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Abstract—We consider a distributed function computation
problem in which parties observing noisy versions of a re-
mote source facilitate the computation of a function of their
observations at a fusion center through public communication.
The distributed function computation is subject to constraints,
including not only reliability and storage but also privacy and
secrecy. Specifically, 1) the remote source should remain private
from an eavesdropper and the fusion center, measured in terms of
the information leaked about the remote source; 2) the function
computed should remain secret from the eavesdropper, measured
in terms of the information leaked about the arguments of the
function, to ensure secrecy regardless of the exact function used.
We derive the exact rate regions for lossless and lossy single-
function computation and illustrate the lossy single-function com-
putation rate region for an information bottleneck example, in
which the optimal auxiliary random variables are characterized
for binary input symmetric output channels. We extend the
approach to lossless and lossy asynchronous multiple-function
computations with joint secrecy and privacy constraints, in which
case inner and outer bounds for the rate regions differing only
in the Markov chain conditions imposed are characterized.

I. INTRODUCTION

The problem of distributed function computation consists in
characterizing how multiple terminals that observe dependent
random sequences can facilitate the computation of a function
of their sequences at a fusion center by exchanging messages
through public communication links [1], [2]. One application
for which distributed function computation problem is rele-
vant is network function virtualization [3] via, e.g., software
defined networking. The use of distributed lossless source
coding techniques [4] in such applications, may significantly
reduce the public communication rate, called the storage rate,
by allowing the fusion center to reconstruct the sequences
observed by the terminals instead of communicating the exact
sequences [5]. Furthermore, for certain function computations
that only require the fusion center to recover a distorted version
of the terminal sequences, distributed lossy source coding
methods [6] further reduce the storage rate. Such reductions
are crucial for next generation resource-limited networks, such
as those formed by Internet-of-Things (IoT) devices that must
aggregate sensor data and make decision using lightweight
mechanisms [5], [7]-[9]; see [10]-[14] for extensions.

To capture emerging security concerns in IoT networks,
one may include secrecy and privacy constraints in the dis-
tributed function computation problem. Secrecy requires the
computed function outputs to be hidden from eavesdrop-
pers [15] that have access to correlated observations and

the exchanged public messages. Several variations of the
secure function computation problem have been analyzed
in the literature [16]—[22]. Privacy, in contrast, requires the
source sequences observed at the terminals to remain partially
hidden from eavesdroppers [23]. Operationally, the analysis of
privacy leakage allows one to upper bound the secrecy leakage
about a future function computed by the terminals using the
same source sequences [24], [25]. In the present work, we
extend [23] by imposing several privacy constraints on the
source of the random sequence of the transmitting terminal
that sends a public message to the fusion center.

A common assumption in the literature is that sequences
observed by all terminals are distributed according to a joint
probability distribution. However, the correlated random se-
quences observed by terminals in a network generally stem
from a common source of information, e.g., some sensor lo-
cation information transmitted through the network before the
next function computation starts, distorted versions of which
are distributed within the network. Thus, in the present work,
we posit that there exists an underlying ground truth, called the
remote source, of which terminals only observe noisy versions.
Noisy measurements of a hidden source are generally modeled
as measurements through broadcast channels (BCs) [26] to
have a generic measurement model that allows noise com-
ponents at different terminals to be correlated, as considered
in [27], [28]. Such a hidden source model is proposed and
motivated in [29] for authentication problems and in [27],
[30] for key-agreement problems with a privacy constraint.
The privacy constraints are therefore measured with respect to
the remote source and therefore differ from the single privacy
leakage constraint considered in [23], which is measured with
respect to the random sequence of the transmitting terminal.
As shown next, this leads to a different set of trade-offs
between privacy leakage and storage rates.

These results are strict extensions of [23] as we consider
a remote source. Our inner bound proofs use a different
coding method from the ones used in the literature [23] to
simplify the analysis and our outer bounds do not follow
from previous results. We also consider multiple asynchronous
function computations within the same network with joint
secrecy and privacy constraints over all terminals involved
in any function computation, which has not been previously
considered.
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Fig. 1. Noisy measurements of a remote source used to compute a function
securely and privately with the help of a public communication link.

II. PROBLEM DEFINITIONS
A. Lossless and Lossy Single-Function Computation

Consider the function computation model in Fig. 1, where
noisy measurements (X",Y™) of a remote source X" are
inputs of a targeted function f™(X"™,Y™) such that

FHER YT = (KL Y)Y (M)
while the eavesdropper observes a correlated sequence Z"
and the public message W. The source X and measurement
X,Y, Z alphabets are finite sets. The encoder observes the
noisy measurement X" of the i.i.d. hidden source outputs X"
through a memoryless channel Pfl - The encoder computes

the public message W = Enc(X™), which is sent over the
public communication link. The decoder observes a noisy mea-
surement Y of the hidden source X™ through a memoryless
channel Py 7 x together with the public message W to esti-
mate the targeted function f™(X"™,Y™) as fr= Dec(W,Y™).
The eavesdropper (EVE) observes the output Z" of the same
memoryless channel and the public message W. We impose
one secrecy and two privacy constraints, given in Definition 1
in addition to reliability (or distortion) and storage constraints,
to the single-function computation problem depicted in Fig. 1
to characterize two rate regions, where lossless and lossy
function computations satisfy, respectively, a reliability and
a distortion constraint.

Since P)} Xyz is fixed, the separate measurement chan-
nels P)?\X and Pyzx in Fig. 1 can be modeled as a
physically-degraded BC with transition probability Py 21X =
PX| 5Py z1x and with fixed input probability distribution Pg.
For such a BC, the noiseless measurement case for the Enc(-),
for which X™ = X", can be treated as a semi-deterministic
BC.

Definition 1. A tuple (Rs, Ry, R¢ pec, Re Eve) 18 achievable if,
given § >0, there exist n>1, an encoder, and a decoder such
that

Pr [ FUXT,Y™) £ ﬁ] < (reliability)  (2)
I(X™, Y™, W|Z"™) < n(Rs + 6)
log |W| < n(Ry + 6)

(secrecy) 3)
(storage) 4)

(X" W[Y™) < n(Rp.pec + 0)
I(X™W|Z") < n(Repve + 6)

(privacy - Dec)  (5)
(privacy - Eve).  (6)

The region R is the closure of the set of all achievable tuples.

The metric I(f™(X",Y™);W|Z") is a natural way to
measure the information leakage to the eavesdropper who
observes (W, Z™) of the computed function f™(-,-), which
is a proper secrecy-leakage metric since the function output is
to be secured. However, the analysis of this metric depends on
the specific properties of the function f(-,-). Since the data-
processing inequality ensures that I(f™(X™,Y");W|Z") <
I(X™ Y™ W|Z™) for all functions f(-,-) with equality if
f(-,-) is a bijective mapping, we instead consider the metric
in (3). The analysis then does not depend on the com-
puted function f(-,-) and provides a valid upper bound on
the proper secrecy-leakage rate metric for any f(-,-). Since
I(xmymwlzr) = I(X";W|Z") because of the Markov
chain W — X™ — (Y™, Z™), the equivocation H (X"|W,Z")
considered in previous works [23] represents the same secrecy-
leakage metric as (3). Metrics in (5) and (6) measure the
information leakage about the remote source to the decoder
and eavesdropper, respectively, due to function computation.

The lossy single-function computation problem extends the
lossless single-function computation model depicted in Fig. 1
by replacing the reliability constraint in (2) with an expected
distortion constraint to allow a distorted reconstruction of the
function f(-,).

Definition 2. A lossy tuple (Rs, Rw,Ripec; Reve, D) is
achievable if, given ¢ > 0, there exist n > 1, an encoder, and
a decoder that satisfy (3)-(6) and

E[d(f"(X"Y"). J9)] < D+e ™
where d(f™, J/‘;) = L5 d(fi ) is a per-letter distortion
metric. The lossy region Rp is the closure of the set of all
achievable lossy distortion tuples.

B. Lossless and Lossy Multi-Function Computation

We extend the lossless single-function computation model
by considering that the same hidden source X" is measured
by multiple encoder and decoder pairs to compute different
functions. Consider a finite number J > 1Aof encoders
Enc;(X;) = W, decoders Dec;(W;,Y}") = f}', and func-
tions fi(X7,Y") = {f;(Xj,i, Yji) Hiq forj € [1: J], where
)Z'j” is measured through the channel Pg . and (Y, Z7)
are measured through Py, 7 |x. The eavesdropper observes
(Zﬁ: J],W[l: 71)- This multi-function computation model is
illustrated in Fig. 2 for J = 2. We next consider such multiple-
function computations in the same network with joint secrecy
and privacy constraints over all terminals. Lossless and lossy
function computations are analyzed to provide inner and outer
bounds for the multi-function rate regions.

Definition 3. A multi-function tuple
(RS, Rw,[l:.]]a RZ,Dec,[l:J] ) R&Eve) with j'th encoder
measurements through P);j X and j-th decoder measurements
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Fig. 2. Noisy measurements of the same hidden source used to compute
J = 2 functions (via 2J = 4 parties) securely and privately with the help of
public communication links.

through Py, 7 |x for all j € [1 : J] is achievable if, given
6 > 0, there exist n > 1, and J encoder and decoder pairs
such that

pe| U {2 <o ®)
JE[1:J]
I(XﬁJ]’if[?J]’W[lJ]|Z[T]L.J])SH(RS+6) (9)

log |[W;| < n(Ry,; +6), Viel:J] (10)
I(X™ W5 |Y]") < n(Repecj + ), Viell:J] (1)
I(X™ Wil Z]1.y) < n(Regve +0). 12)

The multi-function region R is the closure of the set of all
achievable tuples.

Remark 1. The storage-rate constraints in (10) and the
privacy-leakage-rate to corresponding decoder constraints in
(11) are J separate constraints. However, the reliability con-
straint in (8), the secrecy-leakage constraint in (9), and the
privacy-leakage-rate to eavesdropper constraint in (12) are
Jjoint constraints that depend on all J encoder-decoder pairs.

As above, the extension to the lossy case is obtained by al-
lowing distorted function computations for multiple functions
fHXTY)) = ;{fj(Xj}i, Yj.)}ie, computed from different
measurements (X7, Y]") of the same hidden source X™.

Definition 4. A lossy multi-function tuple
(R37 Rw,[l:.]]7 RZ,Dec,[l:J} ) RE,Evea D[l:J]) with j'th encoder
measurements through P)?j‘  and j-th decoder measurements
through Py, 7, |x for all j € [1 : J] is achievable if, given
0 >0, there are some n>1, and J encoder and decoder pairs
that satisfy (9)-(12) and

E[d(ff()??ﬂ’j"),ﬁ)} <D, +5, Viel[l:J] (13)

where we have d(f",fn) = LS~ d(fi, f;). The lossy
multi-function region Rprp is the closure of the set of all
achievable lossy distortion tuples.

III. RATE REGIONS

We first define the notion of an admissible random variable,
used in Theorems 1 and 3.

Definition S ([5]). A (vector) random variable U is admissible
for a function f(X,Y) if U — X —Y forms a Markov chain
and H(f(X,Y)|U,Y) =0, i.e., (U,Y) determine f(X,Y).

Define [a]~ = min{a, 0} and [a]* = max{a, 0} for a € R.

A. Lossless Single-Function Computation

We characterize the region R for the lossless single-function
computation problem in Theorem 1; see [31, Section V] for
the complete proof and below for a proof sketch.

Theorem 1. The region R is the set of all tuples
(Rx; Rw> RZ,DEC; RE,Eve) Sdﬁsfying

Ry> I(U; X|2) + [I(U; Z|V,Q) — I(U; Y|V, Q)]~  (14)
R,>I(U; X|Y) (15)
RZ,DecZI(U; X|Y) (16)

Ry pve 2 1(U; X|Z)+[I(U; Z|V,Q) - 1(U; Y|V, Q)] (A7)

such that U is admissible and (Q,V)—U — X — X — (Y, Z)
forms a Markov chain. The region R is convexified by using the
time-sharing random variable @), which is required because of
the [-]~ operation. One can limit the cardinalities of Q, V, and
Uto|Q <2 |V|<|X|+4 and U] < (|X|+4)%

Proof Sketch: For the achievability proof, we use the
output statistics of random binning (OSRB) method from [32]
(see also [33]) that assigns random bin indices to auxiliary
sequences U™ = u”, where U" is admissible, and V" = o™
such that the reliability constraint in (2) is satisfied. Using the
OSRB method consecutively, six different recoverability cases
that indicate whether it is possible obtain single-letter terms
are analyzed. All six cases are bounded by the same mutual
information terms. A time-sharing random variable () is used
to convexify the rate region. The converse proof follows by
using standard properties of the Shannon entropy in addition
to a single-letterization step from [28, Lemma 2] to prove the
admissibility of U. |

In [23], some lower bounds include terms with the max-
imization operator [-]7. One can show that the rate regions
in [23] that include such lower bounds are not convex and can
be enlarged by using a time-sharing random variable @), as
considered in this work in Theorems 1-4.

B. Lossy Single-Function Computation

We next characterize the lossy region Rp for the lossy
single-function computation problem in Theorem 2.
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Theorem 2. The lossy region Rp is the set of all tuples
(Rsa RW7 RZ,DeL': Ré,va D) Safisfying (14)'(1 7) and

D >E[d(f(X,Y),g(U,Y))] (18)

for some function g(-,-) such that (Q,V)—U—X —-X—(Y, Z)
Sforms a Markov chain. One can limit the cardinalities to |Q| <

2, |V| < |X| +5, and |U| < (| X]| + 5)2.

Proof Sketch: The achievability proof of Theorem 2
follows from the achievability proof of Theorem 1, except
that U is not necessarily admissible, and with the addition that
PU‘ 5 and Py are chosen such that there exists a function

g(U;Y) that satisfies E[d(f(X,Y)),g(U,Y)] < D + e,
where €, > 0 such that ¢, — 0 when n — oo. Since all
sequence tuples (", y™, u™) are in the jointly typical set with
high probability, by the typical average lemma [34, pp. 26],
the distortion constraint (18) is satisfied. The converse proof
of Theorem 2 follows from the converse proof of Theorem 1
by replacing the admissibility step in [31, Eq. (81)] with the
steps

D+6, >E|d (f”(ff"v Y, W, Yn)> }
_ iﬂi{id (fi()?iayi)vfi(w’ Yn))}

4 (f(Xi i) oW Y™, X, 2700)) |

19)

where (a) follows since there exists a function g(-,-) that
results in a distortion smaller than or equal to the distortion
obtained from f;(WW,Y™), where the distortion is measured
with respect to f(X;,Y;) for all ¢ € [1 : n], because g(-, ")
has additional inputs, (b) follows from the Markov chain
in [31, Eq. (82)], and (c) follows from the definition of
Uy = (W, X", Y%,,Z"""). The cardinality bounds follow
by preserving the same terms as in Theorem 1 in addition to
g(U,Y)=g(U,V,Y), which follows from V—(U,Y )—g(U,Y).
The region Rp is also convexified by using a time-sharing
random variable Q. ]
All rate regions in [23, Section III] (and, naturally, all
previous rate regions recovered by manipulating the regions
in [23, Section III]) can be recovered from Theorems 1 and 2
by eliminating the remote source, i.e., assuming X" = X",
and by rewriting the secrecy leakage constraint in (3) as an
equivocation measure rather than a mutual information.

C. Lossless Multi-Function Computation

We provide inner and outer bounds for the multi-function
region Ry in Theorem 3; see [31, Section VI] for the
complete proof and below for a proof sketch.

Theorem 3. (Inner Bound): An achievable multi-function
region is the union over all PU,- %, and Py, y, such that
U; is admissible for all j € [1 : J| of the rate tuples
(Rsa RW,[l:J} ) RE,D@C,[LJ] ) RZ,Eve) satisfying

R > [I(Upn.15 Zp:n)Vinea), Q)= L(Upngy; Y Vinea), Q)1

+I(Up.01 X110 Z..) (20

Ry ;> 1(Uj; X;]Y5), viell:J @)
J

> Ryj = IUn.; X [Yies) (22)
=1

Ry pec,j 2 1(Uj; X|Y5), vie[l:J]  (23)

Ry gve > [1(Upn.15 Z11: Vi) @) = I(Upgys Y Vi, Q)]

+I(Up.g; X1 Zp.0) (24)
where PQV[M] Uty X0y X Vi Zso, should be equal to
J
PoPx | [ Pv,v, Pu, i, Px, x Py 21 (25)
j=1

(Outer Bound): An outer bound for the multi-function region
Ry is the union of the rate tuples in (20) - (24) over all PULl)?J
and Py, |y, such that U; is admissible and (Q,V;)—U; — X; —
X — (Y;, Z;) forms a Markov chain for all j € [1 : J]. One
can limit the cardinalities to |Q| < 2, |V;| < |)~(J\ + 5, and
U < (1X;|+5)2 forall j €[1:J].

Proof Sketch: The inner bound proof follows by using the
OSRB method for each encoder-decoder pair. An additional
virtual joint encoder is considered to jointly tackle sets of
random variables observed by different encoders in secrecy
and privacy analyses. The outer bound proof follows by using
standard properties of the Shannon entropy. [ ]

Remark 2. Inner and outer bounds differ because outer
bounds define rate regions for the Markov chains (Q,V;) —
Uj—X; — X —(Y;,Z;) for all j € [1:J], which are larger
than the rate regions defined by inner bounds that satisfy (25).

D. Lossy Multi-Function Computation

We next give inner and outer bounds for the lossy multi-
function region Rpy¢p in Theorem 4.

An  achievable
union over all P,

Theorem 4. (Inner Bound):
multi-function region is the U, 1%,
and Py y, for all j € [l J| of the rate tuples
(Rs, Ry (1:015 Re pec,[1:0) R Eves D1:gy)  satisfying  (20)-(24)

and

lossy

D; > Eld(f;(X;, ), 9; (U3, Y3)]  Vi€[l:J] (26)

for a set of functions {g; (-, ~)}5]:1 and where (25) is satisfied.

(Outer Bound): An outer bound for the lossy multi-function
region Ryyp is the union of the rate tuples in (20)-(24) and
(26) over all PUjl)?j and Py, |y, such that (Q,V;)—U; — X —
X — (Y5, Z;) forms a Markov chain for all j € [1 : J]. One
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can limit the cardinalities to |Q| < 2, [V;] < |)}J‘ + 6, and
U;| < (1X,| +6)2 for all j €[1:J)

Proof Sketch: The inner bound proof of Theorem 4
follows from the achievability proof of Theorem 3, ex-
cept that U;’s are not necessarily admissible, and with
the addition that PUJ_| %, and Py, |y, are chosen such that
there exists a set of functions {g;(U;;Y}) J_, that satisfy
E[d(f;(X;,Y5)),9;(U;, ¥;)] < Dj + ey, forall j € [1:J],
where ¢, > 0 such that ¢, — 0 when n — oo. Since
all sequence tuples (&5;’, y;?,u?) are in the jointly typical set
with high probability for all j € [1 : J], by the typical
average lemma, the distortion constraints in (26) are satisfied.
The outer bound proof follows from the converse proof of
Theorem 3 with the replacement of the admissibility step
in [31, Eq. (108)] with the steps given in (19) for random
variables and functions with the indices 7 =1,2,...,J. &

IV. INFORMATION BOTTLENECK EXAMPLE

Consider a function computation scenario in a network
where the evaluation of the rate region is an information
bottleneck problem with a remote source. Consider the lossy
single-function computation problem and suppose X —Y — Z
forms a Markov chain. We obtain the following rate region,
which requires one to maximize a mutual information term
upper bounded by another mutual information term that should
be minimized simultaneously, i.e., an information bottleneck.

Corollary 1. The lossy region for the Markov chain X =Y —Z
is the set of all tuples (Ry, Ry, R¢,pec, Re gve, D) satisfying

R,>I(U; X|Y) =I(U; X)—I(U;Y) Q27)
R,>I(U;X|Y)=I(U; X)— I(U;Y) (28)
Rypee = I(U; X|Y) = I(U; X) = I(U;Y) (29
Repe = 1(U; X|Y) = I(U; X) = I(U;Y) (30)
D > E[d(f(X,Y),9(U,Y))] (31)

for some function g(-,-) such that U — X — X —Y — Z forms a
Markov chain. One can limit the cardinality to [U| < | X |+ 2.

The proof of Corollary 1 follows by applying steps identical
to the proof of [23, Corollary 3] to Theorem 2. The boundary
points of the rate region defined in Corollary 1 can be
obtained by maximizing I(U;Y) and minimizing I(U; X)
simultaneously for a fixed /(U; X) for all possible P, 5. This
problem is an information bottleneck problem [35], [36]. The
optimal function ¢g*(-,-) that minimizes the lower bound in
(31), depends on the realization U = w. If the distortion metric
d(-,-) is the Hamming distance, the optimal function g*(u,y)
for all (u,y) €UXY is g* (u,y) =argmaxy Py (f|u, y) [23,
Eq. (26)], where f = f(z,y) is a realization of the random
function output F' for any (Z,y)€X x ).

Consider a measurement channel P)?I  and source Px for
the encoder Enc(-) such that its inverse channel P ¢ is a
binary symmetric channel (BSC) with crossover proLability
p, i.e., BSC(p), for any 0 < p < 0.5. Furthermore, consider

0.4

0.3

-
-
-
-

0.2

V-
L=

0.1

Ry pye (bits/symbol)

| |

| | |
0.3 04 05
Ry (bits/symbol)

Fig. 3. Secrecy-leakage vs. privacyEve-leakage rate projection of the bound-
ary tuples (Rs, Rw, R¢ pec, R gve, D) for p = 0.06 and for the number of
independent BSC measurements at the decoder M = 1,2, 3.

0.6 0.7

a measurement channel Py |x for the decoder Dec(:) that is
a binary input symmetric output channel [37, p. 21], which
can be decomposed into a mixture of binary subchannels
as defined in [38, Section III-B] [39]. We remark that the
rate region defined in Corollary 1 by (27)-(31) does not
depend on the random variable Z. Therefore, the measurement
channel for the eavesdropper does not affect the rate region
as long as the measurement channel for the eavesdropper
is physically-degraded as compared to the channel for the
decoder Dec(-), i.e., Pyzx = Pzy Py|x. Define Hy(x) =
—zlogx — (1—x)log(l—x) as the binary entropy function
and H, '(-) as its inverse with range [0,0.5]. Since Pg yy ,
is fixed, to solve the information bottleneck problem given
above the optimal auxiliary random variable U for these
channels is such that P)?‘U is a BSC with crossover probability
p=(H, '(H(X|U))—p)/(1-2p) [25, Theorem 3].

Suppose Px ~ Bernoulli(0.5), Pgix ~ BSC(p = 0.06),
and Py x is M > 1 independent BSCs each with crossover
probability 0.15, which satisfies the assumptions listed above.
Using auxiliary random variables ~ BSC(p), we depict the
projections of (Rs, Ry, Re¢,pec, Re,Eve; D) boundary tuples onto
the (Rs, Ry pve) plane in Fig. 3 for M = 1,2, 3 independent
BSC measurements by the decoder Dec(-).

Fig. 3 suggests that given a boundary point achieved by a
crossover probability p, any larger secrecy-leakage rate and
any larger privacyEve-leakage rate are also achievable. Con-
versely, given such an achievable boundary point, no smaller
secrecy-leakage rate and no smaller privacyEve-leakage rate
is achievable. Furthermore, increasing the number M of
measurements at the decoder significantly decreases the cor-
responding boundary point such that, e.g., when M = 3
measurements are used as compared to M = 1, the maxi-
mum secrecy-leakage rate decreases by approximately 31.45%
and simultaneously the maximum privacy-leakage rate to the
eavesdropper decreases by approximately 58.68%. These gains
can be seen as multiplexing gains, in analogy to multiple
antenna systems for wireless communications.
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