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Evasive Active Hypothesis Testing

Meng-Che Chang

Abstract—We consider a situation in which a decision maker
takes sequential and adaptive sensing actions to collect measure-
ments and estimate an unknown parameter taking finitely many
values, in the presence of an adversary who also collects mea-
surements whenever a sensing action is taken. This situation can
be viewed as an abstraction in which to analyze the mitigation of
information leakage inherent to control actions in systems with
feedback, such as cyber-physical systems. Specifically, we formu-
late an evasive active hypothesis problem in which the objective
is for the decision maker to control the risk of its test while
minimizing the detection ability of the adversary, measured in
terms of the asymptotic error exponent ratio between the adver-
sary and the decision maker. We develop bounds on the exponent
ratio that offer insight into optimal strategies that the decision
maker can deploy to evade the adversary’s detection. We illus-
trate the results with a numerical example corresponding to the
detection of a wireless transmission.

Index Terms—Active hypothesis testing, eavesdropper, physical
layer security.

INTRODUCTION

OST complex systems now rely on feedback mech-
Manisms to ensure efficient operation, either to ensure
end-to-end reliability in communication networks or stability
in cyber-physical systems. Unfortunately, the presence of feed-
back signals also increases the attack surface of such systems,
not only because the feedback signals can be intercepted or
tampered with but also because the mere presence of a con-
trol mechanism might leak information about the operation of
the underlying system, without even requiring the signal to
be decoded. For instance, a recent study of IoT devices has
shown that eavesdroppers can infer activity information, from
interaction methods to functionality, even from encrypted traf-
fic and without directly exposing information [2]. At a more
abstract level, one of the security challenges faced in complex
systems is that the actions taken by decision makers, such as
the communicating parties in a communication network, or the
controllers in a cyber-physical system, inherently contain, and
therefore leak, information about the objective of the decision
making process.

The objective of the present work is to take initial steps
towards understanding the information-theoretic limits of
information leakage induced by the actions of decision-makers
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in systems with feedback, as well as towards developing strate-
gies that allow systems to operate efficiently while mitigating
the information leakage to eavesdroppers. We adopt an active
hypothesis testing problem in the presence of an eavesdropper
as the abstraction in which to carry the analysis. Specifically,
we consider a situation in which a decision maker takes
sequential and adaptive sensing actions to collect measure-
ments and estimate an unknown parameter taking finitely many
values, in the presence of an adversary who also collects mea-
surements whenever a sensing action is taken. Our objective
is to develop optimal evasive active hypothesis testing strate-
gies, in the sense that the strategies meet a risk-requirement
for the decision maker while minimizing the detection ability
of the adversary measured in terms of the adversary’s asymp-
totic error exponent. This model is motivated in part by its
analytical tractability but, most importantly, because sequential
multiple-hypothesis testing has already found numerous engi-
neering applications, ranging from target detection [3] to beam
alignment [4]. In that regard the model captures the essence of
the challenge, i.e., the leakage of information through actions,
while remaining grounded in real engineering systems.

The growing concerns for data privacy and secrecy have
already fostered the analysis of information leakage in deci-
sion making systems, as well as the design of mechanisms at
the signal level to mitigate the information leakage in several
research communities. For instance, there has been interest
in the control community for using the imperfections of the
physical-layer or the introduction of noise to secure state esti-
mation [5], [6], [7]. More closely related to the present work,
there have been several studies investigating hypothesis testing
under information-theoretic security constraints. A first line
of work consists of the studies of stochastic encryption, in
which distributed sensors intentionally and locally corrupt their
data to degrade (either by quantizing or introducing noise) the
decision performance of an eavesdropper fusion center while
maintaining an acceptable performance at a legitimate fusion
center [8]. The use of stochastic encryption has been explored
for various models, in which the legitimate parties exploit an
advantage originating from an observation structure [9], [10]
or secret keys [11], [12]. More recently, stochastic encryption
has been extended to the sequential detection setting [13].
Another line of work consists of research efforts around
distributed binary hypothesis testing against conditional inde-
pendence and under secrecy constraints [14], [15]; therein, the
objective is to control how public messages encoding blocks
of data are designed to optimally trade off the rate of pub-
lic communication, the exponent of the type II error, and the
equivocation of an adversary.

The present work differs from previous studies by consid-
ering the framework of active hypothesis testing [16], also
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known as controlled sensing [17], in which the kernels gov-
erning noisy observations are dynamically adapted using past
observations. While the foundations of this framework can be
traced back to the pioneering work of Chernoff on sequential
design of experiments [18], there has been a recent resur-
gence of interest driven in part by applications to machine
learning. The rationale for our study is also slightly different
from previous works. While previous studies of hypothesis
testing under security constraints have been motivated by the
risks posed by a distributed operation when an adversary inter-
cepts messages, we are interested in understanding the risks
and opportunities offered by adaptivity when an adversary
indirectly benefits from the actions taken by decision makers.

The rest of the paper is organized as follows. We provide
a brief overview of the notation used throughout the paper in
Section I. We introduce the precise model under consideration,
which we call evasive active hypothesis testing, and associated
results in Section II. Therein, we also illustrate the results with
a simple example motivated by beam alignment in 5G systems,
in which legitimate parties attempt to steer a beam in a direc-
tion to quickly detect the presence of a transmission while
slowing down the estimation of an eavesdropper. We provide
proofs of the results in Section III and offer conclusions in
Section IV.

1. NOTATION

A length n vector is denoted by x" £ (xq,...,x,), where
xi, I € [1,n], is the ith element of the vector. If I/ is an
alphabet, we denote by P(Uf) the set of all distributions on
U. Similarly, P(U, Y) is the set of all joint distributions on
U and Y. The type of a sequence u" € U" of length n
is the empirical distribution in PU{) induced by u" and is
denoted by p,». Similarly, if y" £ (y1,...,y,) € Y" is another
sequence then the joint type of u” and y" is the joint empiri-
cal distribution in P (U4, )) induced by the sequences, denoted
as pyy. Formally, we have pyny(u,y) = Y 1 1(uiy1 =
u,y; = y)/n. P,(U) denotes the set of all types generated by
sequences with length smaller than n, and P, (U, ))) denotes
the set of all joint types generated by pairs of sequences
with length smaller than n. We further define pyu, as the
conditional type such that py,(y) = Y L = u,y; =
¥)/ > iy L(u; = u). Given probability distributions p; and p>
on some discrete alphabet X', the relative entropy between

p1 and py is defined as D(pi|p2) £ Y . P1(x)log 28

The Chernoff information between p; and p, is defined
as C(pillp2) = maxgeo,1] — 10g(} " cx P1(X)*p2(0)17%). If
{P{}uey and {pjlucyy are two sets of distributions on
X parameterized by © € U and if g is a distri-
bution on U, we define the quantity C(pillp2;iq) £

maxse(o,1] — 3, §) 1og(>"c x P ) PAX) 5.

II. MODEL AND RESULTS

Consider the situation illustrated in Fig. 1, in which a deci-
sion maker and an eavesdropper engage in an active M-ary
hypothesis testing problem to estimate an unknown parame-
ter € ® = {0,...,M — 1}. It will be convenient to think
of the problem as involving three terminals, Alice, Bob, and

Fig. 1.

Model of evasive active hypothesis testing.

Eve, where Alice represents the controller part of the deci-
sion maker taking actions, Bob represents the sensor part of
the decision maker getting observations, and Eve is the pas-
sive eavesdropper obtaining other observations. The split of
the decision maker into two components is merely to simplify
some of our discussions and, in many instances, Alice and
Bob may be co-located so that the observations obtained by
Bob cannot be eavesdropped when transmitted back to Alice.
Alternatively, one can think of the communication between
Bob and Alice as being encrypted so that no information leak-
age happens through the feedback link. The overall system
then operates as follows. At each time step k > 1, Bob and Eve
obtain observations y; € ) and z;x € Z, respectively, generated
by kernels p;* € {p}, ., and q;° € {q}},,» respectively,
where u; € U is controlled by Alice. In [1], we have analyzed
the situation in which the distribution pzk is conditionally inde-
pendent of past observation (y*~1, Z€=1, k=) given the choice
of action u. In this work, we extend to the slightly more gen-
eral case in which the distribution pg"(-lyk_ 1) depends on the
past observations y;_1 but the distribution qz" is still condi-
tionally independent of past observations. This generalization
is inspired by [19], which analyzes the sequential hypothesis
testing with Markovian observations. The action u; at time
k is chosen according to a known closed-loop control policy
puly*=", u*=1). The joint distribution of (v, ", 1) under
the hypothesis 6 =i is therefore given by

pi(y", Zn’ un+l)

2 p(ur) (]"[ P Orlye-Da @op (e, u")) .

k=1

We are interested in sequential tests I' = (¢, t, §) that con-
sist of the following components: i) a control policy ¢ =
{p(uk|yk_1,uk_l)}k>1 that allows Alice to generate action
u; at time k accoraing to the distribution p(uX|y*=1, uk=1);
ii) a stopping rule t that allows Alice and Bob to stop the

sequential estimation and defined as

T = I_ni(? inf{n : Lj(n) > exp(b;)}, (D
1eW
Th_ 2% Gilye—1)
maxzi [Tiz; p* Gelye—1)
Qlds having the form b; = log(1/R;) + K for some constants
R; < 1 and K iii) a decision rule § that allows Alice and Bob

where L;(n) = and {b,-}?igl are thresh-
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to decide on a hypothesis and defined as

§O") =i if Li(r) = maxLi(t). 2)
jeO®

The restriction to such tests is justified by their asymp-
totic optimality in the controlled sensing setting [17]. We also
assume that i) the sets )/, Z, and U are finite; ii) there exists a
prior {m;};c@ on the parameter & known by both Bob and Eve;
iii) the kernel sets {p} _, and {44}, _,, are known to Alice,
while Eve only knows {g4} _: iv) the control sequence u
and the sequential test I" are known to all parties; and v) Vi # j,
Yu € U and Vy € Y, it holds that 0 < D(pj/(-[y)llpj (|y)) < oo.
Since the kernel set {pg}u <y is not known to Eve, she cannot
obtain any information about 6 from the control sequence u®.
This assumption is not completely innocent and allows us
to focus on the information leakage induced by the actions,
without having to worry about the leakage from the action
sequence itself. Alice and Bob’s objective is to evade Eve by
making Eve’s decision as poor as possible while maintain-
ing a desired accuracy for their own estimation; we call this
problem evasive active hypothesis testing. Formally, for any
i € ©, Alice and Bob’s probability of incorrectly deciding on

8(y") =i when 6 # i should satisfy the risk constraints

> mPi{s(7) =i} <R, 3)

J#i
where PP; denotes the probability measure under hypothesis i
and the thresholds {Ri}?igl are fixed and known. For sim-
plicity, we assume in the following that all {I_?i}f.‘i 61 are the
same and equal to R. Eve is assumed to apply a maximum-
likelihood detector &y, when Alice and Bob stop the test at
time 7, i.e.,

T
u,
dwmL(z") = arg max 1_[ q;* (z1)-
k=1
Under the test I' and the constraint R, the ratio between the
error exponent of Eve to that of Alice/Bob when the true
hypothesis is 0 = i is defined as

_ o —logPi{dmL(z") # i}
(T, R £ = .
)/( ) |logR’

“)

The quantity y;(I", R) captures the rate of exponential decay
of Eve’s probability of error when decreasing the value of R.
Alice and Bob’s objective is to minimize the exponent ratio (4)
subject to the constraints (3), i.e.,

miniglize ¥i(T, R)

subject to anﬂj’k{é(yf) =j} <R forallje®. (5
k#j

In the problem above, the minimization is taken over all control
policies ¢ while fixing the stopping rule t and the decision
rule 8 as in (1) and (2), respectively. Note that minimizing
¥(T, R) amounts to finding the specific tradeoff between Eve
and Alice/Bob’s error exponents that minimizes the ratio of the
error exponents. One could extend the analysis to a complete
tradeoff curve but this is outside the scope of the present work.
Remark 1: Eve’s optimal test given her observations z°,
the sequence u®, and her knowledge of the prior {7;};cq

737

is a maximum a posteriori (MAP) detection. However,
the MAP estimators of Alice/Bob and Eve have the
form Swmap(y") = argmaxico i [ [i—; Pi* klyk—1) and
SMap(zY) = argmaxieo 7; [ [y ¢;*(zx). The likelihoods
[Tic: P Oklyr—1) and [T;_; ¢;*(zx) have dominant influ-
ences on the outcome of the corresponding MAP estimator
when T — oo, which is the regime we want to ana-
lyze. Therefore, we assume an ML estimator is utilized by
Alice/Bob and Eve to simplify the analysis. Furthermore,
if Alice/Bob and Eve choose to use a MAP estimator, our
characterization of y; holds, because changing from an ML
to a MAP estimator does not influence the error expo-
nent lim;_, o —% log(P; (6mL(z%) ;é_i)) and the relationship
between the stopping time 7 and R is only related to the
stopping rule in (1) but not to Bob’s estimator of 6.

Remark 2: The control policies ¢ have to operate without
the knowledge of the true value of the parameter 6.

Upon denoting by y;(R) the solution to the optimization
problem (5), we define the asymptotic error exponent ratio as

2 fim y(R).
Vi ng})m()

Our results provide upper and lower bounds for the asymptotic
error exponent ratio y;.

A. Bounds on the Asymptotic Error Exponent Ratio

By [17], the constraint in (5) is automatically satisfied when
the stopping rule is defined by (1) with b; = log(1/R) + K
and K £ log(M — 1) + max;ep log(r;). Therefore, we focus
on the characterization of the asymptotic error exponent ratio
when R — 0, which we bound in the following theorems.

Theorem 1: No control policy ¢ can lower the asymptotic
error exponent ratio y; when 6 =i € ® below

. C| D? D
mn-—-, ———=— + —
quy D\ D2 4+2Cd?>  2d?

where C’, D, and d are defined as

2([)2 + 6212)

-21. ©
P2 (132 + 26212)

C £ min C(qillgj: qu).
J#i

DEmin 37 GuyenD(pCM IR ).

ueld,ye)
~ A P 01y) o e
d = max max log ——= —D(Pi ¢ p; (-Iy)) .
J#uyy| T piOly)
Theorem 2: There exists a control policy such that the
asymptotic error exponent ratio y; when 6 = i € ©® is at
most

. minjzi 3, ey et 0)a@ly)C(a! ) )
min ’
ey minyz; 3y ey 0 )a@)D(PLCI P CLy))
™

where u?(y) is the steady state distribution of the Markov
process characterized by the transition probability

PO = qulHpi o).

ueld
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Although the bounds of Theorem 1 and Theorem 2 do not
match in general, these bounds are quite tight when the ratio
of the divergence of Bob’s kernels to the Chernoff information

of Eve’s kernels is large. To be specific, the ratio #226212 in
2D*+Cd?)

R N D2(D2+2Cd?)

0 when D > C, which is the situation that benefits Alice

and Bob. Therefore, when ~D > C', the lower bound of y;

approaches ming;, ,ep s, )) l%, which is equivalent to

(9) approaches 1 and the term ( —2) approaches

min min;; C(gillgj; qu)
Wy EPUD ming 3,y e Gu,r (6 D (PECDIPLCLY )

®)

The above quantity has a form similar to the upper bound in
Theorem 2. The gap between the above equation and the upper
bound in Theorem 2 has two causes. First, C(g;llgj; qu) is
smaller than )", ,, gu(u)C(g¥| |q}‘) by definition. Secondly, (8)
is minimized over all joint distribution gy y € PWU, DY),
while (7) is only minimized over conditional distributions
{guly)}yey € PV, If we restrict ourselves to the spe-
cial case in which the kernels of Bob are independent of past
observations conditioned on each action and the minimization
of (6) and (7) are achieved by a deterministic policy g(u) =
1(u = u™) for some u* € U, then (8) becomes

minj; C(g!114})
mn——.
ueU min; D(Pﬂ |PJL-’)

In this case, the lower bound is the same as the upper bound
obtained in Theorem 2.

Remark 3: If we restrict ourselves to the special case in
which the kernels of Bob are independent of past observations
conditioned on each action and if the asymptotically optimal
control policy of [17], which ignores Eve’s presence, is cho-
sen, then the asymptotic value of y;(T, 1_?) under this control
policy is

#ot
minjz; C(qi" lg;" )

. ll# u# ’
min;; D(Pi’ Ip;* )

(€))

where

# . U [l
u; = ar maxmmD( i )

l gMEZ/[ ]75! pz ”pj
In general, the asymptotic ML exponent in (9) is higher than
the one achieved in Theorem 2. Note that one can obtain the
result of (9) by replacing the control policy in the proof of
Theorem 2 with the one described in [17].

B. Numerical Example

As an illustration, we apply our results to the detection of
a base station in a millimeter wave environment, in which
the base station (Alice) is equipped with N = 8 antennas
while two terminals (Bob and Eve) are each equipped with
a single antenna. Bob and Eve have to decide whether Alice

is transmitting (hypothesis Hp) or not (hypothesis Hp). The
channel gains h and g characterizing the channels from the
base station to Bob and Eve, respectively, are assumed to
correspond to a single path and given by

h = ppoba’ (Bpob) € = PEved” (Gve),

where ppop and pgye are static fading coefficients and 6pqp
and Ogye are the Angle of Departure (AoD) vectors from the
base station. Assuming uniform linear arrays (ULA) are used
for beamforming, the vector a(f) can be written as

a(0) = [Le—j% sin(@) .’e—j(N—l)ZKJ sin(g)ilr’

where we choose d = A/2 to be the space between antennas.
The actions of Alice consist in choosing a steering vector u
in a codebook U = {uk},f:o, where we have chosen for our
example

W= [1 o/ sin(rk/12) o~ JN=D)m sin(nk/lZ)]T

In other words, Alice’s action consists in steering and align-
ing her beam with a(f), for pre-specified angles 6 €
%51—’; . For each action u € U, Bob and Eve’s

received signals under hypotheses Hy and H; are

_ {& = PBoba(BBob) 1 + ny
" | Z = pEvealOrye) u+ na

Hy {X:nl
Z=m

where ny,ny are zero-mean circularly symmetric Gaussian
noises with variance o2. We finally assume both Bob and Eve
test the hypothesis with hard-decoded signal

0
y 2 [§ — pBoba(@sor)u] ? [yl
A |~ H U
and z £ |2 — ppiea(Brye)"u| 2 I2],
I

so that Y = Z = {0, 1}. Consequently, Bob’s kernels cor-
responding to u € U are given under hypotheses Hp and

Hy as
Hy|2
PEO) =1 — %\/@)
HO: Hyl|2
pS(l)=Q<\/@)
H..2
P?(O)=Q< W
H; : .
H
p?(1)=1—Q< %)
where Q(x) = J%?fxoo exp —%)du. Eve’s kemnels ¢(2),

i € {0, 1} are similarly defined using pgyvea(Bgye) in place of
PBoba(OBob).

Fig. 2 illustrates the asymptotic exponent ratio y; in the spe-
cific case where the azimuth angles are 6o, = 27”, Opve = %,
the noise variance is o2 = 0.1, and Bob’s path loss is
PBob = 1. The bounds for the asymptotic exponent ratio given
by Theorem 1 and Theorem 2 are shown as a function of
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0.14 i : .
. =& =Upper Bound (Theorem 2)
0.12 ““ =& =Lower Bound (Theorem 1)
“ =@ ='(Remark 3)
0.1 %o,
0.08 o’o,‘
= N ‘o,
0.06 i oo
) | < N
0.04 LS “o...
..‘ h‘ \l\ "'-.
0.02 ~f~- .‘__‘ | o .
- e S T "0
-3y 3
O 1
0 2 4 6 8 10

Path loss of Eve w.r.t Bob (dB)

Fig. 2. Asymptotic exponent ratio y| in the millimeter wave base station
detecting problem.

Eve’s path loss, defined as 1010g OBob : the asymptotic expo-
nent ratio from Remark 3, obtamed when Bob chooses the
control policy that only benefits himself and ignores Eve, is
also shown as a reference. As expected, we observe that the
gap between the two bounds becomes smaller when Eve’s path
loss increases because the ratio of Eve’s Chernoff information
to Bob’s divergence dominates the right-hand side of (6).

III. PROOFS OF MAIN RESULTS
A. Proof of Theorem 1 (Lower Bound)

Let gy, y be an arbitrary joint distribution on ¢/ and ), and
qu be the corresponding marginal distribution on U/. For all
qu.y € PU,Y), we first define 7;(qu.y) as

a |10g1_€|
minjzi 3 eut yey 20,0 @ DD (PECWIPECLY )

Without loss of generality, we assume 7;(gy,y) is an integer in
the proof below. To prove Theorem 1, we first need an upper
bound on the error probability with a fixed number of actions.
From [20, Problem 10.20], we know that for all i # j and
n € 7, if the sequence of actions " has the type gy, we can
upper bound the error probability P;(mr(z") = jlpuw» = qu)
by

%i(qu.y)

Pi(8mL (") = jlPur = qu)

- - 1
n max Z quulog Y qi(2)°

€2

< exp

@)

= exp(—nC(C[i"C]j? Z]U))v

where

Claillgs qu) = max —qu(u)log P AGK G

€2
Then, we have
Pi(8mL (") # ilpur = qu)
=Y Pi(smL(z") = jlpw = qv)

J#

739
<M - 1)1';}72-1?(Pi(3ML(Zn) = jlpw = qu)
<M - 1)exp<—nrjr,17'g1 C(qillg; ‘_]u))- (10)

Furthermore, the following lemma with proofs given in
Appendix A gives an upper bound on the joint probability
of T < 7;(qu,y)(1 —€) and p,r yv = quy forany 0 <€ < 1.

Lemma 1: Let the stopping rule t of the sequential test be
defined in (1), and 0 < € < 1. Then, for R small enough, the
joint probability of v < 7;(qy.y)(1 — €) and ﬁur,yr = quy
satisfies

Pi{f < ‘Ei(éu’y)(l — 6),ﬁur)yr = éU,Y}

—|log RI?(€* + o(D))

<C
= texp zzfz(QUY)(] €)d2

k]

for some constant C, where

PLOT)
PEGT)

d; = max max
JFEL uy.y

log

—D(pH IR 1) ‘

Let N be some integer to be defined later; we write the
probability P;(Smp(z7) # i) as

Pi(dmL (") # i)

qu.yePNyU.Y)
+ )
quyEPNU,Y)
<|PvU,))|  max

qu.y€P(

Pi{dmL(2") # i, Pur yr = qu v}

Pi{dmL(z") # i Puryr = qu v}

Pi{dmL (") # i, Pur,yr = qu.v}
+ Pi{puryr & PnU, W)} (11)
The term P;{8mr.(z%) # i, pur y» = Gu.y} can be represented as

Pi{dmL(z") # i Puryr = qu v}

e¢]

=R

T—kpufy —QUY)

x Pi@ML(Z") # ilpuryr =quy. T = k)
7i(qu,y)—1
< Z Pi(t < 7i(qu.y) (1 — €, pur yr = qu.y)

k=1
x ]P)i 8ML(ZTi(ZIU.Y)(1_€k)) # ilﬁur’yr = qU‘y’ T = k)
o0
+ Y Pit =k puy =quy)
k=ti(qu.v)
X IP’i(SML(Zk) #ilpuryr = quy. T = k)
5 (qu.y)—1
< Y Pt <ulquy)( =€) puryr = Gu.y)
k=1
< P, ( ML(ZT,-(éu,y)(l—q)> £ il = quy. T = k)
+ P (SML(ZTi(Z]U‘Y)) #ilpwry =quy, T = Ti(EIU,Y)),

12)
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where €, are chosen such that 7;(gy,y)(1 —€x) = k. Given the
stopping time T = k and the type p,r yr = qu.y, the error prob-
ability Pi(SmL(z*) # )lpuryc = qu.y.T = k) can be repre-
sented as (10), which is a decreasing function of the number of
observations k. Therefore, (12) follows from upper bounding
Pi(OmL () # ilpur yr = qu,y, T = k) by Pi(Smr(z7 ")) #
ipwry = quy.T = Tlquy)) for all k > 7(qu.y)
and from bounding the probability Z/Sir,-@(u,y) Pi(zr =
k,f)ur,yr = qu,y) by 1. By (10) and Lemma 1, when R is
small enough, each term in the summation of (12) can be
bounded as

Pi{‘f < Ti(qU,Y)(l - Ek)sﬁuf,yr = éU,Y}
x Pif s (@000 £ ilpr o = Guy. T = k]
—ylogl_ﬂzef

< C'exp
- Tz(qU y)(1—€p)
2y &2

—(1 — &) |log R| minj; C(gillg;; qu)

X exp
minyzi 3 et yey Q. @ DD (DLW IPECLY)

< C'exp{—[logR|7:(qu.v. &)}
for some constant C’, where
Vi(qu.v. €k)

s |logR|ef

2 Zfz(fw y)(1—€r) dz

min;.; C(gillgj: qu)

+
min Y g/ yey 0.1 @4 DD (P IPCLY))

(I — €

minjzi ¥ ets yey Q0. @D (PLCWIPLCY) &2
2d?

1 — e
minj; C(%’”‘]j; ZIU)

+
miny 47 Y g/ yey 0. @t D (P P 1Y)

(I — €.

Also, the last term on the right hand side of (12) can be upper
bounded by

Pi(SML<Z‘[i(ZIU,Y)) # i|[3uf,yf = éU,Yv T = Ti(éU,Y))

< (M — 1) exp{—|log RI7i(qu.v. 0)}.

Minimizing y;(qu.y, €k) over € € [0, 1], we obtain the worst
case exponent ratio

min _7;(qu.v. €)

7 (quy) = min

D 2([)2 + CEJZ)

(13)
D2 (iﬂ + 26212)
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where we define

~ A : Mo 5
Cc= I};;pc(qzllq,,qy),

D2min 3 quy»D(pCWIACY),
J#
ueld,yey
d = d,

and the value of €; minimizing (13) is
D2
€ * = 1 — = =<~_-.
D? +2Cd?
Therefore,

- log(max(_w,y I[Di{(SML(ZT) # 1, ﬁuf,yf = Z]U,Y})

|10g1_€|

C D? D
>min =, ————— + —
auy D\ D2 + 2Cd2 242

A%
=Y -

lim
R—0

2([)2 + 6212) ,

D2 (D2 + 26[12)

Since [Py (U, Y)| is a polynomial function of N, the scal-
ing of |Py(U,Y)| does not change the exponent. Theref_ore,
from (11), if we can find some « such that when N = | log R|e,

1 : —logP; T T
the ratio limp_, og Pifpur v ¢PNU.D)} .

is greater than /¥, then

[ogR|
—1 P.(s T ;
fim 0g(Pi(mL (2°) # 1) - 14
R—0 | log R|
[log RIB
Let N = i 20y, et ey 40, G DECHIFLC) for some
B > 1, then
Pi{pur yr & PnU, )}
<Pi(r > N)
< Z]}D{ pi(") bi}
J#i y )
O ATy
— ZP Zl P, k1Yk—1
iz L P Oelye-1)

LMZ

D(p -0 I Clye) )

N
- ZD(P?k('b’k—l)||P}4k(‘|)’k—l)> }
k=1

P Orlyk—1)

P} Oklye-1)

N

< ZP,’ (0]
i k=1
N
- Z (Pl Clven P )
k=
< b; —

N min min
J#i quy)ePU,Y)

x Y aw»D(pCIRC )
ueld,yey
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N

P, *Oklyr=1)
SZP[ Z Pk(yklyk 1)
i = )
Ui
—ZD(pl- Che-Dlp, (-|yk_1>)‘
k=1
> N min min

J#i quyePU,Y)

x Y qur@D(pCmIRECY) - b
ueld,yey
|log RI>(B — 1 — o(1))?
2Nd? ’

<2M-1) exp{— (15)

where (15) is from Azuma inequality. Therefore, the exponent
o —logP(pur yv & PnU, V) _ 8- 1)2
|log R| 2p
Minj 2 Ming,, y ePU.Y) Luetd yey 9U.¥ (s y)D(P, CIlpy Iy))
d2

R—0

X

(16)

We can choose B properly such that the right hand side
of (16) is greater than y*, and hence, (14) holds.

B. Proof of Theorem 2 (Upper Bound)
Let the action u; be generated from the distribution qA s
Ue—1
where 7;_1 is the ML estimation of the true hypothesis at time
k—1, and for all i € ©, g} is defined as

- = arg min
G = gqm

minyzi 3, ey et 6 0)aly)C(a! )

minjzi Yoy uere 6 0a@D(p IR )
an

X

Define 7; as

A |log R|
T, =

minj;éizyeyueuu (y)q, (uly)D(p,(Iy)Il (Iy))
(18)

Define N as the smallest number such that the decision
BML(y"/) is correct for all n’ > N. Then, we have the follow-
ing lemma, which states that the stopping time concentrates
around T;.

Lemma 2: Let the control policy ¢ defined by (17) and the
stopping rule t defined by (1), Ve > 0 and 1 > ¢’ > 0, we
have

lim Pi{z < (1 + )N < n} = 1,
R—0

19)

when 7 is chosen such that P(N > n) < €’ and 7; is defined
in (18).

For all ¢ > 0,1 > ¢ > 0 and n chosen as in Lemma 2,
assume without loss of generality 7;(1 + €) is integer, we can
lower bound P;(smr(z7) # i) by

741
Pi(omL(z7) # i)
> P(N < m)Pi(dm(z") # iIN < n)
= P(N < n)
x 3 Bt =kIN < n)IP’i(SML(zk) Lilt =k N < n)
k=1
#(140)
>P(N <n) Y Pix=kN<n)
k=1

x By (70179) £ ilr = (1 + ), N < n)
> (1 —€)Pi{r < %i(1 +€)|N < n}

x By (70179) #ilr =71 + ). N < n).

By Lemma 2, Ve, 5 > 0, there exisNts R small enoug}~1 such
that P;{t < 7;(1 + ¢)|N < n} > 1 — §. Therefore, Ve, § > 0,
we have

Pi(w (%) #10) = (1 =€) (1-5)
x 1P>,»<5ML(sz“+f)) £t =%5(1 46,

an)

when R is small enough. Let Sij be the binary maximum like-
lihood decision between any pair of hypothesis (i, ), j # i,
then it must be true that

Py(swr.(70%9) # ilr = 7(1 + ), N < n)
> P; ( ( ff“+€>) £ilt =514+ €),N < n) (20)

Then, for~1_€ s~ma11 enough, we can further rewrite the proba-
bility P;(8;(z7179) # ilt = (1 +€), N < n) as

Pi(&j(zfi(‘“)) £ilt = (1 +€),N < n)
= Py(8(c"19) =jlr = 71 + ). N = n)

#i(14€)

=P Z log uk(Zk) Olt=7(1+¢),N<n
o 4@
Ti(1+4€) Uy, n
/ q;* (zx)
=P Z log qu(Zk) < Zlo ]k
e 4@ I (k)

‘an,r = 7(1 +€) 1)

Note that (21) can be viewed as the error probability of
testlng between hypotheses i and j with kernel distributions

(g lnfl and {g] };’(;Jfl) by using the likelihood ratio test
Uk
with the threshold 7 = Y "}_, log q’ il

tioned on the event N < n, the act10ns uy are generated from
g? for all k > n. We know that the likelihood ratio test

. Furthermore, condi-
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Ti(1+e)
TZG log & GO _
k
k=n+1 (Z )
is equivalent to
Zﬁ #1+e) (1) <D<A Pitve), Ilq,) D(f’ fidl+e), ||ql>>
Upg1 Znt1 Zpt1
ueld
T
> ~—1
Ti(l4+¢€)—n
where p B is the type of the action sequence ur’j_llﬂ) =
Unp1
(Ung1, -5 Uz (14¢)), and p i+, is the conditional type of the
Znt1
sequence Z ’J(r 1+ ©) given the action u. Notice that the threshold
T
— =0
Ti(l4+¢€)—n

when 7; — oo. Then, from Appendix C and the fact that uy
is generated from g} for all k > n, the error exponent c;; can
be described as

-1
jj £ lim —— logP; ( ( T’(I“Lé)) ])
fi>oo Ti(1 + €)

> ulf aanc(diial)-

yeY,ueld

IA

(22)

Therefore,

-1
lim log P; (5 ( t’(H'e)) ])
R—0 |10gR|

3 eyeu i 9aF @C(atllg! ) (1 + )

minizi 3y wers Ui )G} (uly)D(pi‘Cly) IIP}‘(~|y))

From (20), under the control policy ¢ defined in (17), we have

lim —— 1o IP((S (fi(”f)) i
R—0 |10gR| g ML a )

minyzi ey et ) 90 @l)C(atllg} ) (1 + €)

minyr Yyey et 1 0} @)D(pC) 1P C1))

Since € > 0 can be arbitrary small, we have

. q;‘
minjs; 3 ey ey Ui ()47 uly)C (q;‘ IIq,’-‘)

IA

Vi ¥
minjzi ey et 6 00 @)D(pECIPECIY)

o ming ey e 0/ 0aC (g}
= min

9C0) minj; Yy ews uf.’(y)q(uly)D<p§‘(-Iy)llpj"('W)) .

IV. CONCLUSION

While the information leakage resulting from actions taken
by decision makers in a complex system might be unavoid-
able, our results suggest that, as long as there exists some
margin in the system to meet performance objectives, the
margin can be exploited to develop leakage-aware strategies
that incur less leakage than the otherwise optimal strategies

developed for performance alone. Specifically, in the con-
text of the evasive active hypothesis testing studied here, we
have shown that the error exponent of an eavesdropper who
obtains observations whenever an action is taken can be near-
optimally reduced with proper strategies. We emphasize that
this ability stems from the interplay between i) the presence
of a noisy observation structure, by which the eavesdropper
obtains signal that are different from those of the decision
maker; and ii) the inherent information asymmetry of the
problem, which gives the decision maker an advantage because
it controls the feedback mechanisms. Extension of these ideas
to more complex situations in which the adversary might
tamper with signals are natural but challenging avenues for
future work.

APPENDIX A
PROOF OF LEMMA 1

Proof: Recall that the test stops at time n when

0 <L> > b 23)
max;_; pj(y")

for some i € . Then,
Pi{r < ni(qu.y)(1 — €, pury» = qu.v}

< ZR{an < 5(@uy)(1—e) st
ic®

0"
log l—n = bjandlsu”,y” =quy (-
maxj#;pj(y )

We first focus on the case where (23) is satisfied with 7 = i.
For all n > 0, we can write the generalized log likelihood
ratio as

) < pi(y") )
Og _—
max;.; pj(y")

‘ P Oklyr=1)

J# ,; (P;k(Ykal))

)& P Glyi—1)
= log | LXKk =17
’Ei“{;[ °g<p;‘k (yk|yk_1)>
- D(p?‘k(-|yk_1>||p;‘k(-|yk_1))}

+ ZD(p?"<-|yk_1)||p;‘k(-|yk_1))},
k=1

where the term

1 . Ij{k - u,
—Z log pluk(yk—lykl) ( G- DIP Clye- 1))
" P Oklye-1)

converges to zero exponentially fast. To be specific, let

4 uy
N D" Oklyk—1) “ "
Xe 23 | log| === ) = D(pi* Clyen) 1P Clyi
¢ |:0g<p]l_4k(yk|yk_l)> <P, Clyk=0lp;" Cly 1))}

k=1
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be the zero-mean martingale sequence such that pi(yt" (. )(176")>

0 < P;qlog @i
pi Oelye—1) Max;; ( filquy)(i=en )
|Xg —Xg,]| — log;/— J?élpj y
p; elye-1) (qu.y) (1—€)
- D(p*Cly-D I Clye-n)) = e
- D(P?l('lw1)||P]L-”('|y£1))‘ k; l ! "
- (26)
< maxog 50 _p(ecpiptem)
wys| - LI where
2 djj. i (qu,y) (1—€pn)
7 - e =logRl+ K~ Y D(pChi i Chin)
By Azuma’s inequality, we have for all j # i and Vé > 0, =l
222 = 7:(g i g i, i,
) —ne = a(@uy)min Y. Gur@nD(pCWIPCE) +K
Pi{|Xn| > ne} < Zexp AN 2 i# uEUX:Ey [ '
23 1 dij _ Y
R —7i(qu.y)(1 — €)
Define j* = argminjzi ), s yey 4 D @;CIPFCI). .
We have Vé > 0, v l / X UX: ypufi(‘_]U,Y)(lfen)’yfi(‘_iU.Y)(l—en) (u,y)
ueld,ye
ey
P, 1og<L> x D(pCIIAECI). @7)
max;; pj(y")
Lo where the joint type D, i@uy)(-en) i@y y)(i-en) = qu.y due to
>l = Z D(p?k(.lyk7])|| p;*k('b’k—l)) +é tl/le second argument of the joint probability (26). Therefore,
n €, = |logR|e; + K > 0. Then, from (24), we have
<P 10g< pi(y") > Di (yT[((_IU‘Y)(lffn))
! ™) P;{ log . > |logR| + K,
maxj#ipj.(yfi(‘IU,Y)(l—Gn))

> n(% ZD(P?"Cka—l)||Pf*k('|yk_l)) i g) }

pufi(ziu,y)(lféu)’yf,'(t'w,y)(lfen) =dqu,y

k=1
<2 ( e ) (24)
=2exp|l == | -
2351 d; e —|log RI*(e,% + o(1))
where d; = max; d;;. Now, when i=1i, we have a 2Ti(‘_IU,Y)(1 - Gn)di2
PdAan < Ii(t_jU,Y)(l —e)sit log pi(y") > by Similarly, 1‘f (23) is 'satlsﬁed with i # i, we can bound each
max;; pj(y") corresponding term in the summation of (25) by

and Py = EIU,Y} p;<yr,~(z,m)(1_en)) _
P;{ log - > logR| + K.
Pi (yfi(Z]U.Y)(l—En)) max; ; pj <yfi(qy,y)(]_5n)>
< Pijlog ] = by
€n Max;; pj (yl'i (qu.y)(l—en)> ) _
puri(éU,Y)(lfe”)’yTi(‘_iU_y)(lfen) =quy
i)Ltfi(in,Y)(l—En)’yri(ZIU.Y)(l—en) =quy (., (25 p;(yri(éu,y)(l_en)> _
= Pi log > |10gR| 4 K,

o i q s 1_ n
where for each 1 < n < 7i(qu,y)(1 — €), €, > 0 is chosen Pz(yt (@u.y) (1= )>

such that n = 7;(qu,y)(1 — €,). Substituting the definition of
b;, when 1;(g is large enough, each term in the summation A _ =
; i(qu,y) g g P e ) -y y)a-en = qUY

of (25) can be written as
pi(yfi(éz/,y)(l—fn)) pﬁ(y'fi(z]U.Y)(l_En)>
1
i (yri(flu,y)(l—en)>

maxjz; p; (yfi (qur)a *6n)>
7i(qu.y) (1—€,)

+ Y D(Ar eI i) = € ¢
k=1

> |logR| + K, P;{ log

P;{ log

P”r,- (au,y)(1—en) i (av,y)-en) = 4UY
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where

& =m(quy)min Y GunD(pCIPCM)+K
JF
ueld,ye)

+ 7i(qu.y) (1 — €n)
X Zﬁuri(Z]U_y)(l—en)yri((}U’y)(l—en) (u,y)
u,y

x D(pECIIPACL ),

which is larger than the one in (27) for all €, < 1 by the defi-
nition of j*. Finally, as 7;(gy,y) is large enough, we conclude
that

Pi{t < w(qu.y)(1 = €). pur y = Gu.v}
_ D12, 2
522exp [log R|* (€, + o(1))
— 22‘[1(‘][/ v)(1—€y) d2

F(yfi(QU,Y)(l—fn)>
l

+ ZZIP,» log ey > |log R
;;él €n max. ;é p < Ti\qu,y €n )
+ K, ﬁuri(éyyy)(l—en)’yri(Z]Uyy)(l—sn) =quy
—|log R|*(€? 4 o(1
< Coxp| IIOERE(€ +oD) | 28)

) ZTI(LIU v)(1—e€) d2

for some constant C > 0, where (28) is from the fact that
the addition of exponentially decreasing terms is dominated
by the one with the smallest exponent. |

APPENDIX B
PROOF OF LEMMA 2

Proof: From [17, eq. (63)], which states that P(N > n) =
oM for all 1 > ¢’ > 0 we can choose n large enough
such that P;(N > n) < €'. Note that for all m < n,

PN <n|N =mPN =m
PN =m|N <n=
PN <n

PN =m
<

1—¢
Then,

P(t > %(1 4 €)|N < n)
n
= ZIP’(I > %i(1 + €)]N =m, N < nPN = m|N < n)

m=1

=Y P(r > #i(1+ €)IN = mP(N = mIN < n)
m=1

1

IA

5i(14+¢€), N =m). (29)

m=1

Each term in the summation of (29) can be represented as

Pi{t > ti(1 +€),N = m}

- | e it Oklye-1)
< P;{Viec ©s.t min Z log o
# g p;" Oklyk-1)

< |10gR;|+K,N:m

Ti(1+
e P klye—1)
< P;{ min log| ~f———
#o= P; Oklye-1)
< |logRi| +K,N=m
~i 1+ m
R P Gem | Vkm—1)
=P Z log Mk+
k=1 Okt | Yk4m—1)

< |logR|+K',N=m},

where ¢, is defined such that rlgl + €, = 1T;(1 +
p; Foulye—1) ~
e) —m, K = K+ YL IIOg(T)’ and j =

Pt Qv )

7i(1+e€)
arg min;; Zk log(p‘.’k(yk\yk—l) '
J

We define j* as
j & argmin Yl gf @D (pECIPC ),
i
yeY,ueld
and define & as the set of events such that

Sl g @nD(pCmIpc)
yeY,ueld

= Y woaamp(pemiskcm).
yeY,ueld

Then, we have

Ti(14+€m) Mk+m (yk ) _
P; Z log —uk+m 2 < [logR|+K',N=m
k=1 (y +m)
T (I+€m) Uk+m
=P Y pi,Hm—(M”’) <|logR|+ K, N =m, €&
k=1 2= Q]k+m)
J
~i 1+ m m
gy uk+ (Vk+m)
+ Pi 10 "%»m—
P Okt-m)

< |logR|+K',N=m, &

Ti(1+€m)

<P{N=m Y
k=1

Ti(14+€m)
- Z (P! Clyiem- DD Clyien-1))

u
k+m (.Vk+m)

] k+m (Yk+m

<€

+ BN = m, &), (30)
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where
" = |logR| + K’
Fi(1+em)

> D(A D 1A L) )
k=1

=g|min > ul a; @)D(plCIRECIY)

yeY,ueld

Ti(14€m)

+ K = 3 D - DI Clyeen) )
k=1

J#i

Notice that
l] m m m
e D ) I8 L) )

lim
fi—>00 Ti(1 + €m)
= Y W oq@mp(piemipicy) 6D
yeY,ueld
=min 3= ul Oaf @D (P CIA ). G
’ yeY,ueld
where (31) is from the fact that wu; is drawn from

gi(uly) for all k > m, and (32) is from the joint
q,"ﬂ * u u _
event Zyey,ueu u; (y)q,- (uly)D@i (Iy)llp; ¢y = Zyey,ueu

u:.{" O g (uly) D} Iy llpj(1y)). Therefore, we have for 7;
large enough

€’ = —€,|logR|(1 4+ o(1)).

Then, from Azuma’s inequality, the first term on the right hand
side of (30) goes to zero for all finite m when 7; — oco. On
the other hand, we define the set of indices

geljieoai#r 3wl 0gramp(plemipcn))

yeyY,ueld

yeY,ueld

D u??(y)q?‘(my)D(p;‘(wy)||p;i<-|y>)],

and bound the second term on the right hand side of (30) by
]P,'{N =m, 5L}
=P{N =m,j #j*, &}

Ti(1+€)
P Oklyr—1)
<P{N=m,3je J st E log ]—
= it Olyk-1)

(33)

7i(14€) g
D Vklyr—1)
S )

k
7 i Vklye—1)
Ti(14€)
Y e
k=1

Ti(14€)
Z log(

k=1

P Oklye-1) I

guk— <€
Oklyr—1)

P;i"(Yklyk—l)

P Oklye-1)

uk(Ykka 1) o

P klye-1) ’

SZR’

jed

7i(1+€)
k=1

745

where (33) is from the definition of }, and
#i(14€)
P klyk=1)
Ej///z Z E lg ]k
< OVklye—1)
r,(1+e)

= 3 (P(pClnenIpECve )

k=1

- D(p?"(~|yk_1)Ilp}‘k('|yk—1))>

i( D Cl Dl Gl

k=1

= D DI )
Tt(1+€m)
+ Z (D(P" Clem- DI Clygm—) )

= D Clyeam-D I Clykan) ) ).

Notice that

Ti(14-€m)

> @ Crm-DIPE" Clyiem-1)
k=1

=D(p! Clyksm- DI Clvkan)) )

im —
Fi—>oo Ti(1 + €)

=| X W oqamp(premisem)

yeY,ueld

- Y dogamp(peminc)
yeY,ueld
<0

from the definition of /*, so €;” approaches —oo when 7; — oo
for all j € J. Therefore, by Azuma’s inequality, for all finite
m, the first and the second term on the right hand side of (30)
go to zero when 7; — oo. Then, we conclude that

lim Pr > 7;(1+¢€)|N <n

Ti—> 00

< lim
fi%oo

sz>r,(1+e) N=m

—€
:07

and limz_, oo Pi{t < 7;(1 +€)|N <n} = 1.

APPENDIX C
PROOF OF (22)

Proof: We first define the sets

KA i Ti(l+e) o zTh(l+e) . Zp #(1+e) (1)
weld LN}

(o(oter) = 2o 14)) < "} |
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and

2 | at+e o ZzaG+e . pf 4. u
K, = {z €Z : D(Pzzillmluﬂqj')

- D([J (e, ||f1,) < 0}»
L1

It holds that K O (N,c4Ky). Then,

1
lim ———— log Pi{ (1)) = j|
e Tl +e) 8 ’f( ) J

-1
= lim —— logPi{K}
fi—>oo Ti(1 4+ €)

< lim —— 1o Pi{N,cu Ky
_fiioo Zi(1 + €) & PilNueteKu)
= lim —10 Pi{K,

fimeo Ti(1 + €) gH itKu)

-1

= lim — log P;{K,

f,-—)oouX: Ti(l1 +¢€) g Pi{Ku)

N (”Wﬁlﬁé)) -1

= lim ——— lim fllogﬁ”i{l{u},

Gi—>00 = Ti(l4+¢€) F- N(”'”;’iﬁg))

where N(uu179) = Z?i_(l+€)1(ui =

nTI i=n+1 u). Notice that

limfiﬁoowlogﬁ”i{l{u} C(qf‘||q]‘-‘) from the defi-
Nulu,'y,

. . . . N1

nition of Chernoff information, and limz_, #ﬁé)

2 yey uiqi (g} (uly) because the actions are drawn from
g7 (uly) for all time index greater than n. Then, we have

-1
lim — o ]P’{cS (r’(1+6)) = }
fi—>oo Ti(1 4+ €) & i =/

= Y W wgrenc(dig).
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