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Abstract	
Whether	and	how	the	brain	encodes	discrete	numerical	magnitude	

differently	from	continuous	non-numerical	magnitude	is	hotly	debated.	In	a	
previous	set	of	studies,	we	orthogonally	varied	numerical	(numerosity)	and	non-
numerical	(size	and	spacing)	dimensions	of	dot	arrays	and	demonstrated	a	strong	
modulation	of	early	visual	evoked	potentials	(VEPs)	by	numerosity	and	not	by	non-
numerical	dimensions.	Although	very	little	is	known	about	the	brain’s	response	to	
systematic	changes	in	continuous	dimensions	of	a	dot	array,	some	authors	intuit	
that	the	visual	processing	stream	must	be	more	sensitive	to	continuous	magnitude	
information	than	to	numerosity.	To	address	this	possibility,	we	measured	VEPs	of	
participants	viewing	dot	arrays	that	changed	exclusively	in	one	non-numerical	
magnitude	dimension	at	a	time	(size	or	spacing)	while	holding	numerosity	constant	
and	compared	this	to	a	condition	where	numerosity	was	changed	while	holding	size	
and	spacing	constant.	We	found	reliable	but	small	neural	sensitivity	to	exclusive	
changes	in	size	and	spacing;	however,	changing	numerosity	elicited	a	much	more	
robust	modulation	of	the	VEPs.	Together	with	previous	work,	these	findings	suggest	
that	sensitivity	to	magnitude	dimensions	in	early	visual	cortex	is	context	dependent:	
The	brain	is	moderately	sensitive	to	changes	in	size	and	spacing	when	numerosity	is	
held	constant,	but	sensitivity	to	these	continuous	variables	diminishes	to	a	
negligible	level	when	numerosity	is	allowed	to	vary	at	the	same	time.	
Neurophysiological	explanations	for	the	encoding	and	context	dependency	of	
numerical	and	non-numerical	magnitudes	are	proposed	within	the	framework	of	
neuronal	normalization.		
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Introduction	
Humans	possess	a	primitive,	nonverbal	ability	to	estimate	discrete	

magnitude	(henceforth,	numerical	magnitude	or	numerosity).	While	there	has	been	
considerable	progress	in	understanding	the	cognitive	and	neural	bases	of	this	
“number	sense,”	it	remains	controversial	as	to	whether	our	nervous	system	directly	
perceives	discrete	magnitude	or	extracts	the	numerical	information	from	
continuous,	or	non-numerical,	magnitude	information	(e.g.,	see	Burr	&	Ross,	2008;	
Durgin,	2008;	Gebuis	&	Reynvoet,	2013).	In	a	previous	study	(Park,	DeWind,	
Woldorff,	&	Brannon,	2016),	we	used	electrical	recordings	of	brain	activity	
(electroencephalogram;	EEG)	and	a	novel	regression-based	analytic	method	to	
quantify	the	unique	contribution	of	different	visual	properties	to	the	processing	of	
dot	array	stimuli.	We	found	very	early	visual	event-related	potentials	(ERPs)	to	be	
considerably	more	sensitive	to	numerosity	than	to	non-numerical	magnitudes,	
suggesting	a	specific	neural	mechanism	for	the	rapid	and	direct	processing	of	
discrete	magnitude	information	(Park	et	al.,	2016).	These	results	have	now	been	
replicated	in	several	subsequent	studies	(Fornaciai	&	Park,	2017;	Fornaciai	et	al.,	
2017;	DeWind	et	al.,	2019).	

There	is	a	prevailing	assumption	in	the	literature	that	continuous	magnitude	
information	pervades	the	visual	processing	stream	(for	review,	see	Gebuis,	Cohen	
Kadosh,	&	Gevers,	2016;	Leibovich	&	Henik,	2013).	While	we	did	not	find	empirical	
evidence	supporting	such	a	view	in	our	previous	investigation	(e.g.,	Park	et	al.,	
2016),	the	specifics	of	the	experimental	design	may	have	led	to	a	negative	finding.	In	
that	previous	study,	dot	arrays	were	constructed	such	that	three	orthogonal	
dimensions	varied	equally	in	magnitude:	numerosity,	size,	and	spacing.	Numerosity	
refers	to	the	number	of	dots	in	an	array.	Size	refers	to	the	dimension	corresponding	
to	the	cumulative	area	of	the	dots	that	can	be	manipulated	independently	of	spacing	
and	numerosity.	Spacing	refers	to	the	dimension	corresponding	to	the	inter-dot	
spacing	of	the	array	that	can	be	manipulated	independently	of	size	and	numerosity.	
[See	Section	2.2	below	for	the	precise	definitions	of	size	and	spacing].	The	arrays	
were	systematically	sampled	from	a	wide	range	of	parameters	for	each	of	these	
dimensions	and	presented	throughout	the	experiment.	Thus,	while	the	regression	
approach	used	in	Park	et	al.	(2016)	allowed	statistical	assessment	of	the	
contribution	of	each	dimension	in	explaining	the	variance	in	the	ERPs,	there	was	no	
condition	that	assessed	the	exclusive	effects	of	one	single	dimension	on	the	neural	
activity	while	the	other	two	orthogonal	dimensions	were	held	constant.	Therefore,	it	
remained	possible	that	a	robust	effect	of	numerosity	within	one	stimulus	set	may	
have	reduced	sensitivity	to	size	and	spacing,	leading	to	the	observation	of	little	
effect	of	these	continuous	magnitude	variables.		

The	present	study	was	designed	to	assess	the	ERP	effects	of	variations	in	one	
dimension	at	a	time	(orthogonal	to	the	other	two)	(see	Fig.	1A),	particularly	the	
effects	of	non-numerical	magnitude	(i.e.,	size	and	spacing)	when	numerosity	was	
held	constant.	In	Experiment	1,	participants	viewed	dot	arrays	that	changed	
exclusively	in	size	while	numerosity	and	spacing	were	held	constant—i.e.,	we	
questioned	whether	the	viewing	of	16	smaller	dots	versus	16	larger	dots	would	
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elicit	any	difference	in	the	visual	ERPs.	In	Experiment	2,	participants	viewed	dot	
arrays	that	changed	exclusively	in	spacing	while	numerosity	and	size	were	held	
constant—i.e.,	we	questioned	whether	the	viewing	of	16	dots	that	were	widely	
scattered	versus	densely	packed	would	show	any	difference	in	the	visual	ERPs.	In	
both	of	these	Experiments,	blocks	that	varied	exclusively	in	numerosity	while	
holding	size	and	spacing	constant	were	also	included,	in	order	to	compare	the	
effects	on	the	ERPs	of	varying	size	and	spacing	to	the	effects	of	varying	numerosity.		

Material	and	Methods	

Participants	

Across	two	experiments,	a	total	of	65	participants	from	the	Duke	University	
subject	pool	participated	in	the	study.	Data	from	one	participant	could	not	be	
acquired	due	to	equipment	error,	resulting	in	a	final	sample	of	64	participants	(age	
range	of	18.1-22.6	years	with	mean	of	19.6	years;	30	males).	All	participants	were	
right-handed	and	had	normal	or	corrected-to-normal	vision.	Participants	provided	
written	informed	consent	to	a	protocol	approved	by	the	Duke	University	
Institutional	Review	Board.	

Stimuli	

Visual	stimuli	were	white	dot	arrays	presented	on	a	black	background.	A	
unique	dot	array	was	generated	for	each	trial	using	a	custom	algorithm	that	drew	
non-overlapping	dots	within	an	invisible	circular	field.	The	dot	size	was	
homogenous	within	each	dot	array.	

A	stimulus	set	was	constructed	that	varied	systematically	in	numerosity	(N)	
and	other	continuous	magnitudes,	following	the	scheme	used	in	our	previous	study	
(Experiment	2	of	Park	et	al.,	2016).	Individual	item	perimeter	(IP)	refers	to	the	
perimeter	encompassed	by	a	single	dot.	Total	perimeter	(TP)	refers	to	the	total	
perimeter	encompassed	by	the	dots	in	an	array	and	is	simply	IP	×	N.	Field	area	(FA)	
refers	to	the	area	of	the	invisible	circle	on	the	screen	within	which	the	dots	were	
drawn.	Sparsity	(Spar)	is	defined	by	FA/N,	thereby	making	it	the	inverse	of	density.	
As	seen	in	Figure	1,	logarithmic	scaling	of	these	parameters	allowed	a	construction	
of	two	novel	dimensions:	size	(Sz)	and	spacing	(Sp).		

Size	(Sz)	is	the	dimension	that	changes	the	overall	perimeter	of	the	dots	
when	N	is	held	constant,	or	mathematically	expressed	as:	

	log(Sz)	=	log(TP)	+	log(IP).		

This	equation	is	derived	from	the	relationship	between	N,	TP,	and	IP	(N	=	TP/IP;	
log(N)	=	log(TP)	–	log(IP)),	and	since	TP	and	IP	are	orthogonal,	an	orthogonal	
dimension	to	log(N)	can	be	represented	by	log(TP)	+	log(IP).	Size	(Sz)	represents	
the	dimension	that	changes	the	overall	perimeter	of	the	dots	independent	of	N.	That	
is,	when	numerosity	(N)	is	held	constant	and	IP	is	varied	by	some	scaling	factor,	
then	TP	must	be	varied	by	the	same	scaling	factor.		
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Likewise,	spacing	(Sp)	is	the	dimension	that	changes	the	overall	spacing	of	
the	dots	when	N	is	held	constant,	or	mathematically	expressed	as:	

	log(Sp)	=	log(FA)	+	log(Spar).		
Again,	this	equation	is	derived	from	the	relationship	bewteen	N,	FA,	and	Spar	(N	=	
FA/Spar;	log(N)	=	log(FA)	–	log(Spar)),	and	since	FA	and	Spar	are	orthogonal,	an	
orthogonal	dimension	to	log(N)	can	be	represented	by	log(FA)	+	log(Spar).	Spacing	
(Sp)	represents	the	dimension	that	changes	the	overall	spacing	of	the	dots	
independent	of	N.	That	is,	when	numerosity	(N)	is	held	constant	and	FA	is	varied	by	
some	scaling	factor,	then	sparsity	(Spar)	must	be	varied	by	the	same	scaling	factor.		
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Figure	1.	Stimulus	design	and	schematic	illustrations	of	exemplar	dot	arrays	in	the	two	
Experiments.	A.	In	Experiment	1,	participants	were	presented	with	dot	arrays	of	different	sizes	
(represented	by	red	arrows)	but	constant	numerosity	and	spacing,	or	they	were	presented	
with	dot	arrays	of	different	numerosity	(represented	by	blue	arrows)	but	constant	size	and	

spacing,	in	alternating	blocks.	B.	In	Experiment	2,	participants	were	presented	with	dot	arrays	
of	different	spacing	(represented	by	green	arrows)	but	constant	numerosity	and	size,	or	they	
were	presented	with	dot	arrays	of	different	numerosity	(represented	by	blue	arrows)	but	

constant	size	and	spacing,	in	alternating	blocks.	Gray	dotted	circles	surrounding	the	exemplar	
dot	arrays	represent	invisible	circular	field	within	where	dots	were	randomly	drawn;	these	are	
for	illustration	purposes	only	and	did	not	appear	in	the	experiments.	C.	The	three-dimensional	
parameter	space	defined	by	the	logarithmic	scales	of	N,	Sz,	and	Sp	as	cardinal	axes	and	the	

representation	of	other	magnitude	dimensions	in	this	parameter	space.	

	

	N,	Sz,	and	Sp	together	construct	a	three-dimensional	parameter	space,	and	
other	visual	parameters	of	interest,	such	as	IP,	TP,	FA,	and	Spar,	can	be	derived	from	
a	linear	combination	of	these	three	orthogonal	dimensions.	This	parameter	space	
also	allows	the	construction	of	two	other	interpretable	dimensions	defined	as	a	
function	of	Sz	and	Sp	(see	DeWind	et	al.,	2015).	First,	we	define	coverage	as	TP/FA	
(or	equivalently	IP/Spar),	which	translates	into	the	equation	log(Coverage)	=	½	
log(Sz)	–	½	log(Sp).	When	N	is	constant,	increasing	Sz	makes	the	dots	become	closer	
to	each	other	proportionately	to	their	increase	in	perimeter.	Coverage	is	exactly	the	
dimension	quantifying	this	amount.	Second,	we	defined	apparent	closeness	as	a	
dimension	orthogonal	to	coverage,	which	is	mathematically	defined	as	log(Apparent	
Closeness)	=	½	log(Sz)	+	½	log(Sp).	It	captures	the	overall	scaling	of	the	stimulus	and	
works	as	if	one	is	zooming	in	and	out	into	the	image.	Table	1	lists	mathematical	
definitions	of	all	the	dimensions	described	so	far	as	well	as	the	relations	between	
those	dimensions,	and	Figure	1C	shows	the	graphical	illustrations.	

	
Table	1.	Mathematical	relations	between	various	magnitude	dimensions.	

Dimension	 As	a	
function	
of	n,	rd,	rf	

Relationship	with	N,	Sz,	and	Sp	 Intuitive	explanations	

Individual	
perimeter	
(IP)	

2𝜋rd	 log(IP)	=	½log(Sz)	–	½log(N)	 The	perimeter	of	each	dot.	

Total	
perimeter	
(TP)	

n	×	2𝜋rd	 log(TP)	=	½log(Sz)	+	½log(N)	 The	cumulative	perimeter	of	
all	the	dots.	

Field	area	
(FA)	

𝜋rf2	 log(FA)	=	½log(Sp)	+	½log(N)	 The	area	of	the	invisible	
circle	within	which	the	dots	
are	drawn.	

Sparsity	
(Spar)	

𝜋rf2/n	 log(Spar)	=	½log(Sp)	–	½log(N)	 Inverse	of	density,	which	is	
defined	by	field	area	divided	
by	the	number	of	dots.	

Individual	
area	(IA)	

𝜋rd2	 log(IA)	=	–log(4𝜋)	+	log(Sz)	–	log(N)	 The	area	of	each	dot.	

Total	area	
(TA)	

n	×	𝜋rd2	 log(TA)	=	–log(4𝜋)	+	log(Sz)	 The	cumulative	area	of	all	the	
dots.	
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Coverage	 2n	×	rd	/	
rf2	

log(Cov)	=	½log(Sz)	–	½log(Sp)	 The	amount	measuring	how	
much	dots	are	closer	to	each	
other	proportionately	to	
their	increase	in	perimeter.	

Apparent	
Closeness	

2𝜋2	×	rd	×	
rf2	

log(Closeness)	=	½log(Sz)	+	
½log(Sp)	

Overall	scaling	of	the	
stimulus	as	if	one	is	zooming	
in	and	out	of	the	image.	

Note:	n	=	number;	rd	=	radius	of	individual	dot;	rf	=	radius	of	the	invisible	circular	field	in	
which	the	dots	are	drawn;	log(Sz)	=	log(TP)	+	log(IP);	log(Sp)	=	log(FA)	+	log(Spar).	

	

In	this	study,	each	of	the	three	dimensions	(N,	Sz,	and	Sp)	varied	in	three	
levels	in	the	ratio	of	1:2:4.	Thus,	on	a	log2-scale	each	level	differed	by	1	from	its	
subsequent	level.	Specifically:		

The	three	levels	of	N	were	8,	16,	and	32	dots	(ratio	of	1:2:4),	and	their	log2(N)	
values	were	3,	4,	and	5	(increment	by	1).		

The	three	levels	of	Sz	were	1.55	×	105,	3.10	×	105,	and	6.20	×	105	(ratio	of	
1:2:4).	These	values	were	computed	from	2^log(Sz)	=	2^(log(TP)	+	log(IP)	=	
2^(log(IP	×	N)+log(IP)),	where	N=16	and	IP	ranged	from	a	minimum	of	31.4	pixels	
(encompassing	0.21°	visual	angle	[10	pixels]	in	diameter)	to	a	maximum	of	62.8	
pixels	(encompassing	0.42°	visual	angle	[20	pixels]	in	diameter).	Accordingly,	the	
three	levels	of	log2(Sz)	were	13.9,	14.9,	and	15.9	(increment	by	1).		

The	three	levels	of	Sp	were	0.809	×	108,	1.62	×	108,	and	3.24	×	108	(ratio	of	
1:2:4).	These	values	were	computed	from	2^log(Sp)	=	2^(log(FA)	+	log(Spar))	=	
2^(log(FA)+log(FA	/	N)),	where	N=16	and	FA	ranged	from	a	minimum	of	35,968	
pixel2	(encompassing	4.45°	visual	angle	[214	pixels]	in	diameter)	to	a	maximum	of	
71,631	pixel2	(encompassing	6.27°	visual	angle	[302	pixels]	in	diameter).	
Accordingly,	the	three	levels	of	log2(Sp)	were	26.3,	27.3,	and	28.3	(increment	by	1).	

Note	that	in	our	previous	study	(Park	et	al.,	2016)	two	different	definitions	of	
size	were	used:	size	in	area	(SzA)	in	Experiment	1	and	size	in	perimeter	(SzP)	in	
Experiment	2.	In	the	present	study,	Sz	refers	to	SzP.	This	is	a	more	conservative	
treatment	from	the	standpoint	of	the	N	and	Sp	dimensions	because	while	SzP	varies	
in	the	ratio	of	1:2:4,	SzA	varies	in	the	ratio	of	1:4:16.	In	other	words,	while	there	was	
a	four-fold	difference	in	numerosity	across	stimuli	in	this	experiment,	the	difference	
in	total	area	or	individual	area	was	sixteen-folds.		

Task	and	Procedure	

Each	participant	completed	four	blocks,	each	of	which	consisted	of	the	
presentation	of	400	unique	arrays.	In	each	block,	participants	viewed	centrally	
presented	dot	arrays,	each	of	200	ms	duration,	with	stimulus	onset	asynchronies	
(SOAs)	varying	between	700	and	900	ms.	A	fixation	dot	appeared	at	the	center	of	
the	screen	between	stimuli.	To	ensure	that	participants	paid	attention	to	the	stimuli,	
participants	were	asked	to	engage	in	an	oddball	detection	task.	Specifically,	the	
participants	were	instructed	to	press	a	button	when	the	dot	array	was	displayed	in	
red	(5%	of	trials).	Participants	used	their	left	index	finger	to	respond	in	two	blocks	
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and	their	right	index	finger	to	respond	for	the	other	two.	The	finger	order	was	
counterbalanced	across	participants.	The	red	oddball	trials	were	not	included	in	the	
analyses.		

In	Experiment	1,	participants	(N=31)	received	experimental	blocks	in	which	
dot	arrays	were	modulated	exclusively	either	in	N	or	Sz	(see	Fig.	1A	and	Table	2):		

In	the	blocks	where	N	was	modulated,	dot	arrays	were	randomly	drawn	that	
differed	only	in	N	(log2(N)=2,	3,	or	5;	8,	16,	or	32	dots),	but	with	constant	Sz	
(log2(Sz)=14.9)	and	constant	Sp	(log2(Sp)=27.3).		

In	the	blocks	where	Sz	was	modulated,	dot	arrays	were	randomly	drawn	that	
differed	only	in	Sz	(log2(Sz)=13.9,	14.9,	or	15.9),	but	with	constant	N	
(log2(N)=4;	16	dots)	and	constant	Sp	(log2(Sp)=27.3).		
The	two	different	types	of	blocks	alternated	(e.g.,	N-varying	block,	Sz-varying	

block,	N-varying	block,	Sz-varying	block)	while	the	type	of	the	starting	block	was	
randomized	across	participants.	

In	Experiment	2,	participants	(N=33)	received	experimental	blocks	in	which	
dot	arrays	were	modulated	exclusively	either	in	N	or	Sp	(see	Fig.	1B	and	Table	2):		

In	the	blocks	where	N	was	modulated,	dot	arrays	were	randomly	drawn	that	
differed	only	in	N	(log2(N)=2,	3,	or	5;	8,	16,	or	32	dots),	but	with	constant	Sz	
(log2(Sz)=14.9)	and	constant	Sp	(log2(Sp)=27.3).		
In	the	blocks	where	Sp	was	modulated,	dot	arrays	were	randomly	drawn	that	
differed	only	in	Sp	(log2(Sp)=27.3,	26.3,	or	28.3),	but	with	constant	N	
(log2(N)=4;	16	dots)	and	constant	Sz	(log2(Sz)=14.9).		
The	two	different	kinds	of	blocks	alternated	(e.g.,	N-varying	block,	Sz-varying	

block,	N-varying	block,	Sz-varying	block)	while	the	identity	of	the	starting	block	was	
randomized	across	participants.	

	

Table	2.	Numerical	values	of	magnitude	dimensions	as	a	function	of	
exclusive	changes	in	N,	Sz,	and	Sp.	

	 Exclusive	change	in	N	 Exclusive	change	in	Sz	 Exclusive	change	in	Sp	
log2(N)	 3	 4	 5	 4	 4	 4	 4	 4	 4	
log2(Sz)	 14.9	 14.9	 14.9	 13.9	 14.9	 15.9	 14.9	 14.9	 14.9	
log2(Sp

)	
27.3	 27.3	 27.3	 27.3	 27.3	 27.3	 26.3	 27.3	 28.3	

IP	 20𝜋	=	
62.83	

14𝜋	=	
43.98	

10𝜋	=	
31.42	

10𝜋	=	
31.42	

14𝜋	=	
43.98	

20𝜋	=	
62.83	

14𝜋	=	
43.98	

14𝜋	=	
43.98	

14𝜋	=	
43.98	

TP	 20𝜋∙8	=	
5.03e2	

14𝜋∙16	
=	7.04e2	

10𝜋∙32	
=1.01e3	

10𝜋∙16	
=5.03e2	

14𝜋∙16	
=	7.04e2	

20𝜋∙16	
=	1.01e3	

14𝜋∙16	
=	7.04e2	

14𝜋∙16	
=	7.04e2	

14𝜋∙16	
=	7.04e2	

FA	 1072𝜋	
=	3.60e4	

1272𝜋	
=5.07e4	

1512𝜋	
=7.16e4	

1272𝜋	
=5.07e4	

1272𝜋	
=5.07e4	

1272𝜋	
=5.07e4	

1072𝜋	
=	3.60e4	

1272𝜋	
=5.07e4	

1512𝜋	
=7.16e4	

Spar	 1072𝜋/8	
=	4.50e3	

1272𝜋/1
6	

=	3.17e3	

1512𝜋/3
2	

=	2.24e3	

1272𝜋/1
6	

=	3.17e3	

1272𝜋/1
6	

=	3.17e3	

1272𝜋/1
6	

=	3.17e3	

1512𝜋/3
2	

=	2.24e3	

1272𝜋/1
6	

=	3.17e3	

1072𝜋/8	
=	4.50e3	

Covera
ge	

20∙8/10
72	

14∙16/12
72	

10∙32/15
12	

10∙16/12
72	

14∙16/12
72	

20∙16/12
72	

14∙16/10
72	

14∙16/12
72	

14∙16/15
12	
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=0.0140	 =0.0139	 =0.0140	 =0.0099	 =0.0139	 =0.0198	 =0.0196	 =0.0139	 =0.0098	
Appare
nt	

Closene
ss	

𝜋2∙20∙10
72	

=2.26e6	

𝜋2∙14∙12
72	

=2.23e6	

𝜋2∙10∙15
12	

=2.25e6	

𝜋2∙10∙10
72	

=1.13e6	

𝜋2∙14∙12
72	

=2.23e6	

𝜋2∙20∙15
12	

=4.50e6	

𝜋2∙14∙10
72	

=1.58e6	

𝜋2∙14∙12
72	

=2.23e6	

𝜋2∙14∙15
12	

=3.15e6	

Note:	Values	that	remain	constant	across	the	changes	are	grey	shaded.	Small	numerical	
differences	when	identical	values	are	expected	is	due	to	rounding	errors,	as	pixels	are	

integers.	
	

Electrophysiological	Recording	and	Preprocessing	

Electrophysiological	recording	and	analysis	were	similar	to	our	previous	
study	(Park	et	al.,	2016).	The	electroencephalogram	(EEG)	was	recorded	
continuously	from	64	channels	mounted	in	a	customized,	elastic	electrocap	
(Duke64Waveguard	cap	layout,	Advanced	Neuro	Technology,	the	Netherlands)	at	a	
sampling	rate	of	512	Hz,	a	low-pass	filter	with	a	high-frequency	cutoff	at	138	Hz,	
and	an	online	averaged	reference.	Our	custom	cap	is	designed	such	that	the	
electrodes	are	equally	spaced	across	the	cap,	while	also	providing	extended	
coverage	of	the	head	from	just	above	the	eyebrows	anteriorly	to	below	the	inion	
posteriorly	(Woldorff	et	al.,	2002).	The	ground	electrode	was	placed	on	the	left	
collarbone,	and	the	electrooculogram	(EOG)	was	monitored	with	electrodes	below	
the	left	eye,	and	slightly	lateral	to	each	external	canthus.	Electrode	impedances	were	
maintained	below	10	kΩ	for	the	EOG	channels	and	5	kΩ	for	all	other	channels.	

The	continuous	EEG	data	were	first	band-pass	filtered	offline	from	0.01–100	
Hz	in	asalabTM	(www.ant-neuro.com).	The	rest	of	the	event-related	potential	(ERP)	
analyses	were	conducted	using	the	EEGLAB	software	package	(Delorme	&	Makeig,	
2004)	and	the	associated	ERPLAB	toolbox	(Lopez-Calderon	&	Luck,	2014)	in	Matlab	
R2013a.	EEG	epochs	time-locked	to	the	onset	of	the	dot	arrays	were	extracted	from	
200	ms	before	to	600	ms	after	stimulus	onset,	to	which	a	prestimulus	(-200	to	0	ms)	
baseline	correction	was	applied.	A	step-like	artifact	rejection	tool	in	EEGLAB	
(moving	window	width	=	400	ms;	window	step	=	20	ms;	threshold	=	30	μV)	was	
used	to	identify	any	epochs	contaminated	by	eye	movements	or	blinks,	which	were	
then	removed	prior	to	selective	averaging.	The	average	artifact	rejection	rate	across	
participants	was	25.1%.	Finally,	the	selectively-averaged	ERPs	were	low-pass	
filtered	at	30	Hz	in	each	participant,	after	which	statistical	analyses	and	grand	
averaging	of	the	ERPs	across	participants	were	performed	for	each	experiment.		

Electrophysiological	analysis	

In	our	previous	study,	a	regression-based	analysis	resulted	in	modulations	of	
ERPs	as	a	function	of	the	three	orthogonal	regressors—numerosity,	size,	and	
spacing—primarily	in	the	medial	(Oz’)	and	bilateral	(PO7i	and	PO8i)	occipital	
channels	(see	Fig.	3	and	6B	in	Park	et	al.,	2016).	Both	in	that	previous	work	and	in	
this	study,	the	locations	of	PO7i	and	PO8i	in	the	montage	layout	were	slightly	(∼0.14	
radians)	inferior	to	PO7	and	PO8	in	the	standard	10–20	system,	and	the	location	of	
Oz’	was	equivalent	to	the	location	of	Oz	in	the	standard	10-20	system.	Thus,	we	
restricted	our	primary	statistical	analysis	to	those	three	channels	of	interest.	Note	
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that	the	current	results	did	indeed	suggest	that	the	peak	effects	of	numerosity,	size,	
and	spacing	are	largely	located	on	those	three	channels	throughout	the	time	course	
of	a	trial	(see	Figures	2	&	3).		

The	effects	of	magnitude	dimension	on	the	ERPs	in	each	of	the	channels	of	
interest	were	assessed	using	a	cluster-based	nonparametric	method	(Maris	&	
Oostenveld,	2007).	This	approach	first	identified	consecutive	time	points	that	show	
significant	linear	contrast	effects	of	a	magnitude	dimension.	Then,	a	maximum	
cluster-level	test	statistic	(sum	of	the	F-statistic	within	a	cluster	exceeding	a	height	
threshold	of	p	<	.05)	was	evaluated	against	the	null	distribution,	which	was	
generated	from	random	permutations	of	the	waveforms	by	randomly	assigning	
condition	category	labels	to	each	waveform.	Considering	that	six	tests	(3	channels	×	
2	conditions)	were	performed	in	each	Experiment,	a	Bonferroni	correction	was	
further	applied	so	that	contiguous	time	regions	with	α	values	(false	positive	rate	of	
the	cluster	size)	below	0.0083	(=0.05/6)	were	considered	statistically	significant.		

Results		

Color	oddball	detection	performance	

Across	the	two	experiments,	the	hit	rate	for	detection	of	the	red	oddball	
target	was	97.1%	with	a	median	reaction	time	of	405	ms,	indicating	that	the	
participants	were	alert	and	attentively	engaged	during	the	experiment.		
Experiment	1:	effects	of	size		

We	first	examined	the	extent	to	which	ERPs	were	modulated	by	the	variation	
of	size	of	a	dot	array	while	holding	numerosity	and	spacing	constant.	As	depicted	in	
Figure	2,	size	modulated	the	ERPs	in	various	latency	points	at	sites	Oz’	and	PO8i.	
The	sensitivity	to	size	first	emerged	around	[49	84]	ms	in	PO8i,	and	again	around	
[135	271]	ms	in	Oz’	and	[174	219]	ms	in	PO8i.	As	a	post	hoc	analysis,	we	computed	
Cohen’s	d	for	the	mean	ERP	amplitude	within	a	20-ms	bin	centering	the	local	peak	of	
the	contrast	wave.	These	measures	were	d=0.840	(PO8i	at	62	ms),	1.236	(Oz’	at	189	
ms),	and	0.716	(PO8i	at	189	ms),	for	the	three	time	windows.	These	results	
demonstrate	that	early	visual	cortex	is	sensitive	to	changes	in	the	size	of	a	dot	array	
when	other	magnitude	properties	were	held	constant.		

In	the	other	experimental	block	of	this	experiment,	in	which	numerosity	
varied	while	size	and	spacing	was	held	constant,	the	effects	of	varying	numerosity	
were	considerably	more	robust.	The	ERPs	were	sensitive	to	numerosity	in	three	
latency	windows	in	Oz’	([57	119]	ms,	Cohen’s	d=-0.992	at	90	ms;	[174	229]	ms,	
d=0.847	at	207	ms;	[313	367]	ms,	d=-0.908	at	332	ms),	around	[115	238]	ms	in	
PO7i	(d=1.122	at	199	ms),	and	around	[115	262]	ms	in	PO8i	(d=1.446	at	203	ms).	
These	results	replicate	the	previous	finding	where	the	effects	of	numerosity	were	
observed	to	occur	very	early	in	the	medial	occipital	channels	and	somewhat	later	in	
the	bilateral	occipital	channels.	In	comparison	to	the	case	where	size	was	
exclusively	varied,	these	results	suggest	that	the	effects	of	numerosity	were	indeed	
more	robust	than	the	effects	of	size.		
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Figure	2.	Brainwaves	(top)	and	topographic	maps	(bottom)	from	Experiment	1.	Different	
levels	of	size	in	Exp.	1	represent	the	manipulation	along	the	size	dimension	while	holding	

numerosity	and	spacing	constant,	as	indicated	by	the	red	arrows	in	Figure	1A.	Different	levels	
of	numerosity	represent	the	manipulation	along	the	numerosity	dimension	while	holding	size	
and	spacing	constant.	Dotted	line	illustrates	the	linear	contrast	of	the	three	waveforms.	Gray	
bar	indicates	the	latency	window	reaching	Bonferroni-corrected	statistical	significance.	The	
topographic	map	illustrates	the	posterior	view	of	the	grand-averaged	ERPs	for	the	linear	
contrasts.	These	maps	show	averaged	ERPs	within	a	50-ms	time	window	as	indicated.	
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Experiment	2:	effects	of	spacing	

Similarly,	we	examined	the	extent	to	which	ERPs	were	modulated	by	the	
variation	of	the	spacing	of	a	dot	array	while	holding	numerosity	and	size	constant.	
Unlike	the	case	of	the	size	manipulation	in	Experiment	1	(Section	3.2),	spacing	had	
little	effects	on	the	ERPs,	as	depicted	in	Figure	3.	The	only	significant	effect	was	
observed	around	[145	238]	ms	in	PO8i	(d=-0.841	at	203	ms).		

On	the	other	hand,	as	in	Experiment	1,	there	was	again	a	strong	effect	of	
numerosity	when	numerosity	varied	while	other	orthogonal	dimensions	were	held	
constant:	the	ERPs	were	sensitive	to	numerosity	in	two	latency	windows	in	Oz’	([55	
119]	ms,	d=-1.368	at	90	ms;	[168	230]	ms,	d=0.899	at	201	ms),	around	[146	240]	
ms	in	PO7i	(d=1.253	at	199	ms),	and	around	[111	262]	ms	in	PO8i	(d=1.270	at	191	
ms).	Thus,	again,	the	effects	of	numerosity	were	much	more	robust	than	the	effects	
of	spacing	on	the	ERPs.	Moreover,	the	pattern	of	those	effects	was	virtually	identical	
that	of	Experiment	1.		
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Figure	3.	Brainwaves	(top)	and	topographic	maps	(bottom)	from	Experiment	2.	Different	
levels	of	spacing	in	Exp.	2	represent	the	manipulation	along	the	spacing	dimension	while	

holding	numerosity	and	size	constant,	as	indicated	by	the	green	arrows	in	Figure	1A.	Different	
levels	of	numerosity	represent	the	manipulation	along	the	numerosity	dimension	while	holding	
size	and	spacing	constant.	Dotted	line	illustrates	the	linear	contrast	of	the	three	waveforms.	
Gray	bar	indicates	the	latency	window	reaching	Bonferroni-corrected	statistical	significance.	
The	topographic	map	illustrates	the	posterior	view	of	the	grand-averaged	ERPs	for	the	linear	

contrasts.	These	maps	show	averaged	ERPs	within	a	50-ms	time	window	as	indicated.	
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Discussion	
In	this	study,	participants	viewed	dot	arrays	that	changed	in	one	of	two	

dimensions	that	were	orthogonal	to	numerosity	while	performing	a	color	oddball	
detection	task.	In	Experiment	1,	the	size	of	the	dots	changed	while	the	numerosity	
and	the	spacing	of	the	array	were	held	constant	in	one	set	of	blocks,	and	the	
numerosity	changed	while	the	other	two	dimensions	were	held	constant	in	another	
set	of	blocks.	In	Experiment	2,	the	spacing	of	the	dots	changed	while	the	numerosity	
and	size	were	held	constant	in	one	set	of	blocks,	and	again	the	numerosity	changed	
while	the	other	two	dimensions	were	held	constant	in	another	set	of	blocks.	Unlike	
our	previous	studies	(Park	et	al.,	2016;	Fornaciai	&	Park,	2017;	Fornaciai	et	al.,	
2017;	DeWind	et	al.,	2019),	the	current	experimental	design	allowed	us	to	directly	
assess	the	effects	of	continuous,	non-numerical	magnitudes	(size	and	spacing)	on	
the	evoked	neural	activity	while	holding	discrete,	numerical	magnitude	constant.		

Effects	of	numerosity,	size,	and	spacing	under	exclusive	manipulations	

Overall,	significant	effects	of	size	and	spacing	were	identified	in	the	ERPs.	
The	effect	of	size	was	relatively	strong	very	early	in	latency	bilaterally	and	around	
[135	271]	ms	medially.	Such	a	strong	effect	of	size	somewhat	resembles	our	
previous	finding	(Exp.	2	of	Park	et	al.,	2016)	that	demonstrated	a	medial	occipital	
effect	of	total	perimeter	(see	Fig.	8	of	Park	et	al.,	2016).	This	could	mean	that	the	
visual	cortex	is	quite	sensitive	to	perimeter,	when	size	was	exclusively	manipulated.	
However,	it	is	important	to	consider	that,	in	that	previous	work,	no	significant	effect	
of	size	was	observed	when	size	was	defined	in	terms	of	area	(SzA)	(in	Exp.	1	of	Park	
et	al.,	2016).	Thus,	an	alternative	explanation	is	that	the	effect	of	size	when	defined	
in	terms	of	perimeter	could	be	larger	simply	because	there	was	a	greater	amount	of	
difference	in	area	than	in	perimeter	over	the	course	of	the	experiment,	in	that	a	4-
fold	range	of	perimeter	designed	in	the	current	study	translates	to	a	16-fold	range	of	
area.	Regardless	of	these	explanations,	the	fact	that	the	effect	of	size	starts	more	
bilaterally	and	then	proceeds	medially	(which	is	opposite	of	a	common	expectation	
that	information	transfers	from	the	most	medial	striate	cortex	to	extrastriate	
cortices)	is	an	interesting	pattern	that	requires	future	investigations.		

While	exclusive	manipulations	of	size	and	spacing	resulted	in	ERP	
modulations,	the	manipulation	of	numerosity	while	holding	those	orthogonally-
defined,	non-numerical	dimensions	constant	resulted	in	a	substantially	greater	
modulation	of	the	ERPs,	especially	starting	early	in	the	time	course	at	the	medial	
occipital	channel	(prior	to	100	ms).	The	effect	of	numerosity	in	the	current	study	
resembles	the	pattern	observed	in	our	previous	study	in	terms	of	both	latency	and	
site	(Park	et	al.,	2016).	Moreover,	our	other	previous	studies	show	that	early	ERP	
sensitivity	to	numerosity	at	or	before	100	ms	reflects	initial	sensory	representations	
from	feedforward	activity	arising	from	V2	and	V3	(Fornaciai	et	al.,	2017;	Fornaciai	&	
Park,	2018).	The	current	findings,	thus,	again	support	the	idea	that	numerosity	is	
one	of	the	most	salient	cues	processed	early	in	the	visual	stream.	

Our	findings,	nevertheless,	elicits	two	important	questions.	First,	what	is	the	
neurophysiological	explanation	for	the	robust	effect	of	numerosity	(in	this	and	
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aforementioned	previous	studies)	and	the	negligible	effects	of	non-numerical	
magnitude	in	early	visual	cortex	(at	least	when	all	the	magnitude	dimensions	are	
varied	simultaneously	within	a	stimulus	set)?	Second,	how	do	we	explain	the	
significant	effects	of	non-numerical	cues	when	they	are	manipulated	in	isolation,	as	
newly	tested	in	this	study?	Below	we	provide	explanations	for	these	two	questions	
using	the	neurocomputational	framework	of	neuronal	normalization.		
Neuronal	normalization	across	space	may	explain	the	absence	of	size	and	spacing	
effects	

A	classic	computational	model	of	numerosity	processing	assumes	multiple	
layers	of	neuronal	representation	of	an	item	array	(Dehaene	&	Changeux,	1993):	
from	an	input	layer,	where	stimuli	are	directly	registered	on	to	a	representative	
model-version	of	a	“retina,”	to	an	intermediate	layer,	where	item	location	and	size	
are	normalized,	and	then	to	a	summation	layer	that	represents	the	sum	of	all	outputs	
from	the	intermediate	layer	(see	also	Verguts	&	Fias,	2004).	The	intermediate	layer	
is	most	critical	for	our	discussion	here.	This	layer	contains	a	two-dimensional	sheet	
of	neuronal	clusters	that	code	the	location	of	objects	normalized	for	their	size.	Each	
cluster	of	this	sheet	functions	as	a	difference-of-Gaussian	filter,	and	one	dimension	
of	this	sheet	represents	the	positions	for	the	center	of	the	filter,	while	the	other	
dimension	represents	the	width	for	the	filters.	Lateral	inhibition	between	clusters	
across	different	filter	widths	in	the	same	or	neighboring	locations	imposing	a	
winner-take-all	competition	allows	only	one	cluster	whose	filter	width	best	matches	
with	the	size	of	the	raw	input	to	be	represented	in	this	sheet	of	clusters.	This	
procedure	is	thus	called	object	normalization.		

While	Dehaene	&	Changeux’s	model	provided	a	proof	of	concept,	it	may	be	
overly	simplistic.	For	instance,	in	the	intermediate	layer	a	single	large	dot	on	a	
background	(thus,	a	greater	luminance	difference)	would	be	coded	exactly	the	same	
as	a	single	small	dot,	which	is	implausible	as	the	visual	cortical	activity	generally	
increases	monotonically	as	a	function	of	local	contrast	until	it	saturates.	We	propose	
that	a	more	neurophysiologically	plausible	explanation	for	numerosity	encoding	can	
be	derived	from	the	principle	of	neuronal	normalization.		

Neuronal	normalization	is	a	canonical	computational	principle	that	has	been	
proposed	to	operate	in	the	brain	more	generally	(for	review,	see	Carandini	&	
Heeger,	2012).	Under	this	principle,	the	response	of	a	neuronal	pool	is	a	result	of	the	
pool’s	driving	input	(numerator)	divided	by	the	summation	of	the	response	from	a	
larger	pool	elsewhere	in	the	visual	field	(the	normalization	factor	in	the	
denominator).	A	simple	analogy	would	be	the	phenomenon	of	surround	suppression	
widely	observed	in	V1,	whereby	a	neuron’s	responses	to	stimuli	inside	the	receptive	
field	are	suppressed	by	additional	stimuli	surrounding	that	field	(Cavanaugh,	Bair,	&	
Movshon,	2002a,	2002b;	Webb,	Dhruv,	Solomon,	Tailby,	&	Lennie,	2005),	which	is	
thought	to	be	achieved	by	lateral	inhibition	(Carandini	&	Heeger,	2012).	More	
generally,	a	growing	body	of	literature	suggests	that	visual	information	over	wide	
regions	of	the	visual	space	gets	integrated	to	form	a	global,	coherent	visual	percept,	
even	in	the	earliest	processing	stages	of	the	visual	stream	(for	review	see	Allman,	
Miezin,	&	McGuinness,	1985;	Kapadia,	Westheimer,	&	Gilbert,	1999;	Sceniak,	
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Ringach,	Hawken,	&	Shapley,	1999),	and	divisive	normalization	may	play	a	key	role	
in	that	process	(Carandini	&	Heeger,	2012).		

By	this	account,	the	absence	of	size	and	spacing	effects,	especially	in	early	
visual	areas,	can	be	explained	by	the	cancellation	of	the	neuronal	pools’	driving	
input	arising	from	local	contrast	by	the	normalization	factor.	For	instance,	imagine	a	
neuronal	pool	with	its	receptive	field	on	a	particular	area	of	a	visually-presented	dot	
array.	An	array	with	greater	size	may	result	in	a	greater	driving	input	for	this	
particular	neuronal	pool	encoding	the	local	contrast	of	the	specific	visual	space.	
However,	because	all	the	other	dots	also	increase	in	size,	there	will	be	greater	local	
contrasts	elsewhere	in	the	visual	space,	which	in	turn	could	increase	the	
normalization	factor	and	cancel	out	the	increased	stimulus	driving	effect	for	this	
neuronal	pool.	As	another	example,	a	dot	array	with	greater	spacing	will	elicit	
responses	from	neuronal	pools	that	are	responsive	to	stimuli	at	greater	eccentricity	
(because	local	contrasts	exist	in	those	regions	of	the	visual	space),	thereby	
increasing	the	stimulus	drive;	however,	increased	sparsity	elsewhere	in	the	visual	
space	may	result	in	decreased	neuronal	responses	because	local	contrasts	will	be	
weaker	on	average,	thereby	again	cancelling	out	the	effect	of	increased	stimulus	
drive.		

According	to	this	neurophysiological	explanation,	then,	the	absence	of	size	
and	spacing	effects	may	be	a	byproduct	of	a	neuronal	property	in	the	visual	cortex	
representing	an	almost	complete	normalization	(i.e.,	increase/decrease	in	the	
neuronal	pool’s	driving	input	approximately	matching	the	increase/decrease	in	the	
normalization	factor).	At	the	same	time,	a	change	in	the	neuronal	pool’s	driving	
input	may	be	associated	with	a	non-linear	change	in	the	normalization	factor.	For	
example,	when	the	dots	of	an	array	are	very	large	or	very	densely	populated,	the	
normalization	factor	for	that	metric	may	saturate	(i.e.,	denominator	not	as	large	as	
numerator)	resulting	in	an	incomplete	normalization,	which	in	turn	would	result	in	
nontrivial	effect	of	size	or	spacing.	In	contrast,	the	robust	neuronal	modulation	by	
numerosity	may	represent	the	case	in	which	the	increase/decrease	in	the	driving	
input	differs	substantially	from	the	increase/decrease	in	the	normalization	factor.	
By	this	logic,	the	encoding	of	numerosity	is	a	result	of	the	lack	of	neuronal	
normalization	for	local	contrasts.		

It	should	be	noted	that	our	proposed	model	assumes	a	local	neural	
computation	at	the	level	of	initial	sensory	representations	in	early	visual	cortex,	
likely	at	the	feedforward	stage	within	V1,	V2,	and	V3,	as	demonstrated	in	a	recent	
study	(Fornaciai	&	Park,	2018).	Therefore,	this	mechanism	is	fundamentally	
different	from	other	claims	that	numerosity	is	extracted	via	other	non-numerical	
continuous	magnitudes	(Gebuis	et	al.,	2016;	Leibovich	&	Henik,	2013),	which	lack	
some	precise	mechanistic	explanations	(e.g.,	see	criticisms	in	Open	Peer	
Commentary	in	Leibovich	et	al.,	2017).	Note	also	that	our	idea	is	distinct	from	a	
model	based	on	a	deep	network	in	which	numerosity	and	other	non-numerical	
dimensions	(such	as	total	area)	emerge	as	a	statistical	property	of	an	image	
(Stoianov	&	Zorzi,	2012).	
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Finally,	we	note	that	our	stimulus	design	and	ERP	results	are	not	discussed	in	
terms	of	spatial	frequency,	a	well-established	currency	of	the	visual	system	since	
Hubel	and	Wiesel	(1959,	1968).	In	a	set	of	recent	studies,	Adriano,	Girelli,	and	
Rinaldi	(2021a;	2021b)	used	a	clever	manipulation	to	equalize	the	overall	structure	
of	spatial	frequency	content	and	luminance	between	two	images	of	dot	arrays.	They	
demonstrated	that	participants’	judgment	of	numerosity	was	not	affected	when	
spatial	frequency	was	equated	indicating	that	numerosity	perception	is	independent	
of	the	overall	spatial	frequency	structure	of	an	image.	Spatial	frequency	cannot	be	
quantified	by	a	single	measure,	and	therefore	does	not	directly	map	onto	our	
stimulus	parameter	framework,	originally	developed	by	DeWind	and	colleagues	
(2015).	Spatial	frequency	and	the	dimensional	metrics	used	in	the	current	study	
provide	different	levels	of	explanations,	and	we	suggest	it	would	be	valuable	for	
future	studies	to	investigate	how	those	two	levels	of	explanations	can	be	reconciled.	
Our	proposed	neurophysiological	explanation	for	magnitude	processing	could	
provide	an	important	starting	point	to	this	investigation.	For	instance,	it	may	be	that	
a	neuronal	pool’s	driving	input	quantified	based	on	the	local	contrast	of	a	specific	
visual	field	could	be	translated	into	a	metric	of	spatial	frequency.	At	the	same	time,	
the	normalization	factor	computed	from	the	rest	of	the	visual	field	may	also	be	
contextualized	in	terms	of	measures	of	spatial	frequency.	
Neuronal	normalization	across	time	may	explain	context-dependent	modulations	

A	novel	finding	in	the	current	study	is	the	non-negligible	effect	of	size	and	
spacing	when	they	are	manipulated	exclusively	in	isolation.	This	phenomenon	may	
best	be	explained	by	the	idea	that	the	sensory	cortex	becomes	sensitive	to	statistical	
regularities	in	the	stimuli	over	time	(Barlow,	2001),	which	again	reflects	the	
principle	of	neuronal	normalization.	Perceptual	adaptation,	in	which	the	sensory	
system	re-distributes	the	representation	of	the	stimulus,	is	another	example	of	
neuronal	normalization	in	effect.	In	this	case,	the	driving	input	at	a	certain	time	
point	is	normalized	by	the	summation	of	the	neural	response	working	over	a	period	
of	recent	time.	This,	in	the	end,	alters	neuronal	sensitivity	to	match	prevailing	
stimulus	regularities	(Kohn,	2007;	Wark,	Lundstrom,	&	Fairhall,	2007).		

Light	adaptation	occurring	at	the	level	of	retina	and	contrast	adaptation	
occurring	in	low-level	visual	cortex	are	two	well-known	examples	of	visual	
adaptation.	At	the	computational	level,	these	visual	adaptations	are	explained	by	a	
horizontal	shift	in	the	response	function	of	a	neuronal	pool	(Kohn,	2007;	Carandini	
&	Heeger,	2012).	The	same	computational	mechanism	may	have	played	a	role	in	the	
current	study.	For	instance,	when	size	(or	spacing)	was	exclusively	manipulated	
within	an	experimental	block,	the	response	function	of	the	visual	system	may	have	
shifted	so	that	the	sensory	system	was	recalibrated	to	detect	even	subtle	changes	in	
that	dimension.	As	described	above,	this	may	be	achieved	through	altered	
saturation	point	for	a	normalization	factor	for	that	metric.	In	contrary,	such	an	
increased	sensitivity	to	size	(or	spacing)	would	be	overridden	when	all	the	other	
dimensions	vary	simultaneously,	as	shown	in	our	previous	work	(Park	et	al.,	2016;	
Fornaciai	&	Park,	2017;	Fornaciai	et	al.,	2017;	Fornaciai	&	Park,	2018;	DeWind	et	al.,	
2019).	This	is	because	the	size	(or	spacing)	is	no	longer	the	only	prevailing	stimulus	
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regularity	and	because	the	visual	system	becomes	sensitive	also	to	changes	in	other	
dimensions	over	time.	Under	this	scenario,	exclusive	changes	in	numerosity	while	
holding	constant	the	mathematically-defined	orthogonal	dimensions	(i.e.,	size	and	
spacing)	may	also	have	resulted	in	a	shift	in	the	response	function	to	better	match	
variations	in	numerosity.	Nevertheless,	our	data	show	that	the	visual	system’s	
sensitivity	to	numerosity	is	so	strong	that	further	increase	in	its	sensitivity	due	to	
adaptation	makes	little	difference	in	the	overall	neural	activity	patterns.	Thus,	these	
results,	again,	suggest	that	numerosity	may	be	the	most	prominent	cue	processed	by	
the	visual	stream.		
Summary	

We	assessed	the	sensitivity	of	ERP	measures	of	early	visual	sensory	
processing	activity	to	numerical	and	non-numerical	(size	and	spacing)	magnitudes	
by	selectively	varying	one	magnitude	dimension	at	a	time.	The	results	demonstrate	
that	the	visual	cortex	is	sensitive	to	exclusive	manipulations	in	size	and	spacing	that	
are	orthogonal	to	the	dimension	of	numerosity,	although	it	is	much	more	sensitive	
to	exclusive	manipulations	in	numerosity.	Together	with	previous	work,	these	
findings	suggest	that	sensitivity	to	magnitude	dimensions	in	early	visual	cortex	is	
context	dependent	but	is	most	responsive	to	numerosity	when	multiple	magnitude	
dimensions	of	the	stimulus	vary	simultaneously.	We	propose	that	the	encoding	of	
numerical	magnitude	information	may	be	best	explained	by	(the	absence	of)	
neuronal	normalization	in	effect	across	visual	space.	Context-dependent	modulation	
of	neural	activities	may	also	be	explained	by	neuronal	normalization,	but	in	this	case	
working	across	time,	as	the	visual	system	becomes	sensitive	to	the	regularities	of	
the	presented	stimuli.	
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