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Abstract—We consider a distributed function computation
problem in which parties observing noisy versions of a re-
mote source facilitate the computation of a function of their
observations at a fusion center through public communication.
The distributed function computation is subject to constraints,
including not only reliability and storage but also privacy and
secrecy. Specifically, 1) the remote source should remain private
from an eavesdropper and the fusion center, measured in terms of
the information leaked about the remote source; 2) the function
computed should remain secret from the eavesdropper, measured
in terms of the information leaked about the arguments of the
function, to ensure secrecy regardless of the exact function used.
We derive the exact rate regions for lossless and lossy single-
function computation and illustrate the lossy single-function com-
putation rate region for an information bottleneck example, in
which the optimal auxiliary random variables are characterized
for binary input symmetric output channels. We extend the
approach to lossless and lossy asynchronous multiple-function
computations with joint secrecy and privacy constraints, in which
case inner and outer bounds for the rate regions differing only
in the Markov chain conditions imposed are characterized.

I. INTRODUCTION

The problem of distributed function computation consists in

characterizing how multiple terminals that observe dependent

random sequences can facilitate the computation of a function

of their sequences at a fusion center by exchanging messages

through public communication links [1], [2]. One application

for which distributed function computation problem is rele-

vant is network function virtualization [3] via, e.g., software

defined networking. The use of distributed lossless source

coding techniques [4] in such applications, may significantly

reduce the public communication rate, called the storage rate,

by allowing the fusion center to reconstruct the sequences

observed by the terminals instead of communicating the exact

sequences [5]. Furthermore, for certain function computations

that only require the fusion center to recover a distorted version

of the terminal sequences, distributed lossy source coding

methods [6] further reduce the storage rate. Such reductions

are crucial for next generation resource-limited networks, such

as those formed by Internet-of-Things (IoT) devices that must

aggregate sensor data and make decision using lightweight

mechanisms [5], [7]–[9]; see [10]–[14] for extensions.

To capture emerging security concerns in IoT networks,

one may include secrecy and privacy constraints in the dis-

tributed function computation problem. Secrecy requires the

computed function outputs to be hidden from eavesdrop-

pers [15] that have access to correlated observations and

the exchanged public messages. Several variations of the

secure function computation problem have been analyzed

in the literature [16]–[22]. Privacy, in contrast, requires the

source sequences observed at the terminals to remain partially

hidden from eavesdroppers [23]. Operationally, the analysis of

privacy leakage allows one to upper bound the secrecy leakage

about a future function computed by the terminals using the

same source sequences [24], [25]. In the present work, we

extend [23] by imposing several privacy constraints on the

source of the random sequence of the transmitting terminal

that sends a public message to the fusion center.

A common assumption in the literature is that sequences

observed by all terminals are distributed according to a joint

probability distribution. However, the correlated random se-

quences observed by terminals in a network generally stem

from a common source of information, e.g., some sensor lo-

cation information transmitted through the network before the

next function computation starts, distorted versions of which

are distributed within the network. Thus, in the present work,

we posit that there exists an underlying ground truth, called the

remote source, of which terminals only observe noisy versions.

Noisy measurements of a hidden source are generally modeled

as measurements through broadcast channels (BCs) [26] to

have a generic measurement model that allows noise com-

ponents at different terminals to be correlated, as considered

in [27], [28]. Such a hidden source model is proposed and

motivated in [29] for authentication problems and in [27],

[30] for key-agreement problems with a privacy constraint.

The privacy constraints are therefore measured with respect to

the remote source and therefore differ from the single privacy

leakage constraint considered in [23], which is measured with

respect to the random sequence of the transmitting terminal.

As shown next, this leads to a different set of trade-offs

between privacy leakage and storage rates.

These results are strict extensions of [23] as we consider

a remote source. Our inner bound proofs use a different

coding method from the ones used in the literature [23] to

simplify the analysis and our outer bounds do not follow

from previous results. We also consider multiple asynchronous

function computations within the same network with joint

secrecy and privacy constraints over all terminals involved

in any function computation, which has not been previously

considered.
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Fig. 1. Noisy measurements of a remote source used to compute a function
securely and privately with the help of a public communication link.

II. PROBLEM DEFINITIONS

A. Lossless and Lossy Single-Function Computation

Consider the function computation model in Fig. 1, where

noisy measurements (X̃n, Y n) of a remote source Xn are

inputs of a targeted function fn(X̃n, Y n) such that

fn(X̃n, Y n) = {f(X̃i, Yi)}
n

i=1 (1)

while the eavesdropper observes a correlated sequence Zn

and the public message W . The source X and measurement

X̃ ,Y,Z alphabets are finite sets. The encoder observes the

noisy measurement X̃n of the i.i.d. hidden source outputs Xn

through a memoryless channel P
X̃|X . The encoder computes

the public message W = Enc(X̃n), which is sent over the

public communication link. The decoder observes a noisy mea-

surement Y n of the hidden source Xn through a memoryless

channel PY Z|X together with the public message W to esti-

mate the targeted function fn(X̃n, Y n) as f̂n = Dec(W,Y n).
The eavesdropper (EVE) observes the output Zn of the same

memoryless channel and the public message W . We impose

one secrecy and two privacy constraints, given in Definition 1

in addition to reliability (or distortion) and storage constraints,

to the single-function computation problem depicted in Fig. 1

to characterize two rate regions, where lossless and lossy

function computations satisfy, respectively, a reliability and

a distortion constraint.

Since P
X̃XY Z

is fixed, the separate measurement chan-

nels P
X̃|X and PY Z|X in Fig. 1 can be modeled as a

physically-degraded BC with transition probability P
XY Z|X̃ =

P
X|X̃PY Z|X and with fixed input probability distribution P

X̃
.

For such a BC, the noiseless measurement case for the Enc(·),
for which X̃n = Xn, can be treated as a semi-deterministic

BC.

Definition 1. A tuple (Rs, Rw, Rℓ,Dec, Rℓ,Eve) is achievable if,

given δ>0, there exist n≥1, an encoder, and a decoder such

that

Pr
[
fn(X̃n, Y n) 6= f̂n

]
≤ δ (reliability) (2)

I(X̃n, Y n;W |Zn) ≤ n(Rs + δ) (secrecy) (3)

log
∣∣W

∣∣ ≤ n(Rw + δ) (storage) (4)

I(Xn;W |Y n) ≤ n(Rℓ,Dec + δ) (privacy - Dec) (5)

I(Xn;W |Zn) ≤ n(Rℓ,Eve + δ) (privacy - Eve). (6)

The region R is the closure of the set of all achievable tuples.

The metric I(fn(X̃n, Y n);W |Zn) is a natural way to

measure the information leakage to the eavesdropper who

observes (W,Zn) of the computed function fn(·, ·), which

is a proper secrecy-leakage metric since the function output is

to be secured. However, the analysis of this metric depends on

the specific properties of the function f(·, ·). Since the data-

processing inequality ensures that I(fn(X̃n, Y n);W |Zn) ≤
I(X̃n, Y n;W |Zn) for all functions f(·, ·) with equality if

f(·, ·) is a bijective mapping, we instead consider the metric

in (3). The analysis then does not depend on the com-

puted function f(·, ·) and provides a valid upper bound on

the proper secrecy-leakage rate metric for any f(·, ·). Since

I(X̃n, Y n;W |Zn) = I(X̃n;W |Zn) because of the Markov

chain W − X̃n − (Y n, Zn), the equivocation H(X̃n|W,Zn)
considered in previous works [23] represents the same secrecy-

leakage metric as (3). Metrics in (5) and (6) measure the

information leakage about the remote source to the decoder

and eavesdropper, respectively, due to function computation.

The lossy single-function computation problem extends the

lossless single-function computation model depicted in Fig. 1

by replacing the reliability constraint in (2) with an expected

distortion constraint to allow a distorted reconstruction of the

function f(·, ·).

Definition 2. A lossy tuple (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) is

achievable if, given δ > 0, there exist n≥ 1, an encoder, and

a decoder that satisfy (3)-(6) and

E

[
d(fn(X̃n, Y n), f̂n)

]
≤ D + ǫ (7)

where d(fn, f̂n) = 1
n

∑n

i=1 d(fi, f̂i) is a per-letter distortion

metric. The lossy region RD is the closure of the set of all

achievable lossy distortion tuples.

B. Lossless and Lossy Multi-Function Computation

We extend the lossless single-function computation model

by considering that the same hidden source Xn is measured

by multiple encoder and decoder pairs to compute different

functions. Consider a finite number J ≥ 1 of encoders

Encj(X̃j) = Wj , decoders Decj(Wj , Y
n
j ) = f̂n

j , and func-

tions fn
j (X̃

n
j , Y

n
j ) = {fj(X̃j,i, Yj,i)}

n
i=1 for j ∈ [1 : J ], where

X̃n
j is measured through the channel P

X̃j |X
and (Y n

j , Zn
j )

are measured through PYjZj |X . The eavesdropper observes

(Zn
[1:J],W[1:J]). This multi-function computation model is

illustrated in Fig. 2 for J = 2. We next consider such multiple-

function computations in the same network with joint secrecy

and privacy constraints over all terminals. Lossless and lossy

function computations are analyzed to provide inner and outer

bounds for the multi-function rate regions.

Definition 3. A multi-function tuple

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve) with j-th encoder

measurements through P
X̃j |X

and j-th decoder measurements
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Fig. 2. Noisy measurements of the same hidden source used to compute
J = 2 functions (via 2J = 4 parties) securely and privately with the help of
public communication links.

through PYjZj |X for all j ∈ [1 : J ] is achievable if, given

δ > 0, there exist n ≥ 1, and J encoder and decoder pairs

such that

Pr

[ ⋃

j∈[1:J]

{
fn
j (X̃

n
j , Y

n
j ) 6= f̂n

j

}]
≤ δ (8)

I(X̃n
[1:J], Y

n
[1:J];W[1:J]|Z

n
[1:J])≤n(Rs+δ) (9)

log
∣∣Wj

∣∣ ≤ n(Rw,j + δ), ∀j ∈ [1 : J ] (10)

I(Xn;Wj |Y
n
j ) ≤ n(Rℓ,Dec,j + δ), ∀j ∈ [1 : J ] (11)

I(Xn;W[1:J]|Z
n
[1:J]) ≤ n(Rℓ,Eve + δ). (12)

The multi-function region Rmf is the closure of the set of all

achievable tuples.

Remark 1. The storage-rate constraints in (10) and the

privacy-leakage-rate to corresponding decoder constraints in

(11) are J separate constraints. However, the reliability con-

straint in (8), the secrecy-leakage constraint in (9), and the

privacy-leakage-rate to eavesdropper constraint in (12) are

joint constraints that depend on all J encoder-decoder pairs.

As above, the extension to the lossy case is obtained by al-

lowing distorted function computations for multiple functions

fn
j (X̃

n
j , Y

n
j ) = {fj(X̃j,i, Yj,i)}

n
i=1 computed from different

measurements (X̃n
j , Y

n
j ) of the same hidden source Xn.

Definition 4. A lossy multi-function tuple

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve, D[1:J]) with j-th encoder

measurements through P
X̃j |X

and j-th decoder measurements

through PYjZj |X for all j ∈ [1 : J ] is achievable if, given

δ>0, there are some n≥1, and J encoder and decoder pairs

that satisfy (9)-(12) and

E

[
d(fn

j (X̃
n
j , Y

n
j ), f̂n

j )
]
≤ Dj + δ, ∀j ∈ [1 : J ] (13)

where we have d(fn, f̂n) = 1
n

∑n

i=1 d(fi, f̂i). The lossy

multi-function region Rmf,D is the closure of the set of all

achievable lossy distortion tuples.

III. RATE REGIONS

We first define the notion of an admissible random variable,

used in Theorems 1 and 3.

Definition 5 ([5]). A (vector) random variable U is admissible

for a function f(X̃, Y ) if U − X̃ − Y forms a Markov chain

and H(f(X̃, Y )|U, Y ) = 0, i.e., (U, Y ) determine f(X̃, Y ).

Define [a]− = min{a, 0} and [a]+ = max{a, 0} for a ∈ R.

A. Lossless Single-Function Computation

We characterize the region R for the lossless single-function

computation problem in Theorem 1; see [31, Section V] for

the complete proof and below for a proof sketch.

Theorem 1. The region R is the set of all tuples

(Rs, Rw, Rℓ,Dec, Rℓ,Eve) satisfying

Rs≥ I(U ; X̃|Z) + [I(U ;Z|V,Q)− I(U ;Y |V,Q)]− (14)

Rw≥I(U ; X̃|Y ) (15)

Rℓ,Dec≥I(U ;X|Y ) (16)

Rℓ,Eve≥I(U ;X|Z)+[I(U ;Z|V,Q)−I(U ;Y |V,Q)]− (17)

such that U is admissible and (Q, V )−U − X̃ −X − (Y, Z)
forms a Markov chain. The region R is convexified by using the

time-sharing random variable Q, which is required because of

the [·]− operation. One can limit the cardinalities of Q, V , and

U to |Q| ≤ 2, |V| ≤ |X̃|+ 4, and |U| ≤ (|X̃|+ 4)2.

Proof Sketch: For the achievability proof, we use the

output statistics of random binning (OSRB) method from [32]

(see also [33]) that assigns random bin indices to auxiliary

sequences Un = un, where Un is admissible, and V n = vn

such that the reliability constraint in (2) is satisfied. Using the

OSRB method consecutively, six different recoverability cases

that indicate whether it is possible obtain single-letter terms

are analyzed. All six cases are bounded by the same mutual

information terms. A time-sharing random variable Q is used

to convexify the rate region. The converse proof follows by

using standard properties of the Shannon entropy in addition

to a single-letterization step from [28, Lemma 2] to prove the

admissibility of U .

In [23], some lower bounds include terms with the max-

imization operator [·]+. One can show that the rate regions

in [23] that include such lower bounds are not convex and can

be enlarged by using a time-sharing random variable Q, as

considered in this work in Theorems 1-4.

B. Lossy Single-Function Computation

We next characterize the lossy region RD for the lossy

single-function computation problem in Theorem 2.
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Theorem 2. The lossy region RD is the set of all tuples

(Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) satisfying (14)-(17) and

D ≥ E[d(f(X̃, Y ), g(U, Y ))] (18)

for some function g(·, ·) such that (Q, V )−U−X̃−X−(Y, Z)
forms a Markov chain. One can limit the cardinalities to |Q| ≤
2, |V| ≤ |X̃|+ 5, and |U| ≤ (|X̃|+ 5)2.

Proof Sketch: The achievability proof of Theorem 2

follows from the achievability proof of Theorem 1, except

that U is not necessarily admissible, and with the addition that

P
U |X̃ and PV |U are chosen such that there exists a function

g(U ;Y ) that satisfies E[d(f(X̃, Y )), g(U, Y )] ≤ D + ǫn,

where ǫn > 0 such that ǫn → 0 when n → ∞. Since all

sequence tuples (x̃n, yn, un) are in the jointly typical set with

high probability, by the typical average lemma [34, pp. 26],

the distortion constraint (18) is satisfied. The converse proof

of Theorem 2 follows from the converse proof of Theorem 1

by replacing the admissibility step in [31, Eq. (81)] with the

steps

D + δn ≥ E

[
d
(
fn(X̃n, Y n), f̂n(W,Y n)

) ]

=
1

n
E

[ n∑

i=1

d
(
fi(X̃i, Yi), f̂i(W,Y n)

) ]

(a)

≥
1

n
E

[ n∑

i=1

d
(
f(X̃i, Yi), g(W,Y n, Xi−1, Zi−1, i)

) ]

(b)
=

1

n
E

[ n∑

i=1

d
(
f(X̃i, Yi), g(W,Y n

i , Xi−1, Zi−1, i)
) ]

(c)
=

1

n
E

[ n∑

i=1

d
(
f(X̃i, Yi), g(Ui, i, Yi)

) ]
(19)

where (a) follows since there exists a function g(·, ·) that

results in a distortion smaller than or equal to the distortion

obtained from f̂i(W,Y n), where the distortion is measured

with respect to f(X̃i, Yi) for all i ∈ [1 : n], because g(·, ·)
has additional inputs, (b) follows from the Markov chain

in [31, Eq. (82)], and (c) follows from the definition of

Ui = (W,Xi−1, Y n
i+1, Z

i−1). The cardinality bounds follow

by preserving the same terms as in Theorem 1 in addition to

g(U, Y )=g(U, V, Y ), which follows from V−(U, Y )−g(U, Y ).
The region RD is also convexified by using a time-sharing

random variable Q.

All rate regions in [23, Section III] (and, naturally, all

previous rate regions recovered by manipulating the regions

in [23, Section III]) can be recovered from Theorems 1 and 2

by eliminating the remote source, i.e., assuming X̃n = Xn,

and by rewriting the secrecy leakage constraint in (3) as an

equivocation measure rather than a mutual information.

C. Lossless Multi-Function Computation

We provide inner and outer bounds for the multi-function

region Rmf in Theorem 3; see [31, Section VI] for the

complete proof and below for a proof sketch.

Theorem 3. (Inner Bound): An achievable multi-function

region is the union over all P
Uj |X̃j

and PVj |Uj
such that

Uj is admissible for all j ∈ [1 : J ] of the rate tuples

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve) satisfying

Rs≥ [I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)]−

+I(U[1:J]; X̃[1:J]|Z[1:J]) (20)

Rw,j≥I(Uj ; X̃j |Yj), ∀j ∈ [1 : J ] (21)

J∑

j=1

Rw,j ≥ I(U[1:J]; X̃[1:J]|Y[1:J]) (22)

Rℓ,Dec,j≥I(Uj ;X|Yj), ∀j ∈ [1 : J ] (23)

Rℓ,Eve≥ [I(U[1:J];Z[1:J]|V[1:J], Q)−I(U[1:J];Y[1:J]|V[1:J], Q)]−

+I(U[1:J];X|Z[1:J]) (24)

where P
QV[1:J]U[1:J]X̃[1:J]XY[1:J]Z[1:J]

should be equal to

PQPX

J∏

j=1

PVj |Uj
P
Uj |X̃j

P
X̃j |X

PYjZj |X . (25)

(Outer Bound): An outer bound for the multi-function region

Rmf is the union of the rate tuples in (20) - (24) over all P
Uj |X̃j

and PVj |Uj
such that Uj is admissible and (Q, Vj)−Uj−X̃j−

X − (Yj , Zj) forms a Markov chain for all j ∈ [1 : J ]. One

can limit the cardinalities to |Q| ≤ 2, |Vj | ≤ |X̃j | + 5, and

|Uj | ≤ (|X̃j |+ 5)2 for all j ∈ [1 : J ].

Proof Sketch: The inner bound proof follows by using the

OSRB method for each encoder-decoder pair. An additional

virtual joint encoder is considered to jointly tackle sets of

random variables observed by different encoders in secrecy

and privacy analyses. The outer bound proof follows by using

standard properties of the Shannon entropy.

Remark 2. Inner and outer bounds differ because outer

bounds define rate regions for the Markov chains (Q, Vj) −

Uj − X̃j −X − (Yj , Zj) for all j ∈ [1 : J ], which are larger

than the rate regions defined by inner bounds that satisfy (25).

D. Lossy Multi-Function Computation

We next give inner and outer bounds for the lossy multi-

function region Rmf,D in Theorem 4.

Theorem 4. (Inner Bound): An achievable lossy

multi-function region is the union over all P
Uj |X̃j

and PVj |Uj
for all j ∈ [1 : J ] of the rate tuples

(Rs, Rw,[1:J], Rℓ,Dec,[1:J], Rℓ,Eve, D[1:J]) satisfying (20)-(24)

and

Dj ≥ E[d(fj(X̃j , Yj), gj(Uj , Yj))] ∀j ∈ [1 : J ] (26)

for a set of functions {gj(·, ·)}
J
j=1 and where (25) is satisfied.

(Outer Bound): An outer bound for the lossy multi-function

region Rmf,D is the union of the rate tuples in (20)-(24) and

(26) over all P
Uj |X̃j

and PVj |Uj
such that (Q, Vj)−Uj−X̃j−

X − (Yj , Zj) forms a Markov chain for all j ∈ [1 : J ]. One
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can limit the cardinalities to |Q| ≤ 2, |Vj | ≤ |X̃j | + 6, and

|Uj | ≤ (|X̃j |+ 6)2 for all j ∈ [1 : J ].

Proof Sketch: The inner bound proof of Theorem 4

follows from the achievability proof of Theorem 3, ex-

cept that Uj’s are not necessarily admissible, and with

the addition that P
Uj |X̃j

and PVj |Uj
are chosen such that

there exists a set of functions {gj(Uj ;Yj)}
J
j=1 that satisfy

E[d(fj(X̃j , Yj)), gj(Uj , Yj)] ≤ Dj + ǫn for all j ∈ [1 : J ],
where ǫn > 0 such that ǫn → 0 when n → ∞. Since

all sequence tuples (x̃n
j , y

n
j , u

n
j ) are in the jointly typical set

with high probability for all j ∈ [1 : J ], by the typical

average lemma, the distortion constraints in (26) are satisfied.

The outer bound proof follows from the converse proof of

Theorem 3 with the replacement of the admissibility step

in [31, Eq. (108)] with the steps given in (19) for random

variables and functions with the indices j = 1, 2, . . . , J .

IV. INFORMATION BOTTLENECK EXAMPLE

Consider a function computation scenario in a network

where the evaluation of the rate region is an information

bottleneck problem with a remote source. Consider the lossy

single-function computation problem and suppose X−Y −Z
forms a Markov chain. We obtain the following rate region,

which requires one to maximize a mutual information term

upper bounded by another mutual information term that should

be minimized simultaneously, i.e., an information bottleneck.

Corollary 1. The lossy region for the Markov chain X−Y −Z
is the set of all tuples (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) satisfying

Rs≥ I(U ; X̃|Y ) = I(U ; X̃)− I(U ;Y ) (27)

Rw≥I(U ; X̃|Y ) = I(U ; X̃)− I(U ;Y ) (28)

Rℓ,Dec≥I(U ;X|Y ) = I(U ;X)− I(U ;Y ) (29)

Rℓ,Eve≥I(U ;X|Y ) = I(U ;X)− I(U ;Y ) (30)

D ≥ E[d(f(X̃, Y ), g(U, Y ))] (31)

for some function g(·, ·) such that U−X̃−X−Y −Z forms a

Markov chain. One can limit the cardinality to |U| ≤ |X̃|+2.

The proof of Corollary 1 follows by applying steps identical

to the proof of [23, Corollary 3] to Theorem 2. The boundary

points of the rate region defined in Corollary 1 can be

obtained by maximizing I(U ;Y ) and minimizing I(U ; X̃)
simultaneously for a fixed I(U ;X) for all possible P

U |X̃ . This

problem is an information bottleneck problem [35], [36]. The

optimal function g∗(·, ·) that minimizes the lower bound in

(31), depends on the realization U = u. If the distortion metric

d(·, ·) is the Hamming distance, the optimal function g∗(u, y)
for all (u, y)∈U×Y is g∗(u, y)=argmaxf PF |UY (f |u, y) [23,

Eq. (26)], where f = f(x̃, y) is a realization of the random

function output F for any (x̃, y)∈X̃ × Y .

Consider a measurement channel P
X̃|X and source PX for

the encoder Enc(·) such that its inverse channel P
X|X̃ is a

binary symmetric channel (BSC) with crossover probability

p, i.e., BSC(p), for any 0 ≤ p ≤ 0.5. Furthermore, consider
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Fig. 3. Secrecy-leakage vs. privacyEve-leakage rate projection of the bound-
ary tuples (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) for p = 0.06 and for the number of
independent BSC measurements at the decoder M = 1, 2, 3.

a measurement channel PY |X for the decoder Dec(·) that is

a binary input symmetric output channel [37, p. 21], which

can be decomposed into a mixture of binary subchannels

as defined in [38, Section III-B] [39]. We remark that the

rate region defined in Corollary 1 by (27)-(31) does not

depend on the random variable Z. Therefore, the measurement

channel for the eavesdropper does not affect the rate region

as long as the measurement channel for the eavesdropper

is physically-degraded as compared to the channel for the

decoder Dec(·), i.e., PY Z|X = PZ|Y PY |X . Define Hb(x) =
−x log x − (1−x) log(1−x) as the binary entropy function

and H−1
b (·) as its inverse with range [0, 0.5]. Since P

X̃XY Z

is fixed, to solve the information bottleneck problem given

above the optimal auxiliary random variable U for these

channels is such that P
X̃|U is a BSC with crossover probability

p̃=(H−1
b (H(X|U))−p)/(1−2p) [25, Theorem 3].

Suppose PX ∼ Bernoulli(0.5), P
X̃|X ∼ BSC(p = 0.06),

and PY |X is M > 1 independent BSCs each with crossover

probability 0.15, which satisfies the assumptions listed above.

Using auxiliary random variables ∼ BSC(p̃), we depict the

projections of (Rs, Rw, Rℓ,Dec, Rℓ,Eve, D) boundary tuples onto

the (Rs, Rℓ,Eve) plane in Fig. 3 for M = 1, 2, 3 independent

BSC measurements by the decoder Dec(·).
Fig. 3 suggests that given a boundary point achieved by a

crossover probability p̃, any larger secrecy-leakage rate and

any larger privacyEve-leakage rate are also achievable. Con-

versely, given such an achievable boundary point, no smaller

secrecy-leakage rate and no smaller privacyEve-leakage rate

is achievable. Furthermore, increasing the number M of

measurements at the decoder significantly decreases the cor-

responding boundary point such that, e.g., when M = 3
measurements are used as compared to M = 1, the maxi-

mum secrecy-leakage rate decreases by approximately 31.45%
and simultaneously the maximum privacy-leakage rate to the

eavesdropper decreases by approximately 58.68%. These gains

can be seen as multiplexing gains, in analogy to multiple

antenna systems for wireless communications.
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[27] O. Günlü, R. F. Schaefer, and G. Kramer, “Private authentication with
physical identifiers through broadcast channel measurements,” in IEEE

Inf. Theory Workshop, Visby, Sweden, Aug. 2019, pp. 1–5.
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