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Abstract—In this paper, an unmanned aerial vehicle (UAV)-
assisted wireless network is considered in which a battery-
constrained UAV is assumed to move towards energy-constrained
ground nodes to receive status updates about their observed
processes. The UAV’s flight trajectory and scheduling of status
updates are jointly optimized with the objective of minimizing
the normalized weighted sum of Age of Information (NWAoI)
values for different physical processes at the UAV. The problem
is first formulated as a mixed-integer program. Then, for a
given scheduling policy, a convex optimization-based solution is
proposed to derive the UAV’s optimal flight trajectory and time
instants on updates. However, finding the optimal scheduling
policy is challenging due to the combinatorial nature of the
formulated problem. Therefore, to complement the proposed con-
vex optimization-based solution, a finite-horizon Markov decision
process (MDP) is used to find the optimal scheduling policy.
Since the state space of the MDP is extremely large, a novel
neural combinatorial-based deep reinforcement learning (NCRL)
algorithm using deep Q-network (DQN) is proposed to obtain the
optimal policy. However, for large-scale scenarios with numerous
nodes, the DQN architecture cannot efficiently learn the optimal
scheduling policy anymore. Motivated by this, a long short-term
memory (LSTM)-based autoencoder is proposed to map the state
space to a fixed-size vector representation in such large-scale
scenarios while capturing the spatio-temporal interdependence
between the update locations and time instants. A lower bound
on the minimum NWAol is analytically derived which provides
system design guidelines on the appropriate choice of importance
weights for different nodes. Furthermore, an upper bound on the
UAV’s minimum speed is obtained to achieve this lower bound
value. The numerical results also demonstrate that the proposed
NCRL approach can significantly improve the achievable NWAol
per process compared to the baseline policies, such as weight-
based and discretized state DQN policies.

Index Terms—Age of information, unmanned aerial vehicles,
deep reinforcement learning, convex optimization.

I. INTRODUCTION

Owing to their flexible deployment, the unmanned aerial
vehicles (UAVs) have emerged as a key component of future
wireless networks. The use of UAVs as flying base stations
(BSs), that collect/transmit information from/to ground nodes
(e.g., users, sensors or Internet of Things (IoT) devices),
has recently attracted significant attention [1]-[8]. Meanwhile,
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introducing UAVs into wireless networks leads to many chal-
lenging design questions related to optimal deployment, flight
trajectory design, and energy efficiency, to name a few. So far,
these challenges have mostly been addressed in the literature
using traditional performance metrics such as network cover-
age, rate and delay. However, such performance metrics lack
the ability of quantifying the freshness of information collected
by the UAVs since they do not account for the generation times
of the information at the ground nodes. As a result, these
existing solutions are not always suitable for many real-time
monitoring applications, such as safety and IoT applications,
whose quality-of-service (QoS) depends upon the freshness of
the collected information when it reaches the UAV [9]. This
necessitates the design of new freshness-aware transmission
policies that can efficiently guide the UAV’s flight trajectory
as well as carefully schedule information transmissions from
the ground nodes, which is the main objective of this work.

A. Related works

Trajectory planning for UAVs has gained considerable at-
tention in the recent past [10]-[20]. The works in [10]-
[13] formulated a non-convex optimization problem to derive
an optimal trajectory of the UAV that maximizes the total
throughput of the network while taking into consideration the
energy limitations of the UAV and ground nodes. Then, dif-
ferent successive convex optimization solutions were proposed
to reduce the complexity of the problem. The authors in [14]
jointly optimized the UAV’s flight trajectory and altitude with
the objective of maximizing the total throughput of UAV-
assisted backscatter networks. Using tools from stochastic
geometry, the authors in [15] characterized the performance
of several canonical mobility models in an UAV cellular
network. Meanwhile, heuristic methods, flow-shop scheduling,
dual decomposition, shortest path, and meta reinforcement
learning (RL) techniques have been proposed in [16]-[20] for
energy efficient and maximal throughput trajectory design in
UAV-assisted wireless networks. However, the flight trajecto-
ries considered in [10]-[20] may not necessarily be optimal
from the perspective of preserving freshness of the status
updates since they were obtained using traditional performance
metrics, such as throughput and delay.

We adopt the concept of age of information (Aol) to quan-
tify the freshness of information at the UAV. First introduced in
[21], Aol is defined as the time elapsed since the latest received



status update packet at a destination node was generated at the
source node. For a simple queueing-theoretic model, the work
in [21] characterized the average Aol, and demonstrated that
the optimal rate at which the source should generate its update
packets in order to minimize the average Aol is different
from the optimal rates that either maximize throughput or
minimize delay. Then, the average Aol and other age-related
metrics were investigated in the literature for variations of
the model considered in [21] (see [22] for a comprehensive
survey). These early works have inspired the adoption of
Aol as a performance metric for different communication
systems that deal with time critical information [23]-[40]. In
particular, Aol has been studied in the context of broadcast
networks (e.g., [24] and [25]), multicast networks ([26] and
[27]), transmission scheduling policies [28]-[34] and large-
scale analysis [35]-[37] of IoT networks, ultra-reliable low-
latency vehicular networks [38], and social networks ([39]
and [40]). Note that the prior art in [21]-[40] assumed the
destination node to be static, and, thus, their results cannot be
generalized to a scenario in which the destination is a mobile
node such as a UAV.

The use of UAVs for maintaining freshness of information
(quantified using Aol) collected from a set of ground nodes
has been recently studied in [41]-[49]. The authors in [41]
investigated the role of a UAV as a mobile relay to minimize
the average Peak Aol for a source-destination pair model
by jointly optimizing the UAV’s flight trajectory as well as
energy and service time allocations for the transmission of
status updates. Dynamic programming-based approaches were
proposed in [42], [43] to optimize the UAV’s flight trajectory
with the objective of minimizing the average of the Aol
values associated with different ground nodes. Furthermore,
a graph labeling-based algorithm was developed in [44] to
determine the optimal scheduling of update transmissions from
the ground nodes while assuming that the UAV is equipped
with a battery of finite capacity (which needs to be recharged
over time). The works in [45]-[49] proposed techniques from
reinforcement learning (RL) to learn age-optimal transmission
policies. In particular, in [45], the authors proposed to use
Q-learning for scheduling update transmissions from ground
nodes with the objective of minimizing the expired data
packets. Meanwhile, deep Q-network (DQN) approaches with
different settings were proposed in our early work [46] and
in [47]-[49] to find an optimal trajectory and/or scheduling
policy for the UAV in order to minimize the Aol of ground
nodes. However, these works considered discretized trajectory
and time instants in their underlying system settings, which
introduces approximation errors to the obtained age-optimal
policies and limits their implementation in real-world scenar-
i0s.

B. Contributions

The main contribution of this paper is a novel approach
that combines tools from convex optimization and deep RL
framework for optimizing the UAV’s flight trajectory as well as

the scheduling of the status update packets from ground nodes
with the objective of minimizing the normalized weighted sum
of Age of Information (NWAoI) values at the UAV. In partic-
ular, we study a UAV-assisted wireless network, in which a
UAV moves towards the ground nodes to collect status update
packets about their observed processes. For this system setup,
we formulate an NWAol minimization problem in which the
UAV’s flight trajectory as well as scheduling of update packet
transmissions are jointly optimized. The problem is solved
in two steps. First, a convex optimization-based approach is
proposed to derive the trajectory as well as the update time
instants of nodes for a specific scheduling policy. Next, in
order to find the optimal scheduling policy, a finite-horizon
Markov decision process (MDP) model with finite state and
action spaces is proposed. Due to the combinatorial nature
of the problem of finding the optimal scheduling policy, the
use of a finite-horizon dynamic programming (DP) algorithm
is computationally impractical. To overcome this challenge,
we propose a neural combinatorial RL (NCRL) algorithm for
this setting [50] and [51]. Unlike conventional RL problems,
we show that the state of our problem has a two dimensional
matrix form with varying number of columns. Therefore, we
propose a long short-term memory (LSTM)-based autoencoder
that can map the state of the problem with varying sizes into
a fixed size state representation.

Several key system design insights are drawn from our
analysis. For instance, we analytically derive a lower bound
on the minimum NWAoI, which is useful in deciding the
importance weights for different nodes. In particular, a key
observation from the analytical expression of the lower bound
is that in order to have a similar impact from each node on
the NWAoI, the importance weight of each node should be
chosen such that it is proportional to the total number of
updates transmitted by that node. Furthermore, we derive an
upper bound on the UAV’s minimum speed to achieve this
lower bound value. Our numerical results also demonstrate the
superiority of the proposed NCRL approach over the baseline
policies, such as weight-based and discretized state policies, in
terms of the achievable NWAoI per process. They also reveal
that the NWAoI monotonically decreases with the battery sizes
of the ground nodes, and the UAV’s speed and time constraint,
whereas it monotonically increases with the number of nodes.

To the best of our knowledge, this work is the first to
combine tools from convex optimization and deep RL to
characterize the age-optimal policy in a practical scenario
involving a continuous flight trajectory model for the UAV.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Network Model

Consider a wireless network in which a set M of M ground
nodes are deployed to observe potentially different physical
processes (e.g., agricultural, healthcare, safety, or industrial
data) of a certain geographical region. Uplink transmissions
are considered, where a UAV collects status update packets
from the ground nodes while seeking to maintain freshness of
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Fig. 1: An illustration of our system model.

its information status about their observed processes during
the time of its operation. We assume that each ground node
m € M has a battery with finite capacity of E** and its
battery level at time instant ¢ is denoted by ey, (¢) € [0, Ema].
Given the energy-constrained nature of the IoT devices, we
reasonably assume that they transmit small packet sizes. As
shown in Fig. 1, the UAV flies at a fixed height / such that the
projection of its flight trajectory on the ground at time instant
t is denoted by Ly, (t) 2 (24 (1), yu(t)), where 2, (t) and 1, (t)
represent the projection of the UAV’s location on the z and y
axes, respectively. Furthermore, we define v, ,(t) and v, ()
as the UAV’s velocity in the x and y directions at time instant
t such that we have:

dx,(t dy, (t
xdt( ) = Uu,w(t)a ydt( ) = 'Uu,y(t)a (1)
=™ Sy (t) < v, =™ <oy (t) < v ()

where v;** and vy represent the maximum speed of the
UAV in the horizontal and vertical directions, respectively.
Note that, in order to follow the convention in the literature
[10]-[12] where the control input is defined in terms of the
speed of the UAV, we have omitted the constraints on the
UAV acceleration. Due to battery constraints, the UAV can
only operate for a finite time interval. We model this fact
by having a time constraint of 7 seconds during which the
UAV flies from an initial location L, to a final location L
where it can be recharged to continue its operation. Similar to
[10]-[12], the channels between the UAV and ground nodes
are assumed to be dominated by the line-of-sight (LoS) links.
Therefore, at time instant ¢, the channel power gain between
the UAV and ground node m is modeled as:

1 some Bo
Gum(t) = Bodun®) = Sa T T LT
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where d,, ., (t) is the distance between the UAV and node m
at time instant ¢, L,,, = [Z,, Ym] is the location of node m,
and [y is the channel gain at a reference distance of 1 meter.

The Aol of an arbitrary physical process is defined as the
time elapsed since the most recently received update packet
at the UAV was generated at the ground node observing this
process. In our model, we consider the UAV to be the only
monitoring device in the network, and, thus, it is natural to
measure the Aol at the UAV. We let A,,(t) > AM" be the Aol

min
Am

>
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Fig. 2: Aol evolution vs. update time instants.

at the UAV for the process observed by node m at time instant
t, where A™" is the minimum value for A,,(¢), which is non-
zero because of the transmission delay of the wireless link.
Since we do not explicitly model this delay in our setup, we
simply interpret A™I® as a constant that will correspond to the
worst-case transmission delay. Note that this is a reasonable
assumption since the value of AMn" is negligible compared
to the difference between any two consecutive update time
instants (A™" is in the order of milliseconds whereas the
difference between any two consecutive update time instants
is in the order of seconds). Let ¢;,, be the time instant at
which node m transmits an update packet for the ¢-th time.
Hence, the Aol dynamics for the process observed by node m
will be:

Ap(t) = AP+t —ti 1 m, 4)
vVt € [ti—l,mati,m) &i € {17 B ~anm}7

where tg ., £ 0 and n,, is the total number of updates
transmitted by node m. Therefore, as shown in Fig. 2, when
t = t; m, the Aol of the observed process is reset to Aﬁi“;
otherwise, the Aol value increases linearly. Note that, we study
only the uplink transmission from the nodes to the UAV with
a generate-at-will policy as done in [21]-[27]. Thus, we can
apply methods such as orthogonal frequency-division multiple
access (OFDMA) to transmit data from the nodes to the UAV.
This approach will allow the UAV to receive update packets
from multiple nodes at the same time without any interference
between the uplink transmissions.

By letting S, B, and o2 be the size of an update packet,
channel bandwidth, and noise power at the UAV, respectively,
the energy required to transmit an update packet from node
m is given according to Shannon’s formula as:

ot (QS/B — 1) . (5)

En®) =00

Clearly, when node m is scheduled to transmit an update
packet at time instant ¢, its current battery level e, (¢) should
be at least equal to E,,(¢). Therefore, the energy level at node
m is updated as €,,(t) £ e (t) — Ep(t), Vit = t; m.



Parameter | Description
M a set of M ground nodes
Emax battery capacity of node m
em(t) battery level of node m at time instant ¢
L, (%) location of the node m
Ty (1) the projection of the UAV’s location on the z axis
Yu(t) the projection of the UAV’s location on the y axis
vyu(t) | the UAV’s velocity in the x direction at time instant ¢
Uy y(t) | the UAV’s velocity in the y direction at time instant ¢
v the maximum speed of the UAV in the horizontal direction
v;}’f”‘ the maximum speed of the UAV in the vertical direction
L, initial location of the UAV
L, final location of the UAV
dym(t) | the distance between the UAV and node m at time instant ¢
h the UAV altitude
L, the location of node m
Bo the channel gain at a reference distance of 1 meter
A (t) the Aol at the UAV for the process observed by node m at time instant ¢
Amin the minimum value of Aol
Lim the time instant at which node m transmits an update packet for the i-th time
t; the time instant at which the UAV receives an update packet for the i-th time
Nm the total number of updates transmitted by node m
S the size of an update packet
B channel bandwidth
o? noise power at the UAV
Am the importance weight of the process observed by node m
u scheduling policy
S, state of the network
an n-th node chosen by UAV to transmit update packet

TABLE I: Table of notations.
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B. Problem Formulation Amm(

™m tTLnL,TYL) +

Our goal is to characterize the age-optimal policy which
determines the UAV’s velocity and the node scheduled for
transmission at every time instant over a finite horizon of time

7. Let ¢, & [tl,m,...,tnmm]T be an ordered vector that

)

such that t,,, 41, = T. From (7), we can see that A" is a

contains the time instants during which node m transmits its
update packets to the UAV. Then, a policy 7 consists of v, 5 (%)
and v, ,(t), for all ¢t € [0,7], and ¢, for all m € M. The
objective of the age-optimal policy is to minimize the NWAoI

defined as follows:
32 (o [ o).

m=1

where T% is a normalization factor since for a given value of

N, ¥ € M, we will have 0 < G(t1, ..., tx) < I Also,
Am > 0 is the importance weight of the process observed by
node m with Zn]\le Am = 1. Every term of the sum in (6)
can be simplified as follows:

Nm

/A t)dt = Z/tm

zlm

G(ty,...,ty) 2

(6)

t)dt +/ A (t)dt
t

Ny, M

n
m ) t 4 2
=3 A = o (= )
=1

fixed value that will have no impact on the optimal solution.
Thus, we remove A™" from (7) and define a modified NWAol

as follows:
Nm+1

Gty,...,ty éTQZ/\ >

m=1 =1

®)

— ti71,m)2~

Hence, our goal is to find a policy that minimizes the
NWAOoI in (8) considering the time, location, speed, and energy
constraints, which translates into the following optimization
problem:

Gty,.. . tar), 0

U“I(t)’”unyl%g t1,.ty (t: M) 9)
Nm

LY En(tim) < E™X, Ym e M o
i=1

L,(0)=1L1, )

Lu(T) Lf:, 1)



da,(t) dyu(t)
1w Uy (), T Vu,y (1), (13)

— O < (1) S UI, < u (8) < 0P (14)

Constraint (10) comes from the fact that each node’s total
energy consumption for packet transmissions is constrained
by its total available energy. The constraints on the initial and
final location of the UAV are represented by (11) and (12)
whereas the UAV’s velocity constraints are represented by (13)
and (14). Solving (9) is challenging because the number of
times each node transmits its update packets is an unknown
variable, thus, (9) needs to be solved for each choice of n,, to
obtain the minimum NWAol. In addition, the constraints on
the UAV’s speed as well as its initial and final locations must
be satisfied by the UAV’s trajectory, and an energy constraint
is required to be satisfied for each node. Therefore, (9) is
a constrained mixed-integer problem which is challenging to
solve [52]. To this end, we provide a relaxation on the problem
that helps us to derive the exact optimal solution using a
convex optimization-based approach.

III. CONVEX OPTIMIZATION-BASED AGE-OPTIMAL
TRAJECTORY

In order to relax the problem in (9), let us consider fixed
values for ni,...,nps. In other words, we will now solve
problem (9) assuming that we know how many times each
node should send their update packets to the UAV. In Section
IV, we will provide an algorithm to find the optimal values
for ny,...,ny. We define a mapping T : &1,....ty — &,
which maps the time instants for packet updates of each node
to a sequence t, = {t1,...,%,} such that n £ Zf\il n; and
t; <tiy1, Vi=1,...,n. Mapping Y indicates the order with
which the nodes must transmit their packets to the UAV. For
instance if ¢; ; is mapped to t; and ¢;, is mapped to 41,
then node j transmits its i-th update packet to the UAV before
node ¢ transmits its [-th update packet to the UAV.

We define =, = [@u1,.-- ,xum]T and vy,
[Yuts- - Yum]” such that z,; £ z,(t;) and yu; 2 yu(t),
1 < i < mn. Here, (xy,0,Yu,0) represents the initial location of
the UAV, and (24, n+1, Yu,n+1) represents the final location of
the UAV. We define ¢ty = 0 and ¢,,41 = 7. Now, from (1) we
can write:

L

Tuitl — Ty = /tl“rl Uy (8)dt, Vi € {0,...,n}, (15)
titi+1
Vit — Yui = / vuy(Odt, Vi € {0,....n},  (16)
such that (15) and (16% are feasible if:
[Zuit1 = Tui| < 07T (Ligr — 1), (17)
[Yuyit1 — Yuil < v (tiv1 — ti). (18)

Equations (17) and (18) indicate that the distance between the
UAVSs’ location in two consecutive time instants is constrained
due to the UAVs’ speed limitations in (14). For example, if
(17) and (18) are satisfied, one solution can be v, ,(t) =

Tu,itl—Tu,i — Yu,it1 = Yu,i
tiv1—t; and vu’y(t) T tipi—ti

In addition, let @, 2 [Zmi,...,%mn,] and
Ym [ym,la cee 7ym,nm]T such that LT, i £ i (ti,m)
and Y, ; £ Yy (tim). Note that in this case, the
mapping T maps x,...,xp to x,, and maps
Yy, ...,Yy to y,. Now, we can express node m’s

energy requirement for constraint (10) as D, - FEn(t) =

o2(25/8 -1 ]
% S @i = )+ Ymi = ym)” + hﬂ-
EmﬂXBO

A !
Moreover, we define ¢, = m

can express the problem in (9) for a given scheduling policy
(order of updates) as follows:

— n,,h?. Next, we

min  G(t,), (19)
Lo, Yystu
s.t. Z {(l’m)i — xm)2 + (Ym,i — ym)ﬂ < cCm, Ym e M,
i=1
(20)
|xu,i+1 — mu,i| < ’Uglax(tprl — ti), Vi € {0, . ,TL}, 2n
[Yuit1 — Yuil S vy (i1 — 1), Vi €{0,...,n}, (22)
0<t; <7, Vie{l,...,n}. (23)

Lemma 1. The problem in (19) is a convex optimization
problem.

mt1
Proof. The term Z?:fr (ti,m
expressed as:

N +1

— ti—1.m)? in (19) can be

> (tim —ticim)® =thQutm +7° = 27ty (24)
1
such that:
2 -1 0 0 7
-1 2 -1

Qn=| 0 -1 0 25)

: .. . .o —1

o --- 0 -1 2

Q,, is a diagonally dominant matrix meaning that the
magnitude of the diagonal entry in a row is larger than
or equal to the sum of the magnitudes of all the other
(non-diagonal) entries in that row. Moreover, Q,, is sym-
metric and its diagonal entries are positive. Therefore,
Q,, is a positive definite matrix. Hence, for any m €
M, ZT’"H(th — ti—1,m)? is convex thus, (19) is con-
vex [52]. The left hand side of the condition in (10)
can be written as » .7 [(xmz —2m)? A+ Wi — Ym)’| =
wﬁInm wnL+y§11n,n Y —2Tm Z:L:ml xi,m72ym Zzlzml Yim+
NmTp™ + Ny yp where I, is an identity matrix with 7,
columns and rows. Since I, is an identity matrix, then,
I I, x, and yl I, vy, are convex terms. We now see
that, —22,, > i @i and —2yp, > i i are linear terms
and n,zlm + nayem is a constant value. Therefore, the
constraint in (10) is convex. Meanwhile, the constraints in
(21)-(23) are linear. Therefore, (19) is a convex optimization
problem which completes the proof. O



Moreover, for some special cases, we can derive a closed-
form expression for the minimum NWAolI, as shown next.

A. NWAol Lower Bound Analysis

A lower bound on the minimum NWAol can be derived
by considering no limits on the UAV’s speed. To derive
B Bo
<72(25/B—1)h2
as the maximum number of times that node m can send
update packets sinc:e2 if tJ}Ble U/?V stays on top of node m,
it requires exactly W

update transmission.

this lower bound value, we define 7, = L

amount of energy for each

Theorem 1. A lower bound on the minimum NWAol can be
expressed as follows:

M
Gzéminéz

Proof. See Appendix A. O

(26)

Remark 1. Theorem 1 shows that the optimal scheduling
policy that results in the lower bound on NWAol in (26) is
the one that updates every node m periodically after every
ﬁmT T seconds. Moreover, we can see from (26) that, since N,
is linearly dependent on E7'™, the nodes with lower battery
capacities can have a higher impact on the NWAol. Therefore,
the derived lower bound is a function of only the energy
level and the importance of the nodes. This can be helpful
in deciding on the node importance values, \,,. For instance,
in order to have an equal impact from each node, A\, can be
chosen to be proportional to ., + 1.

Although Theorem 1 provides a lower bound on the mini-
mum NWAOoI, this lower bound value may not be achievable in
practice because we did not account for the speed limitations
of the UAV while deriving this bound. That said, it is natural
to wonder about the minimum speed of the UAV required to
achieve the bound in (26), which is studied next. The main
idea is that the UAV receives the updates from the nodes not
exactly on top of them but at a small distance away from
them (by using the residual of the energy left from the floor
operation in finding 7,,), which reduces the distance between
two update locations and, hence, minimizes the required speed.
In particular, the minimum speed requirement that allows the
UAV to achieve the lower bound in (26) is the solution of the
following optimization problem:

Umin = mMin v 27
LYy
iT ) _
S.t. ti,YrL = m, Vm € {1,...7M}7 1€ {1,...,nm},

(28)
> [(xm,i = 2m)? + Ym.i = Ym)?| < Cm, Ym € M,

i=1

(29)

M
|£Ci+1 — iCZ| < U(ti+1 — ti), Vi € {0, ey Z ﬁm}, (30)
m=1
M
[yit1 — vil < v(tiva —t:), Vi € {0,..., Z fim}. (1)
m=1

In problem (27), we consider that the update time instants
are known and set to be the ones derived in Theorem 1.
The solution should satisfy the node’s energy and UAV’s
location constraints in (29)-(31). Also, in (30) and (31), we
consider that the maximum allowable speed of the UAV in
directions x and y are equal which is a practical assumption
because the UAV’s motors are usually identical. It can be
easily shown that the problem in (27) is a linear program
with convex constraints which can be solved using interior
point techniques [52]. However, the solution may not give
us a closed-form expression on the minimum required speed
for the UAV. A closed-form expression could be helpful in
choosing the type of UAV or defining the parameters of the
optimization problem, especially the node weights. Therefore,
in the following, we derive a closed form expression for the
upper bound on the UAV’s minimum required speed. To this
end, we define a scheduling policy, u, which is a vector that
contains the indices of the scheduled nodes and is ordered
based on the scheduled time instants of the nodes. For instance,
letting u; and u;41 be the i-th and ¢ + 1-th elements of u, the
node u; will be scheduled for transmission one step prior to
u;4+1. Note that for every wu, there exists a vector t,, and,
hence, we will have G(t,) = G(u). Also let us define u as
the scheduling policy that keeps the order of updates for the
optimal time instants derived in Theorem 1. In the following,
we derive the upper bound for the UAV’s minimum required
speed.

Proposition 1. If no two nodes m and p exist such that
Ny + 1 is a divisor of iy, + 1 or vice versa, then the UAV’s
minimum speed needed to achieve the minimum NWAol is
upper bounded by:

Vmin < Dmin émax |y'@i+1 - y@z|7 |xﬂi+1 B xﬂi| 7
i tiy1 —t; tiy1 —t;

M
Vi=0,...,3 fim, (32)
m=1

such that Vi € {0, ..., Zf\le Tim }, {t:} are the time instants
derived in Theorem 1.

Proof. Let %y, ; = Xy and Y ; = ym, for m € M and
i € {1,...,7,}, meaning that the UAV updates the nodes
when it is on top of them. Then, the UAV needs to travel
between the top of two nodes in less than the difference
between two consecutive time instants. Therefore, the dis-
tances covered by the UAV between two consecutive updates
in z and y directions will be |zgz,+1 — xg,| and |yz,+1 — ya, |,
respectively. Moreover, since ¢; is the time instant of the i-th

update using the policy u, then the speed requirements for
|yﬂi+1*yai|
tit1—t;

|, 410,
1;:+17ti“’ and

the travel before :-th update are



Therefore, the UAV’s speed has to be at least the maximum
value of the required speed for all travels, which yields (32).
However, if there exists a time instant ¢; such that ¢; = ¢,41,
then UAV’s speed tends to be infinity Which is infeasible.
Therefore, we need to have = ”+1 = +1, for all pairs of
nodes m and p. To this end, no two nodes m and p must exist
such that n,, 4+ 1 is divisor of 7, + 1 or vice versa, which

completes the proof. [

Proposition 1 derives a minimum value on UAV’s speed so
as to guarantee achieving the lower bound on NWAolI if any
two nodes do not have equal update time instants. If the UAV
needs to update two nodes at exactly the same time instant,
then the required speed can be derived by solving the problem
in (32). If problem (32) does not yield a solution then the lower
bound NWAoI is not achievable. In this case, a policy different
than w should be fed to the problem in (19) to find the update
time instants and locations.

Although problem (19) can be solved, it requires the
knowledge of scheduling policy, i.e., each node’s number
and order of updates. However, finding the scheduling policy
is challenging especially when the nodes are equipped with
batteries of large capacities since the nodes may send updates
more frequently in such case. MIn fact, for known values

,nu, there exists (&71’”)

updating nodes Therefore, usmg% brute force method, the
number of times one should solve (19) to find the optimal

solution for the original problem in (9) is:

§ g )
ni=1 ny=1 Hm 1 Ty
From (33), we can see that finding the optimal scheduling
policy using brute force has a combinatorial form which is
computationally expensive. Hence, in the following, we pro-
pose a similar NCRL method to that in [50] and [51] in order
to find the optimal scheduling policy for the nodes without
using brute force. Note that, if one assumes that the UAV does
not have any control over the scheduling and updates of the
nodes (which is of course realistic in some applications), the
problem becomes mathematically easier since the UAV will
need to only optimize its trajectory by considering some fixed
update rules for the nodes. In this case, the proposed convex
optimization approach will be enough to find the optimal
trajectory for the UAV since there is no need for learning the
update order and scheduling of the nodes using the proposed
RL approach. Therefore, this can be treated as a special case of
the more general problem (of optimizing both the scheduling
policy as well as the trajectory of the UAV) studied in this
work.

of ny,.. different orders for

(33)

IV. NEURAL COMBINATORIAL BASED DEEP
REINFORCEMENT LEARNING FOR OPTIMAL SCHEDULING

In order to find the optimal scheduling policy for the nodes,
we first propose an NCRL approach [50] and [51]. Unlike the
DRL solution proposed in our early work [46] in which an

environment is defined as the area within which the nodes are
located, our proposed NCRL considers the problem in (19)
as an environment that receives a policy w and outputs the
NWAoI, G(u). In particular, we consider three main elements
for this problem: state of the environment, action of the UAV,
and the reward from the environment as described in the
following.

A. State, Action, Reward, and Optimal Scheduling Policy
Definition

The state of the environment can be defined as a matrix
S, that has n + 1 columns: 1) the first column contains the
initial battery levels and the time instant of operation, and 2)
every column after the first column contains the energy levels
of the nodes after an update as well as the time instant of that
update. In other words, for an update policy u, the (i — 1)-th
column of S, represents the energy levels of the nodes before
node u; is updated. Formally, the i-th column of S, will be:

Sn,i é [El (ti), ey E]\/[(ti)7 ti}T (34)

Furthermore, the initial state is defined as Sy = sg 1 e
[Epax ... ,EW;",O]T which captures the available energy of
the nodes in the beginning of the problem where the first
time instant is set to be 0. Also, note that E,,(¢;) and ¢; can
be obtained for 0 < ¢ < nand 1 < m < M by solving
the problem in (19) using the scheduling policy vector u.
Therefore, the state space of this problem is the space of all
2-D matrices with m + 1 rows such that any element at row
m for m € M is in [0, EP*] and any element at row M + 1
is in [0, 7.

At any state of the problem, the UAV can either choose
to schedule a node for sending an update packet or terminate
the policy. Therefore, an action a,, at state S,,_; can get any
integer value in the action set A £ {0, ..., M}, such that a,, =
m > 0 means that the node m is scheduled for transmission;
a, = 0 terminates the policy, i.e., no new update transmissions
will be added to the current policy. Let u,,—1 be a policy that
contains n — 1 node indexes such that it transitions state Sy
to S,,—1. Then, at every state S,,_1, action a,, > 0 transitions
Sn—1 to S, such that S, is the transition from Sy using
policy u,, = [u,,_1,a,]. In other words, at every state of the
problem, the UAV adds a node to the end of the scheduling
policy, solves the problem in (19), and transitions the state
of the problem to a new one. While transitioning the state
of the problem, the UAV receives a new NWAol value from
(19) and uses it as a reward to derive the optimal scheduling
policy. In particular, we define the reward for every action as
the reduction in the NWAoI value, which can be expressed as:

Tn(Sh_1,Un—1,0n) = G(Un—1) — G(u,). (35)

We also define G(ug) = 1 since when policy wu is
empty, i.e., none of the nodes will be scheduled for up-
date transmissions in that case, and, hence, the NWAol will
have a maximum value of 1. Furthermore, we consider that
the reward of the termination action a, = 0 is O, ie
7n(Sn—1,Un—1,a, = 0) = 0. Using the definition of the



reward in (35), we can see that the NWAolI for a policy u,,
can be expressed as:

Glu,)=1- Zrk(sk—lauk—l,ak)-
k=1
Therefore, the optimal policy that minimizes (36) (which
is also the objective function of the problem in (19)) can be
written as follows:

(36)

n
u* = arg max,, ,, Zrk(Sk,huk,l, ag).

k=1
Owing to the nature of evolution of the problem, represented
by Sn_1, an, Up, Sy, and 7, (S, _1, Up_1, ay), the problem
can be modeled as a finite-horizon MDP with finite state
and action spaces. However, due to the curse of extremely
high dimensionality in the state space, it is computationally
infeasible to obtain w* using the standard finite-horizon DP
algorithm [53]. Motivated by this, we propose next a deep RL
algorithm for solving (37). Deep RL is suitable here because
it can reduce the dimensionality of the large state space while
learning the optimal policy at the same time using neural

combinatorial optimization methods as in [50] and [51].

(37

B. Deep Reinforcement Learning Algorithm

The proposed deep RL, that runs offline before the deploy-
ment of the UAV in the field, algorithm has two components:
(1) an artificial neural network (ANN), that reduces the dimen-
sion of the state space by extracting its useful features and (ii)
an RL component, which is used to find the best policy based
on the ANN’s extracted features, as shown in Fig. 3. To derive
the policy that maximizes the total expected reward of the
system, we use a (-learning algorithm [53]. In this algorithm,
we define a state-action value function (S, —1,a,) which
is the expected reward of the system starting at state S,,_1,
performing action a,, and following policy u. In Q)-learning
algorithm, we try to estimate the -function using any policy
that maximizes the future reward. To this end, we use the
so-called Bellman update rule:

Qk—l—l (Sn—h an) = Qk (Sn—han) + /B(Tn(sn—lyun—la an)

+ymax Qy (Sn. @) = Qi (Sn-1,an) ),

(38)
where 3 is the learning rate, and ~y is a discount factor. The
discount factor can be set to a value between 0 and 1 if the
UAV’s task is continuing which means the task will never
end, and, hence, the current reward will have a higher value
compared to the unknown future reward. However, we have
here two terminal cases: 1) when problem (19) does not have
a solution for a scheduling policy u,, and 2) when a,, = 0 (
the policy is terminated). Therefore, our problem is episodic,
and so we set v = 1. This aligns with the optimal policy
definition in (37) in which all of the steps of an episode until
the terminal state have equal weights in the evaluation of the
policy.

Ground nodes

v v

Action

Reward | State

Experience 1

Experience 2

Replay memory
UAV

Fig. 3: The deep RL architecture.

Since, using (38), the UAV always has an estimate of the
Q@-function, it can exploit the learning by taking the action
that maximizes the reward. However, when learning starts, the
UAV does not have confidence on the estimated value of the
Q@-function since it may not have visited some of the state-
action pairs. Thus, the UAV has to explore the environment
(all state-action pairs) to some degree. To this end, an e-greedy
approach is used where ¢ is the probability of exploring the
environment at the current state [54], i.e., taking a random
action with some probability. Since the need for exploration
goes down with time, one can reduce the value of € to 0 as the
learning goes on to ensure that the UAV chooses the optimal
action rather than explore the environment.

The iterative method in (38) can be applied efficiently for
the case in which the state space is small. However, the
extremely high dimension of the state space in our problem
makes such an iterative approach impractical, since it requires
a large memory and will have a slow convergence rate. Also,
this approach cannot be generalized to unobserved states, since
the UAV must visit every state and take every action to update
every state-action pair [53]. Thus, we employ ANNs which
are very effective at extracting features from data points and
summarizing them to smaller dimensions. We use a DQN
approach in [54]-[56] where the learning steps are the same as
in Q-learning, however, the ()-function is approximated using
an ANN (s, a|@), where s is a vector representation of the
state and @ is the vector containing the weights of the ANN.

In our problem, the states have a matrix form with fixed
number of rows and varying number of columns. However,
in order to apply the DQN approach, the state matrix in our
problem must be mapped into a vector representation with
fixed number of elements. To do so, we propose two methods
as follows. First, for scenarios with small number of nodes,
in which the size of state matrix S, is not very large, the last
column of the state s,, ,, can be used as the state representation
since it captures the final energy levels of the nodes after all
of the updates. Second, for large-scale scenarios, there will be
spatio-temporal interdependencies between the nodes and their
update time instants. Thus, an ANN-based autoencoder can be



Algorithm 1 Deep RL for NWAoI minimization

1: Initialize a replay memory that stores the past experiences of the UAV
and an ANN for Q-function. Set &k = 1.
: Repeat: B
Set n = 1, initialize an empty policy ug = [] and NWAol G(up) =1
and observe the initial state representation Si.
4 Repeat:
5 Select an action a:
6: select a random action a € A with probability ¢ ,
7: otherwise select @ = arg min,, Q(3n, o|0y).
8.
9
0

ISl

Append action a to the end of policy wn—1 as un = [Un_1,al.
Solve (19) using w,, and find G(wn).
Observe the reward 7, = G(un—1) — G(un) and the new state

Sn+1-
11: Store experience {3n, an,n, 8n+1} in the replay memory.
12: n=n+1

13:  Until 5,41 is a terminal state.

14:  Sample a batch of b random experiences {3, ay, Ty, Sy+1} from the
replay memory.

15:  Calculate the farget value t:

16: If the sampled experience is for terminal state then ¢t = 7,

17: Otherwise t = 7y + v ming, Q(8y+1, 0’ |0x).

18:  Derive the gradients for all of the episodes in the batch using (40).

19:  Train the network ) using the average of gradients.

k=k+1

21: Until convergence.

used to map the varying size states to a fixed size vector (which
will then be used in the DQN) [57]. This autoencoder will be
studied in detail in the following section. After deriving the
state representation vector, s, a fully connected (FC) layer, as
in [54], is used to extract abstraction of the state representation.
In the FC, every artificial node of a layer is connected to every
artificial node of the next layer via the weight vector 6. The
goal is to find the optimal values for € such that the ANN will
be as close as possible to the optimal @)-function. To this end,
we define a loss function for any set of (8, an,7n, 8nt1), as
follows:

2
LOk1) = [rn + Y max Q(sn, 010k) = Q(5n-1,00l6041)]

(39)
where subscript k + 1 is the episode at which the weights are
updated. In addition, we use a replay memory that saves the
evaluation of the state, action, and reward of past experiences,
i.e., past state-actions pairs and their resulting rewards. Then,
after every episode, we sample a batch of b past experiences
from the replay memory and we find the gradient of the
weights using this batch as follows:

Vo L(Orr1) = |7 + 7 max Q(8n, o'0)

- Q(§n71,an|9k+1)}

X v6k+1Q('§n—laan|0k+l)- (40)

Using this loss function, we train the weights of the ANN,
6. It has been shown that using the batch method and replay
memory improves the convergence of deep RL [54]. Algorithm
1 summarizes our proposed solution and Fig. 3 shows the
architecture of the deep RL algorithm.

As already discussed, the proposed DQN approach can
work for state representations with fixed number of elements.
However, the state of the problem, S, in our setup has
a matrix form with varying number of columns. Although

using the last column of S,, as the state representation may
work in scenarios with small number of nodes, we need to
capture spatio-temporal interdependence between the columns
of S,, for large-scale scenarios. Therefore, we next propose
a recurrent neural network (RNN) architecture that extracts
spatio-temporal interdependencies between the node energy
levels and the update time instants in order to feed into the
DQN algorithm for such large-scale scenarios.

C. Long Short-Term Memory-based Structure

We study a special RNN architecture, named LSTM cells
[58], that can learn time interdependence between the columns
of the state and map them into a fixed size 1-dimensional
state representation. In particular, LSTMs have three main
components as shown in Fig. 4: 1) a forget gate which receives
an extra input called the cell state input and learns how much
it should memorize or forget from the past, 2) an input gate
which aggregates the output of past steps and the current
input and passes it through an activation function as done in a
conventional RNN, and 3) an output gate which combines the
current cell state and the output of input gate and generates
the LSTM output [59]. Formally, the relationship between
different parts of the LSTM block in Fig. 4 can be expressed
as follows:

T
fi = U(Wf |:h,zr—17 SZ;,u—i:| + bf)7 (41)
T
ri=o(W, [l sl ] +b), (42)
. T
&, = tanh (Wc [hH, sf’n,l} + bc> (43)
ci=fxci1+ri*c, (44)
T
0, =0 (Wo [hz'T—lv an—z} + b0> (45)
h; = o; * tanh(c¢;), (46)
where o(z) £ 21— +i—w is the sigmoid function, * represents

element-wise multiplication, Wy, W,., W, and W, are
weight matrices, and by, b,, b., and b, are bias matrices at the
forget, input, and output gates of the LSTM. Given a state S,,,
the LSTM uses every column of S,,, s, ,—; as an input and
iteratively calculates an output sequence for i € {1,...,n}.
Next, we show how the cell state and output values can be
used as a state representation in our problem.

D. LSTM-based Autoencoder Using a Sequence-to-Sequence
Model

The LSTM blocks can be used to map the matrix S, to a
vector with fixed size [S7]. To this end, we use the sequence-
to-sequence architecture in Fig. 5. Sequence-to-sequence mod-
els are commonly used for translation from a language to
another language [57]. In this architecture, we use two LSTMs:
one to receive an input sequence of words (a sentence) in
a primary language and one to generate a new sequence of
words (a sentence) in a secondary language. Every word in the
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Fig. 4: A generic LSTM block architecture.

sequence from primary language is fed to the LSTM iteratively
until reaching the last word in the sequence. Then the cell state
output, ¢,, and recurrent output h,,, are concatenated into a
vector, S8,. Then, ¢,, and h,, are fed into the second LSTM
as the initial cell state and recurrent inputs. Now, the input
sequence to the second LSTM will be the sequence of the
words from the secondary language. During the training of
this model, the goal is to find optimal values for the weights
and biases of the LSTMs such that, in essence, s,, represents
the meaning of the sentence in the primary language. We use
the same concept to learn a fixed size representation of our
state space as shown in Fig. 5.

In Fig. 5, we use S,, as the input sequence for the first and
second LSTMs. In this respect, each column of S,, represents
a word of a sentence in the sequence to sequence model. As
a training trick, in [57], the authors show that the last word in
the sentence always must be a fixed value that represents the
end of sentence. To this end, we train our model by flipping
the columns of S, left to right. In other words, s, ,, is used as
the first input, s,, ,—1 is used as the second input and so on.
This guarantees the last input to be s,, ; which has fixed values
(the energy levels of nodes in the beginning of the problem)
as shown in (34). We will use the concatenation of vectors c,,
and h,,, as the state representation s,, in our DQN.

The size of s,, is a hyperparamter of the model which re-
quires to be optimized. To this end, in Algorithm 2, we propose
an iterative method to find the optimal state representation.
First we define the weight-based scheduling policy, u?*, as the
one that starts with an empty vector, then, keep adding nodes
to the policy randomly using a multinomial distribution where
the probability of choosing each node n will be its weight in
NWAOI, \,,. We use this policy to collect experiences from the
problem to train our LSTM autoencoder. In other words, for
any u*, we solve the problem in (19) and derive the state S,.
Afterwards, we use this state to train the model in Fig. 5. We
train the model using the back propagation method in [58] for
different sizes of s,, and choose the size that has the minimum
test mean squared error (MSE). Algorithm 2 shows the steps
of the training process. Note that Algorithm 2 is run offline
by the network operator. In order to run Algorithm 2, the
network operator does not need to have any information other

Algorithm 2 Hyperparameter Optimization for LSTM
autoencoder-based State Representation

1: Set minimum and maximum sizes, k;gﬂ“, kpax, k;‘;m, k@ for the vectors
cpn, and h, to certain values. Set maximum number of episodes € to a
certain value and e = 1 and initialize a memory that stores the past states
of the problem.

2: Observe the initial state S, and store it to the memory.

3: Repeat:

4:  Setn = 1, initialize an empty policy uy = [|,

5 Repeat:

6 Select an action a using a multinomial distribution with probabilities

equal to the weights of nodes.

7: Append action a to the end of policy ”;\1—1 as uf‘L = [u;\l_l, a}.

8: Solve (19) using wy,. If (19) had a solution find S, 41, otherwise,
break the loop.

9: Store state S, 41 in the replay memory.

10: n=n+1

11: e=e+1.

12: Untile +1 = e.

13: Split the memory randomly into training and test memories with 7 to 3
ratio.

14: Set k} = kmin, kr = k?i", and k. = kMin,

15: Repeat:

16:  Set ky, = knin.

17:  Repeat:

18: Initialize an LSTM autoencoder architecture with k. and kj number
of elements for ¢, and h,.

19: Train the architecture using the states in the training memory and
applying back propagation[58].

20: Derive the average MSE between the states in the test memory and
the output of LSTM autoencoder.

21: If the average MSE is smaller than the minimum MSE so far, set
ki = ke and kj = kp,.

22: Set kp, = kp, + 1.

23: Until kp, + 1 = k.

24: Until k. + 1 = B,

25: Output k} and kj .

than the number of nodes and the time limit. The remaining
information such as the energy level of the nodes and their
locations will be generated randomly for several episodes.
Next, for each episode using a multinomial distribution, a
scheduling policy is chosen and the states of the problem will
be generated. Using these states that are randomly generated
based on the real environment, the LSTM autoencoder will be
trained using the Algorithm 2.

V. SIMULATION RESULTS

For our simulations we consider a rectangular area within
the following coordinates: (0,0), (0,1000), (1000,0), and
(1000, 1000). Unless otherwise stated, we consider B = 1
MHz, S = 10 Mbits, 02 = —100 dBm, h = 80 meters,
v = v;“”‘ = 25 m/s, and 7 = 900 seconds. We randomly
generate the x and y coordinates of the initial and final
location of UAV as well as the location of the nodes using
a uniform distribution on interval [0,1000] meters. Also, the
nodes’ battery levels are drawn uniformly between 0.1 and
1 joules and the each node;s importance value is drawn
uniformly between 0 and 1 and then normalized over the sum
of the importance values. We train the UAV, using the ANN
architecture in [54] with no convolutional neural networks and
only one FC layer. We use the Tensorflow-Agents library [60]
for designing the environment, policy, and costs. In addition,
we use 8 NVIDIA P100 GPU and 20 Gigabits of memory to
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Fig. 6: Trajectory optimization using convex optimization.

train the UAV. All statistical NWAoI results are averaged over
1000 episodes and over multiple random initializations. Also,
the values are reported after the RL algorithm converges to a
policy. The convergence of the RL depends on the complexity
of the problem in terms of the number of the nodes, energy
level of the nodes, physical characteristics of the UAV, and
time constraint. Since at the beginning of each episode, the
initial state of the network (the battery level of the nodes and
the location of the UAV and nodes) are generated randomly,
the UAV actually learns a generalization of the problem and
can find the optimal trajectory and scheduling for any initial
state but with a fixed number of nodes and a fixed time
constraint.

A. Convex Optimization-based Trajectory

In Fig. 6, we consider 3 nodes whose energy levels are
randomly drawn between 0.1 and 0.2 joules. The initial and
final locations of the UAV are at (0,500) and (500, 500)
meters. To study this scenario, we consider a brute force
method and solve problem (19) for all of the combinations in
(33). Fig. 6 shows the optimal trajectory of the UAV as well as
each node’s update time instant. Fig. 6 shows that each node
can be updated only once during the scenario. Therefore, the
UAV tries to update the nodes as close as possible to 5 = 450
seconds which is the optimal update time instant when each
node can be updated only once due to Theorem 1. Moreover,
Fig. 6 shows that, at the update time instants, the UAV tries

closely to the node’s location. Thus, the difference between the
time instants of policy ug are larger and its resulting NWAoI
is smaller than uq5. This showcases the importance of action
a = 0 which is the terminal action in the optimal policy (since
adding more updates for a node does not necessarily reduce
the NWAoI). In fact, in Fig. 7, we compare the brute force
method to the proposed NCRL and show that NCRL can find
the optimal number of updates for this scenario.

B. Learning-based scheduling policy

Fig. 8 shows the impact of the number of nodes on the
NWAOoL. In particular, we compare our proposed NCRL and
LSTM autoencoder with a discretized DQN approach pro-
posed in our early work [46] and the weight-based policy.
NCRL only uses the last column of the state representation
while LSTM autoencoder uses the entire state representation
matrix. Moreover, a weight-based policy randomly chooses
the nodes with a probability proportional to their weights and
adds these nodes to the policy vector. Also, note that, all four
algorithms use the proposed convex optimization solution to
find the optimal trajectory and they differ in their approach to
find the scheduling policy. Therefore, the difference between
the number of calculations for the all methods depends solely
on the difference between the number of nodes inside each
of the action vectors. Fig. 8 shows that both the proposed
methods yield lower NWAol compared to the discretized
DQN and weight-based policies. As the number of nodes
increases, the NWAoI increases for all four policies since:
1) each node will update its process less often than the case
with smaller network, 2) the action space increases, i.e., the
number of feasible scheduling policies increases progressively
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Fig. 8: Comparison between the proposed NCRL and LSTM
autoencoder with discretized DQN and weight-based policy
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as shown in (33), which makes finding the optimal policy
more challenging, and 3) the spatio-temporal interdependence
between the nodes’ locations and their update time instants
increases. However, as seen from Fig. 8, while the gap between
NCRL and the discretized/weight-based policy increases when
the number of nodes increases, the gap between NCRL and
LSTM autoencoder reduces. This is because, for larger number
of nodes, the LSTM autoencoder starts showing its impact
in learning the spatio-temporal interdependence between the
states of the problem. From Fig. 8, we can also observe that the
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Fig. 9: Comparison between the proposed NCRL and LSTM
autoencoder with discretized DQN and weight-based policy
for large numbers of nodes.

lower bound on NWAoI (expressed in (26)) does not depend
on the number of nodes since it is only a function of the
nodes’ weights and maximum number of allowable updates,
i.e., the number of nodes does not have any impact on that
lower bound value.

In Fig. 9, we study the impact of having a large number
of nodes on the performance of the four policies. Fig. 9
demonstrates that, as the number of nodes increases, the
proposed LSTM autoencoder shows its impact and results in
a smaller NWAol compared to NCRL. This shows that the
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Fig. 10: The impact of node energy levels on NWAol.

proposed LSTM autoencoder can capture some interdependen-
cies between the states of the problem that only using the last
column of the state will fail to capture. Therefore, an LSTM
autoencoder can learn better policies compared to NCRL. The
reason why the LSTM autoencoder cannot outperform NCRL
for a small number of nodes is because its accuracy is not
100% when finding the state representation for short sequence
sizes. Therefore, for a small network, the test error prevents
LSTM autoencoder to outperform NCRL. However, for a large
network of nodes, the benefits of using the LSTM autoencoder
is larger than its test error, and, thus, it can outperform NCRL.
Fig. 9 also shows that for large-scale networks, the discretized
DQN in [46] fails to even outperform the weight-based policy
since, in this method, the state space grows exponentially
which makes it harder for the DQN to learn a good policy.

Fig. 10 shows the impact of the node energy level on
NWAoI. In Fig. 10, we consider 3 nodes with energy
levels randomly drawn from: [0.05,0.15], [0.15,0.25], ...,
[0.95,1.05] joules. Thus, the average energy level of the nodes
will be between 0.1 and 1 joules. Fig. 10 demonstrates that the
proposed NCRL and LSTM autoencoder can outperform the
discretized DQN and weight-based policies. Moreover, Fig.
10 shows that as the energy level of the nodes increases,
the LSTM autoencoder achieves lower NWAol compared to
NCRL. This is due to the fact that larger energy levels help the
UAV update the nodes for a larger number of times which, in
turn, increases the size of the state matrix S,,. Therefore, the
effect of the LSTM autoencoder can be more obvious when the
nodes’ energy levels increase. From Fig. 10, we also observe
that for a larger average node energy, the discretized DQN
cannot achieve a good performance and in some cases the
weight-based policy has a lower NWAoI. This is because of the
nature of the discretized DQN approach in [46] where the state
space and the complexity of the problem grow progressively
with the energy levels of the nodes while the weight-based
policy’s complexity does not depend on the energy levels. Fig.
10 also shows that the lower bound on NWAoI decreases sub-
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linearly with respect to the average node energy level which
means that the impact of energy level reduces gradually as the
node energy levels increase. Such a sub-linear behavior can be
noticed also for all four policies.

Fig. 11 compares the performance of the proposed NCRL
and LSTM autoencoder with discretized DQN and weight-
based policies as a function on the time constraint 7. We
consider 3 nodes and solve the problem for different scenarios
with time constraint between 5 to 15 minutes. Fig. 11 shows
that, as the time constraint increases, the NWAol becomes
smaller since a larger time constraint gives more opportunity
to the UAV to move closer to the nodes and update the
node status more frequently. Moreover, Fig. 11 shows that the
proposed NCRL and LSTM autoencoder can outperform the
discretized DQN and weight-based policies. Furthermore, the
performance gap between the four policies stay fixed which
indicates that the time constraint has a general impact on the
solution of the problem and does not depend on the policy

type.



In Fig. 12, we consider three nodes while the UAV speed
varies between 2 and 20 m/s. From Fig. 12 we notice that
for small values of UAV speed, NWAol is almost similar
for NCRL, LSTM autoencoder, discretized DQN, and weight-
based policy since the UAV cannot cover large areas and due
to its time constraint it may not even update any node. How-
ever, as the UAV speed increases, the NWAoI also decreases
because the UAV can move around faster and can update nodes
more frequently. Fig. 12 demonstrates that LSTM autoencoder
can achieve even lower NWAolI values compared to NCRL for
higher UAV speeds. This is due to the fact that, the number
of updates increases with the increase in speed which results
in larger state matrices. Therefore, the LSTM autoencoder can
learn a better representation of the state which will result in
learning better policies.

VI. CONCLUSION

In this paper, we have investigated the problem of minimiz-
ing the NWAolI for a UAV-assisted wireless network in which
a UAV collects status update packets from energy-constrained
ground nodes. First, we have formulated the problem as a
mixed-integer program. Then, for a given scheduling policy,
we have proposed a convex optimization-based approach to
obtain the UAV’s optimal flight trajectory and time instants
on updates. However, due to the combinatorial nature of the
formulated problem, it is very challenging to find the optimal
scheduling policy. To overcome this hurdle, we have proposed
a novel NCRL algorithm using DQN to reduce the system state
complexity while learning the optimal scheduling policy at the
same time. However, for large-scale networks, the DQN cannot
efficiently learn the optimal scheduling policy. Therefore, we
have then proposed an LSTM autoencoder that can help the
proposed deep RL to learn a better policy for such large-
scale scenarios. We have analytically derived a lower bound
on the minimum NWAol, and obtained an upper bound on
the UAV’s minimum speed to achieve that lower bound value.
Our numerical results have shown that the proposed NCRL
algorithm significantly outperforms baseline policies, such as
the discretized DQN and weight-based policies, in terms of the
achievable NWAoI per process. They have also demonstrated
that the achievable NWAol by the proposed algorithm is
monotonically decreasing with the time constraint of the UAV,
the battery sizes of the ground nodes, and the UAV speed. In
our future work, we can address large-scale scenarios in which
interference could also be a limiting factor.

APPENDIX
A. Proof of Theorem 1

The 2mirsl/ir‘glum gequired energy for an update from a node
m is M which is the case when the UAV requests
for update from node m while it stays on top of node m,
i.e. T = Tm and Y, ; = y;. In this case, every node m,
will be updated 7, times in the entire 7 seconds. However,
this requires UAV to move from the top of a node to top

of another node in less than the time difference between two
optimal consecutive update time instants. Therefore, in order
to find the lower bound on NWAol, we neglect the limit on
the UAV’s speed and find the optimal update time instants for
each node. Note that, in this case, we assume that (21) and
(22) are always satisfied. Here, we define 6; ,, £ tim—ti—1,m
as the difference between two update time instants of node m.
Then, we have:

B 1M P , Ao 2
G= = Am Z&-,m + (T - Z‘si’m) . @
m=1 i=1 i=1
Since (47) is a convex function, we take the first derivative of
G with respect to &; , for 1 <m < M and 1 < i < Ay,
and set it equal to O in order to find the optimal update time
instants which yields:

G 2\, <
il Rl M SR
E J:1
2Am Nm
= 26;m + Z Sjom — T (48)
J=1,5#i

Thus, for every node m the optimal values for d;,, is the
solution of the following equation:
1
51,m T
= :|. (49)
: : : 1 5ﬁ,m,7n T
1 -~ 1 2
Now, if we subtract the first row of the matrix in (49) from
all of the other rows we will have:

2 1 v e 1
11 0 --- 0 T
. . . 51,m 0
0 .o =], 60
Do 0 Oy, 0
-1 0 -~ 0 1
which yields 01, = d2,m = -+ = 0pn,,,m = 757 Therefore,
the optimal NWAol will be:

1 M ’ 2
¢ in — o )\m Nm 1 P— P 51
G =22 2 A ¢ )(nm+1> ey

which can be simplified to (26).
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