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Abstract

In a series of recently published studies purportedly on the “additive-area heuristic,”
Yousif & Keil (2019; 2020) argue for a systematic distortion in the perception of the
cumulative area of an item array and further claim that previous findings of numerical
cognition and magnitude perception in general are “at risk” (Yousif & Keil, 2021). This
commentary describes serious stimulus design flaws present in all of Yousif and
colleagues experiments that prevent from making such conclusions. Specifically, item
arrays used in those studies demonstrate a skewed correlational structure between
selected magnitude dimensions and exhibit unbalanced ranges across different magnitude
dimensions of interest. Because the perception of magnitude dimensions interferes one
another and because our perceptual system is sensitive to the statistical regularities of the
sensory input, such a biased design makes it difficult, if not impossible, to interpret the
choice behavior of an observer making magnitude judgments. By re-introducing the
mathematical framework for a systematic construction of dot array stimuli (DeWind et
al., 2015) and by re-analyzing the data from another recent study on area perception
(Tomlinson et al., 2020), this paper explains—and introduces a MATLAB code for—an
optimal method for designing and constructing dot arrays for magnitude perception
studies.
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1. Introduction

In a series of recently published articles, Yousif and colleagues (Yousif, Aslin, & Keil,
2020; Yousif & Keil, 2019, 2020) investigated adult participants’ judgment of the
cumulative area of an item array. In these studies, participants were given two item arrays
and were asked to indicate which array has more cumulative area. From their results, the
authors collectively make two conclusions. They first claim that the estimation of true
visual area of an item array, defined by the sum of the mathematical area of all items in
the array, is significantly distorted by perceived visual area which they define as the sum
of the width (along horizontal axis) plus the height (along vertical axis) of all the items in
that array, which they refer to as the additive-area heuristic. The authors then make a
broader and stronger claim about magnitude perception in general, particularly about
numerosity perception. They argue that “the ability to make area discriminations on the
basis of ‘additive area’ ... predicts number discrimination ability” (Yousif & Keil, 2020)
and further claim that “the explanatory power of this heuristic ... may bear on the
interpretation of many seminal articles in the field of numerical cognition as well as work
on area estimation, general magnitude, and various aspects of visual perception” (Yousif
& Keil, 2019). Unfortunately, however, as demonstrated in the current paper, those
additive-area heuristic studies contain flaws in their stimulus design that make it difficult
to reach such conclusions.

2. A very brief review of the area perception literature

Area perception has been studied for more than a century, documented as early as Bolton
(1898). It has long been known that area perception is significantly influenced by the
shape and size of the stimulus. For instance, Anastasi (1936) reported that a diamond is
relatively overestimated compared to a square of the same size. Other researchers (e.g.,
Teghtsoonian, 1965) found that perceived area increases at a lower rate than true area.
These older studies seem to have focused on explaining these phenomena by how
perception relies on multiple pieces of information to derive an estimate of area. Some
suggested that area perception is based on one of the linear dimensions (Anastasi, 1936;
Verge & Bogartz, 1978), while others suggested that it is based on some integration of
information such as the function of perimeter (Smith, 1969). Interestingly, Anderson &
Cuneo (1978) and Wolf & Algom (1987) who used Anderson & Cuneo’s paradigm
demonstrated that younger children (5-6 y) use the function of width and height, in other
words an additive rule, while older children (10-12 y) use a multiplicative rule, although
their paradigm has been criticized on statistical and methodological grounds by Bogartz
(1978). Moreover, one of the more recent studies on this literature suggests a
multiplicative model for area estimation and comparison, where the relative saliency of
the axial dimensions is weighted accordingly in that multiplication (Krider, Raghubir, &
Krishna, 2001). Overall, these earlier studies collectively demonstrate that area
perception is influenced by size and shape of the item in many ways. Therefore, Yousif
and colleagues’ first conclusion can be considered as a reiteration of those findings.
Then, the novel contribution of Yousif and colleagues’ work comes from their second
conclusion, as they investigated area perception using item arrays in the context of
magnitude perception across other dimensions, including number.



3. Difficulties in designing item-array stimuli for magnitude perception studies

Studying magnitude perception using visual item arrays is notoriously difficult due to the
intricate relationship between various dimensions including number, area, density, etc.
Consider an array of identical-sized circles. One may quantify the magnitude of such an
array as the number of circles, the area of each circle, the summation or cumulative area
of all the circles, the perimeter of each circle, the cumulative perimeter of all the circles,
the convex hull of the array defined as the area of the circumscribed region within which
the circles are drawn, the density of the array defined as the convex hull divided by the
number of circles, and potentially more. All of these dimensions are tightly interrelated
(in fact, by their mathematical definitions), which engenders a significant challenge when
studying the perception of these magnitudes. This is because when a researcher varies
one dimension to examine its effect on behavior or neural measures, some of the other
dimensions necessarily change accordingly, which may go unnoticed by the researcher.

As elaborated later in this paper, the sets of stimuli used in studies of additive-area
heuristic (Yousif & Keil, 2019, 2020) suffer from two design problems. The first problem
can be described as the skewed selection of stimulus parameters causing congruity and
incongruity in unexpected dimensions. The second problem can be described as having
unbalanced stimulus parameter ranges across different magnitude dimensions. These
problems make it difficult, if not impossible, for one to make firm conclusions about
magnitude perception across multiple dimensions, simply because the item arrays are not
designed to make proper interpretations of those dimensions.

To understand the first problem, consider a number discrimination task with a binary
discrimination between two dot arrays. The arrays can be constructed such that the
individual dot area or the total dot area is held constant between the two arrays. In the
former case, number is congruent with total dot area. In the latter case, number is
incongruent with individual dot area. It has long been known that judgment on number is
strongly influenced by whether and how much other dimensions are congruent or
incongruent with number (e.g., see Allik & Tuulmets, 1993; Clearfield & Mix, 1999;
Ginsburg & Nicholls, 1988; Miller & Baker, 1968; Xu & Spelke, 2000), making it crucial
to construct stimulus sets that balance congruent and incongruent effects. As elaborated
below, stimuli used in the additive-area heuristic studies show extremely skewed
distributions in their stimulus parameters, eliciting strong congruity and incongruity
effects in an unexpected way.

A second design choice in stimulus design construction needs to be considered. Consider
again a binary-choice number discrimination task, in which the range of the number
dimension is very narrow, say, between 20 and 26 dots (1.3:1 ratio). It is problematic if
other salient magnitude dimensions such as cumulative area is allowed to have a much
larger range (e.g., 5:1 ratio difference). This is because our sensory system is sensitive to
the statistical regularities of the sensory input over time (Barlow, 2001). Thus, if one
magnitude dimension changes in a much larger range than another over time, the
sensitivity of the visual system is likely to become biased towards that dimension. Stimuli
used in the additive-area heuristic studies also show this issue.

The current paper describes the flaws in Yousif & colleagues’ stimulus design by re-
introducing an innovate framework for constructing and analyzing dot array stimuli for



magnitude perception studies (DeWind, Adams, Platt, & Brannon, 2015). This
framework establishes three orthogonal axes—number, size, and spacing—in which their
linear combinations allow all other prominent magnitude dimensions to be explicitly
defined in that stimulus parameter space. The two aforementioned problems in the
additive-area heuristic studies are analyzed and visualized, and the importance of a
systematic (i.e., unskewed and balanced) stimulus design is demonstrated from a re-
analysis of Tomlinson, DeWind & Brannon (2020), a previous study that addressed the
exact same question as in Yousif & Keil (2019; 2020).

4. Systematic construction of dot-array stimuli by DeWind et al. (2015)

DeWind and colleagues (2015) developed a seminal framework for establishing
systematic relations between magnitude dimensions of a dot array. Assume an array of
number of homogenous dots with a radius of 7s randomly dispersed within an invisible
circular field with a radius of 7z Then, various other prominent magnitude dimensions
can be defined mathematically by these three variables, as shown in Table 1. A log (base
2) transformation of these variables “linearizes” those dimensions which allows all of
them to be represented as a linear combination of the three orthogonal dimensions (Fig.
1). In the original paper by DeWind and colleagues, number (N), size (Sz), and spacing
(Sp) were chosen as the three orthogonal dimensions for ease of interpretations; however,
it should be noted that analyses based on this mathematical framework works in an
identical fashion for any three orthogonal dimensions chosen from the stimulus space.
Importantly, size and spacing are meaningful, interpretable dimensions. Size refers to the
dimension that changes both 74 and /4 together while holding N constant. Spacing refers
to the dimension that changes both Spar and F4 together while holding N constant.
Readers are strongly encouraged to read DeWind et al. (2015) for details.

Table 1. Mathematical relationship between various magnitude dimensions.

Dimension As a function of n, rq, rf Relationship with N, Sz, and Sp
Individual area rd? log(IA) = %2log(Sz) - Y2log(N)
(1A)
Total area (TA) n X mrq? log(TA) = %log(Sz) + ¥:log(N)
Field area (FA) e log(FA) = Ylog(Sp) + Y2log(N)
Sparsity (Spar) nré2/n log(Spar) = %log(Sp) - Y2log(N)
Individual 2mrd log(IP) = 10g[2\/ﬂ) + Ylog(Sz) - Yalog(N)
perimeter (IP)
Total perimeter n X 2mrq log(TP) = log(Z\/ﬂ) + Ylog(Sz) + 34log(N)
(TP)
Coverage (Cov) n X ra?/ re log(Cov) = %2log(Sz) - Ylog(Sp)
Closeness (Close) 2 X ra? X re log(Close) = Y2log(Sz) + Y2log(Sp)

Note: n = number; rq = radius of individual dot; rr = radius of the invisible circular field in which the dots
are drawn.

One detail worthy of note is that size can be defined in different ways. It can be defined
in terms of area (i.e., log(Sz) = log(TA4) + log(/4)) or in terms of perimeter (i.c., log(Sz) =
log(TP) + log(IP)), as done in Experiment 2 of Park et al. (2016). In other words, number
can be orthogonalized against area or it can be orthogonalized against perimeter. When
number is orthogonalized against area, TP is more correlated with number than 7A. This
is because one log-unit increase in N corresponds to ¥ log-unit increase in 7P, while it



only corresponds to %2 log-unit increase in 74 (see Table 1). Orthogonalizing number
against perimeter prevents this greater confound between N and 7P because in that case
one log-unit increase in N corresponds to 2 log-unit increase in 7P. However, this
manipulation raises the range of 74 variation to the second power compared to the range
of variation in other dimensions (7P, N and Sp). These different ways of orthogonalizing
produces slightly different statistical regularities of the dimension parameters.
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Figure 1. Properties of magnitude dimensions represented in three orthogonal axes defined
by log-scaled number, size, and spacing. The framework originally developed by DeWind
and colleagues (2015) allows various magnitude dimensions of a dot array to be
represented systematically in this 3D parameter space.

It should be noted that the field of numerical cognition has long been developing ways to
construct item arrays systematically. There have been earlier efforts to better identify the
relations between various magnitude dimensions (Dehaene, Izard, & Piazza, 2005;
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Besides DeWind et al. (2015), many
recent studies in numerical cognition have used systematic design of item-array stimuli at
least within the 2-dimensional parameter space pertinent to their research questions
(Castaldi, Piazza, Dehaene, Vignaud, & Eger, 2019; Cicchini, Anobile, & Burr, 2016),
and across the 3-dimensional parameter space (Park, 2018; Van Rinsveld et al., 2020).

5. Regression-based assessment of the effect of magnitude dimensions on choice
behavior: re-analysis of Tomlinson et al. (2020)

A recent study by Tomlinson et al. (2020) provides a good demonstration of a systematic
design of dot arrays using DeWind and colleagues’ framework for investigating area
perception. In that study, adult (and child) participants made number and area judgments
in a between-subjects design on pairs of dot arrays. The dot array stimuli were
constructed using the aforementioned mathematical framework so that the dimensional
properties of the dot arrays were systematically distributed in equal ranges of N, Sz, and
Sp. Specifically, each trial presented a reference dot array with a set of stimulus
parameters (N=16; T4=4,926; Sz: 1.5166e+06; Sp: 2.4674e+08) and a deviant dot array
with a set of stimulus parameters that were distributed systematically across a “cube” in
the parameter space defined by the three orthogonal axes N, Sz, and Sp (Fig. 2A). This
design ensured an explicit understanding of the amount of congruency and incongruency
between magnitude dimensions and the range of ratios (or log differences) across them.
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Figure 2. Stimulus design and result of Tomlinson et al. (2020). A. Distribution of stimulus
parameters for dot arrays used in one adult participant’s area judgment task. The red dot in
the center indicates the reference dot array in that study which consisted of 16 (hence,
log(N)=4) dots with the total area of 4,926 pixels. Blue dots indicate the stimulus
parameters for the deviant arrays. The gray lines connecting blue dots to the red dot depicts
the fact that each of the deviant arrays constructed using the unique stimulus parameter
was paired up with the reference dot array in the area judgment task. The pattern of these
dots and lines illustrate that deviant arrays differed from the reference array systematically
across all the dimensions that can be expressed as a linear combination of log(N) and
log(Sz). B. Result of the regression-based analysis of the effect of magnitude dimensions on
participants’ area judgment. The beta estimate vector (represented as the green dot) lied
most closely to (7.775° away from) the dimension of TA.

As in the original study by DeWind et al. (2015), Tomlinson and colleagues used a
regression-based approach to assess how each dimension of interest explains participants’
choice behavior. In order to demonstrate this procedure here, the raw data from
Tomlinson et al. (2020) were obtained from the public repository (https://osf.io/er9du/)
and re-analyzed. The mean accuracy for adults was 81% in the area judgment task.
Participants’ responses were modeled using a generalized linear model with a probit link
function, but only with the parameters for number and size:

Per = d)(ﬂside + ,BN IOgZ(VN) + ﬂSZ logZ(VSZ))a (1)

where p.- is the proportion of trials the participants selected the stimulus on the right, @
is the cumulative normal distribution, fsise is the intercept indicating side bias, 7y and rs.
are the ratios of the N and Sz of the right array to the N and Sz of the left array, and finally
P and fs: are the regression coefficients. The spacing dimension was collapsed in order
to better match the stimuli used in Yousif & Keil (2019; 2020) which do not provide
spacing information. Moreover, spacing overall had little influence on both number and
total area judgment tasks (Tomlinson et al., 2020).

The beta estimates for N (fy) and Sz (fs:) produced by Equation 1 illustrate the extent to
which ratios (or log differences) in those dimensions influence choice behavior.
Specifically, the degree to which the vector f=[fs:, fn] is close to an axis representing a
dimension (e.g., N, T4, Sz, etc.) can be interpreted as how much that dimension



determined choice behavior compared to other dimensions. For instance, f=a[1,1] (where
a is a scaling constant) would imply that participants made judgments based on total area
(note log(TA4) =" x log(N) + V4 x log(Sz)) with no influence from other task-irrelevant
dimensions. The result of this analysis, f=[fs:, fv]=[1.3982, 1.0623], is shown as the
green dot in Figure 2B. This vector lied most closely to the dimension of 74 (7.775 deg
clockwise from the 74 axis), indicating that participants’ choice behavior was best
explained by total area.

For the completeness of the current re-analysis, the same analysis was done on the choice
behavior in which a different group of participants made number judgments. This
analysis resulted in f=[fs:, fv]=[0.0851, 4.6183], which was only 1.0559 deg clockwise
away from the N axis. Consistent with what was demonstrated in DeWind et al. (2015),
these results indicate that participants’ numerosity discrimination was most closely based
on the number of dots in an array.

It should be emphasized that the psychometric modeling can be done using any two
dimensions without affecting the conclusion. For example, choice behavior can be
modeled using /4 and 74 as in:

Per = DP(Bside + Pv loga(r14) + Ps: loga(rra)).  (2)

Analyzing Tomlinson and colleagues’ adult data using this model yields f=[f74,
Pr4]=[2.7981, 0.3369]. This vector is 7.792 deg clockwise from the 74 axis. This is
exactly how much the vector f=[fs., fv] was rotated away from the 74 axis within
rounding error (see above).

Of importance is that S coefficients should be interpreted collectively. Hence, for a
straightforward interpretation of the results and to avoid multicollinearity, it is
recommended to use orthogonal dimensions in the psychometric model. For instance, the
same data analyzed above yields the estimate of f=[frp, fn]=[5.5961, -3.1349] when TP
and N are used, and yields the estimate of f=[fr4, fn]=[2.7981, -0.3367] when 74 and N
are used. Note how S in these two different models are different from each other, which
are also different from f=[fs., fnv]=[1.3982, 1.0623]. But, again, these f coefficients
cannot be interpreted individually.

In fact, p=[frpr, pn]=[5.5961, -3.1349], p=[Sr4, fn]=[2.7981, -0.3367], and B=[ps:,
Snl=[1.3982, 1.0623] are all essentially the same results after some vector algebra. First,
for an easy comparison, let us normalize [fs, fv] which yields [0.7962, 0.6050]. Then,
take the first result, [frr, fv]=[5.5961, -3.1349]. Given that the dimension 7P is defined
by one log-unit increase in Sz and three log-unit increase in N (see Table 1), frp = 5.5961
refers to a vector defined by that magnitude along the [Sz, N] = [1, 3] axis. Separately, fn
= -3.1349 refers to a vector defined by that magnitude along the [Sz, N] = [0, 1] axis.
Thus, some algebra yields the normalized vector [Srp, fv]=[fs:, fn]=[0.6313, 0.7755].
The same can be done with the second result, which yields the normalized vector [f74,
Bnl= [Bsz, Pn]=[0.7695, 0.6386]. Thus, the results from using [frp, fn] and [fr4, fn] can
be transformed to the results using the orthogonal dimensions [fs:, fv]. Some numerical
differences between the three results exists, however, likely caused by the spurious
effects of multicollinearity when two correlated dimensions are used as regressors, which
is another important reason for using orthogonal dimensions in the psychometric model.



6. Problems with the stimulus design in Yousif & Keil (2019; 2020)
6.1. Skewed sampling of stimulus parameters

Now that an example of a systematic stimulus design is introduced and explained in the
previous section, this section provides an elaborate description of the stimulus design by
Yousif & Keil (2019; 2020) using the mathematical framework developed by DeWind
and colleagues (2015). The stimulus design from Yousif & Keil (2019) was obtained
from the public repository (https://osf.io/dc5t8/). The file contained stimulus information
about number, additive area, and true area for pairs of dot arrays used in area judgment
tasks. In most cases (as long as the average aspect ratio between the width and height of
each item is one), additive area referred to the summation of the diameters across all the
dots in an array (or width in case of squares). That said, this dimension is equivalent to
total perimeter (TP) in the aforementioned framework (differing only in scale). True area
referred to the summation of the area across all the dots in an array, which is equivalent
to total area (74) in the framework. The terms used by Yousif & Keil, namely true area
and additive area, are now referred to as TrueA and AddA, in order to avoid confusion
with the terms used in DeWind and colleagues’ framework. Again, TrueA is equivalent to
TA and AddA is equivalent to TP. No information about spacing was available, so that
third orthogonal dimension was excluded from further analysis, as in the re-analyses of
Tomlinson et al. (2020) in the previous section.
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Figure 3. Distribution of stimulus parameters for dot arrays used in Experiment 1 & 2 of
Yousif & Keil (2019). The red dots locate the stimulus parameters of the first array of each
pair, and the blue dots locate the stimulus parameters of the second array of each pair. The
grey line connects the two arrays within each pair. As can be seen, there was a systematic
anti-correlation between N and Sz in that stimulus design. This kind of skewed sampling of

stimulus parameters may yield biased results.

Stimulus properties between all the pairs of dot arrays used in Exp. 1 & 2 of Yousif &
Keil (2019) were appropriately transformed to be represented in log(N) and log(Sz).
Then, the stimulus properties of those pairs were visualized in a 2-dimensional space in
Figure 3. As shown, all the pairs differed in their stimulus parameters almost exclusively
along the /4 axis, although with some variations in the angle. This is a prototypical
example of a skewed selection of stimulus parameters, that emerges when experimenters
attempt to manipulate just two dimensions (7rueA and AddA in this case). Specifically,
this stimulus design produces a strong incongruity between N and Sz.



For a different perspective of this stimulus design, the first array of each pair was
compared with the second array of each pair in N, TrueA, and AddA. Specifically, the
difference between log-transformed N, TrueA, and AddA were taken between arrays
within each pair, in order to quantify how the two arrays differed in those dimensions.
The distribution of this difference across all stimulus pairs as well as cross-correlations
between the differences across the three dimensions are visualized in Figure 4. Although
the mean of log difference was comparable across the dimensions of N (-0.115), TrueA (-
0.106), and AddA (-0.105), the distribution of log difference showed a greater variance
along the N dimension than along the Trued and AddA dimensions (Fig. 4A). Moreover,
there was a strong negative correlation between how much the two arrays in each pair
differed in TrueA and N, and a strong positive correlation between how much the two
arrays in each pair differed in AddA and N (Fig. 4B). This means that the stimuli were
selectively created to impose a very strong incongruency between 7rued and N and a
very strong congruency between AddA4 and N. If dot arrays were constructed
systematically across the mathematically defined parameter space, N should be positively
correlated with T4 (i.e., log(TA4) = "2 x log(N) + %2 x log(Sz)) and slightly more positively
correlated with 7P (i.e., log(TP) = log(2xsqrt(r)) + ¥4 x log(N) + V4 x log(Sz)) (see
Figure S1 in Supplementary Materials for the same scatterplot matrix acquired from the
stimuli set used in Tomlinson et al. 2020). In contrast, N was highly negatively correlated
with TrueA (equivalent of 7P). In sum, while the authors’ intention may have been to
equate the ratios between 77ued and AddA on average, this design artificially yielded a
strong incongruity between 7rueAd and N. It should be noted that all of their experiments
in Yousif & Keil (2019; 2020) showed an extreme skewness in their stimulus parameters.
See Supplementary Materials (Fig. S2-S11) for the analyses of the stimulus design in the
rest of the experiments.
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Figure 4. Stimulus design from Yousif & Keil (2019, Exp. 1 & 2). A. Distribution of log
differences (or ratios) within pairs of arrays in number (N), true area (TrueA), and additive
area (AddA). B. Scatterplot matrix illustrating the correlational structure of those log
differences across the three dimensions.

6.2. Unbalanced stimulus parameter ranges

Besides the problem of skewed sampling of stimulus parameters, Yousif & Keil’s (2019;
2020) stimulus design suffers from another problem, namely having unbalanced stimulus
parameter ranges across different magnitude dimensions. This issue is already shown in
their stimulus design of Yousif & Keil (2019) (see Fig. 4A), but it becomes exacerbated

10



in Yousif & Keil (2020). In that study, participants were asked to make judgments on
area and number, as the authors were interested in evaluating how area affects number
judgment and vice versa. The design of dot arrays used in those experiments revealed that
the distribution of stimulus parameters across trials was vastly different across
dimensions. Figure SA illustrates how much N and Sz varied across all the dot arrays
used in Exp 2 of Yousif & Keil (2020) (obtained from https://osf.io/kx3sv/). While the
range of N across all the arrays was only about 0.5 in log scale (i.e., about 1.4:1 ratio), the
range of Sz was close to 2.5 in log scale (i.e., 5.6:1 ratio). Such a difference between the
two dimensions was also apparent when the log difference between two arrays within
each pair was quantified. Even though the mean of the log-difference measures was
comparable between the two dimensions (0.111 for N and 0.110 for Sz), the distribution
of this log difference was fairly narrow (with a range below 0.4) in N, while the
distribution of this log difference was vastly wide (with a range about 2.5) in Sz. This
means that across all the trials, participants saw dot arrays with much larger differences
in Sz than in &, and that they saw pairs that differed much more substantially in Sz than in
N. Remember that log(7A4) = log(N) + log(Sz), indicating that large ranges of those
measures in Sz results in large ranges in 74. The same pattern of unbalanced ranges was
observed in all of Yousif & Keil’s experiments (see Fig. 4 and Fig. S7-S11 in
Supplementary Materials). In contrast to Yousif & Keil’s design, distributions of stimulus
parameters in Tomlinson et al. (2020) were more balanced and comparable (Fig. 5B).
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Figure 5. Distribution of parameter values across all the stimuli and distribution of log
differences (or ratios) across all the pairs of arrays used in the two experiments (Yousif &
Keil, 2020; Tomlinson et al., 2020). Yousif & Keil’s arrays varied much widely along the Sz

dimension compared to the N dimension, while Tomlinson and colleagues’ dot arrays varied
in a comparable range between the two dimensions. The same was true with log difference
measures between the two arrays within each pair.

6.3. Interpretation of Yousif and Keil’s (2019, 2020) data considering their design
problems

The skewed and unbalanced sampling of stimulus parameters prevents one from making
an unbiased interpretation about magnitude perception. Consider Exp. 1 of Yousif & Keil
(2019) where N is highly negative correlated with 7rueA4 but highly positively correlated
with AddA. This means that when participants view two dot arrays where one (say Array
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Left) of them is greater in 77ueA than the other (say Array Right), Array Left is smaller in
N. Simultaneously, the range of differences in N is so much larger than the range of
differences in True4 making N a more salient dimension that could possibly influence
choice behavior. Then, participants are likely to make substantially more incorrect
decisions than when such a strong incongruity did not exist. In contrast, when Array Left
is greater than Array Right in AddA, Array Left is also greater in V. In such a case if
participants’ magnitude perception again is biased by the saliency of number, their
perception would be boosted by the especially high correlation between AddA and N and
would likely to be correct more so than when such a strong congruity did not exist.

Figure 6A explains this hypothetical but plausible scenario in graphics. The strongly
skewed distribution of stimulus parameters can be illustrated as the cyan cloud in the
dimensional space defined by N and Sz. Let us assume that an observer makes an
unbiased judgment of area (i.e., based on TrueA) as shown in adult participants of
Tomlinson et al. (2020). Then, that observer’s choice behavior would be modeled as beta
estimates that would lie on the axis of 74 (point a in Fig. 6A). Now, a strong negative
correlation between 74 and N presumably influences the observer’s choice behavior, in
that he or she perceives more numerous arrays to contain more area. This is a reasonable
presumption because number is the most salient visual feature processed in the earliest
level of cortical processing (Fornaciai, Brannon, Woldorff, & Park, 2017; Park, DeWind,
Woldorff, & Brannon, 2016) and because log difference in N is about three times as
much of that in 74 in Yousif & Keil (2019). This perceptual interference, then, would
make the choice behavior rely less on Sz but more on A, pulling the beta estimates
accordingly (point b in Fig. 6A). Simultaneously, the direction to which choice behavior
is influenced is the opposite, because in reality, more numerous arrays always had
smaller 74. Therefore, the beta estimate for N would decrease, lying closest to the 7P
(AddA) axis (point c in Fig. 6A).

Yousif & Keil (2019) performed a linear regression to explain participants’ choice
behavior with AddA, TrueA, and N as regressors. However, there are two important
caveats to consider in their regression analysis. First, as shown in Figure 4, some of those
dimensions are extremely highly correlated (up to r = 0.924) with each other. Such a
severe multicollinearity makes it difficult to properly interpret the coefficients. Second,
Yousif & Keil (2019) interpreted beta coefficients individually; however, as explained in
Section 3, those beta coefficients must be interpreted in the context of each other. Their
analysis in Exp. 1 showed that AddA, but not TrueA or N, predicted observer responses.
However, this pattern can be fully explained by the skewed and unbalanced sampling of
stimulus parameters as described above and illustrated in Figure 6A, considering that a
virtually identical experiment but with a systematic stimulus design revealed an entirely
different pattern of results (Tomlinson et al., 2020).

Note that under a strong negative correlation between N and another dimension, such as
TrueA or AddA, it is even possible for the beta estimate for NV to be negative in an area
judgment experiment. This is because a larger value in TrueA or AddA is always
associated with a smaller value in N so that participants need to choose the array with
fewer items in order to choose the array with greater area. This pattern was indeed
evident in Yousif & Keil’s studies. In Exp. 4 of Yousif & Keil (2019) (see Fig. S5), their
regression analysis showed a negative effect of N specific to the trials in which TrueA
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varied along N. In Exp. 2b of Yousif & Keil (2020) (see Fig. S9), their regression
analysis showed that participants were significantly below chance when selecting
between arrays equal in AddA but differing in &, indicating that they perceived less
numerous arrays to contain more area. Thus, these negative beta coefficients for N, as
well as all the beta coefficients from Yousif & Keil’s (2019; 2020) report, should be
interpreted with caution considering the skewed distribution of stimulus parameters.
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Figure 6. Schematics of how skewed and unbalanced stimulus design may explain Yousif &
Keil's (2019; 2020) results. See Section 6.3 for how these designs may influence choice
behavior and hypothetical beta estimates. A. Hypothetical illustration of the case of area
judgment. In many of Yousif & Keil's stimulus design, there was a strong positive correlation
between N and TP and a strong negative correlation between N and T4, and this pattern can
be graphically illustrated as the illustrated cyan cloud. Take the right-most (p) and left-most
(q) points of the cyan cloud. The projection of points p and g onto the dimensional axes
gives clues about the correlational structure between dimensions. For example, a dot array
with its stimulus parameters represented by point p is greater in TA than a dot array with
its stimulus parameters represented by point q (indicated by the direction of the purple
arrow). The former array, however, is smaller in N than the latter array (indicated by the
direction of the red arrow). B. Hypothetical illustration of the case of number judgment. In
some other designs, N was negatively correlated with both TA and TP, which as a corollary
created a much more unbalanced distribution of stimulus parameters. As illustrated in both
cases, such a skewed and unbalanced design can explain idiosyncratic choice behavior
patterns in area and number judgments even if an observer is assumed to have an unbiased
representation of area and number. As a comparison, a systematically constructed set of dot
arrays would be represented by a circular or square cloud (see Fig. 2A).

Another design problem explained in Section 4.2 was unbalanced parameter ranges
across dimensions. This pattern usually happens together with skewed distribution of
stimulus parameters as described in Section 4.1. Unbalanced parameter ranges can be
problematic because our perceptual system is sensitive to statistical regularities of the
sensory input (Barlow, 2001; Kohn, 2007; Wark, Lundstrom, & Fairhall, 2007). There is,
in fact, empirical evidence for it in the domain of numerosity perception. When
participants are passively viewing dot arrays systematically designed across equal ranges
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of N, Sz, and Sp, their early visual cortical activity shows almost no modulations by Sz or
Sp (Park et al., 2016), but when they view dot arrays that exclusively change in Sz (with
values of N and Sp held constant) or Sp (with values of N and Sp held constant), their
visual cortical activity becomes modulated by those exclusive changes in one dimension
(Park, Godbole, Woldorff, & Brannon, in press). Hence, our perceptual system becomes
more sensitive to dimensions that change relatively larger in scale over time.

Consider Exp. 2 of Yousif & Keil (2020), where they designed the stimuli to “directly
[pit] AddA and N against each other” in number judgment and area judgment tasks.
However, their stimulus design unfortunately became extremely skewed and unbalanced,
which is schematically represented in Figure 6B (for real values, see Fig. S8 and S9).
Having this skewed and unbalanced stimulus design in mind, consider the case of number
judgment. It is well known that, when dot arrays are systematically designed, participants
are most sensitive to changes in N than changes in Sz or Sp with a slight bias towards the
positive Sz direction (e.g., DeWind et al., 2015; Tomlinson et al., 2020). Hence, if an
observer’s choice behavior for number judgment is modeled, the beta estimates would lie
close to the NV axis but slightly toward the positive Sz direction (point a in Fig. 6B). In
Yousif & Keil’s (2020) design, however, the range of log difference in N was extremely
small compared to the range in Sz. This extreme unbalance in stimulus parameters, thus,
is likely to make the choice behavior rely less on N but more on Sz and even towards the
negative direction along the 74 axis, pulling the beta estimates accordingly (point b in
Fig. 6B). This effect will make the beta estimates to be closer to the 7P axis. This pattern
was, in fact, what was reported in Exp. 2a: “Observers judged images containing more
discs as more numerous ... However, [they] also judged images with greater perceived
area (but equal in number) to be more numerous” (Yousif & Keil, 2020). To reiterate,
however, those beta estimates measuring the effect of magnitude dimensions on choice
behavior should not be interpreted individually.

In sum, all of Yousif & Keil’s results can be explained by the skewed and unbalanced
sampling of their parameters. It should be emphasized that previous studies with
systematic stimulus design all point to a completely different conclusion (e.g., DeWind et
al., 2015; Cicchini et al., 2016; Tomlinson et al., 2020). Therefore, the results from
Yousif & Keil (2019; 2020) including their regression coefficients should be interpreted
with caution. Moreover, their sampling of the stimulus parameters differs sometimes
minimally and other times substantially across studies (compare all the figures in
Supplementary Materials). Such a variability of stimulus structure makes it even more
difficult, if not impossible, to make a coherent interpretation about the obtained results.

7. Issues in the reanalysis of Tomlinson et al. (2020) by Aulet & Lourenco (2020)

As introduced earlier, Tomlinson et al. (2020) addressed the exact same research question
as Yousif & Keil (2019; 2020) in both children and adults with a set of systematically
constructed dot arrays and reached a completely different conclusion. Specifically,
Tomlinson and colleagues found that the acuity for making a number judgment was much
higher than the acuity for making a total area (74) judgment both in children and adults.
In addition, adult participants’ choice behavior model indicated that the beta coefficients
lied more or less on the N and 74 axes for number and area judgment tasks, respectively,
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indicating that their judgments were fairly unbiased. In contrast, children showed a
mutual bias between N and 74 in both tasks.

Interestingly, Aulet and Lourenco (2020) reanalyzed Tomlinson and colleagues’ data
specifically questioning the role of AddA in choice behavior and reached slightly different
conclusions. For instance, they used a similar choice behavior model (Eq. 1) including N
and AddA as regressors to conclude that “when using a measure of perceived area, rather
than mathematical area, in the analyses, acuity was comparable for number and area in
both children and adults” (p. 3, Aulet & Lourenco, 2020). However, some of these
interpretations are premature. This is because Aulet & Lourenco (2021) analyzed the data
using correlated regressors but did not account for those correlations in their
interpretation of the f coefficients. For instance, they treated individual beta coefficients
directly as a measure of acuity or bias, when in fact all the beta coefficients need to be
interpreted together within the parameter space. See Sections 3 and 4 for detailed
explanations about the importance of using orthogonal dimensions in the psychometric
model.

Despite issues with their analytic method, one of Aulet & Lourenco’s (2021) conclusions
about the effect of AddA on children’s choice behavior does hold. Remember that 7P is
on the same scale as AddA defined by Yousif & Keil (2019). However, Tomlinson et al.
(2020) unfortunately did not discuss 7P as a central dimension of interest in their paper.
One most reasonable approach to assess how AddA influences one’s area (or number)
judgment in Tomlinson and colleagues’ study would have been to model the data using
two orthogonal dimensions (e.g., N and Sz) and evaluate the degree to which the beta
estimate vector deviates away from the 7P axis. When this exact analysis was done here
with Tomlinson and colleagues’ children data on area judgment, the estimate vector
P=[Ps, fn]=[0.4015, 1.2442] was 17.89 deg away clockwise from the N axis, and very
close to the 7P axis (0.5497 deg away from it), suggesting that children’s area judgment
was best explained by TP or AddA.

For completeness, the same analysis was done with children’s number judgment data
from Tomlinson et al. (2020), which resulted in f=[fs:, fn]=[0.3237, 1.9456]. This vector
lied in between the N and 7P axes, 9.448 deg away from the N axis and 8.990 deg away
from the 7P axis, suggesting some bias from 7P or AddA for children’s number
judgment. However, another study incorporating the same analysis in a different sample
of children demonstrated that children’s number judgment, best explained by &, had little
bias from other dimensions (Starr, DeWind, & Brannon, 2017). Thus, future research is
needed to better determine the role of perimeter or additive area in children’s perception
of magnitude.

8. Discussion of Yousif, Aslin, and Keil (2020)

While Yousif & Keil’s (2019; 2020) manipulation of stimulus parameters involved
changes in number, Yousif, Aslin, & Keil (2020) constructed item arrays that were
constant in number. In that study, participants made area judgments on two item arrays
that equated for N but differed in AddA and TrueA. In Exp. 1, this manipulation, that is
de-confounding AddA and TrueA, was achieved by creating differences in the variability
in area across items within an array. In Exp. 2, this manipulation was achieved by
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presenting squares in one array and diamonds containing the same area in the other array.
As number was kept constant between the arrays to be compared, there was no
correlational structure between N and TrueAd or between N and AddA to be considered;
therefore, those experiments have little relevance to number perception. Hence, stimulus
design in Yousif, Aslin, & Keil (2020) is not directly subject to the main criticisms raised
in this paper. However, it is worth discussing that study in the broader context of
magnitude perception.

In Exp. 1 of Yousif, Aslin, & Keil (2020), the way that TrueA and AddA was de-
confounded creates another confound between homogeneity of the array and whether or
not AddA or TrueA is greater. When TrueA between the two arrays is equated, 4ddA4 is
larger for the more homogeneous array. When AddA is equated, TrueA is smaller for the
more homogeneous array. Therefore, if participants are, for any reason, biased to respond
to the more homogeneous array of the two given, then the results in Yousif, Aslin, & Keil
(2020) could be explained by that effect. This scenario is hypothetical but plausible given
that the ensemble representation literature demonstrates that “judgments of mean set size
become less accurate when set size [in other words, number] increases and the
heterogeneity of the item sizes increases” (Marchant, Simons, & de Fockert, 2013). This
previous work may also explain why participants in Yousif, Aslin, & Keil (2020) showed
even below chance accuracy for true area trials when the set size increased from 6 (Exp.
la) to 10 (Exp. 1b). An interesting future direction is to explicitly test for an effect of
homogeneity of items on area perception, which could open a new research avenue that
connects magnitude perception and ensemble representation (Ariely, 2001; Chong &
Treisman, 2005).

As reviewed in Section 2, the demonstration that diamonds are perceived to be larger
than squares in Exp. 2 of Yousif, Aslin, & Keil (2020) is not novel. In fact, how area
perception is influenced by shape (including individually presented star, diamond,
rhombus, triangle, square, circle, and other polygons) has been studied since nearly a
century ago (e.g., Anastasi, 1936; Fisher & Foster, 1968; Krider, Raghubir, & Krishna,
2001; Warren & Pinneau, 1955). A novel contribution of Exp. 2, then, is the use of an
array of items of different shapes. However, such a shape bias is difficult to be directly
contextualized in the number perception literature because shape has been a constant
factor in most previous number perception studies.

9. Conclusions

This paper raises issues with recent “additive area heuristic” studies published by Yousif
& Keil (2019; 2020) and demonstrates two flaws in their stimulus design. The selection
of stimulus parameters was extremely skewed towards making congruity and incongruity
structures between some dimensions, and the stimulus parameters across different
dimensions were extremely unbalanced. Such a design is usually a consequence of the
intention to control for certain dimensions without knowing how such manipulations
impact the other dimensions. From the standpoint that the authors aimed to interpret their
results and made strong claims about general magnitude perception across multiple
dimensions, such a design is flawed because, as elaborated in Section 6, it does not allow
a proper interpretation of how various magnitude dimensions together influence
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participants’ choice behavior. Moreover, considering the markedly different conclusions
reached by Yousif & Keil (2019; 2020) and by Tomlinson et al. (2020) as well as other
previous studies that used systematically constructed dot-array stimuli (e.g., DeWind et
al., 2015; Cicchini et al., 2016; Starr, DeWind, & Brannon, 2017), conclusions reached
by Yousif & Keil (2019; 2020; 2021) are likely invalid.

Nevertheless, while Yousif & Keil’s (2019; 2020) stimulus design is problematic, the
jury may still be out on how cumulative area of an item array is perceived. For singly
presented items, older literature has shown mixed results. Some studies demonstrated that
perceived size of a 2-dimensional image increases more slowly than the physical size
even for adult observers (e.g., Stevens & Guirao, 1963; Teghtsoonian, 1965), but it was
not always the case (e.g., Ekman & Junge, 1961). Also, studies suggested that only
young, but not older, children use the “width + height” rule for estimating the area
(Anderson & Cuneo, 1978; Wolf & Algom, 1987). Collectively, however, previous work
suggests that the perception of area of a singly presented item is biased to some extent
(see Krider, Raghubir, & Krishna, 2001 for a concise review). Thus, Tomlinson and
colleagues’ (2020) finding that adults’ estimation of cumulative area of an array of items
is relatively unbiased could rather be interpreted as a somewhat surprising and interesting
finding. For instance, if adults rely on perimeter or the additive rule when estimating the
area of a singly presented item, but they rely on the mathematical area when estimating
the area of an array of items, that would be an interesting pattern of results worthy of
further investigations.

Arrays of items have been used to study perception of magnitude in various dimensions
for more than half a century, with number as a main enterprise. However, systematic
modeling of those magnitude dimensions was scant until recently. DeWind and
colleagues’ (2015) framework provides one elegant approach to gain an explicit
understanding of the stimulus structure and visualize the stimulus parameters and analyze
the data accordingly. Researchers who study magnitude perception using item arrays are
encouraged to consider DeWind and colleagues’ framework for stimulus construction or
at least for the verification of stimulus dimensional properties. A MATLAB code
published in a public repository (https://osf.io/s7xer/) may be used for an easy
implementation of this framework.
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Figure S1. Scatterplot matrix illustrating the correlational structure of log difference
measures in number (diff.logNum), total area (diff.logTA), and total perimeter
(diff.logTP) between the first and second array within each pair of arrays in an exemplary
stimulus set from Tomlinson et al. (2020).
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Figure S2. Distribution of stimulus parameters for dot arrays used in Experiment 3 of
Yousif & Keil (2019). The red dots locate the stimulus parameters of the first array of
each pair, and the blue dots locate the stimulus parameters of the second array of each
pair. The grey line connects the two arrays within each pair.
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Figure S3. Distribution of log differences (or ratios) within pairs of arrays in number (N),
true area (TrueA), and additive area (4ddA), and the scatterplot matrix illustrating the



correlational structure of those log differences across the three dimensions, from
Experiment 3 of Yousif & Keil (2019).
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Figure S4. Distribution of stimulus parameters for dot arrays used in Experiment 4 of
Yousif & Keil (2019). The red dots locate the stimulus parameters of the first array of
each pair, and the blue dots locate the stimulus parameters of the second array of each
pair. The grey line connects the two arrays within each pair.
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Figure S5. Distribution of log differences (or ratios) within pairs of arrays in number (N),
true area (7TrueA), and additive area (4ddA), and the scatterplot matrix illustrating the
correlational structure of those log differences across the three dimensions, from
Experiment 4 of Yousif & Keil (2019).
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Figure S6. Distribution of stimulus parameters for dot arrays used in Experiment 1 of
Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of



each pair, and the blue dots locate the stimulus parameters of the second array of each
pair. The grey line connects the two arrays within each pair.
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Figure S7. Distribution of log differences (or ratios) within pairs of arrays in number (N)
and size (Sz), and the scatterplot matrix illustrating the correlational structure of log
differences across number (), total area (74), and additive area (44), from Experiment 1
of Yousif & Keil (2020).
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Figure S8. Distribution of stimulus parameters for dot arrays used in Experiment 2 of
Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of
each pair, and the blue dots locate the stimulus parameters of the second array of each
pair. The grey line connects the two arrays within each pair.
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Figure S9. Distribution of log differences (or ratios) within pairs of arrays in number (N)
and size (Sz), and the scatterplot matrix illustrating the correlational structure of log



differences across number (), total area (74), and additive area (44), from Experiment 2
of Yousif & Keil (2020).
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Figure S10. Distribution of stimulus parameters for dot arrays used in Experiment 3 & 4
of Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of
each pair, and the blue dots locate the stimulus parameters of the second array of each
pair. The grey line connects the two arrays within each pair.
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Figure S11. Distribution of log differences (or ratios) within pairs of arrays in number
(N) and size (Sz), and the scatterplot matrix illustrating the correlational structure of log
differences across number (), total area (74), and additive area (44), from Experiment 3
& 4 of Yousif & Keil (2020).



