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Abstract 
In a series of recently published studies purportedly on the “additive-area heuristic,” 
Yousif & Keil (2019; 2020) argue for a systematic distortion in the perception of the 
cumulative area of an item array and further claim that previous findings of numerical 
cognition and magnitude perception in general are “at risk” (Yousif & Keil, 2021). This 
commentary describes serious stimulus design flaws present in all of Yousif and 
colleagues experiments that prevent from making such conclusions. Specifically, item 
arrays used in those studies demonstrate a skewed correlational structure between 
selected magnitude dimensions and exhibit unbalanced ranges across different magnitude 
dimensions of interest. Because the perception of magnitude dimensions interferes one 
another and because our perceptual system is sensitive to the statistical regularities of the 
sensory input, such a biased design makes it difficult, if not impossible, to interpret the 
choice behavior of an observer making magnitude judgments. By re-introducing the 
mathematical framework for a systematic construction of dot array stimuli (DeWind et 
al., 2015) and by re-analyzing the data from another recent study on area perception 
(Tomlinson et al., 2020), this paper explains—and introduces a MATLAB code for—an 
optimal method for designing and constructing dot arrays for magnitude perception 
studies.   
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1. Introduction 
In a series of recently published articles, Yousif and colleagues (Yousif, Aslin, & Keil, 
2020; Yousif & Keil, 2019, 2020) investigated adult participants’ judgment of the 
cumulative area of an item array. In these studies, participants were given two item arrays 
and were asked to indicate which array has more cumulative area. From their results, the 
authors collectively make two conclusions. They first claim that the estimation of true 
visual area of an item array, defined by the sum of the mathematical area of all items in 
the array, is significantly distorted by perceived visual area which they define as the sum 
of the width (along horizontal axis) plus the height (along vertical axis) of all the items in 
that array, which they refer to as the additive-area heuristic. The authors then make a 
broader and stronger claim about magnitude perception in general, particularly about 
numerosity perception. They argue that “the ability to make area discriminations on the 
basis of ‘additive area’ … predicts number discrimination ability” (Yousif & Keil, 2020) 
and further claim that “the explanatory power of this heuristic … may bear on the 
interpretation of many seminal articles in the field of numerical cognition as well as work 
on area estimation, general magnitude, and various aspects of visual perception” (Yousif 
& Keil, 2019). Unfortunately, however, as demonstrated in the current paper, those 
additive-area heuristic studies contain flaws in their stimulus design that make it difficult 
to reach such conclusions.  

2. A very brief review of the area perception literature 
Area perception has been studied for more than a century, documented as early as Bolton 
(1898). It has long been known that area perception is significantly influenced by the 
shape and size of the stimulus. For instance, Anastasi (1936) reported that a diamond is 
relatively overestimated compared to a square of the same size. Other researchers (e.g., 
Teghtsoonian, 1965) found that perceived area increases at a lower rate than true area. 
These older studies seem to have focused on explaining these phenomena by how 
perception relies on multiple pieces of information to derive an estimate of area. Some 
suggested that area perception is based on one of the linear dimensions (Anastasi, 1936; 
Verge & Bogartz, 1978), while others suggested that it is based on some integration of 
information such as the function of perimeter (Smith, 1969). Interestingly, Anderson & 
Cuneo (1978) and Wolf & Algom (1987) who used Anderson & Cuneo’s paradigm 
demonstrated that younger children (5-6 y) use the function of width and height, in other 
words an additive rule, while older children (10-12 y) use a multiplicative rule, although 
their paradigm has been criticized on statistical and methodological grounds by Bogartz 
(1978). Moreover, one of the more recent studies on this literature suggests a 
multiplicative model for area estimation and comparison, where the relative saliency of 
the axial dimensions is weighted accordingly in that multiplication (Krider, Raghubir, & 
Krishna, 2001). Overall, these earlier studies collectively demonstrate that area 
perception is influenced by size and shape of the item in many ways. Therefore, Yousif 
and colleagues’ first conclusion can be considered as a reiteration of those findings. 
Then, the novel contribution of Yousif and colleagues’ work comes from their second 
conclusion, as they investigated area perception using item arrays in the context of 
magnitude perception across other dimensions, including number.  
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3. Difficulties in designing item-array stimuli for magnitude perception studies 
Studying magnitude perception using visual item arrays is notoriously difficult due to the 
intricate relationship between various dimensions including number, area, density, etc. 
Consider an array of identical-sized circles. One may quantify the magnitude of such an 
array as the number of circles, the area of each circle, the summation or cumulative area 
of all the circles, the perimeter of each circle, the cumulative perimeter of all the circles, 
the convex hull of the array defined as the area of the circumscribed region within which 
the circles are drawn, the density of the array defined as the convex hull divided by the 
number of circles, and potentially more. All of these dimensions are tightly interrelated 
(in fact, by their mathematical definitions), which engenders a significant challenge when 
studying the perception of these magnitudes. This is because when a researcher varies 
one dimension to examine its effect on behavior or neural measures, some of the other 
dimensions necessarily change accordingly, which may go unnoticed by the researcher.  
As elaborated later in this paper, the sets of stimuli used in studies of additive-area 
heuristic (Yousif & Keil, 2019, 2020) suffer from two design problems. The first problem 
can be described as the skewed selection of stimulus parameters causing congruity and 
incongruity in unexpected dimensions. The second problem can be described as having 
unbalanced stimulus parameter ranges across different magnitude dimensions. These 
problems make it difficult, if not impossible, for one to make firm conclusions about 
magnitude perception across multiple dimensions, simply because the item arrays are not 
designed to make proper interpretations of those dimensions. 
To understand the first problem, consider a number discrimination task with a binary 
discrimination between two dot arrays. The arrays can be constructed such that the 
individual dot area or the total dot area is held constant between the two arrays. In the 
former case, number is congruent with total dot area. In the latter case, number is 
incongruent with individual dot area. It has long been known that judgment on number is 
strongly influenced by whether and how much other dimensions are congruent or 
incongruent with number (e.g., see Allik & Tuulmets, 1993; Clearfield & Mix, 1999; 
Ginsburg & Nicholls, 1988; Miller & Baker, 1968; Xu & Spelke, 2000), making it crucial 
to construct stimulus sets that balance congruent and incongruent effects. As elaborated 
below, stimuli used in the additive-area heuristic studies show extremely skewed 
distributions in their stimulus parameters, eliciting strong congruity and incongruity 
effects in an unexpected way. 
A second design choice in stimulus design construction needs to be considered. Consider 
again a binary-choice number discrimination task, in which the range of the number 
dimension is very narrow, say, between 20 and 26 dots (1.3:1 ratio). It is problematic if 
other salient magnitude dimensions such as cumulative area is allowed to have a much 
larger range (e.g., 5:1 ratio difference). This is because our sensory system is sensitive to 
the statistical regularities of the sensory input over time (Barlow, 2001). Thus, if one 
magnitude dimension changes in a much larger range than another over time, the 
sensitivity of the visual system is likely to become biased towards that dimension. Stimuli 
used in the additive-area heuristic studies also show this issue. 
The current paper describes the flaws in Yousif & colleagues’ stimulus design by re-
introducing an innovate framework for constructing and analyzing dot array stimuli for 
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magnitude perception studies (DeWind, Adams, Platt, & Brannon, 2015). This 
framework establishes three orthogonal axes—number, size, and spacing—in which their 
linear combinations allow all other prominent magnitude dimensions to be explicitly 
defined in that stimulus parameter space. The two aforementioned problems in the 
additive-area heuristic studies are analyzed and visualized, and the importance of a 
systematic (i.e., unskewed and balanced) stimulus design is demonstrated from a re-
analysis of Tomlinson, DeWind & Brannon (2020), a previous study that addressed the 
exact same question as in Yousif & Keil (2019; 2020). 

4. Systematic construction of dot-array stimuli by DeWind et al. (2015) 
DeWind and colleagues (2015) developed a seminal framework for establishing 
systematic relations between magnitude dimensions of a dot array. Assume an array of n 
number of homogenous dots with a radius of rd randomly dispersed within an invisible 
circular field with a radius of rf. Then, various other prominent magnitude dimensions 
can be defined mathematically by these three variables, as shown in Table 1. A log (base 
2) transformation of these variables “linearizes” those dimensions which allows all of 
them to be represented as a linear combination of the three orthogonal dimensions (Fig. 
1). In the original paper by DeWind and colleagues, number (N), size (Sz), and spacing 
(Sp) were chosen as the three orthogonal dimensions for ease of interpretations; however, 
it should be noted that analyses based on this mathematical framework works in an 
identical fashion for any three orthogonal dimensions chosen from the stimulus space. 
Importantly, size and spacing are meaningful, interpretable dimensions. Size refers to the 
dimension that changes both TA and IA together while holding N constant. Spacing refers 
to the dimension that changes both Spar and FA together while holding N constant. 
Readers are strongly encouraged to read DeWind et al. (2015) for details.  

Table 1. Mathematical relationship between various magnitude dimensions. 
Dimension	 As	a	function	of	n,	rd,	rf	 Relationship	with	N,	Sz,	and	Sp	

Individual	area	
(IA)	

𝜋rd2	 log(IA)	=	½log(Sz)	–	½log(N)	

Total	area	(TA)	 n	×	𝜋rd2	 log(TA)	=	½log(Sz)	+	½log(N)	
Field	area	(FA)	 𝜋rf2	 log(FA)	=	½log(Sp)	+	½log(N)	
Sparsity	(Spar)	 𝜋rf2/n	 log(Spar)	=	½log(Sp)	–	½log(N)	
Individual	

perimeter	(IP)	
2𝜋rd	 log(IP)	=	log(2√𝜋)	+	¼log(Sz)	–	¼log(N)	

Total	perimeter	
(TP)	

n	×	2𝜋rd	 log(TP)	=	log(2√𝜋)	+	¼log(Sz)	+	¾log(N)	

Coverage	(Cov)	 n	×	rd2/	rf2	 log(Cov)	=	½log(Sz)	–	½log(Sp)	
Closeness	(Close)	 𝜋2	×	rd2	×	rf2	 log(Close)	=	½log(Sz)	+	½log(Sp)	

Note: n = number; rd = radius of individual dot; rf = radius of the invisible circular field in which the dots 
are drawn. 
One detail worthy of note is that size can be defined in different ways. It can be defined 
in terms of area (i.e., log(Sz) = log(TA) + log(IA)) or in terms of perimeter (i.e., log(Sz) = 
log(TP) + log(IP)), as done in Experiment 2 of Park et al. (2016). In other words, number 
can be orthogonalized against area or it can be orthogonalized against perimeter. When 
number is orthogonalized against area, TP is more correlated with number than TA. This 
is because one log-unit increase in N corresponds to ¾ log-unit increase in TP, while it 
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only corresponds to ½ log-unit increase in TA (see Table 1). Orthogonalizing number 
against perimeter prevents this greater confound between N and TP because in that case 
one log-unit increase in N corresponds to ½ log-unit increase in TP. However, this 
manipulation raises the range of TA variation to the second power compared to the range 
of variation in other dimensions (TP, N and Sp). These different ways of orthogonalizing 
produces slightly different statistical regularities of the dimension parameters. 

	
Figure	1.	Properties	of	magnitude	dimensions	represented	in	three	orthogonal	axes	defined	
by	log-scaled	number,	size,	and	spacing.	The	framework	originally	developed	by	DeWind	

and	colleagues	(2015)	allows	various	magnitude	dimensions	of	a	dot	array	to	be	
represented	systematically	in	this	3D	parameter	space.		

 
It should be noted that the field of numerical cognition has long been developing ways to 
construct item arrays systematically. There have been earlier efforts to better identify the 
relations between various magnitude dimensions (Dehaene, Izard, & Piazza, 2005; 
Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). Besides DeWind et al. (2015), many 
recent studies in numerical cognition have used systematic design of item-array stimuli at 
least within the 2-dimensional parameter space pertinent to their research questions 
(Castaldi, Piazza, Dehaene, Vignaud, & Eger, 2019; Cicchini, Anobile, & Burr, 2016), 
and across the 3-dimensional parameter space (Park, 2018; Van Rinsveld et al., 2020).  

5. Regression-based assessment of the effect of magnitude dimensions on choice 
behavior: re-analysis of Tomlinson et al. (2020) 

A recent study by Tomlinson et al. (2020) provides a good demonstration of a systematic 
design of dot arrays using DeWind and colleagues’ framework for investigating area 
perception. In that study, adult (and child) participants made number and area judgments 
in a between-subjects design on pairs of dot arrays. The dot array stimuli were 
constructed using the aforementioned mathematical framework so that the dimensional 
properties of the dot arrays were systematically distributed in equal ranges of N, Sz, and 
Sp. Specifically, each trial presented a reference dot array with a set of stimulus 
parameters (N=16; TA=4,926; Sz: 1.5166e+06; Sp: 2.4674e+08) and a deviant dot array 
with a set of stimulus parameters that were distributed systematically across a “cube” in 
the parameter space defined by the three orthogonal axes N, Sz, and Sp (Fig. 2A). This 
design ensured an explicit understanding of the amount of congruency and incongruency 
between magnitude dimensions and the range of ratios (or log differences) across them.  
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Figure	2.	Stimulus	design	and	result	of	Tomlinson	et	al.	(2020).	A.	Distribution	of	stimulus	
parameters	for	dot	arrays	used	in	one	adult	participant’s	area	judgment	task.	The	red	dot	in	
the	center	indicates	the	reference	dot	array	in	that	study	which	consisted	of	16	(hence,	
log(N)=4)	dots	with	the	total	area	of	4,926	pixels.	Blue	dots	indicate	the	stimulus	

parameters	for	the	deviant	arrays.	The	gray	lines	connecting	blue	dots	to	the	red	dot	depicts	
the	fact	that	each	of	the	deviant	arrays	constructed	using	the	unique	stimulus	parameter	
was	paired	up	with	the	reference	dot	array	in	the	area	judgment	task.	The	pattern	of	these	
dots	and	lines	illustrate	that	deviant	arrays	differed	from	the	reference	array	systematically	

across	all	the	dimensions	that	can	be	expressed	as	a	linear	combination	of	log(N)	and	
log(Sz).	B.	Result	of	the	regression-based	analysis	of	the	effect	of	magnitude	dimensions	on	
participants’	area	judgment.	The	beta	estimate	vector	(represented	as	the	green	dot)	lied	

most	closely	to	(7.775°	away	from)	the	dimension	of	TA.		
 
As in the original study by DeWind et al. (2015), Tomlinson and colleagues used a 
regression-based approach to assess how each dimension of interest explains participants’ 
choice behavior. In order to demonstrate this procedure here, the raw data from 
Tomlinson et al. (2020) were obtained from the public repository (https://osf.io/er9du/) 
and re-analyzed. The mean accuracy for adults was 81% in the area judgment task. 
Participants’ responses were modeled using a generalized linear model with a probit link 
function, but only with the parameters for number and size:  

pcr = 𝚽(βside + βN log2(rN) + βSz log2(rSz)), (1) 

where pcr is the proportion of trials the participants selected the stimulus on the right, 𝚽 
is the cumulative normal distribution, βside is the intercept indicating side bias, rN and rSz 
are the ratios of the N and Sz of the right array to the N and Sz of the left array, and finally 
βN and βSz are the regression coefficients. The spacing dimension was collapsed in order 
to better match the stimuli used in Yousif & Keil (2019; 2020) which do not provide 
spacing information. Moreover, spacing overall had little influence on both number and 
total area judgment tasks (Tomlinson et al., 2020).  
The beta estimates for N (βN) and Sz (βSz) produced by Equation 1 illustrate the extent to 
which ratios (or log differences) in those dimensions influence choice behavior. 
Specifically, the degree to which the vector β=[βSz, βN] is close to an axis representing a 
dimension (e.g., N, TA, Sz, etc.) can be interpreted as how much that dimension 
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determined choice behavior compared to other dimensions. For instance, β=ɑ[1,1] (where 
ɑ is a scaling constant) would imply that participants made judgments based on total area 
(note log(TA) = ½ × log(N) + ½ × log(Sz)) with no influence from other task-irrelevant 
dimensions. The result of this analysis, β=[βSz, βN]=[1.3982, 1.0623], is shown as the 
green dot in Figure 2B. This vector lied most closely to the dimension of TA (7.775 deg 
clockwise from the TA axis), indicating that participants’ choice behavior was best 
explained by total area.  
For the completeness of the current re-analysis, the same analysis was done on the choice 
behavior in which a different group of participants made number judgments. This 
analysis resulted in β=[βSz, βN]=[0.0851, 4.6183], which was only 1.0559 deg clockwise 
away from the N axis. Consistent with what was demonstrated in DeWind et al. (2015), 
these results indicate that participants’ numerosity discrimination was most closely based 
on the number of dots in an array. 
It should be emphasized that the psychometric modeling can be done using any two 
dimensions without affecting the conclusion. For example, choice behavior can be 
modeled using IA and TA as in: 

pcr = 𝚽(βside + βN log2(rIA) + βSz log2(rTA)). (2) 
Analyzing Tomlinson and colleagues’ adult data using this model yields β=[βTA, 
βIA]=[2.7981, 0.3369]. This vector is 7.792 deg clockwise from the TA axis. This is 
exactly how much the vector β=[βSz, βN] was rotated away from the TA axis within 
rounding error (see above).  
Of importance is that β coefficients should be interpreted collectively. Hence, for a 
straightforward interpretation of the results and to avoid multicollinearity, it is 
recommended to use orthogonal dimensions in the psychometric model. For instance, the 
same data analyzed above yields the estimate of β=[βTP, βN]=[5.5961, -3.1349] when TP 
and N are used, and yields the estimate of β=[βTA, βN]=[2.7981, -0.3367] when TA and N 
are used. Note how βN in these two different models are different from each other, which 
are also different from β=[βSz, βN]=[1.3982, 1.0623]. But, again, these β coefficients 
cannot be interpreted individually. 
In fact, β=[βTP, βN]=[5.5961, -3.1349], β=[βTA, βN]=[2.7981, -0.3367], and β=[βSz, 
βN]=[1.3982, 1.0623] are all essentially the same results after some vector algebra. First, 
for an easy comparison, let us normalize [βSz, βN] which yields [0.7962, 0.6050]. Then, 
take the first result, [βTP, βN]=[5.5961, -3.1349]. Given that the dimension TP is defined 
by one log-unit increase in Sz and three log-unit increase in N (see Table 1), βTP = 5.5961 
refers to a vector defined by that magnitude along the [Sz, N] = [1, 3] axis. Separately, βN 
= -3.1349 refers to a vector defined by that magnitude along the [Sz, N] = [0, 1] axis. 
Thus, some algebra yields the normalized vector [βTP, βN]=[βSz, βN]=[0.6313, 0.7755]. 
The same can be done with the second result, which yields the normalized vector [βTA, 
βN]= [βSz, βN]=[0.7695, 0.6386]. Thus, the results from using [βTP, βN] and [βTA, βN] can 
be transformed to the results using the orthogonal dimensions [βSz, βN]. Some numerical 
differences between the three results exists, however, likely caused by the spurious 
effects of multicollinearity when two correlated dimensions are used as regressors, which 
is another important reason for using orthogonal dimensions in the psychometric model.  
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6. Problems with the stimulus design in Yousif & Keil (2019; 2020) 
6.1. Skewed sampling of stimulus parameters 

Now that an example of a systematic stimulus design is introduced and explained in the 
previous section, this section provides an elaborate description of the stimulus design by 
Yousif & Keil (2019; 2020) using the mathematical framework developed by DeWind 
and colleagues (2015). The stimulus design from Yousif & Keil (2019) was obtained 
from the public repository (https://osf.io/dc5t8/). The file contained stimulus information 
about number, additive area, and true area for pairs of dot arrays used in area judgment 
tasks. In most cases (as long as the average aspect ratio between the width and height of 
each item is one), additive area referred to the summation of the diameters across all the 
dots in an array (or width in case of squares). That said, this dimension is equivalent to 
total perimeter (TP) in the aforementioned framework (differing only in scale). True area 
referred to the summation of the area across all the dots in an array, which is equivalent 
to total area (TA) in the framework. The terms used by Yousif & Keil, namely true area 
and additive area, are now referred to as TrueA and AddA, in order to avoid confusion 
with the terms used in DeWind and colleagues’ framework. Again, TrueA is equivalent to 
TA and AddA is equivalent to TP. No information about spacing was available, so that 
third orthogonal dimension was excluded from further analysis, as in the re-analyses of 
Tomlinson et al. (2020) in the previous section.  
 

	
Figure	3.	Distribution	of	stimulus	parameters	for	dot	arrays	used	in	Experiment	1	&	2	of	
Yousif	&	Keil	(2019).	The	red	dots	locate	the	stimulus	parameters	of	the	first	array	of	each	
pair,	and	the	blue	dots	locate	the	stimulus	parameters	of	the	second	array	of	each	pair.	The	
grey	line	connects	the	two	arrays	within	each	pair.	As	can	be	seen,	there	was	a	systematic	
anti-correlation	between	N	and	Sz	in	that	stimulus	design.	This	kind	of	skewed	sampling	of	

stimulus	parameters	may	yield	biased	results.		
 
Stimulus properties between all the pairs of dot arrays used in Exp. 1 & 2 of Yousif & 
Keil (2019) were appropriately transformed to be represented in log(N) and log(Sz). 
Then, the stimulus properties of those pairs were visualized in a 2-dimensional space in 
Figure 3. As shown, all the pairs differed in their stimulus parameters almost exclusively 
along the IA axis, although with some variations in the angle. This is a prototypical 
example of a skewed selection of stimulus parameters, that emerges when experimenters 
attempt to manipulate just two dimensions (TrueA and AddA in this case). Specifically, 
this stimulus design produces a strong incongruity between N and Sz.  
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For a different perspective of this stimulus design, the first array of each pair was 
compared with the second array of each pair in N, TrueA, and AddA. Specifically, the 
difference between log-transformed N, TrueA, and AddA were taken between arrays 
within each pair, in order to quantify how the two arrays differed in those dimensions. 
The distribution of this difference across all stimulus pairs as well as cross-correlations 
between the differences across the three dimensions are visualized in Figure 4. Although 
the mean of log difference was comparable across the dimensions of N (-0.115), TrueA (-
0.106), and AddA (-0.105), the distribution of log difference showed a greater variance 
along the N dimension than along the TrueA and AddA dimensions (Fig. 4A). Moreover, 
there was a strong negative correlation between how much the two arrays in each pair 
differed in TrueA and N, and a strong positive correlation between how much the two 
arrays in each pair differed in AddA and N (Fig. 4B). This means that the stimuli were 
selectively created to impose a very strong incongruency between TrueA and N and a 
very strong congruency between AddA and N. If dot arrays were constructed 
systematically across the mathematically defined parameter space, N should be positively 
correlated with TA (i.e., log(TA) = ½ × log(N) + ½ × log(Sz)) and slightly more positively 
correlated with TP (i.e., log(TP) = log(2×sqrt(𝜋)) + ¾ × log(N) + ¼ × log(Sz)) (see 
Figure S1 in Supplementary Materials for the same scatterplot matrix acquired from the 
stimuli set used in Tomlinson et al. 2020). In contrast, N was highly negatively correlated 
with TrueA (equivalent of TP). In sum, while the authors’ intention may have been to 
equate the ratios between TrueA and AddA on average, this design artificially yielded a 
strong incongruity between TrueA and N. It should be noted that all of their experiments 
in Yousif & Keil (2019; 2020) showed an extreme skewness in their stimulus parameters. 
See Supplementary Materials (Fig. S2-S11) for the analyses of the stimulus design in the 
rest of the experiments. 

 

	
Figure	4.	Stimulus	design	from	Yousif	&	Keil	(2019,	Exp.	1	&	2).	A.	Distribution	of	log	

differences	(or	ratios)	within	pairs	of	arrays	in	number	(N),	true	area	(TrueA),	and	additive	
area	(AddA).	B.	Scatterplot	matrix	illustrating	the	correlational	structure	of	those	log	

differences	across	the	three	dimensions.	
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in Yousif & Keil (2020). In that study, participants were asked to make judgments on 
area and number, as the authors were interested in evaluating how area affects number 
judgment and vice versa. The design of dot arrays used in those experiments revealed that 
the distribution of stimulus parameters across trials was vastly different across 
dimensions. Figure 5A illustrates how much N and Sz varied across all the dot arrays 
used in Exp 2 of Yousif & Keil (2020) (obtained from https://osf.io/kx3sv/). While the 
range of N across all the arrays was only about 0.5 in log scale (i.e., about 1.4:1 ratio), the 
range of Sz was close to 2.5 in log scale (i.e., 5.6:1 ratio). Such a difference between the 
two dimensions was also apparent when the log difference between two arrays within 
each pair was quantified. Even though the mean of the log-difference measures was 
comparable between the two dimensions (0.111 for N and 0.110 for Sz), the distribution 
of this log difference was fairly narrow (with a range below 0.4) in N, while the 
distribution of this log difference was vastly wide (with a range about 2.5) in Sz. This 
means that across all the trials, participants saw dot arrays with much larger differences 
in Sz than in N, and that they saw pairs that differed much more substantially in Sz than in 
N. Remember that log(TA) = log(N) + log(Sz), indicating that large ranges of those 
measures in Sz results in large ranges in TA. The same pattern of unbalanced ranges was 
observed in all of Yousif & Keil’s experiments (see Fig. 4 and Fig. S7-S11 in 
Supplementary Materials). In contrast to Yousif & Keil’s design, distributions of stimulus 
parameters in Tomlinson et al. (2020) were more balanced and comparable (Fig. 5B). 

 

	
Figure	5.	Distribution	of	parameter	values	across	all	the	stimuli	and	distribution	of	log	
differences	(or	ratios)	across	all	the	pairs	of	arrays	used	in	the	two	experiments	(Yousif	&	
Keil,	2020;	Tomlinson	et	al.,	2020).	Yousif	&	Keil’s	arrays	varied	much	widely	along	the	Sz	
dimension	compared	to	the	N	dimension,	while	Tomlinson	and	colleagues’	dot	arrays	varied	
in	a	comparable	range	between	the	two	dimensions.	The	same	was	true	with	log	difference	

measures	between	the	two	arrays	within	each	pair.	
 
6.3. Interpretation of Yousif and Keil’s (2019; 2020) data considering their design 

problems 
The skewed and unbalanced sampling of stimulus parameters prevents one from making 
an unbiased interpretation about magnitude perception. Consider Exp. 1 of Yousif & Keil 
(2019) where N is highly negative correlated with TrueA but highly positively correlated 
with AddA. This means that when participants view two dot arrays where one (say Array 
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Left) of them is greater in TrueA than the other (say Array Right), Array Left is smaller in 
N. Simultaneously, the range of differences in N is so much larger than the range of 
differences in TrueA making N a more salient dimension that could possibly influence 
choice behavior. Then, participants are likely to make substantially more incorrect 
decisions than when such a strong incongruity did not exist. In contrast, when Array Left 
is greater than Array Right in AddA, Array Left is also greater in N. In such a case if 
participants’ magnitude perception again is biased by the saliency of number, their 
perception would be boosted by the especially high correlation between AddA and N and 
would likely to be correct more so than when such a strong congruity did not exist.  
Figure 6A explains this hypothetical but plausible scenario in graphics. The strongly 
skewed distribution of stimulus parameters can be illustrated as the cyan cloud in the 
dimensional space defined by N and Sz. Let us assume that an observer makes an 
unbiased judgment of area (i.e., based on TrueA) as shown in adult participants of 
Tomlinson et al. (2020). Then, that observer’s choice behavior would be modeled as beta 
estimates that would lie on the axis of TA (point a in Fig. 6A). Now, a strong negative 
correlation between TA and N presumably influences the observer’s choice behavior, in 
that he or she perceives more numerous arrays to contain more area. This is a reasonable 
presumption because number is the most salient visual feature processed in the earliest 
level of cortical processing (Fornaciai, Brannon, Woldorff, & Park, 2017; Park, DeWind, 
Woldorff, & Brannon, 2016) and because log difference in N is about three times as 
much of that in TA in Yousif & Keil (2019). This perceptual interference, then, would 
make the choice behavior rely less on Sz but more on N, pulling the beta estimates 
accordingly (point b in Fig. 6A). Simultaneously, the direction to which choice behavior 
is influenced is the opposite, because in reality, more numerous arrays always had 
smaller TA. Therefore, the beta estimate for N would decrease, lying closest to the TP 
(AddA) axis (point c in Fig. 6A).  
Yousif & Keil (2019) performed a linear regression to explain participants’ choice 
behavior with AddA, TrueA, and N as regressors. However, there are two important 
caveats to consider in their regression analysis. First, as shown in Figure 4, some of those 
dimensions are extremely highly correlated (up to r = 0.924) with each other. Such a 
severe multicollinearity makes it difficult to properly interpret the coefficients. Second, 
Yousif & Keil (2019) interpreted beta coefficients individually; however, as explained in 
Section 3, those beta coefficients must be interpreted in the context of each other. Their 
analysis in Exp. 1 showed that AddA, but not TrueA or N, predicted observer responses. 
However, this pattern can be fully explained by the skewed and unbalanced sampling of 
stimulus parameters as described above and illustrated in Figure 6A, considering that a 
virtually identical experiment but with a systematic stimulus design revealed an entirely 
different pattern of results (Tomlinson et al., 2020).  
Note that under a strong negative correlation between N and another dimension, such as 
TrueA or AddA, it is even possible for the beta estimate for N to be negative in an area 
judgment experiment. This is because a larger value in TrueA or AddA is always 
associated with a smaller value in N so that participants need to choose the array with 
fewer items in order to choose the array with greater area. This pattern was indeed 
evident in Yousif & Keil’s studies. In Exp. 4 of Yousif & Keil (2019) (see Fig. S5), their 
regression analysis showed a negative effect of N specific to the trials in which TrueA 
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varied along N. In Exp. 2b of Yousif & Keil (2020) (see Fig. S9), their regression 
analysis showed that participants were significantly below chance when selecting 
between arrays equal in AddA but differing in N, indicating that they perceived less 
numerous arrays to contain more area. Thus, these negative beta coefficients for N, as 
well as all the beta coefficients from Yousif & Keil’s (2019; 2020) report, should be 
interpreted with caution considering the skewed distribution of stimulus parameters.  

 

	
Figure	6.	Schematics	of	how	skewed	and	unbalanced	stimulus	design	may	explain	Yousif	&	
Keil’s	(2019;	2020)	results.	See	Section	6.3	for	how	these	designs	may	influence	choice	
behavior	and	hypothetical	beta	estimates.	A.	Hypothetical	illustration	of	the	case	of	area	

judgment.	In	many	of	Yousif	&	Keil’s	stimulus	design,	there	was	a	strong	positive	correlation	
between	N	and	TP	and	a	strong	negative	correlation	between	N	and	TA,	and	this	pattern	can	
be	graphically	illustrated	as	the	illustrated	cyan	cloud.	Take	the	right-most	(p)	and	left-most	
(q)	points	of	the	cyan	cloud.	The	projection	of	points	p	and	q	onto	the	dimensional	axes	

gives	clues	about	the	correlational	structure	between	dimensions.	For	example,	a	dot	array	
with	its	stimulus	parameters	represented	by	point	p	is	greater	in	TA	than	a	dot	array	with	
its	stimulus	parameters	represented	by	point	q	(indicated	by	the	direction	of	the	purple	
arrow).	The	former	array,	however,	is	smaller	in	N	than	the	latter	array	(indicated	by	the	
direction	of	the	red	arrow).	B.	Hypothetical	illustration	of	the	case	of	number	judgment.	In	
some	other	designs,	N	was	negatively	correlated	with	both	TA	and	TP,	which	as	a	corollary	
created	a	much	more	unbalanced	distribution	of	stimulus	parameters.	As	illustrated	in	both	
cases,	such	a	skewed	and	unbalanced	design	can	explain	idiosyncratic	choice	behavior	

patterns	in	area	and	number	judgments	even	if	an	observer	is	assumed	to	have	an	unbiased	
representation	of	area	and	number.	As	a	comparison,	a	systematically	constructed	set	of	dot	

arrays	would	be	represented	by	a	circular	or	square	cloud	(see	Fig.	2A).	
 
Another design problem explained in Section 4.2 was unbalanced parameter ranges 
across dimensions. This pattern usually happens together with skewed distribution of 
stimulus parameters as described in Section 4.1. Unbalanced parameter ranges can be 
problematic because our perceptual system is sensitive to statistical regularities of the 
sensory input (Barlow, 2001; Kohn, 2007; Wark, Lundstrom, & Fairhall, 2007). There is, 
in fact, empirical evidence for it in the domain of numerosity perception. When 
participants are passively viewing dot arrays systematically designed across equal ranges 
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of N, Sz, and Sp, their early visual cortical activity shows almost no modulations by Sz or 
Sp (Park et al., 2016), but when they view dot arrays that exclusively change in Sz (with 
values of N and Sp held constant) or Sp (with values of N and Sp held constant), their 
visual cortical activity becomes modulated by those exclusive changes in one dimension 
(Park, Godbole, Woldorff, & Brannon, in press). Hence, our perceptual system becomes 
more sensitive to dimensions that change relatively larger in scale over time.  
Consider Exp. 2 of Yousif & Keil (2020), where they designed the stimuli to “directly 
[pit] AddA and N against each other” in number judgment and area judgment tasks. 
However, their stimulus design unfortunately became extremely skewed and unbalanced, 
which is schematically represented in Figure 6B (for real values, see Fig. S8 and S9). 
Having this skewed and unbalanced stimulus design in mind, consider the case of number 
judgment. It is well known that, when dot arrays are systematically designed, participants 
are most sensitive to changes in N than changes in Sz or Sp with a slight bias towards the 
positive Sz direction (e.g., DeWind et al., 2015; Tomlinson et al., 2020). Hence, if an 
observer’s choice behavior for number judgment is modeled, the beta estimates would lie 
close to the N axis but slightly toward the positive Sz direction (point a in Fig. 6B). In 
Yousif & Keil’s (2020) design, however, the range of log difference in N was extremely 
small compared to the range in Sz. This extreme unbalance in stimulus parameters, thus, 
is likely to make the choice behavior rely less on N but more on Sz and even towards the 
negative direction along the TA axis, pulling the beta estimates accordingly (point b in 
Fig. 6B). This effect will make the beta estimates to be closer to the TP axis. This pattern 
was, in fact, what was reported in Exp. 2a: “Observers judged images containing more 
discs as more numerous … However, [they] also judged images with greater perceived 
area (but equal in number) to be more numerous” (Yousif & Keil, 2020). To reiterate, 
however, those beta estimates measuring the effect of magnitude dimensions on choice 
behavior should not be interpreted individually.  
In sum, all of Yousif & Keil’s results can be explained by the skewed and unbalanced 
sampling of their parameters. It should be emphasized that previous studies with 
systematic stimulus design all point to a completely different conclusion (e.g., DeWind et 
al., 2015; Cicchini et al., 2016; Tomlinson et al., 2020). Therefore, the results from 
Yousif & Keil (2019; 2020) including their regression coefficients should be interpreted 
with caution. Moreover, their sampling of the stimulus parameters differs sometimes 
minimally and other times substantially across studies (compare all the figures in 
Supplementary Materials). Such a variability of stimulus structure makes it even more 
difficult, if not impossible, to make a coherent interpretation about the obtained results. 

7. Issues in the reanalysis of Tomlinson et al. (2020) by Aulet & Lourenco (2020) 
As introduced earlier, Tomlinson et al. (2020) addressed the exact same research question 
as Yousif & Keil (2019; 2020) in both children and adults with a set of systematically 
constructed dot arrays and reached a completely different conclusion. Specifically, 
Tomlinson and colleagues found that the acuity for making a number judgment was much 
higher than the acuity for making a total area (TA) judgment both in children and adults. 
In addition, adult participants’ choice behavior model indicated that the beta coefficients 
lied more or less on the N and TA axes for number and area judgment tasks, respectively, 
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indicating that their judgments were fairly unbiased. In contrast, children showed a 
mutual bias between N and TA in both tasks.  
Interestingly, Aulet and Lourenco (2020) reanalyzed Tomlinson and colleagues’ data 
specifically questioning the role of AddA in choice behavior and reached slightly different 
conclusions. For instance, they used a similar choice behavior model (Eq. 1) including N 
and AddA as regressors to conclude that “when using a measure of perceived area, rather 
than mathematical area, in the analyses, acuity was comparable for number and area in 
both children and adults” (p. 3, Aulet & Lourenco, 2020). However, some of these 
interpretations are premature. This is because Aulet & Lourenco (2021) analyzed the data 
using correlated regressors but did not account for those correlations in their 
interpretation of the β coefficients. For instance, they treated individual beta coefficients 
directly as a measure of acuity or bias, when in fact all the beta coefficients need to be 
interpreted together within the parameter space. See Sections 3 and 4 for detailed 
explanations about the importance of using orthogonal dimensions in the psychometric 
model.  
Despite issues with their analytic method, one of Aulet & Lourenco’s (2021) conclusions 
about the effect of AddA on children’s choice behavior does hold. Remember that TP is 
on the same scale as AddA defined by Yousif & Keil (2019). However, Tomlinson et al. 
(2020) unfortunately did not discuss TP as a central dimension of interest in their paper. 
One most reasonable approach to assess how AddA influences one’s area (or number) 
judgment in Tomlinson and colleagues’ study would have been to model the data using 
two orthogonal dimensions (e.g., N and Sz) and evaluate the degree to which the beta 
estimate vector deviates away from the TP axis. When this exact analysis was done here 
with Tomlinson and colleagues’ children data on area judgment, the estimate vector 
β=[βSz, βN]=[0.4015, 1.2442] was 17.89 deg away clockwise from the N axis, and very 
close to the TP axis (0.5497 deg away from it), suggesting that children’s area judgment 
was best explained by TP or AddA.  
For completeness, the same analysis was done with children’s number judgment data 
from Tomlinson et al. (2020), which resulted in β=[βSz, βN]=[0.3237, 1.9456]. This vector 
lied in between the N and TP axes, 9.448 deg away from the N axis and 8.990 deg away 
from the TP axis, suggesting some bias from TP or AddA for children’s number 
judgment. However, another study incorporating the same analysis in a different sample 
of children demonstrated that children’s number judgment, best explained by N, had little 
bias from other dimensions (Starr, DeWind, & Brannon, 2017). Thus, future research is 
needed to better determine the role of perimeter or additive area in children’s perception 
of magnitude. 

8. Discussion of Yousif, Aslin, and Keil (2020) 
While Yousif & Keil’s (2019; 2020) manipulation of stimulus parameters involved 
changes in number, Yousif, Aslin, & Keil (2020) constructed item arrays that were 
constant in number. In that study, participants made area judgments on two item arrays 
that equated for N but differed in AddA and TrueA. In Exp. 1, this manipulation, that is 
de-confounding AddA and TrueA, was achieved by creating differences in the variability 
in area across items within an array. In Exp. 2, this manipulation was achieved by 
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presenting squares in one array and diamonds containing the same area in the other array. 
As number was kept constant between the arrays to be compared, there was no 
correlational structure between N and TrueA or between N and AddA to be considered; 
therefore, those experiments have little relevance to number perception. Hence, stimulus 
design in Yousif, Aslin, & Keil (2020) is not directly subject to the main criticisms raised 
in this paper. However, it is worth discussing that study in the broader context of 
magnitude perception.  
In Exp. 1 of Yousif, Aslin, & Keil (2020), the way that TrueA and AddA was de-
confounded creates another confound between homogeneity of the array and whether or 
not AddA or TrueA is greater. When TrueA between the two arrays is equated, AddA is 
larger for the more homogeneous array. When AddA is equated, TrueA is smaller for the 
more homogeneous array. Therefore, if participants are, for any reason, biased to respond 
to the more homogeneous array of the two given, then the results in Yousif, Aslin, & Keil 
(2020) could be explained by that effect. This scenario is hypothetical but plausible given 
that the ensemble representation literature demonstrates that “judgments of mean set size 
become less accurate when set size [in other words, number] increases and the 
heterogeneity of the item sizes increases” (Marchant, Simons, & de Fockert, 2013). This 
previous work may also explain why participants in Yousif, Aslin, & Keil (2020) showed 
even below chance accuracy for true area trials when the set size increased from 6 (Exp. 
1a) to 10 (Exp. 1b). An interesting future direction is to explicitly test for an effect of 
homogeneity of items on area perception, which could open a new research avenue that 
connects magnitude perception and ensemble representation (Ariely, 2001; Chong & 
Treisman, 2005). 
As reviewed in Section 2, the demonstration that diamonds are perceived to be larger 
than squares in Exp. 2 of Yousif, Aslin, & Keil (2020) is not novel. In fact, how area 
perception is influenced by shape (including individually presented star, diamond, 
rhombus, triangle, square, circle, and other polygons) has been studied since nearly a 
century ago (e.g., Anastasi, 1936; Fisher & Foster, 1968; Krider, Raghubir, & Krishna, 
2001; Warren & Pinneau, 1955). A novel contribution of Exp. 2, then, is the use of an 
array of items of different shapes. However, such a shape bias is difficult to be directly 
contextualized in the number perception literature because shape has been a constant 
factor in most previous number perception studies. 

9. Conclusions 
This paper raises issues with recent “additive area heuristic” studies published by Yousif 
& Keil (2019; 2020) and demonstrates two flaws in their stimulus design. The selection 
of stimulus parameters was extremely skewed towards making congruity and incongruity 
structures between some dimensions, and the stimulus parameters across different 
dimensions were extremely unbalanced. Such a design is usually a consequence of the 
intention to control for certain dimensions without knowing how such manipulations 
impact the other dimensions. From the standpoint that the authors aimed to interpret their 
results and made strong claims about general magnitude perception across multiple 
dimensions, such a design is flawed because, as elaborated in Section 6, it does not allow 
a proper interpretation of how various magnitude dimensions together influence 
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participants’ choice behavior. Moreover, considering the markedly different conclusions 
reached by Yousif & Keil (2019; 2020) and by Tomlinson et al. (2020) as well as other 
previous studies that used systematically constructed dot-array stimuli (e.g., DeWind et 
al., 2015; Cicchini et al., 2016; Starr, DeWind, & Brannon, 2017), conclusions reached 
by Yousif & Keil (2019; 2020; 2021) are likely invalid.  
Nevertheless, while Yousif & Keil’s (2019; 2020) stimulus design is problematic, the 
jury may still be out on how cumulative area of an item array is perceived. For singly 
presented items, older literature has shown mixed results. Some studies demonstrated that 
perceived size of a 2-dimensional image increases more slowly than the physical size 
even for adult observers (e.g., Stevens & Guirao, 1963; Teghtsoonian, 1965), but it was 
not always the case (e.g., Ekman & Junge, 1961). Also, studies suggested that only 
young, but not older, children use the “width + height” rule for estimating the area 
(Anderson & Cuneo, 1978; Wolf & Algom, 1987). Collectively, however, previous work 
suggests that the perception of area of a singly presented item is biased to some extent 
(see Krider, Raghubir, & Krishna, 2001 for a concise review). Thus, Tomlinson and 
colleagues’ (2020) finding that adults’ estimation of cumulative area of an array of items 
is relatively unbiased could rather be interpreted as a somewhat surprising and interesting 
finding. For instance, if adults rely on perimeter or the additive rule when estimating the 
area of a singly presented item, but they rely on the mathematical area when estimating 
the area of an array of items, that would be an interesting pattern of results worthy of 
further investigations. 
Arrays of items have been used to study perception of magnitude in various dimensions 
for more than half a century, with number as a main enterprise. However, systematic 
modeling of those magnitude dimensions was scant until recently. DeWind and 
colleagues’ (2015) framework provides one elegant approach to gain an explicit 
understanding of the stimulus structure and visualize the stimulus parameters and analyze 
the data accordingly. Researchers who study magnitude perception using item arrays are 
encouraged to consider DeWind and colleagues’ framework for stimulus construction or 
at least for the verification of stimulus dimensional properties. A MATLAB code 
published in a public repository (https://osf.io/s7xer/) may be used for an easy 
implementation of this framework. 

Acknowledgements 
I would like to thank Sami Yousif and Rachel Tomlinson for making the data publicly 
available. I appreciate Elizabeth Brannon for constructive comments on an earlier draft of 
the manuscript and Michele Fornaciai, Nick DeWind, Marco Cicchini, Stella Lourenco, 
Evelyn Eger, Darko Odic, and Sami Yousif for helpful discussions. This work was 
supported by the National Science Foundation (NSF) CAREER Award (BCS 1654089) 
to J. P. 

 
 

  



 18 

References 
Allik, J., & Tuulmets, T. (1993). Perceived numerosity of spatiotemporal events. 

Perception & Psychophysics, 53(4), 450–459. https://doi.org/10.3758/BF03206789 
Anastasi, A. (1936). The Estimation of Area. The Journal of General Psychology, 14(1), 

201–225. https://doi.org/10.1080/00221309.1936.9713146 
Anderson, N. H., & Cuneo, D. O. (1978). The height?+?width rule in children’s 

judgments of quantity. Journal of Experimental Psychology: General, 107(4), 335–
378. https://doi.org/10.1037/0096-3445.107.4.335 

Ariely, D. (2001). Seeing Sets: Representation by Statistical Properties. Psychological 
Science, 12(2), 157–162. https://doi.org/10.1111/1467-9280.00327 

Barlow, H. (2001). The exploitation of regularities in the environment by the brain. 
Behavioral and Brain Sciences, 24(4), 602–607. 
https://doi.org/10.1017/S0140525X01000024 

Bogartz, R. S. (1978). Comment on Anderson and Cuneo’s “The height?+?width rule in 
children’s judgments of quantity.” Journal of Experimental Psychology: General, 
107(4), 379–387. https://doi.org/10.1037/0096-3445.107.4.379 

Bolton, F. E. (1898). A Contribution to the Study of Illusions, with Special Reference to 
(a) The Effect of Size upon Estimations of Weight, (b) The Effect of Contour upon 
Estimations of Area. The American Journal of Psychology, 9(2), 167. 
https://doi.org/10.2307/1411756 

Castaldi, E., Piazza, M., Dehaene, S., Vignaud, A., & Eger, E. (2019). Attentional 
amplification of neural codes for number independent of other quantities along the 
dorsal visual stream. ELife, 8. https://doi.org/10.7554/eLife.45160 

Chong, S. C., & Treisman, A. (2005). Statistical processing: computing the average size 
in perceptual groups. Vision Research, 45(7), 891–900. 
https://doi.org/10.1016/j.visres.2004.10.004 

Cicchini, G. M., Anobile, G., & Burr, D. C. (2016). Spontaneous perception of 
numerosity in humans. Nature Communications, 7(1), 12536. 
https://doi.org/10.1038/ncomms12536 

Clearfield, M. W., & Mix, K. S. (1999). Number Versus Contour Length in Infants’ 
Discrimination of Small Visual Sets. Psychological Science, 10(5), 408–411. 
https://doi.org/10.1111/1467-9280.00177 

Dehaene, S., Izard, V., & Piazza, M. (2005). Control over non-numerical parameters in 
numerosity experiments. Retrieved from 
http://www.unicog.org/docs/DocumentationDotsGeneration.doc 

DeWind, N. K., Adams, G. K., Platt, M. L., & Brannon, E. M. (2015). Modeling the 
approximate number system to quantify the contribution of visual stimulus features. 
Cognition, 142, 247–265. https://doi.org/10.1016/j.cognition.2015.05.016 

Ekman, G., & Junge, K. (1961). Psychophysical relations in visual perception of length, 
area and volume. Scandinavian Journal of Psychology, 2(1), 1–10. 



 19 

https://doi.org/10.1111/j.1467-9450.1961.tb01215.x 
Fisher, G. H., & Foster, J. J. (1968). Apparent Sizes of Different Shapes and the Facility 

with which they can be identified. Nature, 219(5154), 653–654. 
https://doi.org/10.1038/219653c0 

Fornaciai, M., Brannon, E. M., Woldorff, M. G., & Park, J. (2017). Numerosity 
processing in early visual cortex. NeuroImage, 157, 429–438. 
https://doi.org/10.1016/j.neuroimage.2017.05.069 

Ginsburg, N., & Nicholls, A. (1988). Perceived Numerosity as a Function of Item Size. 
Perceptual and Motor Skills, 67(2), 656–658. 
https://doi.org/10.2466/pms.1988.67.2.656 

Kohn, A. (2007). Visual Adaptation: Physiology, Mechanisms, and Functional Benefits. 
Journal of Neurophysiology, 97(5), 3155–3164. 
https://doi.org/10.1152/jn.00086.2007 

Krider, R. E., Raghubir, P., & Krishna, A. (2001). Pizzas: π or Square? Psychophysical 
Biases in Area Comparisons. Marketing Science, 20(4), 405–425. 
https://doi.org/10.1287/mksc.20.4.405.9756 

Marchant, A. P., Simons, D. J., & de Fockert, J. W. (2013). Ensemble representations: 
Effects of set size and item heterogeneity on average size perception. Acta 
Psychologica, 142(2), 245–250. https://doi.org/10.1016/j.actpsy.2012.11.002 

Miller, A. L., & Baker, R. A. (1968). The Effects of Shape, Size, Heterogeneity, and 
Instructional Set on the Judgment of Visual Number. The American Journal of 
Psychology, 81(1), 83. https://doi.org/10.2307/1420810 

Park, J. (2018). A neural basis for the visual sense of number and its development: A 
steady-state visual evoked potential study in children and adults. Developmental 
Cognitive Neuroscience, 30, 333–343. 

Park, J., DeWind, N. K., Woldorff, M. G., & Brannon, E. M. (2016). Rapid and Direct 
Encoding of Numerosity in the Visual Stream. Cerebral Cortex (New York, N.Y. : 
1991), 26(2), 748–763. https://doi.org/10.1093/cercor/bhv017 

Park, J., Godbole, S., Woldorff, M. G., & Brannon, E. M. (2021). Context-dependent 
modulation of early visual cortical responses to numerical and non-numerical 
magnitudes. Journal of Cognitive Neuroscience. 

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for 
approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555. 
https://doi.org/10.1016/j.neuron.2004.10.014 

Smith, J. P. (1969). The effects of figurai shape on the perception of area. Perception & 
Psychophysics, 5(1), 49–52. 

Starr, A., DeWind, N. K., & Brannon, E. M. (2017). The contributions of numerical 
acuity and non-numerical stimulus features to the development of the number sense 
and symbolic math achievement. Cognition, 168, 222–233. 
https://doi.org/10.1016/j.cognition.2017.07.004 



 20 

Stevens, S. S., & Guirao, M. (1963). Subjective scaling of length and area and the 
matching of length to loudness and brightness. Journal of Experimental Psychology, 
66(2), 177–186. https://doi.org/10.1037/h0044984 

Teghtsoonian, M. (1965). The Judgment of Size. The American Journal of Psychology, 
78(3), 392. https://doi.org/10.2307/1420573 

Tomlinson, R. C., DeWind, N. K., & Brannon, E. M. (2020). Number sense biases 
children’s area judgments. Cognition, 204, 104352. 
https://doi.org/10.1016/j.cognition.2020.104352 

Van Rinsveld, A., Guillaume, M., Kohler, P. J., Schiltz, C., Gevers, W., & Content, A. 
(2020). The neural signature of numerosity by separating numerical and continuous 
magnitude extraction in visual cortex with frequency-tagged EEG. Proceedings of 
the National Academy of Sciences, 117(11), 5726–5732. 
https://doi.org/10.1073/pnas.1917849117 

Verge, C. G., & Bogartz, R. S. (1978). A functional measurement analysis of the 
development of dimensional coordination in children. Journal of Experimental Child 
Psychology, 25(2), 337–353. https://doi.org/10.1016/0022-0965(78)90087-5 

Wark, B., Lundstrom, B. N., & Fairhall, A. (2007). Sensory adaptation. Current Opinion 
in Neurobiology, 17(4), 423–429. https://doi.org/10.1016/j.conb.2007.07.001 

Warren, J. M., & Pinneau, S. R. (1955). Influence of Form on Judgment of Apparent 
Area. Perceptual and Motor Skills, 5(1), 7–10. 
https://doi.org/10.2466/pms.1955.5.g.7 

Wolf, Y., & Algom, D. (1987). Perceptual and memorial constructs in children’s 
judgments of quantity: A law of across-representation invariance. Journal of 
Experimental Psychology: General, 116(4), 381–397. https://doi.org/10.1037/0096-
3445.116.4.381 

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. 
Cognition, 74(1), B1–B11. https://doi.org/10.1016/s0010-0277(99)00066-9 

Yousif, S. R., Aslin, R. N., & Keil, F. C. (2020). Judgments of spatial extent are 
fundamentally illusory: ‘Additive-area’ provides the best explanation. Cognition, 
205, 104439. https://doi.org/10.1016/j.cognition.2020.104439 

Yousif, S. R., & Keil, F. C. (2019). The Additive-Area Heuristic: An Efficient but 
Illusory Means of Visual Area Approximation. Psychological Science, 30(4), 495–
503. https://doi.org/10.1177/0956797619831617 

Yousif, S. R., & Keil, F. C. (2020). Area, not number, dominates estimates of visual 
quantities. Scientific Reports, 10(1), 13407. https://doi.org/10.1038/s41598-020-
68593-z 

Yousif, S. R., & Keil, F. C. (2021). How We See Area and Why It Matters. Trends in 
Cognitive Sciences, 25(7), 554–557. https://doi.org/10.1016/j.tics.2021.03.017 

 



 1 

Supplementary Materials 
 

 
Figure S1. Scatterplot matrix illustrating the correlational structure of log difference 
measures in number (diff.logNum), total area (diff.logTA), and total perimeter 
(diff.logTP) between the first and second array within each pair of arrays in an exemplary 
stimulus set from Tomlinson et al. (2020).  

 

 
Figure S2. Distribution of stimulus parameters for dot arrays used in Experiment 3 of 
Yousif & Keil (2019). The red dots locate the stimulus parameters of the first array of 
each pair, and the blue dots locate the stimulus parameters of the second array of each 
pair. The grey line connects the two arrays within each pair. 

 

 
Figure S3. Distribution of log differences (or ratios) within pairs of arrays in number (N), 
true area (TrueA), and additive area (AddA), and the scatterplot matrix illustrating the 
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correlational structure of those log differences across the three dimensions, from 
Experiment 3 of Yousif & Keil (2019). 

 

 
Figure S4. Distribution of stimulus parameters for dot arrays used in Experiment 4 of 
Yousif & Keil (2019). The red dots locate the stimulus parameters of the first array of 
each pair, and the blue dots locate the stimulus parameters of the second array of each 
pair. The grey line connects the two arrays within each pair. 
 

 
Figure S5. Distribution of log differences (or ratios) within pairs of arrays in number (N), 
true area (TrueA), and additive area (AddA), and the scatterplot matrix illustrating the 
correlational structure of those log differences across the three dimensions, from 
Experiment 4 of Yousif & Keil (2019). 
 

 
Figure S6. Distribution of stimulus parameters for dot arrays used in Experiment 1 of 
Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of 
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each pair, and the blue dots locate the stimulus parameters of the second array of each 
pair. The grey line connects the two arrays within each pair. 

 

 
Figure S7. Distribution of log differences (or ratios) within pairs of arrays in number (N) 
and size (Sz), and the scatterplot matrix illustrating the correlational structure of log 
differences across number (N), total area (TA), and additive area (AA), from Experiment 1 
of Yousif & Keil (2020). 

 

 
Figure S8. Distribution of stimulus parameters for dot arrays used in Experiment 2 of 
Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of 
each pair, and the blue dots locate the stimulus parameters of the second array of each 
pair. The grey line connects the two arrays within each pair. 
 

 

 
Figure S9. Distribution of log differences (or ratios) within pairs of arrays in number (N) 
and size (Sz), and the scatterplot matrix illustrating the correlational structure of log 
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differences across number (N), total area (TA), and additive area (AA), from Experiment 2 
of Yousif & Keil (2020). 

 

 
Figure S10. Distribution of stimulus parameters for dot arrays used in Experiment 3 & 4 
of Yousif & Keil (2020). The red dots locate the stimulus parameters of the first array of 
each pair, and the blue dots locate the stimulus parameters of the second array of each 
pair. The grey line connects the two arrays within each pair. 

 
 

 
Figure S11. Distribution of log differences (or ratios) within pairs of arrays in number 
(N) and size (Sz), and the scatterplot matrix illustrating the correlational structure of log 
differences across number (N), total area (TA), and additive area (AA), from Experiment 3 
& 4 of Yousif & Keil (2020). 
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