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Abstract—Internet-of-Things (IoT) technology is envisioned to
enable a variety of real-time applications by interconnecting
billions of sensors/devices. These IoT devices rely on low-power
wide-area wireless connectivity for transmitting, mostly fixed- but
small-size, status updates of the random processes observed by
them. Owing to their ubiquity, cellular networks are seen as a
natural candidate for providing reliable wireless connectivity to
IoT devices. Given the massive number of IoT devices, enabling
non-orthogonal multiple access (NOMA) for the mobile users and
IoT devices is appealing in terms of the efficient utilization of
spectrum compared to the orthogonal multiple access (OMA). For
instance, the uplink NOMA can also be configured such that the
mobile users adapt their transmission rates depending upon the
channel conditions while the IoT devices transmit at a fixed rate.
For this setting, we analyze the ergodic capacity of the mobile
users and the mean local delay of IoT devices using stochastic
geometry. Our analysis demonstrates that the aforementioned
NOMA configuration provides better ergodic capacity for mobile
users compared to OMA when delay constraint of IoT devices is
strict. We also show that NOMA supports a larger packet size
at IoT devices than OMA under the same delay constraint.

Index Terms—Adaptive rate NOMA, cellular networks, ergodic
rate, IoT networks, mean local delay, stochastic geometry.

I. INTRODUCTION

The IoT networks provide a digital fabric interconnecting
billions of wireless devices for exchanging application-specific
information without any human intervention. Many IoT appli-
cations, such as smart cities and traffic surveillance, rely on the
real-time processing of information received from a massive
number of sensors/devices deployed over a large area. The key
research challenges for realizing such IoT applications are to
facilitate flexible deployment, wide-area coverage, low power
devices, and low device complexity. The cellular networks are
seen as a natural candidate for providing wide coverage to
IoT devices on a massive scale [1]. However, the low-cost IoT
devices may not be capable of performing complex signal pro-
cessing needed for the advanced antenna array communication
techniques (such as millimeter communication). Besides, the
IoT devices may experience much higher pathloss if they are
deployed in places like tunnels or basements or are simply
located far away from the BSs. Thus, efficient link budget
planning is also crucial for low-power IoT devices. For these
reasons, the sub-6 GHz band is primarily being considered
to support low power wide area (LPWA) links of the low-cost
IoT devices [2]. However, the sub-6 GHz band is crowded with
the existing mobile services. This motivates spectral resource
sharing between IoT devices and mobile users [3].
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Further, the IoT devices are generally deployed to share
observations/measurements of some physical process in the
form of fixed and small payloads at random intervals. As a
result, the BSs require to support small size data packet trans-
missions from a massive number of low-power IoT devices
[4], [5]. In release 13, 3GPP LTE included enhanced machine
type communications (eMTC) and narrowband [oT (NB-IoT)
communication to offer narrowband LPWA links to IoT de-
vices in the sub-6 GHz band [6], [7]. On the other hand, non-
orthogonal multiple access (NOMA) can be used as a viable
alternative to improve spectral utilization as well as enable
massive access in IoT networks [8]. In the literature, the design
of NOMA-based IoT networks is extensively investigated.
For instance, [9] presents NOMA-aided NB-IoT networks for
enhanced connectivity, [10] presents ALOHA-based NOMA
scheme for scalable and energy-efficient deployment of IoT
networks, and [11] studies the performance of NOMA-based
wireless powered [oT networks. However, most existing works
on the design of NOMA-aided IoT networks are investigated
in simplified settings, such as a single-cell system.

Recently, stochastic geometry has emerged as a powerful
tool for modeling and analyzing a variety of large-scale
wireless networks. However, works on the analysis of NOMA-
aided IoT networks using stochastic geometry are relatively
sparse, a few of which are briefly discussed below. The
authors of [12] analyze aggregators-assisted two-hop NOMA-
enabled cellular IoT network by modeling the locations of
IoT devices, aggregators and BSs as independent Poisson
point processes (PPPs). Therein, aggregators are employed
to relay the NOMA transmissions from the IoT devices to
the BS. The authors of [13] analyze RF energy harvesting
based cellular IoT networks under the PPP setting. The IoT
devices first harvest energy using downlink signals and then
perform the uplink data transmission using NOMA. While the
existing works in this direction consider pairing of IoT devices
for non-orthogonal access, NOMA can also offer an efficient
solution to the co-existence of mobile users and IoT devices
by pairing their transmissions in the same spectral resource,
as considered in this paper. The authors of [14] analyze the
throughput performance of NOMA-based uplink transmission
of mobile users and IoT devices in cellular networks under
the PPP setting. However, the authors apply random pairing
(i.e., mobile user and IoT device are randomly selected for a
cell), which undermines the NOMA performance gains.

The authors of [15] show that it is imperative to pair
devices with distinctive link qualities for harnessing maximum
performance gains from fixed-power NOMA. The authors of
[16] characterized the performance gain of NOMA over OMA,
termed the large-scale near-far gain, which is a result of the
variation in link distances of NOMA users. Inspired by this,
we consider a new pairing scheme that selects a mobile user



from the Johnson Mehl (JM) cells [17] to ensure the mobile
user with shorter link distance (i.e., good channel quality)
is selected for pairing, as will be discussed shortly. In most
cases, this approach will ensure distinctive link qualities of the
mobile user and IoT device selected for pairing.

Contributions: This paper presents a new stochastic
geometry-based analysis of uplink NOMA for the non-
orthogonal transmission of mobile users and IoT devices
in cellular networks with power control. In particular, we
consider adaptive rate NOMA wherein the mobile users adapt
modulation and coding scheme (MCS) according to the time-
varying channel and the IoT devices transmit fixed but small-
size data packets. We assume that the locations of IoT devices,
mobile users and BSs follow independent PPPs. Further, we
consider mobile users with serving link distance below thresh-
old L for pairing to ensure the distinct link quality criteria for
harnessing the optimum NOMA performance gain [15]. As a
result, the mobile user and IoT device are selected for pairing
from the Johnson Mehl (JM) cell [17] and Poisson Voronoi
(PV) cell, respectively, corresponding to their associated BS.!
For this setup, we first derive the moments of the meta
distribution [18] for both mobile users and IoT devices. Next,
we use these results to characterize the achievable ergodic
capacity for the typical mobile user and the mean local delay
observed by the typical IoT device. Finally, our numerical
results validate the analytical findings and demonstrate that
adaptive rate NOMA is more spectrally-efficient than OMA
when the delay constraint of IoT devices is strict.

II. SYSTEM MODEL

We assume that the locations of BSs, mobile users and IoT
devices form independent homogeneous PPPs <I>]’O, ®,, and D,
of densities \p, A, and Ag, respectively, on R2. We present
the uplink analysis for the typical BS placed the origin o by
adding an additional point at o to ®}. Let &, = @}, U {o}.
For more details on this typical cell viewpoint, please refer to
[19]. Mobile users and IoT devices are assumed to associate
with their nearest BSs. Thus, the mobile users and IoT devices
associated with BS at x must lie within Poisson Voronoi (PV)
cell whichis Vxy = {y e R2: |x —y|| < |z — y| .,z € B}

It is important to pair devices with distinct link qualities to
achieve NOMA benefits [15]. Therefore, we pair mobile users
with serving link distances shorter than L with the IoT devices.
This ensures that the mobile users experiencing good channel
quality are involved in the NOMA pairing. Thus, the NOMA
pair associated with a BS at x includes the mobile user within
the JM cell Vyx = B« (L) N Vx [17] and the 10T device within
the PV cell Vy, where Bx(L) is a ball of radius L centered at
x. Note that L controls the fraction of mobile users available
for pairing. This fraction is equal to Ar, = 1 — exp(—7\,L?)
[20], which clearly increases with L.

In the proposed uplink NOMA, we consider that the BS first
decodes the mobile users’ signal in the presence of intra-cell
interference from its paired IoT device. Next, the BS applies

I'This paper considers only a subset of the mobile users (from JM cells)
for NOMA pairing, and the remaining mobile users (outside of JM cells) are
assumed to be served in a conventional manner. The analysis for users outside
the JM cell can be followed from [18] with small improvisations.

successive interference cancellation (SIC) technique to remove
the intra-cell interference to the IoT device from the mobile
user. After that, it decodes the IoT devices’ signal. Thus, we
effectively consider multi-user detection by SIC.

We assume that each mobile user has perfect knowledge of
its uplink signal to interference ratio (SIR) and can employ
infinitely many MCS levels such that there is an MCS level
that achieves Shannon capacity with an arbitrarily small BER
for a realized SIR. Under this SIR adaptive MCS selection,
the transmission rate of the mobile user is log,(1+ ) when
the realized SIR is [y,. This is also beneficial to improve the
rate of successful transmission for the IoT devices as the BS
will always be able to successfully perform the SIC operation
because of the mobile user’s channel adaptive transmission
strategy. We term this scheme the adaptive rate NOMA. The
IoT devices are assumed to transmit at a fixed rate as they
may not be complex enough to transmit with adaptive MCS.

This paper assumes that each BS employs NOMA trans-
mission of IoT devices and mobile users (from JM cells)
over the same spectral band and uses different spectral band
for the transmission of mobile users lying outside of the JM
cells. We assume the standard power law path-loss model
with exponent «, and consider that both mobile users and IoT
devices transmit using a distance-proportional fractional power
control scheme. We use subscript ¢ € {m, t} for denoting the
mobile user (i.e., ¢ = m) and the IoT device (i.e., ¢ = t).
Thus, the transmit power of device i is p;R;“ where R;,
pi and €; € [0,1] denote its serving link distance, baseline
transmit power and power control fraction, respectively. Let Wy
and V¥, denote the point processes of the inter-cell interfering
IoT devices and mobile users, respectively. Let Ry, and Dy,
denote the distances of device ¢ located at x from its serving
BS and the typical BS placed at o. We assume independent
Rayleigh fading over all links. The received SIR at the typical
BS at o from the mobile user in V, is

N
Pththa(erl) $In+ I,
and the SIR received at the typical BS at o from the IoT device
in V,, after removing the intra-cell interference via SIC is
PthtR?(Erl)

I.+1

SIRy, =

(D

SIR; = where (2)
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where h; ~ exp(1l) and hx, ~ exp(1l) are the small scale
fading gains of intended device and interfering device at x,
respectively, for ¢ € {m, t}.
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The conditional success probability (conditioned on the
locations of the mobile user y,, [oT device y; and the inter-
cell interferers’ point process ¥ = ¥, U ¥y) for the mobile
user and the IoT device with SIR thresholds S, and ; are

Pm(ﬁm;y7 ‘11) = ]P)(SIRm > ﬁmb’a \11)7 and 3)

Pt(/Bmv ﬁt; Yy, \II) = ]P)(SIRm > ﬁmv SIRt > 5t|ya \I])a (4)

where y = ym U yt. The success probability of the IoT



device depends on the joint decoding of messages of both the
devices. However, because of the assumption of the adaptive
transmission, the mobile user’s signal is always decodable at
the BS with arbitrarily small error probability. Hence, its intra-
cell interference to the IoT devices can be eliminated using
SIC because of which (4) reduces to

Pi(Bi;y, ¥) = P(SIR; > Bily, V). (5)

The distribution of conditional success probability, termed
meta distribution [18], is useful in studying the network per-
formance in terms of the percentage of devices experiencing
success probability above some pre-defined threshold. Hence,
we aim to derive the meta distributions for both the mobile
user and IoT device under the aforementioned NOMA strategy.

Under the adaptive transmission strategy, the ergodic rate
of the typical mobile user is

Rum = E[logy(1 + SIRm)]. (6)

As the 10T devices are deployed to transmit their observations
in a timely manner, it is meaningful to characterize their
performance using the mean local delay. The mean local delay
is defined in [18] as the mean number of transmissions needed
for the successful delivery of a packet.

III. ANALYSIS OF ADAPTIVE RATE NOMA

The link distance distribution and the point processes of
the inter-cell interfering devices are crucial for the meta
distribution analysis, which we will discuss next. Recall, we
assume that the paired mobile user and IoT device are located
uniformly at random within V, and V,, respectively. The
probability density function (pdf) of the link distance R; of
IoT device can be approximated as

fr.(r) = 2mpAprexp(=mphpr?), >0,  (7)

where p = 9/7 [20]. The serving link distance R, of the
mobile user is bounded by L as it is selected from V,. Hence,
its pdf can be obtained by truncating (7) as

2T pApT €Xp (—7Tp)\br2)
fRu(r) = 2
1 —exp (—mppL?)

Now, we characterize the inter-cell interferers’ point processes
V., and VU in the following. Both these processes are non-
stationary since the inter-cell interfering devices lie outside
V5. It is well-known that the exact characterization of uplink
interferers’ point process is difficult. However, an accurate
approximation of the pair correlation function (pcf) of W,
as seen from the typical BS is derived in [17] as g (1) =
1—exp(—27V, 1r?), where V, 1 = E[|V,| 1] and | A| denotes
the area of set A. Using this pcf and the fact that there is a
single interfering user from each cell, we can approximate ¥,
using a non-homogeneous PPP with density

A () = b (7). )

The pcf of U, can be obtained simply by replacing V,* with
E[|V,|~'] & I\, (which corresponds to the case L — o)
as gy(r) = 1 — exp(— 7 A,r?), which exactly matches with

the pcf derived in [21]. Thus, similar to ¥,,, we can also

0<r<L. (8

approximate W, using a non-homogeneous PPP with density
A(r) = Aoge (7). (10)

Now, in the following, we analyze the meta distributions of
SIR,, and SIR. It is well-known that the exact expression for
meta distribution is difficult to derive. Hence, similar to [18],
we focus on deriving the moments of these meta distributions.

Theorem 1. The b-th moment of meta-distribution of the
typical mobile user under the adaptive rate NOMA is

M =Eg, [Z71(Sm)Z2(8m)M(8m)] , (1D

a(l—em)

wheresy, = 5—‘“Rm ,

a(eg—1) —b
Il (Sm) - ERt (1 + Smpth ) ) )

Ts(Sm) = exp <—2n /Ooo Ao (u) (1 - /Ou(1+

Smptraetu*a)7bext (r|u)d7’> Udu) 5

min(w,L)
- / (1+
0

smpmrm“‘u_a)_beXm (r|u)d7") udu) ,

and pdfs of Ry, Rm, Rx, and Ry, are given in (7), (8), (22)
and (21).

M(sm) = exp <27r /()Oo:\m(u)

Proof. Please refer to the Appendix for the proof. O

Corollary 1. The b-th moment of meta-distribution of the
typical mobile user under OMA is

M =Eg, [M(sw)], (12)

where sy, and M(sy) are given in Theorem 1.

Now, we present moments of meta distributions for the IoT
device under the adaptive rate NOMA and OMA strategies.

Theorem 2. The b-th moment of meta-distribution of the
typical IoT device under the adaptive rate NOMA is

Mlt) = ERc[IQ(St)M(St)} ’
where sy = %Rf(l_e‘), To(sy) and M(sy) are given in (11).

13)

Proof. From (5), the conditional coverage probability of the
typical IoT device located at yy is

Pi(Be;y, ¥) =P (ht > Imse + Lisily, ¥),

1
H 1+ sip RS D>’

xeW

(a) 1
B H 1+3tmegfan;£

x€Wny,

where (a) follows from the assumption that hs, hy_ and hy, ~
exp(1) and since ¥, and ¥y are independent.

Now, b-th moment of meta distribution can be obtained as
M} = E[PP(By;y, ¥)]. Further, following the similar steps
given in the proof of Theorem 1, we obtain (13). O

Corollary 2. The b-th moment of meta-distribution of the
typical 10T device under OMA is given by

M =Ep, [T2(s0)] (14)



where sy and Ty (st) are given in Theorem 2.

The first moment of the conditional success probability is
the spatially averaged distribution of SIR. Thus, the comple-
mentary CDFs of SIR,, under NOMA and OMA becomes

Fu(Bm) = M™ and F(Bm) = M™, (15)

respectively. In OMA, each BS is considered to schedule its
associated mobile users and IoT devices for n and 1 — 7
fractions of time. Using (15), we now present the ergodic rate
of the typical mobile user in the following theorem.

Corollary 3. Ergodic rates of the typical mobile user under
NOMA and OMA, respectively, are

1 o 1 _
- I - 1
Ro= g | el a6)
_ n 00 1 B
= 7F . 1
and Ry, 111(2)/0 Ty m(7)dy A7)

Corollary 4. Mean local delay of the typical IoT device under
NOMA and OMA, respectively, are

De(By) = M| and Dy(B;) = (1 —n) ' M. (18)

The optimal selection of power control fractions €, and €
is crucial to maximize the ergodic rate for the mobile user.
However, maximizing the ergodic rate of the mobile user may
negatively impact the mean local delay for the IoT device.
Therefore, we consider maximizing the ergodic rate of the
mobile user under the constraint of maximum mean local delay
of the IoT device for NOMA and OMA cases as below

max Ry, s.t Dy(Bs) <,

€m,€t

Proma : (19)

max Ry, s.t. f)t(ﬁt) <,

(1,€m €t

Powma : (20)

where 7 represents a predefined threshold. Under the fixed-
rate NOMA, the successful transmission of IoT device is
conditioned on the successful decoding of the mobile device’s
signal. Thus, the fixed-rate NOMA will lead to an inferior
mean local delay performance for the IoT device compared
to the adaptive rate NOMA. As a result, the IoT device
requires smaller transmission power (and thus smaller intra-
cell interference to the mobile user) to ensure the mean local
delay is below threshold 7 under the adaptive rate NOMA
compared to the fixed-rate NOMA. Therefore, the adaptive
rate NOMA provides higher ergodic rate compared to the
throughput achievable under the fixed rate NOMA.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We consider A\, = 1074, A, = 0.25, a = 4, 3, = —5 dB
and p, = pt = 1, unless mentioned otherwise. Fig. 1 (left)
verifies the accuracy of the first moment of meta distribution
derived for the mobile users and IoT devices under the adaptive
rate NOMA for different values of (e, €;). The first moments
of meta distribution of mobile users decreases and IoT devices
increases with the increase in €; for a given ¢,,.

We compare the proposed NOMA with the conventional
OMA in terms of the rate distribution and optimal ergodic
rate of mobile users in Fig. 1 (middle) and the mean local
delay of IoT devices in Fig. 1 (right). Fig. 1 (middle) presents

the rate distribution and ergodic rate for optimally configured
NOMA and OMA. It is not surprising to see that the NOMA
provides improved rate distribution compared of OMA for 7 =
2 (i.e., a strict delay constraint). This is because in OMA, the
IoT device requires higher medium access probability (i.e.,
1 — n) to ensure its delay constraint when 7 is small which
allows smaller transmission times for mobile user. Whereas
NOMA allows continuous medium access to mobile users with
some interference from IoT devices. Besides, the figure shows
that NOMA underperforms for 7 = 10 (i.e., a loose delay
constraint). This is because under OMA, the IoT device require
smaller 1 — 7 to ensure delay constraint for higher 7 and thus
it allows the mobile user to transmit more often.

Fig. 1 (right) shows the mean local delay for the IoT device
with full power control. It can be observed that the delay is
better under NOMA compared to OMA. Besides, it is not
sensitive to €, since SIC is always successful for the adaptive
NOMA. However, the delay performance under OMA is very
sensitive to 7, which is expected. The figure also shows that the
mean local delay degrades with the increase of SIR threshold
B¢ and also with the increase of €, under NOMA and 7
under OMA. It also demonstrates that for a given threshold
7, NOMA can be configured such that it meets the delay
constraint with a larger 8y compared to that under OMA case.
This implies that NOMA can support a larger message size as
compared to OMA under the same delay constraint. Besides,
it also shows that the mean delay does not significantly change
for a wide range of €, under the NOMA whereas it drastically
degrades with a moderate increase in 7 under OMA.

Furthermore, it is expected that the ergodic rate under both
NOMA and OMA degrades with the increase of L. This is
because a larger JM cell accommodates more mobile users
with lower SIRy;s. The optimal fraction A;, of mobile users
involved in the non-orthogonal transmission with IoT devices
depends on the network design parameters, such as bandwidth
partitioning for NOMA and non-NOMA users, scheduling
policy, and load distributions of mobile and IoT services. This
investigation is a promising direction for future research.

V. CONCLUSION

We proposed an adaptive rate NOMA scheme for enabling
massive access in cellular-supported IoT applications wherein
an IoT device and a mobile user are paired for non-orthogonal
transmission. The proposed adaptive rate NOMA assumes that
the mobile users adapt their MCS according to the channel
conditions whereas IoT devices transmit small size packets
using fixed MCS. Using stochastic geometry, we characterized
the moments of the meta distribution for both types of devices,
which are then used to characterize the ergodic rate for the
typical mobile user and the mean local delay for the typical IoT
device. Our results demonstrated that the adaptive rate NOMA
provides better transmission rates for the mobile users as
compared to the OMA under strict mean local delay constraint
of IoT devices. This suggests that the proposed NOMA scheme
is a spectrally-efficient solution for meeting capacity and delay
requirements of mobile users and IoT devices, respectively.
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Figure 1. Left: Verification of M7 of both devices. The lines and markers correspond to simulation and analytical results, respectively. Middle: rate distribution
and ergodic rate for optimally configured NOMA and OMA. Right: mean local delay of IoT devices for various power control fractions (€m, €t).

Letting s,,, = Bmp;llR%(lfe“‘), the conditional success prob-
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[2]
[3]

ability of the mobile user located at y,, can be obtained as

Po(Busy, U) = P (hm > S (pthtRS(“‘” Ty It> ¥, w)
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xeEW,

where (a) follows since Ay, I, hx,,
Ry, < Dy, for x € Uy, pdf of Rx_ can be truncated as

SR

a(ey—1)

1

1 mpt R
+ SmpPe L —aH

e
1+ Smpmfixmm Xm e,

2T pALT €Xp (—7r,0>\b7’2)

Qe —a’
1 + SmPttht Xt

(7| Dx,..)

" 1 exp(—mpApmin(L, Dy, )?)’

@

Besides, Rx, < Dx,. Thus, the pdf of Ry, becomes

JRy, (r|Dx,) =

_2mpApr exp(—mpApr?)

1 —exp(—mpA,D2,)

The b-th moment of P, (Bm;y, ¥) can be obtained as

m a(eg—1) —b
M =Ep. |Eg, (1—|—Smpth )

Next, using conditional pdfs of Ry and Ry, (given in (21)
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and hy, ~ exp(1). Since

[6]

1 [7]

[8]

;0< 7 < Dy, (22)

[9]

[10]

(11]

[12]

[13]

[14]

[15]

dr

[16]

. [17]

[18]

and (22)), and the probability generating functional of approxi-

mate non-homogeneous PPPs W, and ¥, with densities Ay, (r)

and ;\t(r) (given in (9) and (10)), we get (11).
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