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Abstract—We consider the problem of authenticating commu-
nication over a Myopic Binary Adversarial Channel (MBAC)
while maintaining covertness with respect to the myopic ad-
versary. When the main channel between legitimate parties is
degraded with respect to the adversary’s channel, we show the
existence of an integrated scheme that simultaneously exploits
secret keys to ensure covertness and authentication. The main
technical challenge we address is showing that authentication
may be ensured against myopic attacks when using the low-
weight codewords mandated by covert communication.

I. INTRODUCTION

Authentication is concerned with the problem of ensuring
that legitimate parties, hereafter named Alice and Bob, may
not only communicate reliably but also ensure that their
messages are not impersonated or substituted by a mali-
cious adversary, hereafter named Willie. Several information-
theoretic models for authentication have been considered in the
literature to date, leading to different conclusions regarding the
need of and use of secret keys to ensure authentication. One
model of malicious adversary, which is the one investigated
here, is an arbitrarily-varying channel in which Willie chooses
a non-causal state sequence based on noisy observations of
the transmission. The arbitrarily-varying channel can capture
both the problem of jamming, in which case Alice and Bob
try to ensure reliability against a class of adversarial state
sequences [1]-[3], or authentication, in which case Alice
and Bob can afford to not transmit reliably if they correctly
detect the presence of an adversarial state [4], [5]. While
ensuring authentication is perhaps a simpler task than ensuring
resilience to jamming, the design and analysis of coding
schemes ensuring authentication is a challenging endeavor
in its own right. While state sequences are often subject to
some power constraint in the jamming model, they are not
in the authentication model, so that neither model necessarily
supersedes the other. A key finding of [1] is that, when a
jamming adversary is myopic enough, i.e., its observations are
noisy enough, the adversary is effectively blind, i.e., it can do
no better than if it were oblivious to the actual transmission. In
the context of authentication, a key contribution of [4], [5] is
the introduction of a condition, called overwritability, which
characterizes when the authentication capacity of a channel
is zero without secret keys. In addition, when the adversary
is myopic enough, the authentication capacity of a binary
Myopic Binary Adversarial Channel (MBAC) is shown to be
equal to the regular capacity. Another model of authentication
is studied in [6], [7], in which the adversary can intercept
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the transmitted codeword and substitute it for any another
sequence. The probability of successful attacks is characterized
in the presence of and absence of shared secret keys.

Ensuring covertness, or low probability of detection, is
another concern in communication systems. The covert ca-
pacity of discrete memoryless and Gaussian channels has
been thoroughly analyzed [8]-[12], highlighting the presence
of a square root law and the need to use codewords with
vanishing weight. The need for vanishing weight naturally
questions the resilience of covert communication schemes
to adversarial interference, and covert communication in the
presence of malicious adversaries has already attracted some
attention. Notably, [13] studies the covert communication over
adversarially jammed channels and shows some degree of
resilience. A similar conclusion was drawn for the more
specific problem of covert key generation over adversarial
channels [14]. In the present work, we investigate the problem
of covert authentication over an MBAC. Our main contribution
is to show the existence of an integrated scheme that exploits
shared secret keys jointly for authentication and covertness,
and is resilient to a myopic adversary without sharing extra
keys except for those used already needed for covertness.

The rest of the paper is organized as follows. After a
brief review of notation (Section II), we introduce the specific
channel model for covert authentication in the presence of a
myopic adversary (Section III) and derive our main result re-
garding the existence and performance of an integrated covert
and authenticated scheme (Section IV). While we provide
proof details in appendices, some technical details are omitted
because of space constraints.

II. NOTATIONS

For two distributions P, Q) on some common alphabet
X, D(P|Q) = >, Pz )log () js the Kullback-Leibler
(KL) divergence between P and é We say P is absolutely
continuous with respect to (w.r.t.) Q, denoted by P <« @,
if for all z € X P(z) = 0 if Q(z) = 0. We denote
PO the product distribution H —1 P on X" We also define
2(PlQ) £ X, w For any x € X", fx is the
type of the sequence x. Similarly, if z € Z™ for some
alphabet Z, then fx, is the joint type of the sequences x
and z. For any x € X", x(¢) is its ¢th component of x, and
wp (x) is the hamming weight of x. For any joint distribution
Pxz on X x Z, X and Z are the random variables with
the corresponding distribution, and I(Pxyz) is the mutual
information between X and Z. We also denote 7x the type
class of Px. The distribution of a Bernoulli random variable
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with success probability p is denoted by B(p). We also define
the set [M] = {1,...,M}. For any real number a € R,
|a|T = max(a, 0).

III. PROBLEM FORMULATION AND MAIN RESULT

We use the same adversarial channel model as in [5]. Let
X, Y, and S be the transmitter, receiver and state alphabets,
respectively, and Wy |x g be the discrete memoryless adver-
sarial channel between the legitimate users. For all length n
sequences x € X", y € V" and s € S”, the transition
probability of y given x and s can be written as

Wy x,s(yIx.8) = [[ Wy x.s@(@lx(0), s(0). (1)
=1

Let Z be the output alphabet at the adversary. The adversary
observes the transmission through the discrete memoryless
channel W x. A myopic adversary can choose the state se-
quence s by observing the received sequence z € Z" accord-
ing to a policy Jgn|zn, which depends on the channel Wz x
and the codebook used by the legitimate parties. Let s € S
be the state of no interference, i.e., Wy |x 5=, = Wy x,
where Wy | x is the channel between legitimate parties without
adversaries. Then, the state sequence so € S™ represents the
situation in which there is no adversary. Let M be the size
of the message set, so that a message belongs to the set [M].
Besides, let K be the size of keys. An authentication code
consists of an encoder/decoder pair (1, ¢) with

{1, MY x {1, K} X,
¢ V" x {1, K} {0,1,.... M},

2
3)

where the decoded symbol O indicates the existence of an
adversary. The decoder ¢ is successful if either the decoder
output is equal to the transmitted message, or if the decoder
output is 0 and s # sg. Therefore, given the transmitted
message ¢, the key k and the corresponding codeword x; , =
(i, k), the probability of error of the code (¢, ¢) under the
attacking policy Jgn|zn is

e(i, ]{;, JSnIZn)
= Z Wy x (2%ik) Jgn| 20 (s0|2) Wy x5 (67" (4)|xik, S0)

+ Z Wy x (2|%:) Jgn zn (s|2) Wy x5 (¢ ({7, 0}) %k, s),

s#£80,2

where ¢~1(A) denotes the set of channel outputs that are
decoded, with the information of the shared key k, to an
element in the set A, and ¢p~1(A)¢ is the complement of the
set in Y". Assuming that every message is transmitted with
equal probability, then the average probability of error for the
policy Jgn|zn is

11 ME
e(Jgn|zn) = M?Z;;e(i,k,%nlzn). (4)
The objective of Alice and Bob is not only to communicate

reliably over the DMC Wy |x but also to avoid detection

by Willie. We assume next that X = {0,1} where the
symbol O corresponds to the input to the channel when no
communication takes place. In the absence of communication,
the output distributions of the two channels induced by the
symbol 0 are then given by

Py =Wy|x— and Qo= Wz x—o- (5

If symbol 1 is transmitted, the output distributions of the two
channels are given by

Py =Wyix=1 and Q1 =Wz x_1. (6)

We assume that 1 < Qo and P, < Py to simplify
the analysis. Willie can perform any hypothesis test on his
observation z to decide whether Alice and Bob communicate
(hypothesis H7) or not (hypothesis Hy). Let o be the type I
error probability (rejecting Hy when true) and 3 be the type
IT error probability (accepting Hy when wrong). It has been
shown in [15] that Willie’s optimal hypothesis test satisfies

the tradeoff o« + 3 > 1 — D(@"||Q6®"), where @” is the
expected distribution of z™ when the communication takes
place, and Q§" = [],_; Qo is the distribution of z" when
no communication happens. Therefore, covert communication
is achieved by making the divergence D(Q"||Q5") small.
Hence, the objectives of Alice and Bob are two-fold: the
transmitted codeword x should be correctly decoded from
the interfered noisy sequence y; Willie should not identify
the presence of a transmission. To be more specific, the code
design needs to satisfy

nh_)rrgo max e(J)=0 (7
lim D(Q"QF") < ®)

for some 1 > 0, where 7 is the parameter reflecting how covert
the communication should be. We assume that the channel
between Alice and Willie is a binary symmetric channel with
crossover probability ¢ and denoted by BSC,. The adversary
Willie can decide on a state sequence s according to some
policy J(s|z) and adds it to the transmitted codeword x.
The interfered sequence x & s is passed through another
binary symmetric channel BSC,, with crossover probability
p, and the channel output y is received by Bob. Therefore,
Wy x,s(y1x,8) = [[)2; Wy x (y(0)]z(€) @ s(¢)), and Wy|x
is a binary symmetric channel with cross over probability p.
This myopic binary adversarial channel with parameter p and
q is denoted by MBAC,, ,. For all 0 < «a,, < 1, we define the
distribution IT, on X such that I, (1) =1—1I,, (0) = o,
as well as the distribution

Qa, (2) = a,Q1(2) + (1 — ) Qo(2)

for all z € Z. Our main theorem is stated below.

€))

Theorem 1. Consider the MBAC with parameter 1/2 > p >

q. Let w = ,/m, and o, = ﬁ For any § > 0, there

exist £1,&€5 > 0 and a coding scheme such that
log M
Voo

w(D(P1[|Po) = 6) (10)
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log K

n =w(D(Q1|Qo) — D(P1]|Po) +20),  (11)

and
max e(J) < e Vet (12)
IDQ™|QF™) — DQEMIQF™)| < eVt (13)

when n is large enough.

By Theorem 1, there exists a code such that (7) is satisfied
when n — oo, and the divergence satisfies

D@Q™IQF™) < IDW@Q™IQF™) — DQEMIQT™| + D(QE™1QF™)
2
<o (Pra@lQo o) 14
<e @2V (1 +0(1)),

(14)A is from Lemma 1 of [11]. Therefore,
lim, 0o D(Q"|QF™) < 7. Theorem 1 shows that there
exists an integrated scheme that jointly ensures covertness and
authentication with the same asymptotically optimal message
throughput and secret key throughput as schemes that only
ensure covertness. In other words, any authentication put in
place at the message level is automatically strengthened by
the intrinsic authentication provided by the integrated scheme.

15)

where

IV. PROOF OF MAIN RESULT
A. Encoder and Decoder Design

Let w —21___ and define the relative rate of
x2(Q1]]Qo)

messages and keys for any § > 0 as

log M
=w(D(P||Py) — 6 16
\/’ﬁ w( ( 1” 0) )a ( )
log K
=w(D — D(P || P, 25 17
Jn w(D(Q1]|Qo) — D(P1[|Fo) +26),  (17)
so that the total number of codewords N = MK =

2vnw(D(Q1Q0)+9) ig Jarge enough to form a resolvability code
for the channel Wz x. We denote by x;; the codeword when
the message/key pair is (i, k). Let o, = % The codewords
X11, ..., XMk are drawn from the product distribution Hg:,
and we denote by P the probability measure induced by this
random coding. Then, by [11], for n large enough

Eo {D@Q"QEm} < emroev™ (18)
for some p3 > 0, and
Pc {D(@n”QSZL) S 6—0.5p3w\/ﬁ} < e—O.5p3W\/ﬁ' (19)

Let z be the received sequence of Willie. For each sequence
z € {0,1}" and each joint distribution Pxz on X X Z, we
define S(z, Pxz) as

so that whenever Pxz € A, the distribution Px z is typical.
When Py € A., we obtain the following useful inequalities.
First,

I(Pxz) = Px(1)D (Pz|x=1llPz)x=0) — D (PzllPzjx=0) (22)
< Px(1)D (B(1— g+ ¢)||B(g — ¢)) + O(1/n) 3)
< %(1 +) (D(Q1]|Qo) + €O(1)) + O(1/n) 4)
< Z=D(@il|Qo) + —=e0(1), 25)

3

NG
where (23) follows from the definition of A. and the fact
that D(Pz| Pz x=0) < O(a2) = O(1/n) by (13) in [11].
Secondly,

D(Px |, )

o, (1)(1 +¢€) 1—T1a, (1)1 —¢)

< I, (1)(1+€)log Mo, (1) + log =M. (1) (26)

< Mo, (1)(1+ €)log(1 + €) + log (1 + M) @7)

S oen 1—a, (1)

< ellq, (1)O(1), (28)
where (28) follows because log(1 + z) < = — ”‘2—2 + % for

x > —1. The inequality (25) shows that the mutual 1nformat1on
induced by the joint type Pxz is not far from 1{ D(Q1]|Qo),

and (28) says the divergence between Py and is smaller
than O(eﬁ). Furthermore, we can upper bound the number

of codewords whose types do not satisfy the first condition in
(21). By the Chernoff bound,

2

€ g‘/ﬁ} (29)

Pc{‘@—% > %} <2exp{—

for all (i, k) pairs. Then, by Markov’s inequality

g (e

i=1 k=1
ewy/n
< exp (_T) .
Next, we introduce the following two lemmas, which are
adapted from Lemma IV.2 of [16] and Lemma 3 of [17] whose
proofs are omitted.

Lemma 2. For any § > 0, let N = 2Vw(P(Q111Q0)+9) pe the
number of codewords and let codewords {x;}}., be drawn
independently from the product distribution H%:. There exists
€, €1 > 0 small enough such that when Pxy € A, the number
of codewords in the set S(z, Pxz) is lower bounded by

N2—nI(sz)—nD(PX Hnan)_fl\/’Tl

> %) > 2M K exp (f

6%6\/5)}

(30)

€2y

_eP1VT

with probability at least 1 — e
n is large enough.

for some p; > 0 when

Lemma 3. Let €5 > 0 and let x1,...,Xn be drawn indepen-
dently from the product distribution H®", where N = 2",

With probability at least 1 — e=e2V"

for some pa > 0, this
code satisfies the following. For any

N . _ e class Txx's, any
S(z, Pxz) = {(i,k) € [M] < [K] : fxia = Pxz}.  (20) sequence s € 8™ and any alphabet set g
Furthermore, for any € > 0, we define the set A, as [{i:3j #ist(xi,%;,8) € Txx/5}]
B we < 9P R=I(X;X'8) = D(Px [May )+ R=1(X";8)=D(Pxs [T, )|+ [ * +eant/?.
Ae ={Pxz: IPX(l)_ﬁ|\ NGk (32)
[Pz x=1(0) —q| < ¢ [Pz|x=0(1) — g < ¢} 2D
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By Lemma 2, Lemma 3, (19) and (30), for n lar%e enough,

there exist codewords X11, ..., Xk drawn from the product
distribution IIY™ such that
D(QM|QFr) < e=0-Prawvn (33)

wy/n
NG 6 )7 (34)

and (31) and (32) are satisfied for all joint type Pxz € A.
because the number of joint types in A, is at most polynomial
in n. When D(Q"[|Q%") < e 5"3“"f one can show that

IDQ"QF™) — D(QT
for some & > 0 by [11, (77)-(79)]. Therefore, it remains
to analyze the error probability e(J). We define our encod-
ing/decoding rules as follows.

o Encoding: For each message i € [M] and key k € [K],

transmit x;z.

o Decoding: For each received sequence y and given the
shared key k, decode to a message 1 if ¢ is the unique index
with the properties

5 2 20— Wi (6) = 1, y(¢

e

ik

> 2) < 2MK exp (7

?n” < e~ Vwéz

0)

p—e<di(y,xik) = ST T (war () = )) <p+e (39
1=1 +\Fi

p— e < doly, xay) & 2= ijg(jkl((gk_(ﬁo) y:(?) D <pte

“’HS‘““) - =<7 (36)

and declare adversarial interference 0 otherwise.

B. Error Probability Analysis

In the analysis below, we fix the code and assume it satisfies
(31)-(34). Let x be the transmitted codeword and fx , be the
joint type of the transmitted codeword and Willie’s received
sequence z. We consider a strengthened attacker that knows
the noise sequence n generated from BSC,, and the joint type
fx,z- Therefore, Willie can select the noisy attack sequence
§ = s + n according to some policy J(§|z, fx,) such that
y = x + S. Since this assumption only makes the attacker
stronger, the error probability is upper bounded by the one
obtained with this strengthened attacker. For any policy J, we
can upper bound the error probability e(.J) by

M K
= Zzzzzp(ermr,x:xik,z,ga Jxz) (B7)

=1 k=1 z S fx,z
= Z P(z, fx,2)P(8[z, fx2)P(x = Xik |2, fx,2)
,k,2,8, fx =

x P(error|x = Xk, 8, 2, fx z) (38)
< Z P(Zafx,z)J(§|Zafx,Z)P(x :Xiklz’fx’z)

1,k,2,8, fx 2

x P(error|x = X1, 8, 2, fxz) + P(fxz ¢ Ae).

By a union bound, the term P(fx , ¢ A.) on the right hand
side of (39) can be upper bounded by
)
NG

B(fue ¢ A) ﬁ;g (o) — =

n

(39)

2ex(p=1 1(x(£) =1,2(¢) = 0) _ . wg(x) w | _ ew

+P<‘ i () 2|52 - <

2ex(py=0 1(x(£) =0,2z() =1) _ . wg(x) w|_ ew

+P<‘ n—w () 252 - <
(40)

—€2wy/n
< 2exp ( G \F) +2exp (—26wp (x)) + 2exp (—262 (n — wg(x)))
(41)

< exp(—ciwv/n) (42)

for some c¢; > 0, where (41) follows from the assumption
of the code and Hoeffding’s inequality. Therefore, it suffices
to upper bound the summation terms in (39). We first fix
the sequences z and the joint type fx ., and upper bound
the sum > J(8|z, fx,2) D_; 1 P(x = Xix |2, fx z)P(error/x =
Xik, S, Z, fx,z). Define the set E/(S) as

E(8) é{(i,k) L3 A st

we

no Vel TV

|di (%31 ® 8, %1) — p| <€, |do(xir ©8,%55) —p| < €}~

Xjk) w

Notice that if § # n, the message/key pair (i,k) ¢ E(S)
implies that only ¢ or the adversarial interference symbol 0
can be decoded, and no error occurs in both cases. On the
other hand, if s = n, X;;, ®s = x;; @ n. Then, the fact that
the message/key pair (i,k) ¢ FE(S) guarantees that no other
message j # ¢ can be decoded. Furthermore, by definition of
the decoder and the use of concentration inequalities on the
noise sequence n, the message ¢ is decoded with probability at
least 1 —e 2%V for some ¢y > 0 when fx,z € Ac. Therefore,

Z J(8|z, fx,z)P(x = x|z, fx,z)P(error|x = %%, 8, 2, fx,z)
5,(5,k) ¢ E(8)

L e CrwVn (43)

for some ¢y > 0. Next, we consider the case when (i, k) €
E(s) for some fixed s. Notice that
if (Z,k‘) € S(Z7 sz)

1
P(x = X;1|2, fx,z = Pxz) = { |15®Pxz)l
0 otherwise

because all the codewords in S(z, Pxz) have the same
distance from z. Therefore, for each z,s and ﬂoint type

fX,Z = PXZ, the sum Z(’i,k)GE(g) ]P)(X = Xik|Z
Px z)P(error|x = X1, 8,2, fx,» = Pxz) can upper bounded
by

7fx,z

P(error|x = X;k, S, 2, fx,z = Pxz)

|5(z, Pxz) N E(8)]

<

|S(z, Pxz)| |S(z, Pxz)|

(1,k)€S(2,Px z)NE(S)

where we upper bound P(error|x = X1, 5, 2, fxz = Pxz) by
1if (i,k) € E(S). The size of the set S(z, Pxz) N E(8) can
be upper bounded by the lemma below.

Lemma 4. Let Pxz € A, and €3 > 0 be defined in Lemma 3,

it holds with probability at least 1 —e~P4V"™ for some ps >0
that

|E(s) N S(z, Pxz))|
< ZﬁwD(Ql|\QO)—nJ(PXZ)+o.5wﬁ5+o(ewﬂ)+2n1/2€2 (44)

when n is sufficiently large.
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By a union bound, the probability that (31), (33), (34) and
(44) are satisfied is greater than 1 — e=”“V™ for some p > 0.
Hence, there exists a code that satisfies (31), (33), (34) and
(44). Then, by combining Lemma 2 and Lemma 4, this specific
code satisfies

|S(Z7 PXZ) N E(S)‘ < 270.5w\/ﬁ(§+0(6w\/ﬁ)+n1/261+2n1/262'
|5(2, Pxz)|

For each § > 0, we can choose ¢, ¢; and €5 small enough such
that —0.5w+/nd + O(ewy/n) + n/2€; + 2n'/2e, is negative,
and
|S(z, Pxz) N E(s)]| <
|S(z, Pxz)|

for some c3 > 0 when n is large enough. Then,

e—%wﬁ

e(J) < eV 4 gmC2wVn y o—cswyn (45)
L e fiwvn (46)

for some £; > 0 when n is sufficient large. It remains to prove
Lemma 4, as outlined in Appendix A.

APPENDIX A
PROOF OF LEMMA 4
We first define the set E(S) as

wa(Xj) W | o we

vl v/’

|di(xix ®8,%;1) — p| <€, |do(xir ®8,x51) —p| < E}-

E(s) 2 {(i,k) 23(5,1) # (i, k) s.t‘

E(5) is the set of message/key pairs (i, k) for which there
exists a pair (j,1) # (i,k), without the restriction of | = k,
such that the decoding rules are satisfied. By splitting into

different type classes, we can upper bound S(z, Pxz) N E(S)
by

|S(z, Px z) N E(8)|

< Z |{(Z7k) a(j’l) #(’L’k) s.t (Xik,le,g,Z) eTX’X”SZ’}L

X', X",8,2"

where X', X" S, and Z' are dummy random variables de-
scribing each type class and satisfying following inequalities

we w we
|Px:(1) —=

w
- %‘ < Nk |Pxrr (1) = WLS Tn
|Psgx/ixr=1 —pl <€ |Psgxxr—o—p|,<e¢
Pxrz: = Pxz.

By viewing (S,z) as s in Lemma 3 and assuming (32) holds,
we have

. = ny+egn’t
I{(7/7 k) : EI(]?l) 7£ (ka) s.t (xikylevs7z) € TX’X”SZ’}I <2 ez

where we define v 2 |R — I(X'; X"SZ") — D(Px|[I,,) +
|R—I(X";SZ")— D(Px |1y, )|T|". To calculate the value
of 7, we need to consider the two cases, R > I(X";57") +
D(Pxn»||,,) and R < IgX”; SZ)+ D(Pxn ||, ).

Case 1: R > I(X";SZ") + D(Px|a,)

vy<|2R-I(X';582") — I(X'; X"|SZ") — I(X"";8Z') — D(Px/||Tla,)| " 1E(s)

/2
)

= Pxn(1)D(Px/gs|x=1llPx/@s|x7=0) = D(Px/asl|Px/@s)x/=0)

> %u —)D(B(L —p— )| B(p+ <)) — O(1/n)

> (=) (DR )~ 0.49)

when we choose ¢ small enough and n is sufficient large.
Then,

v < %(D(QNQO) +6) — I(Px7)

_Y
vn
where (48) is positive when we choose € sufficient small
because D(QlHQQ) > D(P1||P0), PX’Z’ = sz, I(PXz) <
4 D(Q1]Qo) + O(e%). and D(Px|[IL,,) < O(e%) by
(25) and (28).
Case 2: R< I(X";5Z") + D(Px||a,)

(1 —€) (D(P1||Py) — 0.46) — D(Px/|ay,), (48)

¥ < |R-1(X';2") = D(Px/|[a, )|t (49)
= 2(D(Q111Qo) + ) — I(Px1 1) — D(Px/|Ia,),  (50)
vn

where (50) is positive for the same reason as (48) when € is
small enough. The difference between (50) and (48) is the term

%(D(Qﬂ Q0)+6)—%(1—e) (D(P1||Po) — 0.46), which is
always positive. Therefore, in both cases, we can upper bound
v by (48). Then,

Sz, Pxz)NEE)| < S 2mtntPe

X', X",8,2"
< 2Vnwl2(D(Q1Q0)+8)~D(P1 | Po)+0.46+0(e) —nl(fx z)+2Vnex (51)

when (32) holds and n is sufficient large because there is at
most a polynomial number of types. We have obtained the
upper bound on the set E(S) N S(z, Pxz) but what we need
is the upper bound on the size of the set E(S) N S(z, Pxz).
Lemma 5, whose proof is omitted, helps us relate the size of
E(8) N S(z, Pxz) and E(8)N S(z, Pxz). In fact, the lemma
below says that the size of E(8) N S(z, Pxz) is roughly 1/K
of Ec {|E(§) N S(z, PXZ)\} with high probability.

Lemma 5. It holds with probability at least 1 — e~ P*“V™ for
some py > 0 that

Eo {|S(z,fxz) NE(s)|
K

|E(8)NS(z, Pxz))| < } x 20-1v/nws

when n is large enough.

Notice that (51) holds when (32) is true. Combining the
fact that (51) holds with probability at least 1 —e=¢" " “* and
the fact that |E(S) N S(z, Pxz)| is at most an exponential
function of /n, the term E<|S(z, fxz) ﬁE(§)|} is also
upper bounded by (51) when n 1s sufficient large. Substituting
the size of K, which is 2V (D(Q1lQo)=D(F1][Po)+26) ingq
Lemma 5, we obtain

S QS(Z,sz)”

_ /
<2R-I(X;2') = I(X"; X' @ 8) = D(Px/|[Tla,, )| 4 < 2YeP@QillQo)-nI(Pxz)+0.5wyndOlcoy/n)+2n e (59)
by data processing inequalities and with probability at least 1 —e~?4“V™ when n is large enough,
IX";X"®9) which completes the proof.
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