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Abstract—We consider the problem of authenticating commu-
nication over a Myopic Binary Adversarial Channel (MBAC)
while maintaining covertness with respect to the myopic ad-
versary. When the main channel between legitimate parties is
degraded with respect to the adversary’s channel, we show the
existence of an integrated scheme that simultaneously exploits
secret keys to ensure covertness and authentication. The main
technical challenge we address is showing that authentication
may be ensured against myopic attacks when using the low-
weight codewords mandated by covert communication.

I. INTRODUCTION

Authentication is concerned with the problem of ensuring

that legitimate parties, hereafter named Alice and Bob, may

not only communicate reliably but also ensure that their

messages are not impersonated or substituted by a mali-

cious adversary, hereafter named Willie. Several information-

theoretic models for authentication have been considered in the

literature to date, leading to different conclusions regarding the

need of and use of secret keys to ensure authentication. One

model of malicious adversary, which is the one investigated

here, is an arbitrarily-varying channel in which Willie chooses

a non-causal state sequence based on noisy observations of

the transmission. The arbitrarily-varying channel can capture

both the problem of jamming, in which case Alice and Bob

try to ensure reliability against a class of adversarial state

sequences [1]–[3], or authentication, in which case Alice

and Bob can afford to not transmit reliably if they correctly

detect the presence of an adversarial state [4], [5]. While

ensuring authentication is perhaps a simpler task than ensuring

resilience to jamming, the design and analysis of coding

schemes ensuring authentication is a challenging endeavor

in its own right. While state sequences are often subject to

some power constraint in the jamming model, they are not

in the authentication model, so that neither model necessarily

supersedes the other. A key finding of [1] is that, when a

jamming adversary is myopic enough, i.e., its observations are

noisy enough, the adversary is effectively blind, i.e., it can do

no better than if it were oblivious to the actual transmission. In

the context of authentication, a key contribution of [4], [5] is

the introduction of a condition, called overwritability, which

characterizes when the authentication capacity of a channel

is zero without secret keys. In addition, when the adversary

is myopic enough, the authentication capacity of a binary

Myopic Binary Adversarial Channel (MBAC) is shown to be

equal to the regular capacity. Another model of authentication

is studied in [6], [7], in which the adversary can intercept
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the transmitted codeword and substitute it for any another

sequence. The probability of successful attacks is characterized

in the presence of and absence of shared secret keys.

Ensuring covertness, or low probability of detection, is

another concern in communication systems. The covert ca-

pacity of discrete memoryless and Gaussian channels has

been thoroughly analyzed [8]–[12], highlighting the presence

of a square root law and the need to use codewords with

vanishing weight. The need for vanishing weight naturally

questions the resilience of covert communication schemes

to adversarial interference, and covert communication in the

presence of malicious adversaries has already attracted some

attention. Notably, [13] studies the covert communication over

adversarially jammed channels and shows some degree of

resilience. A similar conclusion was drawn for the more

specific problem of covert key generation over adversarial

channels [14]. In the present work, we investigate the problem

of covert authentication over an MBAC. Our main contribution

is to show the existence of an integrated scheme that exploits

shared secret keys jointly for authentication and covertness,

and is resilient to a myopic adversary without sharing extra

keys except for those used already needed for covertness.

The rest of the paper is organized as follows. After a

brief review of notation (Section II), we introduce the specific

channel model for covert authentication in the presence of a

myopic adversary (Section III) and derive our main result re-

garding the existence and performance of an integrated covert

and authenticated scheme (Section IV). While we provide

proof details in appendices, some technical details are omitted

because of space constraints.

II. NOTATIONS

For two distributions P,Q on some common alphabet

X , D(P‖Q) ,
∑

x P (x) log
P (x)
Q(x) is the Kullback-Leibler

(KL) divergence between P and Q. We say P is absolutely

continuous with respect to (w.r.t.) Q, denoted by P ≪ Q,

if for all x ∈ X P (x) = 0 if Q(x) = 0. We denote

P⊗n the product distribution
∏n

ℓ=1 P on Xn. We also define

χ2(P‖Q) ,
∑

x
(P (x)−Q(x))2

Q(x) . For any x ∈ Xn, fx is the

type of the sequence x. Similarly, if z ∈ Zn for some

alphabet Z , then fx,z is the joint type of the sequences x

and z. For any x ∈ Xn, x(ℓ) is its ℓth component of x, and

wH(x) is the hamming weight of x. For any joint distribution

PXZ on X × Z , X and Z are the random variables with

the corresponding distribution, and I(PXZ) is the mutual

information between X and Z. We also denote τX the type

class of PX . The distribution of a Bernoulli random variable
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with success probability p is denoted by B(p). We also define

the set [M ] = {1, ...,M}. For any real number a ∈ R,

|a|+ = max(a, 0).

III. PROBLEM FORMULATION AND MAIN RESULT

We use the same adversarial channel model as in [5]. Let

X , Y , and S be the transmitter, receiver and state alphabets,

respectively, and WY |X,S be the discrete memoryless adver-

sarial channel between the legitimate users. For all length n
sequences x ∈ Xn, y ∈ Yn and s ∈ Sn, the transition

probability of y given x and s can be written as

WY |X,S(y|x, s) =
n∏

ℓ=1

WY |X,S(y(ℓ)|x(ℓ), s(ℓ)). (1)

Let Z be the output alphabet at the adversary. The adversary

observes the transmission through the discrete memoryless

channel WZ|X . A myopic adversary can choose the state se-

quence s by observing the received sequence z ∈ Zn accord-

ing to a policy JSn|Zn , which depends on the channel WZ|X
and the codebook used by the legitimate parties. Let s0 ∈ S
be the state of no interference, i.e., WY |X,S=s0 , WY |X ,

where WY |X is the channel between legitimate parties without

adversaries. Then, the state sequence s0 ∈ Sn represents the

situation in which there is no adversary. Let M be the size

of the message set, so that a message belongs to the set [M ].
Besides, let K be the size of keys. An authentication code

consists of an encoder/decoder pair (ψ, φ) with

ψ : {1, ...,M} × {1, ...,K} 7→ Xn, (2)

φ : Yn × {1, ...,K} 7→ {0, 1, ...,M}, (3)

where the decoded symbol 0 indicates the existence of an

adversary. The decoder φ is successful if either the decoder

output is equal to the transmitted message, or if the decoder

output is 0 and s 6= s0. Therefore, given the transmitted

message i, the key k and the corresponding codeword xi,k =
ψ(i, k), the probability of error of the code (ψ, φ) under the

attacking policy JSn|Zn is

e(i, k, JSn|Zn)

=
∑

z

WZ|X(z|xik)JSn|Zn(s0|z)WY |X,S(φ
−1(i)c|xik, s0)

+
∑

s 6=s0,z

WZ|X(z|xi)JSn|Zn(s|z)WY |X,S(φ
−1({i, 0})c|xik, s),

where φ−1(A) denotes the set of channel outputs that are

decoded, with the information of the shared key k, to an

element in the set A, and φ−1(A)c is the complement of the

set in Yn. Assuming that every message is transmitted with

equal probability, then the average probability of error for the

policy JSn|Zn is

e(JSn|Zn) =
1

M

1

K

M∑

i=1

K∑

k=1

e(i, k, JSn|Zn). (4)

The objective of Alice and Bob is not only to communicate

reliably over the DMC WY |X but also to avoid detection

by Willie. We assume next that X = {0, 1} where the

symbol 0 corresponds to the input to the channel when no

communication takes place. In the absence of communication,

the output distributions of the two channels induced by the

symbol 0 are then given by

P0 =WY |X=0 and Q0 =WZ|X=0. (5)

If symbol 1 is transmitted, the output distributions of the two

channels are given by

P1 =WY |X=1 and Q1 =WZ|X=1. (6)

We assume that Q1 ≪ Q0 and P1 ≪ P0 to simplify

the analysis. Willie can perform any hypothesis test on his

observation z to decide whether Alice and Bob communicate

(hypothesis H1) or not (hypothesis H0). Let α be the type I

error probability (rejecting H0 when true) and β be the type

II error probability (accepting H0 when wrong). It has been

shown in [15] that Willie’s optimal hypothesis test satisfies

the tradeoff α + β > 1 −
√
D(Q̂n‖Q⊗n

0 ), where Q̂n is the

expected distribution of z
n when the communication takes

place, and Q⊗n
0 =

∏n
ℓ=1Q0 is the distribution of z

n when

no communication happens. Therefore, covert communication

is achieved by making the divergence D(Q̂n‖Q⊗n
0 ) small.

Hence, the objectives of Alice and Bob are two-fold: the

transmitted codeword x should be correctly decoded from

the interfered noisy sequence y; Willie should not identify

the presence of a transmission. To be more specific, the code

design needs to satisfy

lim
n→∞

max
J

e(J) = 0 (7)

lim
n→∞

D(Q̂n‖Q⊗n
0 ) < η (8)

for some η > 0, where η is the parameter reflecting how covert

the communication should be. We assume that the channel

between Alice and Willie is a binary symmetric channel with

crossover probability q and denoted by BSCq . The adversary

Willie can decide on a state sequence s according to some

policy J(s|z) and adds it to the transmitted codeword x.

The interfered sequence x ⊕ s is passed through another

binary symmetric channel BSCp with crossover probability

p, and the channel output y is received by Bob. Therefore,

WY |X,S(y|x, s) =
∏n

l=1WY |X(y(ℓ)|x(ℓ)⊕ s(ℓ)), and WY |X
is a binary symmetric channel with cross over probability p.

This myopic binary adversarial channel with parameter p and

q is denoted by MBACp,q . For all 0 6 αn 6 1, we define the

distribution Παn
on X such that Παn

(1) = 1−Παn
(0) = αn

as well as the distribution

Qαn(z) = αnQ1(z) + (1− αn)Q0(z) (9)

for all z ∈ Z . Our main theorem is stated below.

Theorem 1. Consider the MBAC with parameter 1/2 > p >

q. Let ω =
√

2η
χ2(Q1‖Q0)

, and αn = ω√
n

. For any δ > 0, there

exist ξ1, ξ2 > 0 and a coding scheme such that

logM√
n

= ω(D(P1‖P0)− δ) (10)
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logK√
n

= ω(D(Q1‖Q0)−D(P1‖P0) + 2δ), (11)

and

max
J

e(J) < e−
√
nωξ1 (12)

|D(Q̂n‖Q⊗n
0 )−D(Q⊗n

αn
‖Q⊗n

0 )| < e−
√
nωξ2 (13)

when n is large enough.

By Theorem 1, there exists a code such that (7) is satisfied

when n→ ∞, and the divergence satisfies

D(Q̂n‖Q⊗n
0 ) 6 |D(Q̂n‖Q⊗n

0 )−D(Q⊗n
αn

‖Q⊗n
0 )|+D(Q⊗n

αn
‖Q⊗n

0 )

6 e−ωξ2
√
n + n×

(
α2
n

2
χ2(Q1‖Q0)(1 + o(1))

)
(14)

6 e−ωξ2
√
n + η(1 + o(1)), (15)

where (14) is from Lemma 1 of [11]. Therefore,

limn→∞D(Q̂n‖Q⊗n
0 ) 6 η. Theorem 1 shows that there

exists an integrated scheme that jointly ensures covertness and

authentication with the same asymptotically optimal message

throughput and secret key throughput as schemes that only

ensure covertness. In other words, any authentication put in

place at the message level is automatically strengthened by

the intrinsic authentication provided by the integrated scheme.

IV. PROOF OF MAIN RESULT

A. Encoder and Decoder Design

Let ω =
√

2η
χ2(Q1‖Q0)

and define the relative rate of

messages and keys for any δ > 0 as

logM√
n

= ω(D(P1‖P0)− δ), (16)

logK√
n

= ω(D(Q1‖Q0)−D(P1‖P0) + 2δ), (17)

so that the total number of codewords N = MK =
2
√
nω(D(Q1‖Q0)+δ) is large enough to form a resolvability code

for the channel WZ|X . We denote by xik the codeword when

the message/key pair is (i, k). Let αn = ω√
n

. The codewords

x11, ...,xMK are drawn from the product distribution Π⊗n
αn

,

and we denote by PC the probability measure induced by this

random coding. Then, by [11], for n large enough

EC

{
D(Q̂n‖Q⊗n

αn
)
}
< e−ρ3ω

√
n (18)

for some ρ3 > 0, and

PC

{
D(Q̂n‖Q⊗n

αn
) > e−0.5ρ3ω

√
n
}
6 e−0.5ρ3ω

√
n. (19)

Let z be the received sequence of Willie. For each sequence

z ∈ {0, 1}n and each joint distribution PXZ on X × Z , we

define S(z, PXZ) as

S(z, PXZ) , {(i, k) ∈ [M ]× [K] : fxik,z = PXZ}. (20)

Furthermore, for any ǫ > 0, we define the set Aǫ as

Aǫ = {PXZ : |PX(1)− ω√
n
| 6 ωǫ√

n
,

|PZ|X=1(0)− q| 6 ǫ, |PZ|X=0(1)− q| 6 ǫ} (21)

so that whenever PXZ ∈ Aǫ, the distribution PXZ is typical.

When PXZ ∈ Aǫ, we obtain the following useful inequalities.

First,

I(PXZ) = PX(1)D
(
PZ|X=1‖PZ|X=0

)
−D

(
PZ‖PZ|X=0

)
(22)

6 PX(1)D (B(1− q + ǫ)‖B(q − ǫ)) +O(1/n) (23)

6
ω√
n
(1 + ǫ) (D(Q1‖Q0) + ǫO(1)) +O(1/n) (24)

6
ω√
n
D(Q1‖Q0) +

ω√
n
ǫO(1), (25)

where (23) follows from the definition of Aǫ and the fact

that D(PZ‖PZ|X=0) 6 O(α2
n) = O(1/n) by (13) in [11].

Secondly,

D(PX‖Παn )

6 Παn (1)(1 + ǫ) log
Παn (1)(1 + ǫ)

Παn (1)
+ log

1−Παn (1)(1− ǫ)

1−Παn (1)
(26)

6 Παn (1)(1 + ǫ) log(1 + ǫ) + log

(
1 +

Παn (1)ǫ

1−Παn (1)

)
(27)

6 ǫΠαn (1)O(1), (28)

where (28) follows because log(1 + x) 6 x − x2

2 + x3

3 for
x > −1. The inequality (25) shows that the mutual information
induced by the joint type PXZ is not far from ω√

n
D(Q1‖Q0),

and (28) says the divergence between PX and Παn is smaller
than O(ǫ ω√

n
). Furthermore, we can upper bound the number

of codewords whose types do not satisfy the first condition in
(21). By the Chernoff bound,

PC

{
∣

∣

∣

∣

wH(xik)

n
− ω√

n

∣

∣

∣

∣

>
ǫω√
n

}

6 2 exp

{

− ǫ2ω
√
n

3

}

(29)

for all (i, k) pairs. Then, by Markov’s inequality

PC

{
M∑

i=1

K∑

k=1

1

(∣∣∣∣
wH(xik)

n
− ω√

n

∣∣∣∣ >
ǫω√
n

)
> 2MK exp

(
− ǫ2ω

√
n

6

)}

6 exp

(
− ǫ2ω

√
n

6

)
. (30)

Next, we introduce the following two lemmas, which are

adapted from Lemma IV.2 of [16] and Lemma 3 of [17] whose

proofs are omitted.

Lemma 2. For any δ > 0, let N = 2
√
nω(D(Q1‖Q0)+δ) be the

number of codewords and let codewords {xi}Ni=1 be drawn

independently from the product distribution Π⊗n
αn

. There exists

ǫ, ǫ1 > 0 small enough such that when PXZ ∈ Aǫ, the number

of codewords in the set S(z, PXZ) is lower bounded by

N2−nI(PXZ)−nD(PX‖Παn )−ǫ1
√
n (31)

with probability at least 1 − e−eρ1
√

n

for some ρ1 > 0 when

n is large enough.

Lemma 3. Let ǫ2 > 0 and let x1, ...,xN be drawn indepen-
dently from the product distribution Π⊗n

αn
, where N = 2nR.

With probability at least 1 − e−eρ2
√

n

for some ρ2 > 0, this
code satisfies the following. For any type class τXX′S , any
sequence s ∈ Sn and any alphabet set S ,

|{i : ∃j 6= i s.t (xi,xj , s) ∈ τXX′S}|

6 2n|R−I(X;X′S)−D(PX‖Παn )+|R−I(X′;S)−D(PX′‖Παn )|+|++ǫ2n
1/2

.
(32)
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By Lemma 2, Lemma 3, (19) and (30), for n large enough,
there exist codewords x11, ...,xMK drawn from the product
distribution Π⊗n

αn
such that

D(Q̂n‖Q⊗n
αn

) < e−0.5ρ3ω
√
n (33)

∑

ik

1

(∣∣∣∣
wH(xik)

n
− ω√

n

∣∣∣∣ >
ǫω√
n

)
< 2MK exp

(
− ǫ2ω

√
n

6

)
, (34)

and (31) and (32) are satisfied for all joint type PXZ ∈ Aǫ

because the number of joint types in Aǫ is at most polynomial

in n. When D(Q̂n‖Q⊗n
αn

) < e−0.5ρ3ω
√
n, one can show that

|D(Q̂n‖Q⊗n
0 )−D(Q⊗n

αn
‖Q⊗n

0 )| < e−
√
nωξ2

for some ξ2 > 0 by [11, (77)-(79)]. Therefore, it remains

to analyze the error probability e(J). We define our encod-

ing/decoding rules as follows.

• Encoding: For each message i ∈ [M ] and key k ∈ [K],
transmit xik.

• Decoding: For each received sequence y and given the
shared key k, decode to a message i if i is the unique index
with the properties

p− ǫ 6 d̄1(y,xik) ,

∑n
ℓ=1 1(xik(ℓ) = 1, y(ℓ) = 0)
∑n

l=1 1(xik(ℓ) = 1)
6 p+ ǫ (35)

p− ǫ 6 d̄0(y,xik) ,

∑n
ℓ=1 1(xik(ℓ) = 0, y(ℓ) = 1)
∑n

ℓ=1 1(xik(ℓ) = 0)
6 p+ ǫ,

∣∣∣∣
wH(xik)

n
− ω√

n

∣∣∣∣ 6
ωǫ√
n
, (36)

and declare adversarial interference 0 otherwise.

B. Error Probability Analysis

In the analysis below, we fix the code and assume it satisfies

(31)-(34). Let x be the transmitted codeword and fx,z be the

joint type of the transmitted codeword and Willie’s received

sequence z. We consider a strengthened attacker that knows

the noise sequence n generated from BSCp and the joint type

fx,z. Therefore, Willie can select the noisy attack sequence

s̄ = s + n according to some policy J(s̄|z, fx,z) such that

y = x + s̄. Since this assumption only makes the attacker

stronger, the error probability is upper bounded by the one

obtained with this strengthened attacker. For any policy J , we

can upper bound the error probability e(J) by

e(J) =

M∑

i=1

K∑

k=1

∑

z

∑

s̄

∑

fx,z

P(error,x = xik, z, s̄, fx,z) (37)

=
∑

i,k,z,s̄,fx,z

P(z, fx,z)P(s̄|z, fx,z)P(x = xik|z, fx,z)

× P(error|x = xik, s̄, z, fx,z) (38)

6
∑

i,k,z,s̄,fx,z

P(z, fx,z)J(s̄|z, fx,z)P(x = xik|z, fx,z)

× P(error|x = xik, s̄, z, fx,z) + P(fx,z /∈ Aǫ). (39)

By a union bound, the term P(fx,z /∈ Aǫ) on the right hand
side of (39) can be upper bounded by

P(fx,z /∈ Aǫ) 6
1

MK

M∑

i=1

K∑

k=1

1

(∣∣∣∣
wH(xik)

n
− ω√

n

∣∣∣∣ >
ǫω√
n

)

+ P

(∣∣∣∣∣

∑
ℓ:x(ℓ)=1 1(x(ℓ) = 1, z(ℓ) = 0)

wH(x)
− q

∣∣∣∣∣ > ǫ

∣∣∣∣∣

∣∣∣∣
wH(x)

n
− ω√

n

∣∣∣∣ 6
ǫω√
n

)

+ P

(∣∣∣∣∣

∑
ℓ:x(ℓ)=0 1(x(ℓ) = 0, z(ℓ) = 1)

n− wH(x)
− q

∣∣∣∣∣ > ǫ

∣∣∣∣∣

∣∣∣∣
wH(x)

n
− ω√

n

∣∣∣∣ 6
ǫω√
n

)

(40)

6 2 exp

(−ǫ2ω
√
n

6

)
+ 2 exp

(
−2ǫ2wH(x)

)
+ 2 exp

(
−2ǫ2(n− wH(x))

)

(41)

6 exp(−c1ω
√
n) (42)

for some c1 > 0, where (41) follows from the assumption

of the code and Hoeffding’s inequality. Therefore, it suffices

to upper bound the summation terms in (39). We first fix

the sequences z and the joint type fx,z, and upper bound

the sum
∑

s̄
J(s̄|z, fx,z)

∑
i,k P(x = xik|z, fx,z)P(error|x =

xik, s̄, z, fx,z). Define the set E(s̄) as

E(s̄) ,
{
(i, k) : ∃j 6= i s.t

∣∣∣∣
wH(xjk)

n
− ω√

n

∣∣∣∣ 6
ωǫ√
n
,

|d̄1(xik ⊕ s̄,xjk)− p| < ǫ, |d̄0(xik ⊕ s̄,xjk)− p| < ǫ
}
.

Notice that if s̄ 6= n, the message/key pair (i, k) /∈ E(s̄)
implies that only i or the adversarial interference symbol 0
can be decoded, and no error occurs in both cases. On the

other hand, if s̄ = n, xik ⊕ s̄ = xik ⊕ n. Then, the fact that

the message/key pair (i, k) /∈ E(s̄) guarantees that no other

message j 6= i can be decoded. Furthermore, by definition of

the decoder and the use of concentration inequalities on the

noise sequence n, the message i is decoded with probability at

least 1−e−c2ω
√
n for some c2 > 0 when fx,z ∈ Aǫ. Therefore,

∑

s̄,(i,k)/∈E(s̄)

J(s̄|z, fx,z)P(x = xik|z, fx,z)P(error|x = xik, s̄, z, fx,z)

6 e−c2ω
√
n (43)

for some c2 > 0. Next, we consider the case when (i, k) ∈
E(s̄) for some fixed s̄. Notice that

P(x = xik|z, fx,z = PXZ) =

{
1

|S(z,PXZ)| if (i, k) ∈ S(z, PXZ)

0 otherwise

because all the codewords in S(z, PXZ) have the same
distance from z. Therefore, for each z, s̄ and joint type
fx,z = PXZ , the sum

∑
(i,k)∈E(s̄) P(x = xik|z, fx,z =

PXZ)P(error|x = xik, s̄, z, fx,z = PXZ) can upper bounded
by

∑

(i,k)∈S(z,PXZ)∩E(s̄)

P(error|x = xik, s̄, z, fx,z = PXZ)

|S(z, PXZ)| 6
|S(z, PXZ) ∩ E(s̄)|

|S(z, PXZ)| ,

where we upper bound P(error|x = xik, s̄, z, fx,z = PXZ) by

1 if (i, k) ∈ E(s̄). The size of the set S(z, PXZ) ∩ E(s̄) can

be upper bounded by the lemma below.

Lemma 4. Let PXZ ∈ Aǫ, and ǫ2 > 0 be defined in Lemma 3,

it holds with probability at least 1−e−ρ4ω
√
n for some ρ4 > 0

that

|E(s̄) ∩ S(z, PXZ))|
6 2

√
nωD(Q1‖Q0)−nI(PXZ)+0.5ω

√
nδ+O(ǫω

√
n)+2n1/2ǫ2 (44)

when n is sufficiently large.
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By a union bound, the probability that (31), (33), (34) and

(44) are satisfied is greater than 1− e−ρω
√
n for some ρ > 0.

Hence, there exists a code that satisfies (31), (33), (34) and

(44). Then, by combining Lemma 2 and Lemma 4, this specific

code satisfies

|S(z, PXZ) ∩ E(s)|
|S(z, PXZ)|

6 2−0.5ω
√
nδ+O(ǫω

√
n)+n1/2ǫ1+2n1/2ǫ2 .

For each δ > 0, we can choose ǫ, ǫ1 and ǫ2 small enough such

that −0.5ω
√
nδ + O(ǫω

√
n) + n1/2ǫ1 + 2n1/2ǫ2 is negative,

and
|S(z, PXZ) ∩ E(s)|

|S(z, PXZ)|
6 e−c3ω

√
n

for some c3 > 0 when n is large enough. Then,

e(J) 6 e−c1ω
√
n + e−c2ω

√
n + e−c3ω

√
n (45)

6 e−ξ1ω
√
n (46)

for some ξ1 > 0 when n is sufficient large. It remains to prove

Lemma 4, as outlined in Appendix A.

APPENDIX A

PROOF OF LEMMA 4

We first define the set Ẽ(s̄) as

Ẽ(s̄) ,
{

(i, k) : ∃(j, l) 6= (i, k) s.t

∣

∣

∣

∣

wH(xjl)

n
− ω√

n

∣

∣

∣

∣

6
ωǫ√
n
,

∣

∣d̄1(xik ⊕ s̄,xjl)− p
∣

∣ < ǫ,
∣

∣d̄0(xik ⊕ s̄,xjl)− p
∣

∣ < ǫ
}

.

Ẽ(s̄) is the set of message/key pairs (i, k) for which there
exists a pair (j, l) 6= (i, k), without the restriction of l = k,
such that the decoding rules are satisfied. By splitting into

different type classes, we can upper bound S(z, PXZ)∩ Ẽ(s̄)
by

|S(z, PXZ) ∩ Ẽ(s̄)|
6

∑

X′,X′′,S,Z′

|{(i, k) : ∃(j, l) 6= (i, k) s.t (xik,xjl, s̄, z) ∈ τX′X′′SZ′}|,

where X ′, X ′′, S, and Z ′ are dummy random variables de-

scribing each type class and satisfying following inequalities

|PX′(1)− ω√
n
| 6 ωǫ√

n
, |PX′′(1)− ω√

n
|,6 ωǫ√

n

|PS⊕X′|X′′=1 − p| 6 ǫ, |PS⊕X′|X′′=0 − p|,6 ǫ,

PX′Z′ = PXZ .

By viewing (s̄, z) as s in Lemma 3 and assuming (32) holds,
we have

|{(i, k) : ∃(j, l) 6= (i, k) s.t (xik,xjl, s̄, z) ∈ τX′X′′SZ′}| 6 2nγ+ǫ2n
1/2

,

where we define γ , |R− I(X ′;X ′′SZ ′)−D(PX′‖Παn
) +

|R− I(X ′′;SZ ′)−D(PX′′‖Παn
)|+|+. To calculate the value

of γ, we need to consider the two cases, R > I(X ′′;SZ ′) +
D(PX′′‖Παn) and R < I(X ′′;SZ) +D(PX′′‖Παn).

Case 1: R > I(X ′′;SZ ′) +D(PX′′‖Παn
)

γ 6 |2R− I(X′;SZ′)− I(X′;X′′|SZ′)− I(X′′;SZ′)−D(PX′‖Παn )|+

6 |2R− I(X′;Z′)− I(X′′;X′ ⊕ S)−D(PX′‖Παn )|+ (47)

by data processing inequalities and

I(X′′;X′ ⊕ S)

= PX′′ (1)D(PX′⊕S|X′′=1‖PX′⊕S|X′′=0)−D(PX′⊕S‖PX′⊕S|X′′=0)

>
ω√
n
(1− ǫ)D(B(1− p− ǫ)‖B(p+ ǫ))−O(1/n)

>
ω√
n
(1− ǫ) (D(P1‖P0)− 0.4δ)

when we choose ǫ small enough and n is sufficient large.
Then,

γ 6
2ω√
n
(D(Q1‖Q0) + δ)− I(PXZ)

− ω√
n
(1− ǫ) (D(P1‖P0)− 0.4δ)−D(PX′‖Παn ), (48)

where (48) is positive when we choose ǫ sufficient small

because D(Q1‖Q0) > D(P1‖P0), PX′Z′ = PXZ , I(PXZ) 6
ω√
n
D(Q1‖Q0) + O(ǫ ω√

n
), and D(PX‖Παn

) 6 O(ǫ ω√
n
) by

(25) and (28).
Case 2: R < I(X ′′;SZ ′) +D(PX′′‖Παn

)

γ 6 |R− I(X′;Z′)−D(PX′‖Παn )|+ (49)

=
ω√
n
(D(Q1‖Q0) + δ)− I(PX′Z′ )−D(PX′‖Παn ), (50)

where (50) is positive for the same reason as (48) when ǫ is
small enough. The difference between (50) and (48) is the term
ω√
n
(D(Q1‖Q0)+δ)− ω√

n
(1−ǫ) (D(P1‖P0)− 0.4δ), which is

always positive. Therefore, in both cases, we can upper bound
γ by (48). Then,

|S(z, PXZ) ∩ Ẽ(s̄)| 6
∑

X′,X′′,S,Z′

2nγ+n1/2ǫ2

6 2
√

nω[2(D(Q1‖Q0)+δ)−D(P1‖P0)+0.4δ+O(ǫ)]−nI(fXZ)+2
√
nǫ2 (51)

when (32) holds and n is sufficient large because there is at

most a polynomial number of types. We have obtained the

upper bound on the set Ẽ(s̄) ∩ S(z, PXZ) but what we need

is the upper bound on the size of the set E(s̄) ∩ S(z, PXZ).
Lemma 5, whose proof is omitted, helps us relate the size of

Ẽ(s̄)∩ S(z, PXZ) and E(s̄)∩ S(z, PXZ). In fact, the lemma

below says that the size of E(s̄)∩S(z, PXZ) is roughly 1/K

of EC

{
|Ẽ(s̄) ∩ S(z, PXZ)|

}
with high probability.

Lemma 5. It holds with probability at least 1− e−ρ4ω
√
n for

some ρ4 > 0 that

|E(s̄)∩S(z, PXZ))| <
EC

{
|S(z, fXZ) ∩ Ẽ(s̄)|

}

K
×20.1

√
nωδ

when n is large enough.

Notice that (51) holds when (32) is true. Combining the

fact that (51) holds with probability at least 1− e−en
1/2ρ2

and

the fact that |E(s̄) ∩ S(z, PXZ)| is at most an exponential

function of
√
n, the term E

{
|S(z, fXZ) ∩ Ẽ(s̄)|

}
is also

upper bounded by (51) when n is sufficient large. Substituting

the size of K, which is 2
√
nω(D(Q1‖Q0)−D(P1‖P0)+2δ), into

Lemma 5, we obtain

|E(s̄) ∩ S(z, PXZ))|
6 2

√
nωD(Q1‖Q0)−nI(PXZ)+0.5ω

√
nδ+O(ǫω

√
n)+2n1/2ǫ2 (52)

with probability at least 1−e−ρ4ω
√
n when n is large enough,

which completes the proof.
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