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Abstract—We consider a situation in which a decision maker
takes sequential and adaptive sensing actions to collect measure-
ments and estimate an unknown parameter taking finitely many
values, in the presence of an adversary who also collects mea-
surements whenever a sensing action is taken. This situation can
be viewed as an abstraction in which to analyze the mitigation of
information leakage inherent to control actions in systems with
feedback, such as cyber-physical systems. Specifically, we formu-
late an evasive active hypothesis problem in which the objective
is for the decision maker to control the risk of its test while
minimizing the detection ability of the adversary, measured in
terms of the asymptotic error exponent ratio between the adver-
sary and the decision maker. We develop bounds on the exponent
ratio that offer insight into optimal strategies that the decision
maker can deploy to evade the adversary’s detection. We illus-
trate the results with a numerical example corresponding to the
detection of a wireless transmission.

Index Terms—Active hypothesis testing, eavesdropper, physical
layer security.

INTRODUCTION

M
OST complex systems now rely on feedback mech-

anisms to ensure efficient operation, either to ensure

end-to-end reliability in communication networks or stability

in cyber-physical systems. Unfortunately, the presence of feed-

back signals also increases the attack surface of such systems,

not only because the feedback signals can be intercepted or

tampered with but also because the mere presence of a con-

trol mechanism might leak information about the operation of

the underlying system, without even requiring the signal to

be decoded. For instance, a recent study of IoT devices has

shown that eavesdroppers can infer activity information, from

interaction methods to functionality, even from encrypted traf-

fic and without directly exposing information [2]. At a more

abstract level, one of the security challenges faced in complex

systems is that the actions taken by decision makers, such as

the communicating parties in a communication network, or the

controllers in a cyber-physical system, inherently contain, and

therefore leak, information about the objective of the decision

making process.

The objective of the present work is to take initial steps

towards understanding the information-theoretic limits of

information leakage induced by the actions of decision-makers
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in systems with feedback, as well as towards developing strate-

gies that allow systems to operate efficiently while mitigating

the information leakage to eavesdroppers. We adopt an active

hypothesis testing problem in the presence of an eavesdropper

as the abstraction in which to carry the analysis. Specifically,

we consider a situation in which a decision maker takes

sequential and adaptive sensing actions to collect measure-

ments and estimate an unknown parameter taking finitely many

values, in the presence of an adversary who also collects mea-

surements whenever a sensing action is taken. Our objective

is to develop optimal evasive active hypothesis testing strate-

gies, in the sense that the strategies meet a risk-requirement

for the decision maker while minimizing the detection ability

of the adversary measured in terms of the adversary’s asymp-

totic error exponent. This model is motivated in part by its

analytical tractability but, most importantly, because sequential

multiple-hypothesis testing has already found numerous engi-

neering applications, ranging from target detection [3] to beam

alignment [4]. In that regard the model captures the essence of

the challenge, i.e., the leakage of information through actions,

while remaining grounded in real engineering systems.

The growing concerns for data privacy and secrecy have

already fostered the analysis of information leakage in deci-

sion making systems, as well as the design of mechanisms at

the signal level to mitigate the information leakage in several

research communities. For instance, there has been interest

in the control community for using the imperfections of the

physical-layer or the introduction of noise to secure state esti-

mation [5], [6], [7]. More closely related to the present work,

there have been several studies investigating hypothesis testing

under information-theoretic security constraints. A first line

of work consists of the studies of stochastic encryption, in

which distributed sensors intentionally and locally corrupt their

data to degrade (either by quantizing or introducing noise) the

decision performance of an eavesdropper fusion center while

maintaining an acceptable performance at a legitimate fusion

center [8]. The use of stochastic encryption has been explored

for various models, in which the legitimate parties exploit an

advantage originating from an observation structure [9], [10]

or secret keys [11], [12]. More recently, stochastic encryption

has been extended to the sequential detection setting [13].

Another line of work consists of research efforts around

distributed binary hypothesis testing against conditional inde-

pendence and under secrecy constraints [14], [15]; therein, the

objective is to control how public messages encoding blocks

of data are designed to optimally trade off the rate of pub-

lic communication, the exponent of the type II error, and the

equivocation of an adversary.

The present work differs from previous studies by consid-

ering the framework of active hypothesis testing [16], also
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known as controlled sensing [17], in which the kernels gov-

erning noisy observations are dynamically adapted using past

observations. While the foundations of this framework can be

traced back to the pioneering work of Chernoff on sequential

design of experiments [18], there has been a recent resur-

gence of interest driven in part by applications to machine

learning. The rationale for our study is also slightly different

from previous works. While previous studies of hypothesis

testing under security constraints have been motivated by the

risks posed by a distributed operation when an adversary inter-

cepts messages, we are interested in understanding the risks

and opportunities offered by adaptivity when an adversary

indirectly benefits from the actions taken by decision makers.

The rest of the paper is organized as follows. We provide

a brief overview of the notation used throughout the paper in

Section I. We introduce the precise model under consideration,

which we call evasive active hypothesis testing, and associated

results in Section II. Therein, we also illustrate the results with

a simple example motivated by beam alignment in 5G systems,

in which legitimate parties attempt to steer a beam in a direc-

tion to quickly detect the presence of a transmission while

slowing down the estimation of an eavesdropper. We provide

proofs of the results in Section III and offer conclusions in

Section IV.

I. NOTATION

A length n vector is denoted by xn � (x1, . . . , xn), where

xi, i ∈ [1, n], is the ith element of the vector. If U is an

alphabet, we denote by P(U) the set of all distributions on

U . Similarly, P(U ,Y) is the set of all joint distributions on

U and Y . The type of a sequence un ∈ Un of length n

is the empirical distribution in P(U) induced by un and is

denoted by p̂un . Similarly, if yn � (y1, . . . , yn) ∈ Yn is another

sequence then the joint type of un and yn is the joint empiri-

cal distribution in P(U ,Y) induced by the sequences, denoted

as p̂un,yn . Formally, we have p̂un,yn(u, y) =
∑n

i=1 1(ui+1 =
u, yi = y)/n. Pn(U) denotes the set of all types generated by

sequences with length smaller than n, and Pn(U ,Y) denotes

the set of all joint types generated by pairs of sequences

with length smaller than n. We further define p̂yn|u as the

conditional type such that p̂yn|u(y) =
∑n

i=1 1(ui = u, yi =
y)/
∑n

i=1 1(ui = u). Given probability distributions p1 and p2

on some discrete alphabet X , the relative entropy between

p1 and p2 is defined as D(p1‖p2) �
∑

x∈X p1(x) log
p1(x)
p2(x)

.

The Chernoff information between p1 and p2 is defined

as C(p1‖p2) = maxs∈[0,1] − log(
∑

x∈X p1(x)
sp2(x)

1−s). If

{pu
1}u∈U and {pu

2}u∈U are two sets of distributions on

X parameterized by u ∈ U and if q is a distri-

bution on U , we define the quantity C(p1‖p2; q) �
maxs∈[0,1] −

∑

u q(u) log(
∑

x∈X pu
1(x)

spu
2(x)

1−s).

II. MODEL AND RESULTS

Consider the situation illustrated in Fig. 1, in which a deci-

sion maker and an eavesdropper engage in an active M-ary

hypothesis testing problem to estimate an unknown parame-

ter θ ∈ � � {0, . . . , M − 1}. It will be convenient to think

of the problem as involving three terminals, Alice, Bob, and

Fig. 1. Model of evasive active hypothesis testing.

Eve, where Alice represents the controller part of the deci-

sion maker taking actions, Bob represents the sensor part of

the decision maker getting observations, and Eve is the pas-

sive eavesdropper obtaining other observations. The split of

the decision maker into two components is merely to simplify

some of our discussions and, in many instances, Alice and

Bob may be co-located so that the observations obtained by

Bob cannot be eavesdropped when transmitted back to Alice.

Alternatively, one can think of the communication between

Bob and Alice as being encrypted so that no information leak-

age happens through the feedback link. The overall system

then operates as follows. At each time step k ≥ 1, Bob and Eve

obtain observations yk ∈ Y and zk ∈ Z , respectively, generated

by kernels p
uk

θ ∈
{

pu
θ

}

u∈U and q
uk

θ ∈
{

qu
θ

}

u∈U , respectively,

where uk ∈ U is controlled by Alice. In [1], we have analyzed

the situation in which the distribution p
uk

θ is conditionally inde-

pendent of past observation (yk−1, zk−1, uk−1) given the choice

of action uk. In this work, we extend to the slightly more gen-

eral case in which the distribution p
uk

θ (·|yk−1) depends on the

past observations yk−1 but the distribution q
uk

θ is still condi-

tionally independent of past observations. This generalization

is inspired by [19], which analyzes the sequential hypothesis

testing with Markovian observations. The action uk at time

k is chosen according to a known closed-loop control policy

p(uk|yk−1, uk−1). The joint distribution of (yn, zn, un+1) under

the hypothesis θ = i is therefore given by

pi

(

yn, zn, un+1
)

� p(u1)

(

n
∏

k=1

p
uk

i (yk|yk−1)q
uk

i (zk)p
(

uk+1|yk, uk
)

)

.

We are interested in sequential tests Ŵ = (φ, τ, δ) that con-

sist of the following components: i) a control policy φ �
{

p(uk|yk−1, uk−1)
}

k≥1
that allows Alice to generate action

uk at time k according to the distribution p(uk|yk−1, uk−1);

ii) a stopping rule τ that allows Alice and Bob to stop the

sequential estimation and defined as

τ = min
i∈�

inf{n : Li(n) ≥ exp(bi)}, (1)

where Li(n) �
∏n

k=1 p
uk
i (yk|yk−1)

maxj �=i

∏n
k=1 p

uk
j (yk|yk−1)

and {bi}M−1
i=0 are thresh-

olds having the form bi = log(1/R̄i) + K for some constants

R̄i < 1 and K; iii) a decision rule δ that allows Alice and Bob
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to decide on a hypothesis and defined as

δ(yτ ) = i if Li(τ ) = max
j∈�

Lj(τ ). (2)

The restriction to such tests is justified by their asymp-

totic optimality in the controlled sensing setting [17]. We also

assume that i) the sets Y , Z , and U are finite; ii) there exists a

prior {πi}i∈� on the parameter θ known by both Bob and Eve;

iii) the kernel sets
{

pu
θ

}

u∈U and
{

qu
θ

}

u∈U are known to Alice,

while Eve only knows
{

qu
θ

}

u∈U ; iv) the control sequence uτ

and the sequential test Ŵ are known to all parties; and v) ∀i �= j,

∀u ∈ U and ∀y ∈ Y , it holds that 0 < D(pu
i (·|y)‖pu

j (·|y)) < ∞.

Since the kernel set
{

pu
θ

}

u∈U is not known to Eve, she cannot

obtain any information about θ from the control sequence uτ .

This assumption is not completely innocent and allows us

to focus on the information leakage induced by the actions,

without having to worry about the leakage from the action

sequence itself. Alice and Bob’s objective is to evade Eve by

making Eve’s decision as poor as possible while maintain-

ing a desired accuracy for their own estimation; we call this

problem evasive active hypothesis testing. Formally, for any

i ∈ �, Alice and Bob’s probability of incorrectly deciding on

δ(yτ ) = i when θ �= i should satisfy the risk constraints
∑

j �=i

πjPj

{

δ
(

yτ
)

= i
}

< R̄i, (3)

where Pi denotes the probability measure under hypothesis i

and the thresholds
{

R̄i

}M−1

i=0
are fixed and known. For sim-

plicity, we assume in the following that all {R̄i}M−1
i=0 are the

same and equal to R̄. Eve is assumed to apply a maximum-

likelihood detector δML when Alice and Bob stop the test at

time τ , i.e.,

δML

(

zτ
)

= arg max
i

τ
∏

k=1

q
uk

i (zk).

Under the test Ŵ and the constraint R̄, the ratio between the

error exponent of Eve to that of Alice/Bob when the true

hypothesis is θ = i is defined as

γi

(

Ŵ, R̄
)

�
− logPi{δML(zτ ) �= i}

∣

∣log R̄
∣

∣

. (4)

The quantity γi(Ŵ, R̄) captures the rate of exponential decay

of Eve’s probability of error when decreasing the value of R̄.

Alice and Bob’s objective is to minimize the exponent ratio (4)

subject to the constraints (3), i.e.,

minimize
φ

γi

(

Ŵ, R̄
)

subject to
∑

k �=j

πkPk

{

δ
(

yτ
)

= j
}

< R̄ for all j ∈ �. (5)

In the problem above, the minimization is taken over all control

policies φ while fixing the stopping rule τ and the decision

rule δ as in (1) and (2), respectively. Note that minimizing

γi(Ŵ, R̄) amounts to finding the specific tradeoff between Eve

and Alice/Bob’s error exponents that minimizes the ratio of the

error exponents. One could extend the analysis to a complete

tradeoff curve but this is outside the scope of the present work.

Remark 1: Eve’s optimal test given her observations zτ ,

the sequence uτ , and her knowledge of the prior {πi}i∈�

is a maximum a posteriori (MAP) detection. However,

the MAP estimators of Alice/Bob and Eve have the

form δMAP(yτ ) = arg maxi∈� πi

∏τ
k=1 p

uk

i (yk|yk−1) and

δMAP(zτ ) = arg maxi∈� πi

∏τ
k=1 q

uk

i (zk). The likelihoods
∏τ

k=1 p
uk

i (yk|yk−1) and
∏τ

k=1 q
uk

i (zk) have dominant influ-

ences on the outcome of the corresponding MAP estimator

when τ → ∞, which is the regime we want to ana-

lyze. Therefore, we assume an ML estimator is utilized by

Alice/Bob and Eve to simplify the analysis. Furthermore,

if Alice/Bob and Eve choose to use a MAP estimator, our

characterization of γi holds, because changing from an ML

to a MAP estimator does not influence the error expo-

nent limτ→∞ − 1
τ

log(Pi(δML(zτ ) �= i)) and the relationship

between the stopping time τ and R̄ is only related to the

stopping rule in (1) but not to Bob’s estimator of θ .

Remark 2: The control policies φ have to operate without

the knowledge of the true value of the parameter θ .

Upon denoting by γi(R̄) the solution to the optimization

problem (5), we define the asymptotic error exponent ratio as

γi � lim
R̄→0

γi

(

R̄
)

.

Our results provide upper and lower bounds for the asymptotic

error exponent ratio γi.

A. Bounds on the Asymptotic Error Exponent Ratio

By [17], the constraint in (5) is automatically satisfied when

the stopping rule is defined by (1) with bi = log(1/R̄) + K

and K � log(M − 1) + maxi∈� log(πi). Therefore, we focus

on the characterization of the asymptotic error exponent ratio

when R̄ → 0, which we bound in the following theorems.

Theorem 1: No control policy φ can lower the asymptotic

error exponent ratio γi when θ = i ∈ � below

min
q̄U,Y

C̃

D̃

√

D̃2

D̃2 + 2C̃d̃2
+ D̃

2d̃2

⎛

⎜

⎜

⎝

2
(

D̃2 + C̃d̃2
)

√

D̃2
(

D̃2 + 2C̃d̃2
)

− 2

⎞

⎟

⎟

⎠

, (6)

where C̃, D̃, and d̃ are defined as

C̃ � min
j �=i

C(qi‖qj; q̄U),

D̃ � min
j �=i

∑

u∈U ,y∈Y
q̄U,Y(u, y)D

(

pu
i (·|y)‖pu

j (·|y)
)

,

d̃ � max
j �=i

max
u,y,ỹ

∣

∣

∣

∣

∣

log
pu

i (y|ỹ)
pu

j (y|ỹ)
− D

(

pu
i (·|ỹ)‖pu

j (·|ỹ)
)

∣

∣

∣

∣

∣

.

Theorem 2: There exists a control policy such that the

asymptotic error exponent ratio γi when θ = i ∈ � is at

most

min
{q(u|y)}y∈Y

minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)C

(

qu
i ‖qu

j

)

minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) ,

(7)

where u
q
i (y) is the steady state distribution of the Markov

process characterized by the transition probability

pq(y|ỹ) =
∑

u∈U
q(u|ỹ)pu

i (y|ỹ).
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Although the bounds of Theorem 1 and Theorem 2 do not

match in general, these bounds are quite tight when the ratio

of the divergence of Bob’s kernels to the Chernoff information

of Eve’s kernels is large. To be specific, the ratio

√

D̃2

D̃2+2C̃d̃2
in

(9) approaches 1 and the term (
2(D̃2+C̃d̃2)√
D̃2(D̃2+2C̃d̃2)

−2) approaches

0 when D̃ ≫ C̃, which is the situation that benefits Alice

and Bob. Therefore, when D̃ ≫ C̃, the lower bound of γi

approaches minq̄U,Y∈P(U ,Y)
C̃

D̃
, which is equivalent to

min
q̄U,Y∈P(U ,Y)

minj �=i C
(

qi‖qj; q̄U

)

minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)||pu

j (·|y)
) .

(8)

The above quantity has a form similar to the upper bound in

Theorem 2. The gap between the above equation and the upper

bound in Theorem 2 has two causes. First, C(qi||qj; q̄U) is

smaller than
∑

u∈U q̄U(u)C(qu
i ||qu

j ) by definition. Secondly, (8)

is minimized over all joint distribution q̄U,Y ∈ P(U ,Y),

while (7) is only minimized over conditional distributions

{q(u|y)}y∈Y ∈ P(U)|Y |. If we restrict ourselves to the spe-

cial case in which the kernels of Bob are independent of past

observations conditioned on each action and the minimization

of (6) and (7) are achieved by a deterministic policy q(u) =
1(u = u∗) for some u∗ ∈ U , then (8) becomes

min
u∈U

minj �=i C
(

qu
i ||qu

j

)

minj �=i D
(

pu
i ||pu

j

) .

In this case, the lower bound is the same as the upper bound

obtained in Theorem 2.

Remark 3: If we restrict ourselves to the special case in

which the kernels of Bob are independent of past observations

conditioned on each action and if the asymptotically optimal

control policy of [17], which ignores Eve’s presence, is cho-

sen, then the asymptotic value of γi(Ŵ, R̄) under this control

policy is

minj �=i C

(

q
u#

i

i ‖q
u#

i

j

)

minj �=i D

(

p
u#

i

i ‖p
u#

i

j

) , (9)

where

u#
i = arg max

u∈U
min
j �=i

D
(

pu
i ‖pu

j

)

.

In general, the asymptotic ML exponent in (9) is higher than

the one achieved in Theorem 2. Note that one can obtain the

result of (9) by replacing the control policy in the proof of

Theorem 2 with the one described in [17].

B. Numerical Example

As an illustration, we apply our results to the detection of

a base station in a millimeter wave environment, in which

the base station (Alice) is equipped with N = 8 antennas

while two terminals (Bob and Eve) are each equipped with

a single antenna. Bob and Eve have to decide whether Alice

is transmitting (hypothesis H0) or not (hypothesis H1). The

channel gains h and g characterizing the channels from the

base station to Bob and Eve, respectively, are assumed to

correspond to a single path and given by

h = ρBobaH(θBob) g = ρEveaH(θEve),

where ρBob and ρEve are static fading coefficients and θBob

and θEve are the Angle of Departure (AoD) vectors from the

base station. Assuming uniform linear arrays (ULA) are used

for beamforming, the vector a(θ) can be written as

a(θ) =
[

1, e−j 2πd
λ

sin(θ), . . . , e−j(N−1) 2πd
λ

sin(θ)
]T

,

where we choose d = λ/2 to be the space between antennas.

The actions of Alice consist in choosing a steering vector u

in a codebook U = {uk}5
k=0, where we have chosen for our

example

uk =
[

1, e−jπ sin(πk/12), . . . , e−j(N−1)π sin(πk/12)
]T

.

In other words, Alice’s action consists in steering and align-

ing her beam with a(θ), for pre-specified angles θ ∈
{

0, π
12

, . . . , 5π
12

}

. For each action u ∈ U , Bob and Eve’s

received signals under hypotheses H0 and H1 are

H0 :

{

ỹ = ρBoba(θBob)
Hu + n1

z̃ = ρEvea(θEve)
Hu + n2

H1 :

{

ỹ = n1

z̃ = n2

where n1, n2 are zero-mean circularly symmetric Gaussian

noises with variance σ 2. We finally assume both Bob and Eve

test the hypothesis with hard-decoded signal

y �
∣

∣ỹ − ρBoba(θBob)
Hu
∣

∣

0

≷
1

|ỹ|

and z �
∣

∣z̃ − ρEvea(θEve)
Hu
∣

∣

0

≷
1

|z̃|,

so that Y = Z = {0, 1}. Consequently, Bob’s kernels cor-

responding to u ∈ U are given under hypotheses H0 and

H1 as

H0 :

⎧

⎪

⎨

⎪

⎩

pu
0(0) = 1 − Q

(

√

|ρBoba(θBob)
Hu|2

2σ 2

)

pu
0(1) = Q

(

√

|ρBoba(θBob)
Hu|2

2σ 2

)

H1 :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

pu
1(0) = Q

(√

∣

∣ρBoba(θBob)
Hu
∣

∣

2

2σ 2

)

pu
1(1) = 1 − Q

(√

∣

∣ρBoba(θBob)
Hu
∣

∣

2

2σ 2

) ,

where Q(x) = 1√
2π

∫∞
x

exp(− u2

2
)du. Eve’s kernels qu

i (z),

i ∈ {0, 1} are similarly defined using ρEvea(θEve) in place of

ρBoba(θBob).

Fig. 2 illustrates the asymptotic exponent ratio γ1 in the spe-

cific case where the azimuth angles are θBob = 2π
9

, θEve = π
3

,

the noise variance is σ 2 = 0.1, and Bob’s path loss is

ρBob = 1. The bounds for the asymptotic exponent ratio given

by Theorem 1 and Theorem 2 are shown as a function of

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 31,2021 at 21:57:14 UTC from IEEE Xplore.  Restrictions apply. 



CHANG AND BLOCH: EVASIVE ACTIVE HYPOTHESIS TESTING 739

Fig. 2. Asymptotic exponent ratio γ1 in the millimeter wave base station
detecting problem.

Eve’s path loss, defined as 10 log
ρBob

ρEve
; the asymptotic expo-

nent ratio from Remark 3, obtained when Bob chooses the

control policy that only benefits himself and ignores Eve, is

also shown as a reference. As expected, we observe that the

gap between the two bounds becomes smaller when Eve’s path

loss increases because the ratio of Eve’s Chernoff information

to Bob’s divergence dominates the right-hand side of (6).

III. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1 (Lower Bound)

Let q̄U,Y be an arbitrary joint distribution on U and Y , and

q̄U be the corresponding marginal distribution on U . For all

q̄U,Y ∈ P(U ,Y), we first define τi(q̄U,Y) as

τi

(

q̄U,Y

)

�

∣

∣log R̄
∣

∣

minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)‖pu

j (·|y)
) .

Without loss of generality, we assume τi(q̄U,Y) is an integer in

the proof below. To prove Theorem 1, we first need an upper

bound on the error probability with a fixed number of actions.

From [20, Problem 10.20], we know that for all i �= j and

n ∈ Z, if the sequence of actions un has the type q̄U , we can

upper bound the error probability Pi(δML(zn) = j|p̂un = q̄U)

by

Pi

(

δML

(

zn
)

= j|p̂un = q̄U

)

≤ exp

⎛

⎝−n max
s∈[0,1]

−
∑

u

q̄U(u) log
∑

z∈Z
qu

i (z)
squ

j (z)
1−s

⎞

⎠

= exp
(

−nC(qi‖qj; q̄U)
)

,

where

C
(

qi‖qj; q̄U

)

= max
s∈[0,1]

−
∑

u

q̄U(u) log

⎛

⎝

∑

z∈Z
qu

i (z)
squ

j (z)
1−s

⎞

⎠.

Then, we have

Pi

(

δML

(

zn
)

�= i|p̂un = q̄U

)

=
∑

j �=i

Pi

(

δML

(

zn
)

= j|p̂un = q̄U

)

≤ (M − 1) max
j �=i

Pi

(

δML

(

zn
)

= j|p̂un = q̄U

)

≤ (M − 1) exp

(

−n min
j �=i

C
(

qi‖qj; q̄u

)

)

. (10)

Furthermore, the following lemma with proofs given in

Appendix A gives an upper bound on the joint probability

of τ ≤ τi(q̄U,Y)(1 − ǫ) and p̂uτ ,yτ = q̄U,Y for any 0 < ǫ < 1.

Lemma 1: Let the stopping rule τ of the sequential test be

defined in (1), and 0 < ǫ < 1. Then, for R̄ small enough, the

joint probability of τ ≤ τi(q̄U,Y)(1 − ǫ) and p̂uτ ,yτ = q̄U,Y

satisfies

Pi

{

τ ≤ τi

(

q̄U,Y

)

(1 − ǫ), p̂uτ ,yτ = q̄U,Y

}

≤ C exp

⎧

⎨

⎩

−| log R̄|2
(

ǫ2 + o(1)
)

2
∑τi(q̄U,Y)(1−ǫ)

ℓ=1 d2
i

⎫

⎬

⎭

,

for some constant C, where

di = max
j �=i

max
u,y,ỹ

∣

∣

∣

∣

∣

log
pu

i (y|ỹ)
pu

j (y|ỹ)
− D

(

pu
i (·ỹ)‖pu

j (·|ỹ)
)

∣

∣

∣

∣

∣

.

Let N be some integer to be defined later; we write the

probability Pi(δML(zτ ) �= i) as

Pi

(

δML(zτ ) �= i
)

=
∑

q̄U,Y∈PN (U ,Y)

Pi

{

δML

(

zτ
)

�= i, p̂uτ ,yτ = q̄U,Y

}

+
∑

q̄U,Y /∈PN (U ,Y)

Pi

{

δML

(

zτ
)

�= i, p̂uτ ,yτ = q̄U,Y

}

≤ |PN(U ,Y)| max
q̄U,Y∈P(U ,Y)

Pi

{

δML

(

zτ
)

�= i, p̂uτ ,yτ = q̄U,Y

}

+ Pi

{

p̂uτ ,yτ /∈ PN(U ,Y)
}

. (11)

The term Pi{δML(zτ ) �= i, p̂uτ ,yτ = q̄U,Y} can be represented as

Pi

{

δML

(

zτ
)

�= i, p̂uτ ,yτ = q̄U,Y

}

=
∞
∑

k=1

Pi

(

τ = k, p̂uτ ,yτ = q̄U,Y

)

× Pi

(

δML

(

zk
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = k
)

≤
τi(q̄U,Y)−1
∑

k=1

Pi

(

τ ≤ τi

(

q̄U,Y

)

(1 − ǫk), p̂uτ ,yτ = q̄U,Y

)

× Pi

(

δML

(

zτi(q̄U,Y)(1−ǫk)
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = k
)

+
∞
∑

k=τi(q̄U,Y)

Pi

(

τ = k, p̂uτ ,yτ = q̄U,Y

)

× Pi

(

δML

(

zk
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = k
)

≤
τi(q̄U,Y)−1
∑

k=1

Pi

(

τ ≤ τi

(

q̄U,Y

)

(1 − ǫk), p̂uτ ,yτ = q̄U,Y

)

× Pi

(

δML

(

zτi(q̄U,Y)(1−ǫk)
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = k
)

+ Pi

(

δML

(

zτi(q̄U,Y)
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = τi

(

q̄U,Y

)

)

,

(12)
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where ǫk are chosen such that τi(q̄U,Y)(1− ǫk) = k. Given the

stopping time τ = k and the type p̂uτ ,yτ = q̄U,Y , the error prob-

ability Pi(δML(zk) �= i)|p̂uτ ,yτ = q̄U,Y , τ = k) can be repre-

sented as (10), which is a decreasing function of the number of

observations k. Therefore, (12) follows from upper bounding

Pi(δML(zk) �= i|p̂uτ ,yτ = q̄U,Y , τ = k) by Pi(δML(zτi(q̄U,Y )) �=
i|p̂uτ ,yτ = q̄U,Y , τ = τi(q̄U,Y)) for all k ≥ τi(q̄U,Y)

and from bounding the probability
∑∞

k=τi(q̄(u,y) Pi(τ =
k, p̂uτ ,yτ = q̄U,Y) by 1. By (10) and Lemma 1, when R̄ is

small enough, each term in the summation of (12) can be

bounded as

Pi

{

τ ≤ τi

(

q̄U,Y

)

(1 − ǫk), p̂uτ ,yτ = q̄U,Y

}

× Pi

{

δML

(

zτi(q̄U,Y)(1−ǫk)
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = k
}

≤ C′ exp

⎧

⎨

⎩

−
∣

∣log R̄
∣

∣

2
ǫ2

k

2
∑τi(q̄U,Y)(1−ǫk)

ℓ=1 d2
i

⎫

⎬

⎭

× exp

⎧

⎨

⎩

−(1 − ǫk)
∣

∣log R̄
∣

∣minj �=i C
(

qi‖qj; q̄U

)

minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)‖pu

j (·|y)
)

⎫

⎬

⎭

≤ C′ exp
{

−
∣

∣log R̄
∣

∣γ̃i

(

q̄U,Y , ǫk

)}

for some constant C′, where

γ̃i

(

q̄U,Y , ǫk

)

�

∣

∣log R̄
∣

∣ǫ2
k

2
∑τi(q̄U,Y)(1−ǫk)

ℓ=1 d2
i

+
minj �=i C

(

qi‖qj; q̄U

)

minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)‖pu

j (·|y)
) (1 − ǫk)

=
minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)‖pu

j (·|y)
)

2d2
i

ǫ2
k

1 − ǫk

+
minj �=i C

(

qi‖qj; q̄U

)

minj �=i

∑

u∈U ,y∈Y q̄U,Y(u, y)D
(

pu
i (·|y)‖pu

j (·|y)
) (1 − ǫk).

Also, the last term on the right hand side of (12) can be upper

bounded by

Pi

(

δML

(

zτi(q̄U,Y)
)

�= i|p̂uτ ,yτ = q̄U,Y , τ = τi

(

q̄U,Y

)

)

≤ (M − 1) exp
{

−| log R̄|γ̃i

(

q̄U,Y , 0
)}

.

Minimizing γ̃i(q̄U,Y , ǫk) over ǫk ∈ [0, 1], we obtain the worst

case exponent ratio

γ̃ ∗
i

(

q̄U,Y

)

� min
ǫk∈[0,1]

γ̃i

(

q̄U,Y , ǫk

)

≥ C̃

D̃

√

D̃2

D̃2 + 2C̃d̃2

+ D̃

2d̃2

⎛

⎜

⎜

⎝

2
(

D̃2 + C̃d̃2
)

√

D̃2
(

D̃2 + 2C̃d̃2
)

− 2

⎞

⎟

⎟

⎠

, (13)

where we define

C̃ � min
j �=i

C
(

qi‖qj; q̄U

)

,

D̃ � min
j �=i

∑

u∈U ,y∈Y
q̄U,Y(u, y)D

(

pu
i (·|y)‖pu

j (·|y)
)

,

d̃ � di,

and the value of ǫk minimizing (13) is

ǫ∗ = 1 −

√

D̃2

D̃2 + 2C̃d̃2
.

Therefore,

lim
R̄→0

− log
(

maxq̄U,Y Pi

{

δML(zτ ) �= i, p̂uτ ,yτ = q̄U,Y

})

∣

∣log R̄
∣

∣

≥ min
q̄U,Y

C̃

D̃

√

D̃2

D̃2 + 2C̃d̃2
+ D̃

2d̃2

⎛

⎜

⎜

⎝

2
(

D̃2 + C̃d̃2
)

√

D̃2
(

D̃2 + 2C̃d̃2
)

− 2

⎞

⎟

⎟

⎠

� γ ∗
i .

Since |PN(U ,Y)| is a polynomial function of N, the scal-

ing of |PN(U ,Y)| does not change the exponent. Therefore,

from (11), if we can find some α such that when N = | log R̄|α,

the ratio limR̄→0

− logPi{p̂uτ ,yτ /∈PN (U ,Y)}
| log R̄| is greater than γ ∗

i , then

lim
R̄→0

− log(Pi(δML(zτ ) �= i))

| log R̄|
≥ γ ∗

i . (14)

Let N = | log R̄|β
minj′ �=i minqU,Y

∑

u∈U ,y∈Y qU,Y (u,y)D(pu
i (·|y)‖pu

j′ (·|y))
for some

β > 1, then

Pi

{

p̂uτ ,yτ /∈ PN(U ,Y)
}

≤ Pi(τ > N)

≤
∑

j �=i

Pi

{

log
pi

(

yN
)

pj

(

yN
) < bi

}

=
∑

j �=i

Pi

{

N
∑

k=1

log
p

uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

−
N
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

< bi −
N
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

}

≤
∑

j �=i

Pi

⎧

⎨

⎩

N
∑

k=1

log
p

uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

−
N
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

< bi − N min
j′ �=i

min
q(u,y)∈P(U ,Y)

×
∑

u∈U ,y∈Y
q(u, y)D

(

pu
i (·|y)‖pu

j′(·|y)
)

⎫

⎬

⎭
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≤
∑

j �=i

Pi

⎧

⎨

⎩

∣

∣

∣

∣

∣

N
∑

k=1

log
p

uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

−
N
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

∣

∣

∣

∣

∣

> N min
j′ �=i

min
qU,Y∈P(U ,Y)

×
∑

u∈U ,y∈Y
qU,Y(u, y)D

(

pu
i (·|y)‖pu

j′(·|y)
)

− bi

⎫

⎬

⎭

≤ 2(M − 1) exp

{

−| log R̄|2(β − 1 − o(1))2

2Nd2
i

}

, (15)

where (15) is from Azuma inequality. Therefore, the exponent

lim
R̄→0

− logP
(

p̂uτ ,yτ /∈ PN(U ,Y)
)

| log R̄|
>

(β − 1)2

2β

×
minj′ �=i minqU,Y ∈P(U ,Y)

∑

u∈U ,y∈Y qU,Y (u, y)D
(

pu
i (·|y)‖pu

j′ (·|y)
)

d2
i

.

(16)

We can choose β properly such that the right hand side

of (16) is greater than γ ∗
i , and hence, (14) holds.

B. Proof of Theorem 2 (Upper Bound)

Let the action uk be generated from the distribution q∗
îk−1

,

where îk−1 is the ML estimation of the true hypothesis at time

k − 1, and for all i ∈ �, q∗
i is defined as

q∗
i = arg min

q(·|·)

×
minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)C

(

qu
i ‖qu

j

)

minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) .

(17)

Define τ̃i as

τ̃i �
| log R̄|

minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) .

(18)

Define N as the smallest number such that the decision

δML(yn′
) is correct for all n′ ≥ N. Then, we have the follow-

ing lemma, which states that the stopping time concentrates

around τ̃i.

Lemma 2: Let the control policy φ defined by (17) and the

stopping rule τ defined by (1), ∀ǫ > 0 and 1 > ǫ′ > 0, we

have

lim
R̄→0

Pi{τ ≤ τ̃i(1 + ǫ)|N ≤ n} = 1, (19)

when n is chosen such that P(N > n) ≤ ǫ′ and τ̃i is defined

in (18).

For all ǫ > 0, 1 > ǫ′ > 0 and n chosen as in Lemma 2,

assume without loss of generality τ̃i(1 + ǫ) is integer, we can

lower bound Pi(δML(zτ ) �= i) by

Pi

(

δML

(

zτ
)

�= i
)

≥ P(N ≤ n)Pi

(

δML

(

zτ
)

�= i|N ≤ n
)

= P(N ≤ n)

×
∞
∑

k=1

Pi(τ = k|N ≤ n)Pi

(

δML

(

zk
)

�= i|τ = k, N ≤ n
)

≥ P(N ≤ n)

τ̃i(1+ǫ)
∑

k=1

Pi(τ = k|N ≤ n)

× Pi

(

δML

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ), N ≤ n
)

≥
(

1 − ǫ′)
Pi{τ ≤ τ̃i(1 + ǫ)|N ≤ n}

× Pi

(

δML

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ), N ≤ n
)

.

By Lemma 2, ∀ǫ, δ̃ > 0, there exists R̄ small enough such

that Pi{τ ≤ τ̃i(1 + ǫ)|N ≤ n} > 1 − δ̃. Therefore, ∀ǫ, δ̃ > 0,

we have

Pi

(

δML

(

zτ
)

�= i
)

≥
(

1 − ǫ′)
(

1 − δ̃

)

× Pi

(

δML

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ),

N ≤ n
)

when R̄ is small enough. Let δ̃ij be the binary maximum like-

lihood decision between any pair of hypothesis (i, j), j �= i,

then it must be true that

Pi

(

δML

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ), N ≤ n
)

≥ Pi

(

δ̃ij

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ), N ≤ n
)

. (20)

Then, for R̄ small enough, we can further rewrite the proba-

bility Pi(δ̃ij(z
τ̃i(1+ǫ)) �= i|τ = τ̃i(1 + ǫ), N ≤ n) as

Pi

(

δ̃ij

(

zτ̃i(1+ǫ)
)

�= i|τ = τ̃i(1 + ǫ), N ≤ n
)

= Pi

(

δ̃ij

(

zτ̃i(1+ǫ)
)

= j|τ = τ̃i(1 + ǫ), N ≤ n
)

= Pi

⎧

⎨

⎩

τ̃i(1+ǫ)
∑

k=1

log
q

uk

i (zk)

q
uk

j (zk)
< 0

∣

∣

∣

∣

∣

∣

τ = τ̃i(1 + ǫ), N ≤ n

⎫

⎬

⎭

= Pi

⎧

⎨

⎩

τ̃i(1+ǫ)
∑

k=n+1

log
q

uk

i (zk)

q
uk

j (zk)
<

n
∑

k=1

log
q

uk

j (zk)

q
uk

i (zk)

∣

∣

∣

∣

N ≤ n, τ = τ̃i(1 + ǫ)

⎫

⎬

⎭

. (21)

Note that (21) can be viewed as the error probability of

testing between hypotheses i and j with kernel distributions

{quk

i }τ̃i(1+ǫ)
k=n+1 and {quk

j }τ̃i(1+ǫ)
k=n+1 by using the likelihood ratio test

with the threshold T =
∑n

k=1 log
q

uk
j (zk)

q
uk
i (zk)

. Furthermore, condi-

tioned on the event N ≤ n, the actions uk are generated from

q∗
i for all k > n. We know that the likelihood ratio test
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τ̃i(1+ǫ)
∑

k=n+1

log
q

uk

i (zk)

q
uk

j (zk)
> T

is equivalent to

∑

u∈U
p̂

u
τ̃i(1+ǫ)

n+1

(u)

(

D

(

p̂
z
τ̃i(1+ǫ)

n+1 |u‖qu
j

)

− D

(

p̂
z
τ̃i(1+ǫ)

n+1 |u‖qu
i

))

>
T

τ̃i(1 + ǫ) − n
,

where p̂
u
τ̃i(1+ǫ)

n+1

is the type of the action sequence u
τ̃i(1+ǫ)
n+1 �

(un+1, . . . , uτ̃i(1+ǫ)), and p̂
z
τ̃i(1+ǫ)

n+1 |u is the conditional type of the

sequence z
τ̃i(1+ǫ)
n+1 given the action u. Notice that the threshold

T

τ̃i(1 + ǫ) − n
→ 0

when τ̃i → ∞. Then, from Appendix C and the fact that uk

is generated from q∗
i for all k > n, the error exponent αij can

be described as

αij � lim
τ̃i→∞

−1

τ̃i(1 + ǫ)
logPi

(

δ̃ij

(

zτ̃i(1+ǫ)
)

= j
)

≤
∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)C

(

qu
i ‖qu

j

)

. (22)

Therefore,

lim
R̄→0

−1

| log R̄|
logPi

(

δ̃ij

(

zτ̃i(1+ǫ)
)

= j
)

≤
∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)C

(

qu
i ‖qu

j

)

(1 + ǫ)

minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) .

From (20), under the control policy φ defined in (17), we have

lim
R̄→0

−1

| log R̄|
logPi

(

δML

(

zτ̃i(1+ǫ)
)

�= i
)

≤
minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)C

(

qu
i ‖qu

j

)

(1 + ǫ)

minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) .

Since ǫ > 0 can be arbitrary small, we have

γi ≤
minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)C

(

qu
i ‖qu

j

)

minj �=i

∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
)

= min
q(·|·)

minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)C

(

qu
i ‖qu

j

)

minj �=i

∑

y∈Y,u∈U u
q
i (y)q(u|y)D

(

pu
i (·|y)‖pu

j (·|y)
) .

IV. CONCLUSION

While the information leakage resulting from actions taken

by decision makers in a complex system might be unavoid-

able, our results suggest that, as long as there exists some

margin in the system to meet performance objectives, the

margin can be exploited to develop leakage-aware strategies

that incur less leakage than the otherwise optimal strategies

developed for performance alone. Specifically, in the con-

text of the evasive active hypothesis testing studied here, we

have shown that the error exponent of an eavesdropper who

obtains observations whenever an action is taken can be near-

optimally reduced with proper strategies. We emphasize that

this ability stems from the interplay between i) the presence

of a noisy observation structure, by which the eavesdropper

obtains signal that are different from those of the decision

maker; and ii) the inherent information asymmetry of the

problem, which gives the decision maker an advantage because

it controls the feedback mechanisms. Extension of these ideas

to more complex situations in which the adversary might

tamper with signals are natural but challenging avenues for

future work.

APPENDIX A

PROOF OF LEMMA 1

Proof: Recall that the test stops at time n when

log

(

pĩ(y
n)

maxj �=ĩ pj(yn)

)

≥ bĩ (23)

for some ĩ ∈ �. Then,

Pi

{

τ ≤ τi

(

q̄U,Y

)

(1 − ǫ), p̂uτ ,yτ = q̄U,Y

}

≤
∑

ĩ∈�

Pi

{

∃n ≤ τi(q̄U,Y)(1 − ǫ) s.t

log

(

pĩ(y
n)

maxj �=ĩ pj(yn)

)

≥ bĩ and p̂un,yn = q̄U,Y

}

.

We first focus on the case where (23) is satisfied with ĩ = i.

For all n > 0, we can write the generalized log likelihood

ratio as

log

(

pi(y
n)

maxj �=i pj(yn)

)

= min
j �=i

n
∑

k=1

log

(

p
uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

)

= min
j �=i

{

n
∑

k=1

[

log

(

p
uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

)

− D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

]

+
n
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

}

,

where the term

1

n

n
∑

k=1

[

log

(

p
uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

)

− D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

]

converges to zero exponentially fast. To be specific, let

Xℓ �
ℓ
∑

k=1

[

log

(

p
uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

)

− D
(

p
uk

i (·|yk−1)‖p
uk

j (·|yk−1)

)

]
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be the zero-mean martingale sequence such that

|Xℓ − Xℓ−1| =
∣

∣

∣

∣

∣

log
p

uℓ

i (yℓ|yℓ−1)

p
uℓ

j (yℓ|yℓ−1)

− D
(

p
uℓ

i (·|yℓ−1)‖p
uℓ

j (·|yℓ−1)

)

∣

∣

∣

∣

∣

≤ max
u,y,ỹ

∣

∣

∣

∣

∣

log
pu

i (y|ỹ)
pu

j (y|ỹ)
− D

(

pu
i (·|ỹ)‖pu

j (·|ỹ)
)

∣

∣

∣

∣

∣

� dij.

By Azuma’s inequality, we have for all j �= i and ∀ǫ̃ > 0,

Pi{|Xn| ≥ nǫ̃} ≤ 2 exp

(

−n2ǫ̃2

2
∑n

ℓ=1 d2
ij

)

.

Define j∗ � arg minj �=i

∑

u∈U ,y∈Y q̄(u, y)D(pu
i (·|y)‖pu

j (·|y)).
We have ∀ǫ̃ > 0,

Pi

{

log

(

pi(y
n)

maxj �=i pj(yn)

)

> n

(

1

n

n
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j∗ (·|yk−1)

)

+ ǫ̃

)}

≤ Pi

{

log

(

pi(y
n)

pj∗(yn)

)

> n

(

1

n

n
∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j∗ (·|yk−1)

)

+ ǫ̃

)}

≤ 2 exp

(

−n2ǫ̃2

2
∑n

ℓ=1 d2
i

)

, (24)

where di = maxj dij. Now, when ĩ = i, we have

Pi

{

∃n ≤ τi

(

q̄U,Y

)

(1 − ǫ) s.t log

(

pi(y
n)

maxj �=i pj(yn)

)

≥ bi

and p̂un,yn = q̄U,Y

}

≤
∑

ǫn

Pi

⎧

⎨

⎩

log

⎛

⎝

pi

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=i pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ bi,

p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

, (25)

where for each 1 ≤ n ≤ τi(q̄U,Y)(1 − ǫ), ǫn > 0 is chosen

such that n = τi(q̄U,Y)(1 − ǫn). Substituting the definition of

bi, when τi(q̄U,Y) is large enough, each term in the summation

of (25) can be written as

Pi

⎧

⎨

⎩

log

⎛

⎝

pi

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=i pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ | log R̄| + K,

p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

≤ Pi

⎧

⎨

⎩

log

⎛

⎝

pi

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=i pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠

−
τi(q̄U,Y)(1−ǫn)

∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j∗ (·|yk−1)

)

≥ ǫ′
n

⎫

⎬

⎭

,

(26)

where

ǫ′
n =

∣

∣log R̄
∣

∣+ K −
τi(q̄U,Y)(1−ǫn)

∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

j∗ (·|yk−1)

)

= τi

(

q̄U,Y

)

min
j �=i

∑

u∈U ,y∈Y
q̄U,Y(u, y)D

(

pu
i (·|y)‖pu

j (·|y)
)

+ K

−τi

(

q̄U,Y

)

(1 − ǫn)

×
∑

u∈U ,y∈Y
p̂

u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn)(u, y)

× D
(

pu
i (·|y)‖pu

j∗(·|y)
)

, (27)

where the joint type p̂
uτi(q̄U,Y )(1−ǫn)

,yτi(q̄U,Y )(1−ǫn) = q̄U,Y due to

the second argument of the joint probability (26). Therefore,

ǫ′
n = | log R̄|ǫn + K > 0. Then, from (24), we have

Pi

⎧

⎨

⎩

log

⎛

⎝

pi

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=i pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ | log R̄| + K,

p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

≤ 2 exp

{

−| log R̄|2
(

ǫn
2 + o(1)

)

2τi

(

q̄U,Y

)

(1 − ǫn)d
2
i

}

Similarly, if (23) is satisfied with ĩ �= i, we can bound each

corresponding term in the summation of (25) by

Pi

⎧

⎨

⎩

log

⎛

⎝

pĩ

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=ĩ pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ | log R̄| + K,

p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

≤ Pi

⎧

⎨

⎩

log

⎛

⎝

pĩ

(

yτi(q̄U,Y)(1−ǫn)
)

pi

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ | log R̄| + K,

p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

≤ Pi

⎧

⎨

⎩

log

⎛

⎝

pĩ

(

yτi(q̄U,Y)(1−ǫn)
)

pi

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠

+
τi(q̄U,Y)(1−ǫn)

∑

k=1

D
(

p
uk

i (·|yk−1)‖p
uk

ĩ
(·|yk−1)

)

≥ ǫ′′
n

⎫

⎬

⎭

,
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where

ǫ′′
n = τi

(

q̄U,Y

)

min
j �=i

∑

u∈U ,y∈Y
q̄(u, y)D

(

pu
i (·|y)‖pu

j (·|y)
)

+ K

+ τi

(

q̄U,Y

)

(1 − ǫn)

×
∑

u,y

p̂
u
τi(q̄U,Y)(1−ǫn)

y
τi(q̄U,Y)(1−ǫn)(u, y)

× D
(

pu
i (·|y)‖pu

ĩ
(·|y)

)

,

which is larger than the one in (27) for all ǫn < 1 by the defi-

nition of j∗. Finally, as τi(q̄U,Y) is large enough, we conclude

that

Pi

{

τ ≤ τi

(

q̄U,Y

)

(1 − ǫ), p̂uτ ,yτ = q̄U,Y

}

≤
∑

ǫn

2 exp

⎧

⎨

⎩

−| log R̄|2
(

ǫn
2 + o(1)

)

2
∑τi(q̄U,Y)(1−ǫn)

ℓ=1 d2
i

⎫

⎬

⎭

+
∑

ĩ �=i

∑

ǫn

Pi

⎧

⎨

⎩

log

⎛

⎝

pĩ

(

yτi(q̄U,Y)(1−ǫn)
)

maxj �=ĩ pj

(

yτi(q̄U,Y)(1−ǫn)
)

⎞

⎠ ≥ | log R̄|

+ K, p̂
u
τi(q̄U,Y)(1−ǫn)

,y
τi(q̄U,Y)(1−ǫn) = q̄U,Y

⎫

⎬

⎭

≤ C exp

⎧

⎨

⎩

−| log R̄|2
(

ǫ2 + o(1)
)

2
∑τi(q̄U,Y)(1−ǫ)

ℓ=1 d2
i

⎫

⎬

⎭

, (28)

for some constant C > 0, where (28) is from the fact that

the addition of exponentially decreasing terms is dominated

by the one with the smallest exponent.

APPENDIX B

PROOF OF LEMMA 2

Proof: From [17, eq. (63)], which states that P(N ≥ n) =
O(n−�(1)), for all 1 > ǫ′ > 0 we can choose n large enough

such that Pi(N > n) ≤ ǫ′. Note that for all m ≤ n,

PN = m|N ≤ n = PN ≤ n|N = mPN = m

PN ≤ n

≤ PN = m

1 − ǫ′ .

Then,

P(τ > τ̃i(1 + ǫ)|N ≤ n)

=
n
∑

m=1

P(τ > τ̃i(1 + ǫ)|N = m, N ≤ nPN = m|N ≤ n)

=
n
∑

m=1

P(τ > τ̃i(1 + ǫ)|N = m)P(N = m|N ≤ n)

≤ 1

1 − ǫ′

n
∑

m=1

P(τ > τ̃i(1 + ǫ), N = m). (29)

Each term in the summation of (29) can be represented as

Pi{τ > τ̃i(1 + ǫ), N = m}

≤ Pi

⎧

⎨

⎩

∀ĩ ∈ � s.t min
j �=ĩ

τ̃i(1+ǫ)
∑

k=1

log

(

p
uk

ĩ
(yk|yk−1)

p
uk

j (yk|yk−1)

)

< | log R̄ĩ| + K, N = m

⎫

⎬

⎭

≤ Pi

⎧

⎨

⎩

min
j �=i

τ̃i(1+ǫ)
∑

k=1

log

(

p
uk

i (yk|yk−1)

p
uk

j (yk|yk−1)

)

< | log R̄i| + K, N = m

⎫

⎬

⎭

= Pi

⎧

⎨

⎩

τ̃i(1+ǫm)
∑

k=1

log

⎛

⎝

p
uk+m
i (yk+m|yk+m−1)

p
uk+m

j̃
(yk+m|yk+m−1)

⎞

⎠

< | log R̄| + K′, N = m

⎫

⎬

⎭

,

where ǫm is defined such that τ̃i(1 + ǫm) = τ̃i(1 +
ǫ) − m, K′ = K +

∑m
k=1 log(

p
uk

j̃
(yk|yk−1)

p
uk
i (yk|yk−1)

), and j̃ =

arg minj �=i

∑τ̃i(1+ǫ)
k=1 log(

p
uk
i (yk|yk−1)

p
uk
j (yk|yk−1)

).

We define j∗ as

j∗ � arg min
j �=i

∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
)

,

and define E as the set of events such that

∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j̃
(·|y)

)

=
∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j∗(·|y)
)

.

Then, we have

Pi

⎧

⎨

⎩

τ̃i(1+ǫm)
∑

k=1

log

⎛

⎝

p
uk+m

i (yk+m)

p
uk+m

j̃
(yk+m)

⎞

⎠ < | log R̄| + K′, N = m

⎫

⎬

⎭

= Pi

⎧

⎨

⎩

τ̃i(1+ǫm)
∑

k=1

log

⎛

⎝

p
uk+m

i (yk+m)

p
uk+m

j̃
(yk+m)

⎞

⎠ < | log R̄| + K′, N = m, E

⎫

⎬

⎭

+ Pi

⎧

⎨

⎩

τ̃i(1+ǫm)
∑

k=1

log

⎛

⎝

p
uk+m

i (yk+m)

p
uk+m

j̃
(yk+m)

⎞

⎠

< | log R̄| + K′, N = m, Ec

⎫

⎬

⎭

≤ Pi

⎧

⎨

⎩

N = m,

τ̃i(1+ǫm)
∑

k=1

log

⎛

⎝

p
uk+m

i (yk+m)

p
uk+m

j̃
(yk+m)

⎞

⎠

−
τ̃i(1+ǫm)
∑

k=1

D
(

p
uk+m

i (·|yk+m−1)‖p
uk+m

j̃
(·|yk+m−1)

)

< ǫ′′

⎫

⎬

⎭

+ Pi

{

N = m, Ec
}

, (30)
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where

ǫ′′ = | log R̄| + K′

−
τ̃i(1+ǫm)
∑

k=1

D
(

p
uk+m

i (·|yk+m−1)‖p
uk+m

j̃
(·|yk+m−1)

)

= τ̃i

⎛

⎝min
j �=i

∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
)

⎞

⎠

+ K′ −
τ̃i(1+ǫm)
∑

k=1

D
(

p
uk+m

i (·|yk+m−1)‖p
uk+m

j̃
(·|yk+m−1)

)

Notice that

lim
τ̃i→∞

∑τ̃i(1+ǫm)
k=1 D

(

p
uk+m

i (·|yk+m−1)‖p
uk+m

j̃
(·|yk+m−1)

)

τ̃i(1 + ǫm)

=
∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j̃
(·|y)

)

(31)

= min
j �=i

∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
)

, (32)

where (31) is from the fact that uk is drawn from

q∗
i (u|y) for all k > m, and (32) is from the joint

event
∑

y∈Y,u∈U u
q∗

i

i (y)q∗
i (u|y)D(pu

i (·|y)‖pu

j̃
(·|y)) =

∑

y∈Y,u∈U

u
q∗

i

i (y) q∗
i (u|y) D(pu

i (·|y)‖pu
j∗(·|y)). Therefore, we have for τ̃i

large enough

ǫ′′ = −ǫm| log R̄|(1 + o(1)).

Then, from Azuma’s inequality, the first term on the right hand

side of (30) goes to zero for all finite m when τ̃i → ∞. On

the other hand, we define the set of indices

J �

⎧

⎨

⎩

j ∈ �&

∣

∣

∣
j �= j∗,

∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j (·|y)
)

�=
∑

y∈Y,u∈U
u

q∗
i

i (y)q∗
i (u|y)D

(

pu
i (·|y)‖pu

j∗(·|y)
)

⎫

⎬

⎭

,

and bound the second term on the right hand side of (30) by

Pi

{

N = m, Ec
}

= Pi

{

N = m, j̃ �= j∗, Ec
}

≤ Pi

⎧

⎨

⎩

N = m, ∃j ∈ J s.t

τ̃i(1+ǫ)
∑

k=1

log

(

p
uk

j∗ (yk|yk−1)

p
uk

j (yk|yk−1)

)

< 0

⎫

⎬

⎭

(33)

≤
∑

j∈J
Pi

⎧

⎨

⎩

N = m,

τ̃i(1+ǫ)
∑
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(

p
uk

j∗ (yk|yk−1)

p
uk

j (yk|yk−1)

)

−
τ̃i(1+ǫ)
∑

k=1

Ei

{

log
p

uk

j∗ (yk|yk−1)

p
uk

j (yk|yk−1)

}

< ǫj
′′′

⎫

⎬

⎭

≤
∑

j∈J
Pi

⎧

⎨

⎩
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∑
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log

(

p
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p
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)
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∑
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{

log
p

uk

j∗ (yk|yk−1)

p
uk
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}
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⎫

⎬

⎭

,

where (33) is from the definition of j̃, and

ǫj
′′′ =

τ̃i(1+ǫ)
∑

k=1

Ei

{

log
p

uk

j (yk|yk−1)

p
uk

j∗ (yk|yk−1)

}

=
τ̃i(1+ǫ)
∑

k=1

(

D
(

p
uk

i (·|yk−1)‖p
uk
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)

− D
(

p
uk
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uk
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))

=
m
∑
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(

D
(

p
uk
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)

− D
(

p
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uk

j (·|yk−1)

))

+
τ̃i(1+ǫm)
∑
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(

D
(

p
uk+m
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)

− D
(

p
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.

Notice that

lim
τ̃i→∞

1

τ̃i(1 + ǫm)

τ̃i(1+ǫm)
∑

k=1

(D(p
uk+m
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−D
(

p
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u
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i

i (y)q∗
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(
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)

−
∑
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u
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i
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(

pu
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)

⎞

⎠

< 0

from the definition of j∗, so ǫ′′′
j approaches −∞ when τ̃i → ∞

for all j ∈ J . Therefore, by Azuma’s inequality, for all finite

m, the first and the second term on the right hand side of (30)

go to zero when τ̃i → ∞. Then, we conclude that

lim
τ̃i→∞

Pτ > τ̃i(1 + ǫ)|N ≤ n

≤ lim
τ̃i→∞

1

1 − ǫ′

n
∑

m=1

Pτ > τ̃i(1 + ǫ), N = m

= 0,

and limτ̃i→∞ Pi{τ ≤ τ̃i(1 + ǫ)|N ≤ n} = 1.

APPENDIX C

PROOF OF (22)

Proof: We first define the sets

K �

{

zτ̃i(1+ǫ) ∈ Z τ̃i(1+ǫ) :
∑

u∈U
p̂

u
τ̃i(1+ǫ)

n+1

(u)

(

D

(

p̂
z
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j
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− D

(
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z
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i
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< 0

}

,
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and

Ku �

{

zτ̃i(1+ǫ) ∈ Z τ̃i(1+ǫ) : D

(

p̂
z
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(
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,

It holds that K ⊇ (∩u∈UKu). Then,

lim
τ̃i→∞
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}
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where N(u|uτ̃i(1+ǫ)
n+1 ) =

∑τ̃i(1+ǫ)
i=n+1 1(ui = u). Notice that

limτ̃i→∞
−1
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n+1 )
logPi{Ku} = C(qu

i ‖qu
j ) from the defi-

nition of Chernoff information, and limτ̃i→∞
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i
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i (u|y) for all time index greater than n. Then, we have
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logPi
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.
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