ ≤ βver then:
3: Parse pkc as (tc , t′c)
4: if Az = tcH1(m, c) + t′c holds, then return 1

5: else return 0

be either stored on the servers to be downloaded on demand or

directly downloaded to the verifiers’. This will significantly reduce

the online overhead of ANT.PKConstr(·) algorithm.

Algorithm 4 Public Key Construction with Certification

(pkc , certc) ← ANT.PKConstr(c):

1: for j = 1, . . . , t do
2: xj,c ← Samp

1
(skj , c), yj,c ← Samp

2
(skj , c)

3: tj,c ← xj,cA, t′j,c ← yj,cA
4: pkj,c ← (tj,c , t′j,c)
5: Send pkj,c to other t − 1 servers

6: After receiving all other pkj,c from severs compute: tc ←
tc + ti,c , t′c ← t′c + t′i,c

7: pkc ← (tc , t′c)
8: Send pkc to the CA to receive certc
9: return (pkc , certc)

4.3.2 Batch Certification with Merkle Tree. To minimize certificate

request, our construction also allows for the adoption of Merkle

Tree (MT) [34]. This well-studied method has been adopted in a

number of other schemes as well (e.g, [33]). Generally, an MT-based

scheme consists of the following algorithms:

– (MT, pkroot) ← MT.Init(x1, . . . ,xn): Givenn valuesx1, . . . ,xn ,
this algorithm will construct a tree of hight |n | with n leaves

and outputs MT and its root pkroot .
– (pkc ,Authc) ← MT.Outputt(c): Given the index c , this al-

gorithm outputs the leaf at location c , i.e., pkc and its corre-

sponding authentication path Authc .
– {0, 1} ← MT.Verify(, pkc , pkroot ,Authc): Given the root

pkroot , a leaf at location c , i.e., pkc , and its alleged authenti-

cation path, this algorithm outputs a decision bit {0, 1}.

We present our signature scheme with a Merkle tree called

MT-ANT in Algorithm 3. The new scheme requires an additional

algorithm called MT-ANT.MTConstr(·) that is run once (for every 2
γ

signatures) among the servers to construct the MT by initiating

the MT.Init(·) algorithm. As also depicted in Fig. 2, the servers

collaborate to compute aMT by computing 2
γ
public keys and then

use them to construct the tree. For certification purposes, root can

then be sent to the CA for certification. This method simplifies

the public key certification process by requiring to contact the CA

only once (to authenticate the root of the tree) to sign 2
γ
messages.

All the dashed lines in Fig. 2 are only executed once for every 2
γ

messages signed. We note that once all the leaves are depleted, the

servers, without the intervention of the signer, can generate a new

tree.

Using this method, signature verification will require the servers

to send the authenticating path along with the final public key

pkc , and therefore it incurs additional γ communication overhead.

Note that, unlike other solutions, this does not imply that our

scheme is 2
γ
time since, after the depletion of 2

γ
public keys, a

new tree (of arbitrary size) can be generated by the server, without

the interaction of the signer. One can see the direct relationship

betweenγ (i.e., the size of the tree) and the communication overhead

between the verifier and the public key generation servers. However,

since the tree generation does not require any signer intervention,

if the communication bandwidth is a concern, to improve verifier

communication, once can keep γ smaller.

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

5 SECURITY ANALYSIS
Theorem 1. If there exist an adversary A that breaks the EU-

CMA property (as defined in Definition 6) of ANT in Algorithm 1, then
one can construct another algorithm B that runs A as a subroutine
and breaks the SIS problem.

Proof. Our proof technique follows a similar approach in [18].

As state in Section 3, we assume the public key servers are compu-

tational t-private. We assume that the reduction algorithm B has

knowledge of the private key components of the t servers (i.e.,
z1, . . . , zt) secret. Therefore, given the knowledge of B of the pri-

vate key components, one can see that it can simulate SGN-DPC.Sig(·)
and PKConstr (·) oracles as in EU-CMA experiment (Definition 6)

exactly as in the original scheme. B responds to CrptServer(i) for
i ∈ {1, . . . , t} queries by returning the corresponding private key

components zi .
Note that followingDefinition 4,A can only initiate CrptServer(·)

queries on t − 1 distinct servers. Consequently, if we assumeA has

knowledge on all but one server, then to guess the private key

components it either has to guess the correct zi or (xi , yi). It can
come up with a correct guess with probabilities 2

−κ
and 2

−2ln |βxy |
.

Therefore, without knowing at least one of the private key compo-

nents pairs, the adversary has to correctly compute a valid partial

signature xiH1(m, c) + yi . The scheme proposed in Algorithm 1 is

based on the one-time signature obtained from a Ring-SIS based

one-time signature similar to that in [18]. We therefore rely on the

results of Theorem 3.2 in [18].

The theorem states that a OTS scheme is correct and secure if it

meets the following properties.

– Closure: {z ← xH1(·) + y} ∈ S holds for all x, y ∈ βxy and

H1 as defined in Section 2, where S = {z ∈ Rl : ∥z∥∞ ≤
2βcβxy}.

– Collision Resistance: The function family {A : S → Rn |A ∈
H} is collision resistance where given A, the adversary

A has only a negligible probability to output a collision

(u , u′,Au = Au′).
– (ϵ,δ)-Hiding: Given A, x, y ∈ βxy and h ← H1(m, c), let:

ΓA(x, y,h) = {x′, y′ ∈ βxy : Ax = Ax′ ∧ Ay = Ay′ ∧ xh + y

= x′h + y′

be the set of keys that are compatible with the public key

pk = (tc , t′c) and signature xh+y forh as defined above. Then
the scheme is (ϵ,δ)-Hiding if Prx,y∈βxy [∀h , h′, |ΓA(x, y,h)∩
ΓA(x, y,h′)| ≤ ϵ |ΓA(x, y,h)|] ≥ δ .
In the following, we use the hiding property where ϵ = 1

2

and δ = 1.

Lemma 1. For he function {Au : S → Rn |A ∈ Rl×l } is collision
resistance under the average-case Ring-SISq,n,k,l,βxy problem defined
in Definition 1.

Proof. Following the results of [18], if the adversary A can

find two vectors u, u′ ∈ S and u , u′ for a random A ∈ Rl×l ,
such that Au = Au′, then it can find a solution to the average-case

Ring-SISq,n,k,l,βxy problem since A(u − u′) = 0 and ∥u − u′∥∞ ≤
4βcβxy. □

Lemma 2. The closure property holds for the scheme proposed in
Algorithm 1.

Proof.

∥xH1(·) + y∥∞ ≤ ∥xH1(·)∥∞ + ∥y∥∞ ≤ βcβxy + βcβxy = 2βcβxy

□

Lemma 3. ([18]) Letn, l ,q and βx be positive integers,R = Z [x]/(xn+

1) a polynomial ring and suppose that βlnx > 2
κβ0q

n . Then for any
A ∈ Rk×l and c ∈ βc we have Prx,y←βxy [∃x′, y′ ∈ βxy : Ax =
Ax′ ∧ Ay = Ay′ ∧ x · c + y = x′ · c + y′] = 1 − 2−κ

Proof. For any A ∈ H , lets consider the function {(A, c) :

(x, y) ∈ K → (pk, z)}. The domain size of this function is |K | =

βxy
nl · βxy

nl
. By Lemma we have z = xH1(·) + y ≤ 2βcβxy. There-

fore, the number of possibilities for z is (at most) (4βcβxy + 1)nl .

We also note that there are q2n possibilities for pk = (t , t ′). For
a fixed A, c , and signature, there are at most ((4βcβxy + 1)nl)qn

possibilities for (pk, z). Therefore, given the results in [18, Lemma

4.1], the probability is 1 − 2−κ □

Lemma 4. For 2βxy + 1 ≥ q1/l · 2κ/nl and a large q, the scheme
satisfies the (1

2
)-Hiding property.

Proof. By the result of the previous lemma, over the random

choice of x and y, for every message the size of the set Γ(x, y,h) (for
h ← H1(m, c)) is at least 2 with probability 1 − 2−κ . We will then

show that for all A, x, y and h , h′, the size of the set Γ(x, y,h) ∧
Γ(x, y,h′) is at most 1. Next, given the definition of Γ(·), we have
xh + y = x′h + y′ and xh′ + y = x′h′ + y′. These relations can be

written as (x − x′) · (h − h′) = 0. Since 2βxyβc(nβc + 1) < q and

since R is an integral domain, we have x = x′ which implies y = y′

and this concludes our proof.

□

Therefore, given the results in [18, Theorem 3.2] and the Lemmas

above, our scheme proposed in Algorithm 1 is secure in the sense

of Definition 6. □

Lemma 5. The scheme proposed in Algorithm 2 is forward secure.

Proof. Firstly, to respond to BreakIn(c) queries for the state/period
c , B outputs the full private key of the user (xc , yc). Note that this
is much stronger than returning the private key components or

partial signing keys. The scheme proposed in Algorithm 2 utilizes a

hash and delete method on the seeds zj,c+1 ← H2(zj,c) to compute

new seeds for each state/period c+1 on both the signer and server’s

side and after the new seed is generated the old will be deleted.

Given the properties of the hash function H2(·) the provided hash

chain ensures that if one (or all) private key components are com-

promised in time period c , it would be infeasible to compute the

private keys prior to state c . Similar methods has also been used in

other schemes such as XMSS [33]. □

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things Conference’21, June 2021, ,

21.74%

39.04%

80.66%

97.24%

97.07%

96.79%

78.26%

60.96%

19.34%

2.76%

2.93%

3.21%

0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

ECDSA

Ed25519

SchnorrQ

ESEM

ANT-II

ANT-FS-II

Pulse Sensor Signing

Figure 3: Energy of Signature Generation vs Pulse Sensor

6 PERFORMANCE EVALUATION
In this section we evaluate and compare the performance of ANTand
its variants (i.e., ANT-FS and MT-ANT) with some of its closely related

counterparts.

As compared to the our base scheme in [18], we significantly

reduce the signer memory requirement and communication by not

requiring the signer to store and send the public key. For instance,

even if we do not consider the hurdle of certificates, the public key

size for 138 bits security would be nearly 7.20 KB (for each signa-

ture) to be stored at the signer’s side and be communicated with

each signature. Also note that for a one-time scheme in [18], the

signer needs to compute a vector-matrix multiplication to compute

the public key for every new signature to be generate. As afore-

mentioned, these performance gains at the signer’s side come at

no cost for the signer. Instead, given our model, which assumes a

computationally capable verifier, the verifier needs to obtain the

partial public keys from a set of t distributed servers to form the

final public key.

We have fully implemented ANT and its forward secure vari-

ant (i.e., ANT-FS) on commodity hardware by utilizing the latest

tools that were used in some of the most recent lattice-based candi-

dates in NIST’s PQC standardization process. Note that we did not

provide the performance analysis of the MT-ANT variant since the
signer’s computations will be identical to those in ANT. We have

also performed a very conservative cost estimation of our schemes

on an 8-bit platform.

We compare the performance of our schemes with state-of-the-

art digital signature schemes for both of these platforms, in terms

of computation, storage and communication.

More specifically, we compare our schemes with both conven-

tional and post-quantum signatures on both commodity hardware

and low-end platform (if available). For our lattice-based counter-

parts, we have selected Dilithium and Bliss.

6.1 Parameters
We set parameters for the R-SIS problem to be hard. Following

[5], we set parameters for ANT-II and ANT-III with κ = 103 and

κ = 138, respectively. Therefore, for both of the variants we set

q = 2
23 − 2

13 − 1, n = 256 [5]. Additionally, for ANT-II, we set

βxy = 6, k = 4 and l = 3 and for For ANT-III, we set βxy = 5, k = 5

and l = 4. Given we use the similar tool sets and hard problems as

the current lattice-based NIST candidates (e.g., [5]), we believe any

future improvements in terms of parameters will contribute to the

performance of the new scheme as well.

6.2 Performance on Commodity Hardware
6.2.1 Hardware Configurations. We used a laptop equipped with

Intel i7 Kaby Lake Refresh processor @ 1.90 GHz and 16 GB RAM.

For our distributed public key servers, we set up Amazon EC2

instances, equipped with an Intel Xeon E5 processor that operates

at 2.4 GH. Our servers are located in Oregon.

6.2.2 Libraries. Our implementation is based on PQC NIST candi-

date [5]. PRF is instantiated with AES in counter mode using Intel

intrinsics and used SHAKE256 for hashing. Our implementation is

not optimized for any specific platforms and for our counterparts,

we used their base reference implementations. Our proof-of-concept

implementation is available at https://github.com/Rbehnia/ANT.git.

6.2.3 Experimental Results. Table 2 presents the experimental re-

sults of our schemes along with comparison with its post-quantum

counterparts.

Signer Computation & Storage: ANT is designed to provide ultra-

efficient signing with post-quantum security especially for resource-

limited IoT devices (e.g, a microcontroller). Therefore, the signature

generation algorithm of ANT, after computing the private key (Steps

2-5 in ANT.Sig(·)), only requires a sparse vector multiplication and

one vector addition.

Therefore, as depicted in Table 2, both ANT-II and ANT-III signifi-
cantly outperform their hash-based counterparts. As compared to

one of the most efficient candidates, currently in the third round

of NIST PQC standardization [5], our scheme is significantly faster

and more memory-efficient on the signer’s side. Comparing the

signature generation of [5] with ours, firstly, since we do not need

to have the rejection sampling step (which could require the rep-

etition of the signing algorithm to 10×) we do not require any

repetition of the signing algorithm. Secondly, due to the one-time

nature of our scheme, we do not need to compute a commitment in

our signing which requires a vector-matrix multiplication. These

result in more than 10× faster signature generation in ANT as com-

pared to Dilithium-II and Dilithium-III. In terms of storage and

communication, ANT only a 32 byte seed to regenerate the private

key components using the Samp functions and for signature size,

ANT enjoys from more than 5.5× smaller signature size as compared

to Dilithium variants. Moreover, even though explicit side-channel

attacks have not been discovered, the concern of such attacks has

been studied in [24]. Additionally, while the matrix A does not

need to be stored and can be regenerated via a "Expand" function,
it still requires memory expansion at the signer side, this memory

expansion is up to 14.38 KB for this matrix. Lastly, based on our

analytical analysis, the signature size in [24] will be nearly 1.2 KB

larger than the one in our scheme for 138 bits security.

Verifier Computation & Storage: Even though ANT and its variants

are designed with the focus on providing efficient signature gener-

ation, they still enjoy from a rather efficient verification algorithm,

as compared with its most efficient counterparts. As alluded to,

for each signature verification, ANT requires the verifier to request

public key (components) from the t honest-but-curious public key
servers, and given our setup, this communication overhead is mea-

sured to be on average around 25 ms with our EC2 instance in

https://github.com/Rbehnia/ANT.git

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

Table 2: Experimental performance comparison of ANT and its post-quantum counterparts on a commodity hardware

Scheme
Signing
Cycles

Private Key†

(KB)
Signature

(KB)
Verification

Cycles
Public Key

(KB)
Rejection/Gaussian

(Sampling)
SPHINCS+ [14] 222, 503, 189 0.06 17, 088 14, 681, 407 0.03 ×

XMSS-MT [15] 8, 075, 528 5.86 4.85 2, 490, 844 0.06 ×

Dilithium-II [5] 865, 921 2.288 2.42 216, 654 1.312 ✓

Dilithium-III [5] 1, 387, 776 3.184 3.293 348, 640 1.952 ✓

ANT-II 81, 333 0.03 0.432 293, 184 5.89 ×

ANT-III 84, 805 0.03 0.56 399, 214 7.36 ×

ANT-FS-II 82, 829 0.09 0.432 293, 184 5.89 ×

ANT-FS-III 86, 914 0.09 0.56 399, 214 7.36 ×

† For SPHINCS+ we use the parameters n = 16, h = 66, d = 22, b = 6, k = 33, w = 16 for 128-bits security. For XMSS-MT, we benchmarked the XMSSMT-
SHA2_20/2_256 variant. Dilithium-II and Dilithium-III provide similar security to our ANT-II and ANT-III variants. We consider t = 3 (i.e., three servers setting) which

affects the private key size in our forward secure variant. Note that for ANT the verification cycles does not include the network delay to receive partial public keys

which is around 25ms per server in our setting. Also, the public size in ANT is per-signature.

Oregon. We also note that as opposed to Dilithium, the public key

storage overhead in our scheme is per signature. We stress that

given our system model and performance gain on the signer we

believe this is a worthy trade-off.

6.3 Performance on microcontrollers
6.3.1 Hardware Configurations. IoT systems employ a plethora of

embedded and resource constraint processors mainly to minimize

the size, power consumption and cost. In one line, ARM Cortex

processors gain popularity. On the another line, truly embedded

devices with popular microcontroller are often 32-,16- or even 8-bit

have been considered in various IoT applications [35]. To ensure

that our proposed system meets the most stringent requirement of

these systems, we selected AVRATmega 2560microcontroller as our

embedded devicemostly since it is adopted in practice, especially for

medical devices [6]. However, we expect its performance benefits

to apply to other class of IoT devices such as ARM Cortex M4

and others such 32-bit and 16-bit microcontrollers. AVR ATmega

2560 is an 8- bit microcontroller with 8 KB SRAM, 256 KB flash

memory, 4 KB EEPROM and maximum clock speed is 16 MHz. Our

AVR ATmega 2560 operates at 5V voltage level and takes 20 mA of

current. It is powered by a 2200 mAh power-pack. We measured the

energywith th formula E = V×I×t , where I is the amperage/current

and t is the computation time.With the aim ofmeasuring the energy

overhead of our proposed systems on low-end IoT devices, we

measured the energy consumption of a pulse sensor [36] compatible

with the AVR ATmega 2560.

6.3.2 Libraries. We recommend ANT-II for deployment on 8-bit

microcontroller due to its smaller parameter sizes. We have se-

lected our counterparts with a comparable security level. We used

CHACHA20 stream cipher [37] for random generation functions

due to its high efficiency. We simulated our hash functions with

BLAKE2s [38] since it is specially optimized for low-end devices.

6.3.3 Experimental Results. Table 1 and Figure 3 presents the ex-

perimental results and energy consumption of our schemes along

with comparison with its post-quantum counterparts.

To our knowledge, there is no 8-bit implementation of Dilithium

available. Therefore, we have selected BLISS [21] as our post-quantum

counterpart. BLISS andDilithium are both based on the "Fiat-Shamir

with Aborts" framework [20]. However, BLISS is based on NTRU

(as opposed to LWE and SIS) and is known to have enjoyed from

a faster signature generation than Dilithium. However, note that

BLISS, while being faster than Dilithium, is not considered in NIST

PQC standardization process. One of the reasons could be the lack

of worst case reduction for the NTRU problem as opposed to other

lattice-based problems like the SIS. Another potential candidate

in the current NIST standardization process is Falcon [12]. Unlike

BLISS and Dilithium, Falcon is instantiated over NTRU lattices and

is based on the hash-and-sign paradigm with a trapdoor sampler

called "fast Fourier sampling". Falcon is known to be more RAM

efficient, however, in terms of signing speed, since Falcon relies on

64-bit floating point arithmetic, which is not natively available for

low-end devices (e.g., 8-bit processors), and has to be emulated, it

would become much slower than its FSA-based counterparts [39].

To provide a reference, the performance results reported in [40] on

an ARM Cortex-M at 168 MHz, the signing on Dilithium-III takes

8,348,349 cycles, while Falcon-I takes 80,503,242, that is nearly 10×

slower for a lower security level . For a compete signing speed

analysis between NIST candidates please see [40]. We also compare

ANT with a widely adopted classical scheme.

Singer Computation: Among our classical counterparts, ESEM [10]

performance is nearly comparable to our schemes. However, we

have included ESEM for the sake of completeness and note the

method that ESEM utilizes (BPV method [41]) to achieve this high

efficiency is based on the hidden subset sum problem which was

recently shown to be susceptible to a polynomial time attack [?
]. Therefore, to account for the security loss resulted from the

attack, ESEM parameters should be updated, which could result in

a less efficient scheme. However, the numbers represented here are

based on the original parameters. After ESEM, ANT-II and ANT-FS-
II are 8× and 7× faster than our closet classical counterpart (i.e.,

SchnorrQ [42]). As depicted in 1, ANT-II and ANT-FS-II signature
generation are 16× and 13× faster than that in BLISS [11]. Similar

to our classical counterparts, ANT-II has an optimal private key size

of 32 bytes only. However, as stated in Section 4.2, the private key

size in ANT-FS is linear to t - the number of public key generation

servers. The signature size in ANT is 30% smaller than that in BLISS.

However, note that since the signer is not involved in computing,

storing or communicating the public keys, the larger public key

size in ANT(and its variants) does not affect the performance of the

signer in any way.

Towards Practical Post-quantum Signatures
for Resource-Limited Internet of Things Conference’21, June 2021, ,

Energy Consumption of the Signer: As for the energy consumption

of ANT (and its variants), as presented in Figure 3, with a 2200mAh
battery ANT-II and ANT-FS-II can generate approximately 745,000

and 675,000 signatures. With its current (insecure) parameters, this

number is slightly higher at 798, 000 for ESEM. We estimated this

number to be at least one order of magnitude smaller (compared to

ANT) for BLISS [11].
We compared the energy overhead of our schemes, and their

classical counterparts, on a pulse sensor (with potential medical

applications). We considered the sensor access time interval (read)

to be every 10 seconds. Given its data sheet, the sensor draws 4.5mA

of current at 3V . Our 8-bit microcontroller (i.e., ATmega2560) takes

1 ms to read from the sensor. While running, it takes 5V × 20mA

×1ms , and µA in standby (power-saving) mode. As depicted in 3,

after ESEM, which is not secure with its current parameters, ANT-II
and ANT-FS-II minimize the energy over head and only consume

2.93% and 3.21% of energy (as compared to the pulse sensor), re-

spectively. This is significantly lower than its closet counterpart

SchnorrQ [42], which consumes around 19% of the energy. Given

the microcontroller type (operating at 32 MHz) and the signing cy-

cles, we anticipate the BLISS would also have a much higher energy

consumption overhead as compared to our schemes. Therefore, our

experiments confirm that ANT (and its variants) significantly reduce
the energy consumption overhead on low-end IoT devices.

Side-Channel Resiliency: To our knowledge, the signing algorithm

of ANT and its variants is not susceptible to side-channel attacks

that are specific to some lattice-based constructions. For instance,

since the singing algorithm of ANT and its variants does not require
any Gaussian sampling or rejection sampling it is not susceptible

to attacks targeting [22–24] these operations. We note that these

attack can be addressed with the cost of additional computation

and/or communication overhead.

Acknowledgment
The work of Attila A. Yavuz is supported by the NSF CAREER

Award CNS-1917627 and an unrestricted gift via Cisco Research

Award.

REFERENCES
[1] C. Camara, P. Peris-Lopez, and J. E. Tapiador, “Security and privacy issues in

implantable medical devices: A comprehensive survey,” Journal of Biomedical
Informatics, vol. 55, pp. 272 – 289, 2015.

[2] Y. Chen, W. Xu, L. Peng, and H. Zhang, “Light-weight and privacy-preserving

authentication protocol for mobile payments in the context of iot,” IEEE Access,
vol. 7, pp. 15 210–15 221, 2019.

[3] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332,
1999.

[4] ANSI X9.62-1998: Public Key Cryptography for the Financial Services Industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), American Bankers Associa-

tion, 1999.

[5] L. Ducas, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehle,

“Crystals – dilithium: Digital signatures from module lattices,” Cryptology ePrint

Archive, Report 2017/633, 2017, http://eprint.iacr.org/2017/633.

[6] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “Sok: Security and

privacy in implantable medical devices and body area networks,” in Proceedings
of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14. IEEE Computer

Society, 2014, pp. 524–539.

[7] K. MacKay, “micro-ecc: Ecdh and ecdsa for 8-bit, 32-bit, and 64-bit processors,”

Github Repository, 2013. [Online]. Available: https://github.com/kmackay/micro-

ecc

[8] M. Hutter and P. Schwabe, “Nacl on 8-bit avr microcontrollers,” in Progress in
Cryptology – AFRICACRYPT 2013, A. Youssef, A. Nitaj, and A. E. Hassanien, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 156–172.

[9] Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and H. Seo, “FourQ on embedded

devices with strong countermeasures against side-channel attacks,” in Crypto-
graphic Hardware and Embedded Systems – CHES 2017, W. Fischer and N. Homma,

Eds. Cham: Springer International Publishing, 2017, pp. 665–686.

[10] M. O. Ozmen, A. A. Yavuz, and R. Behnia, “Energy-aware digital signatures for

embedded medical devices,” in 2019 IEEE Conference on Communications and
Network Security (CNS), 2019, pp. 55–63.

[11] T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, “Practical lattice-based cryp-

tography: A signature scheme for embedded systems,” in Cryptographic Hardware
and Embedded Systems – CHES 2012, E. Prouff and P. Schaumont, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. 530–547.

[12] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,

T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-fourier lattice-

based compact signatures over ntru,” Submission to the NIST?s post-quantum
cryptography standardization process, 2018.

[13] J. Ding and D. Schmidt, “Rainbow, a new multivariable polynomial signature

scheme,” in International Conference on Applied Cryptography and Network Secu-
rity. Springer, 2005, pp. 164–175.

[14] D. J. Bernstein, A. Hülsing, S. Kölbl, R. Niederhagen, J. Rijneveld, and P. Schwabe,

“The sphincs⁺ signature framework,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, ser. CCS ’19. New

York, NY, USA: Association for Computing Machinery, 2019, p. 2129?2146.

[15] A. Hülsing, L. Rausch, and J. Buchmann, “Optimal parameters for xmssmt,” in

Security Engineering and Intelligence Informatics, A. Cuzzocrea, C. Kittl, D. E.
Simos, E. Weippl, and L. Xu, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

2013, pp. 194–208.

[16] A. Hülsing, J. Rijneveld, and P. Schwabe, “Armed sphincs,” in Public-Key
Cryptography–PKC 2016. Springer, 2016, pp. 446–470.

[17] J. W. Bos, A. Hülsing, J. Renes, and C. van Vredendaal, “Rapidly verifiable xmss

signatures,” IACR Transactions on Cryptographic Hardware and Embedded Systems,
pp. 137–168, 2021.

[18] V. Lyubashevsky and D. Micciancio, “Asymptotically efficient lattice-based digital

signatures,” J. Cryptology, vol. 31, no. 3, pp. 774–797, 2018.
[19] A. A. Yavuz, “Eta: efficient and tiny and authentication for heterogeneous wireless

systems,” in Proceedings of the sixth ACM conference on Security and privacy in
wireless and mobile networks, ser. WiSec ’13. New York, NY, USA: ACM, 2013,

pp. 67–72.

[20] V. Lyubashevsky, “Fiat-shamir with aborts: Applications to lattice and factoring-

based signatures,” inAdvances in Cryptology – ASIACRYPT 2009: 15th International
Conference on the Theory and Application of Cryptology and Information Security,
Tokyo, Japan, December 6-10, 2009. Proceedings, M. Matsui, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2009, pp. 598–616.

[21] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice signatures and

bimodal gaussians,” in Advances in Cryptology – CRYPTO 2013: 33rd Annual
Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings,
Part I, R. Canetti and J. A. Garay, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2013, pp. 40–56.

[22] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush, gauss, and reload

– a cache attack on the bliss lattice-based signature scheme,” in Cryptographic
Hardware and Embedded Systems – CHES 2016: 18th International Conference,
Santa Barbara, CA, USA, August 17-19, 2016, Proceedings, B. Gierlichs and A. Y.

Poschmann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp.

323–345.

[23] T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi, “Side-channel attacks on

BLISS lattice-based signatures: Exploiting branch tracing against strongswan

and electromagnetic emanations in microcontrollers,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, CCS 2017,
2017, pp. 1857–1874.

[24] V. Migliore, B. Gérard, M. Tibouchi, and P. Fouque, “Masking dilithium - efficient

implementation and side-channel evaluation,” in Applied Cryptography and Net-
work Security - 17th International Conference, ACNS 2019, Bogota, Colombia, June
5-7, 2019, Proceedings, 2019, pp. 344–362.

[25] C. Pereida García, B. B. Brumley, and Y. Yarom, “"make sure dsa signing expo-

nentiations really are constant-time",” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’16. New York,

NY, USA: ACM, 2016, pp. 1639–1650.

[26] H. N. Noura, O. Salman, A. Chehab, and R. Couturier, “Distlog: A distributed

logging scheme for iot forensics,” Ad Hoc Networks, vol. 98, p. 102061,

2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S1570870519306997

[27] E. Kiltz, V. Lyubashevsky, and C. Schaffner, “A concrete treatment of fiat-shamir

signatures in the quantum random-oracle model,” in Advances in Cryptology –
EUROCRYPT 2018, J. B. Nielsen and V. Rijmen, Eds. Cham: Springer International

Publishing, 2018, pp. 552–586.

[28] Y. Ishai and E. Kushilevitz, “Improved upper bounds on information-theoretic

private information retrieval (extended abstract),” in Proceedings of the Thirty-
First Annual ACM Symposium on Theory of Computing, ser. STOC ’99. New

http://eprint.iacr.org/2017/633
https://github.com/kmackay/micro-ecc
https://github.com/kmackay/micro-ecc
https://www.sciencedirect.com/science/article/pii/S1570870519306997
https://www.sciencedirect.com/science/article/pii/S1570870519306997

Conference’21, June 2021, , Rouzbeh Behnia and Attila A. Yavuz

York, NY, USA: Association for Computing Machinery, 1999, p. 79?88. [Online].

Available: https://doi.org/10.1145/301250.301275

[29] M. Bellare and P. Rogaway, “The security of triple encryption and a framework

for code-based game-playing proofs,” in Advances in Cryptology - EUROCRYPT
2006, S. Vaudenay, Ed. Springer Berlin Heidelberg, 2006, pp. 409–426.

[30] M. Abdalla and L. Reyzin, “A new forward-secure digital signature scheme,” in

Advances in Cryptology — ASIACRYPT 2000, T. Okamoto, Ed. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2000, pp. 116–129.

[31] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures with

fast signing and verifying,” in Proceedings of the 7th Australian Conference on
Information Security and Privacy (ACIPS ’02). Springer-Verlag, 2002, pp. 144–153.

[32] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-

pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “SPHINCS:

Practical stateless hash-based signatures,” in Advances in Cryptology – EURO-
CRYPT 2015: 34th Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer Berlin Heidelberg, April 2015, pp. 368–397.

[33] J. Buchmann, E. Dahmen, and A. Hülsing, “Xmss - a practical forward secure

signature scheme based on minimal security assumptions,” in Proceedings of the
4th International Conference on Post-Quantum Cryptography, ser. PQCrypto’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 117–129.

[34] R. C. Merkle, “A certified digital signature,” in Proceedings on Advances in cryptol-
ogy, ser. CRYPTO ’89. New York, NY, USA: Springer-Verlag, 1989, pp. 218–238.

[35] D. Atkins, “Requirements for post-quantum cryptography on embedded devices

in the iot.”

[36] “Pulse sensor by world famous electronics llc.” https://pulsesensor.com.

[37] D. J. Bernstein, “New stream cipher designs,” M. Robshaw and O. Billet, Eds.

Berlin, Heidelberg: Springer-Verlag, 2008, ch. The Salsa20 Family of Stream

Ciphers, pp. 84–97.

[38] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3 proposal

blake,” Submission to NIST (Round 3), 2010. [Online]. Available: http:

//131002.net/blake/blake.pdf

[39] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4: Testing and

benchmarking nist pqc on arm cortex-m4,” 2019.

[40] A. Khalid, S. McCarthy, M. O?Neill, and W. Liu, “Lattice-based cryptography for

iot in a quantum world: Are we ready?” in 2019 IEEE 8th International Workshop
on Advances in Sensors and Interfaces (IWASI), 2019, pp. 194–199.

[41] V. Boyko, M. Peinado, and R. Venkatesan, “Speeding up discrete log and factor-

ing based schemes via precomputations,” in Advances in Cryptology — EURO-
CRYPT’98: International Conference on the Theory and Application of Cryptographic
Techniques Espoo, Finland, May 31 – June 4, 1998 Proceedings. Springer Berlin

Heidelberg, 1998, pp. 221–235.

[42] C. Costello and P. Longa, “Schnorrq: Schnorr signatures on fourq,” MSR Tech

Report, 2016. Available at: https://www. microsoft. com/en-us/research/wp-

content/uploads/2016/07/SchnorrQ. pdf, Tech. Rep., 2016.

https://doi.org/10.1145/301250.301275
https://pulsesensor.com
http://131002.net/blake/blake.pdf
http://131002.net/blake/blake.pdf

	Abstract
	1 Introduction
	1.1 Research Gap
	1.2 Our Contribution
	1.3 Desirable Properties
	1.4 Limitations

	2 Preliminaries
	3 Models
	3.1 System Model
	3.2 Security Model

	4 Proposed Scheme
	4.1 The Basic Scheme
	4.2 The Forward Security Scheme
	4.3 Signer independent offline certification management

	5 Security Analysis
	6 Performance Evaluation
	6.1 Parameters
	6.2 Performance on Commodity Hardware
	6.3 Performance on microcontrollers

	References

