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Abstract—We consider the problem of covert sequential testing,
in which a legitimate party attempts to run a sequential test while
escaping detection from an adversary. Specifically, the legitimate
party’s decisions should meet prescribed risk constraints and,
simultaneously, the adversary’s observations induced by the test
should remain indistinguishable from the observations obtained
in the absence of a test. Our main result is the characterization of
the risk exponent γθ , which captures the asymptotic exponential
decrease of the risk with the square-root of the averaged stopping
time in the limit of low risk. An example is provided to
illustrate how the covertness constraint influences the design of
the sequential test.

I. INTRODUCTION

The problem of ensuring covertness, or low probability of

detection, has attracted significant attention in the context

of communication systems [1]–[5]. A square root low has

been established, which requires the transmitted codewords to

have weight scaling as the square root of the blocklength to

maintain covertness. A similar law has also been established

for covert sensing [6], [7], which refers to a scenario in which

the estimation of parameters of interest requires the use of

probing signals that emit energy and are therefore detectable.

Specifically, [6], [7] have considered the problem of estimating

an unknown phase while keeping the sensing undetectable by

a passive quantum adversary. This operation is made possible

by the presence of thermal noise, which allows one to hide

the useful sensing signal in the background thermal noise

and results in a mean-square phase estimation error scaling

as O( 1√
n
) if n is the number of modes.

In contrast to conventional hypothesis testing, active hy-

pothesis testing, also known as controlled sensing, adap-

tively selects the kernel through which unknown parameters

are observed. The estimation can adapt to the observations,

resulting in a potentially faster strategy than non-adaptive

ones. Motivated by recent progress in this area [8]–[10], the

problem of covert active sensing has been analyzed [5], [11],

characterizing the exponent of the probability of detection

error subject to the covertness constraint with non-sequential

and non-adaptive tests and showing the superiority of adaptive

(but still non-sequential) strategies

In the present work, we formulate the problem of covert

sequential testing, in which the objective is to carry out a

sequential test that meets certain risk constraints while keeping

the existence of the test undetectable by the adversary at any

time before the sequential test stops. This problem formulation

is inspired by applications in which the adversary has the
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ability to hinder the estimation if the existence of a test is

detected. In contrast to [5], our work allows the strategy

to be adaptive and sequential. Our main contribution is to

characterize the ratio of the risk exponent to the square root

of the expected number of tests in the limit of low risk.

Conceptually related to the present work, [12] analyzes the

covert communication problem under the setting in which the

adversary does not know when the communication starts and

uses specific sequential tests to determine the existence of

the communication in real-time. An optimization problem is

then formulated and a transmission scheme that maximizes the

total amount of information under the covertness constraint

is proposed. This approach differs from ours in that the

sequential test is a constraint placed on the type of detectors

deployed by adversary, while our model allows the adversary

to deploy its optimal testing strategy.

The rest of the paper is organized as follows. After defining

some notation in Section II, we formulate the problem and

state the main results in Section III. We detail the proofs of

the main results in Section IV. Finally, we provide a numerical

example in Section V.

II. NOTATIONS

For two distributions P,Q on some common alphabet

X , D(P‖Q) ,
∑

x P (x) log P (x)
Q(x) is the Kullback-Leibler

(KL) divergence between P and Q. We say P is absolutely

continuous with respect to (w.r.t.) Q, denoted by P ≪ Q,

if for all x ∈ X P (x) = 0 if Q(x) = 0. We denote

P⊗n the product distribution
∏n

ℓ=1 P on Xn. We also define

χ2(P‖Q) ,
∑

x
(P (x)−Q(x))2

Q(x) . The set of all distributions on

X is defined as PX . For any sequence x, we define p̂x as the

type of the sequence x.
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Fig. 1. Model for covert detection

III. PROBLEM FORMULATION AND MAIN RESULT

The problem of covert sequential hypothesis testing is

illustrated in Fig 1 and defined as follows. A legitimate party
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(Alice) and an adversary (Willie) are engaged in a sequential

hypothesis testing problem to estimate an unknown parameter

θ, which belongs to a known parameter set Θ. Let Y , Z be the

alphabets for Alice’s and Willie’s observations, respectively,

and U be the set of control inputs that Alice can use to

adapt her estimation. At any time k > 0, the observations

of Alice and Willie depend on the true hypothesis θ and the

control input uk ∈ U chosen by Alice. Specifically, yk ∈ Y
and zk ∈ Z are generated from the kernels puk

θ and quk

θ ,

respectively, and the action uk is generated from a closed

loop control policy PUk|Y k−1,Uk−1 . Therefore, for any n > 0,

the joint distribution PUnY nZn|θ of (yn, zn, un) under the

hypothesis θ is

PUnY nZn|θ(y
n, zn, un)

=
n∏

k=1

puk

θ (yk)q
uk

θ (zk)PUk|Y k−1,Uk−1(uk|yk−1, uk−1). (1)

We assume that i) the sets Y , Z , and U are finite; ii) there

exists a prior {πi}i∈Θ on the parameter θ known by both

Alice and Willie; iii) the kernel sets {puθ}u∈U and {quθ }u∈U
are known to both Alice and Willie; iv) the control sequence

uτ is unknown by Willie; and v) ∀θ 6= θ′ and ∀u ∈ U \ {0},

it holds that 0 < D(puθ‖puθ′) < ∞, and D(p0θ||p0θ′) = 0 for all

θ′ 6= θ.

Remark 1. We assume that D(puθ‖puθ′) is finite for u ∈ U \
{0} to avoid the trivial case in which the hypothesis can be

determined by a single action. In our problem setting, the null

action 0 refers to the situation in which Alice does not take

any effective action for estimating the hypothesis. Therefore,

to make the action 0 uninformative from the perspective of

identifying θ, we also assume that D(p0θ||p0θ′) for all θ′ 6= θ.

The sequential test σ = (φ, τ, δ) consists of the following

components: i) a control policy φ ,
{
PUk|Y k−1,Uk−1

}
k>1

that

allows Alice to generate action uk at time k according to the

distribution PUk|Y k−1,Uk−1 ; ii) a stopping rule τ that allows

Alice to stop the sequential estimation iii) a decision rule δ that

allows Alice and Bob to decide on a hypothesis when the test

stops. Let Pθ be the probability measure under the hypothesis

θ. We require that the tests satisfy the risk constraints
∑

θ′ 6=θ

πθ′Pθ′{δ(yτ ) = θ} < Rθ (2)

for all θ ∈ Θ, where {Rθ}θ∈Θ are predefined values. Alice’s

goal is to perform a sequential test to meet the risk constraints

in (2) while maintaining covertness with respect to Willie. The

covertness is measured in terms of divergence. Specifically, we

require that for all θ ∈ Θ and 0 < n < τ ,

lim
Rmax→0

Pθ

{
D(PZn|θ||(q0θ)⊗n) 6 η

}
= 1 (3)

for some predetermined value η > 0, where Rmax =
maxθ∈Θ Rθ. We say that the control policy converges al-

most surely to P ∗
U if for any u ∈ U the sequence

{PUk|Y k−1Uk−1(u)}k>1 converge almost surely to P ∗
U (u). We

define Σ(R, η) as the set of sequential tests that have almost

surely convergent control policies and satisfy the constraint

in (2) and (3), where R = (R0, ..., R|Θ|−1) is a vector of

risk constraints. We are interested in the exponent γθ which

is related to the test σ and is defined as

γθ(σ) = lim inf
Rmax→0

− logRθ√
Eθ(τ)

. (4)

Definition 1. We call the exponent γθ achievable if there exists

a test σ ∈ Σ(R, η) such that

γθ(σ) = lim inf
Rmax→0

− logRθ√
Eθ(τ)

> γθ. (5)

The optimal exponent γ∗
θ is the supremum of all achievable

exponent γθ, i.e.,

γ∗
θ = sup

σ∈Σ(R,η)

γθ(σ). (6)

Our main result characterizes the value of γ∗
θ .

Theorem 2. Let Θ be the set of parameters that are indistin-

guishable from another parameter by choosing the null action

0, i.e. p0θ = p0θ′ for all θ 6= θ′. For all θ ∈ Θ, we assume that no

distribution P̄ over U \ {0} is such that
∑

u 6=0 P̄ (u)quθ = q0θ .

Then, we have

γ∗
θ =

√
2ηmax

P̄

minθ′ 6=θ

∑
u 6=0 P̄ (u)D(puθ ||puθ′)√

χ2(
∑

u 6=0 P̄ (u)quθ ||q0θ)
. (7)

Remark 2. The assumption that
∑

u 6=0 P̄ (u)quθ 6= q0θ for all

P̄ ∈ PU\{0} is made to circumvent the special case in which

Alice can simulate the null action output distribution at Willie

by any distribution over U \ {0}.

Remark 3. We limit ourselves to analyze the best exponent

among all sequential tests that have almost surely convergent

strategies. This assumption allows us to characterize the time

averaged distribution of actions as well as the type of the

action sequence. Furthermore, this assumption is reasonable

because a good strategy is usually a function of the estimated

hypothesis [10], and Alice’s estimation of the true hypothesis

is increasingly accurate as the number of tests increases.

IV. PROOF OF MAIN RESULT

A. Achievability

We first specify the test σ we choose in the achievability

proof. For any P̄ ∈ PU\{0}, θ ∈ Θ and any fixed η > 0, we

define the function f(P̄ , θ) as

f(P̄ , θ) , min
θ′ 6=θ

√
2η

∑
u 6=0 P̄ (u)D(puθ ||puθ′)√

χ2(
∑

u 6=0 P̄ (u)quθ ||q0θ)
. (8)

Let θ̂k be the maximum likelihood estimate of the true

hypothesis θ at time k, and define P̄k as

P̄k = argmax
P̄∈PU\{0}

f(P̄ , θ̂k), (9)
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i.e., P̄k is the maximizing distribution of the function f with

the second parameter replaced by θ̂k. Then, the control policy

PUk|Xk−1,Uk−1 at time k is defined as

PUk|Xk−1,Uk−1(u) , Pk(u) =

{
1− αk if u = 0

αkP̄k(u) if u 6= 0,

where

αk =
2η

χ2(
∑

u 6=0 P̄k(u)qu
θ̂k
||q0

θ̂k
)

×
min

θ′ 6=θ̂k

∑
u 6=0 P̄k(u)D(pu

θ̂k
||puθ′)

| logR
θ̂k
| .

We define the generalized likelihood ratio Lθ(n) as

Lθ(n) =

∏n
k=1 p

Uk

θ (Yk)

maxθ′ 6=θ

∏n
k=1 p

Uk

θ′ (Yk)
, (10)

and the stopping time τ as

τ = min
θ∈Θ

inf{n : Lθ(n) > exp(bθ)}, (11)

where

bθ = log(1/Rθ) + log(|Θ| − 1) + max
θ∈Θ

πθ. (12)

Finally, the decision rule is defined as

δ(yτ ) = θ if Lθ(τ) = max
θ′∈Θ

Lθ′(τ). (13)

To evaluate the expected stopping time, we use Theorem 4.2

in [13], which states that if the averaged log likelihood ratio

(LLR) 1
n
Zθ,θ′(n) with Zθ,θ′(n) defined as

Zθ,θ′(n) =

n∑

k=1

log
pUk

θ (Yk)

pUk

θ′ (Yk)
(14)

converges 1-quickly [13] to a number Dθ,θ′ under the measure

Pθ, then Eθ(τ) = | logRθ|
minθ′ 6=θ Dθ,θ′

(1 + o(1)). Therefore, in the

following, we would like to show that 1
n
Zθ,θ′ converge 1-

quickly to
∑

u∈U P ∗
U (u)D(puθ ||puθ′), where

P ∗
U =

{
1− α∗ if u = 0

α∗P̄ ∗
U (u) if u 6= 0,

(15)

P̄ ∗
U = argmaxP̄∈PU\{0}

f(P̄ , θ), and

α∗ =
2η

χ2(
∑

u 6=0 P̄
∗
U (u)q

u
θ ||q0θ)

×
minθ′ 6=θ

∑
u 6=0 P̄

∗
U (u)D(puθ ||puθ′)

| logRθ|
.

To show 1-quickly convergence, we need to show that for any
ǫ > 0, Eθ[T (ǫ)] is bounded, where

T (ǫ) = sup

{

n :

∣∣∣∣∣Zθ,θ′(n)−
∑

u∈U

P
∗
U (u)D(puθ ||p

u
θ′)

∣∣∣∣∣ > nǫ

}

.

We can further define T1(ǫ1) and T2(ǫ2) as follows

T1(ǫ) = sup

{

n :

∣∣∣∣∣Zθ,θ′(n)−

n∑

k=1

∑

u∈U

Pk(u)D(puθ ||p
u
θ′)

∣∣∣∣∣ > nǫ1

}

T2(ǫ) = sup

{

n :

∣∣∣∣∣

n∑

k=1

∑

u∈U

(Pk(u)− P
∗
U (u))D(puθ ||p

u
θ′)

∣∣∣∣∣ > nǫ2

}

.

By the triangle inequality, it can be shown that T (ǫ) 6
max{T1(ǫ/2), T2(ǫ/2)}. Defining N as the time at which the

estimate of the hypothesis θ is correct for all n > N , then it

is known from [10, Eq. (63)] that P(N > n) 6 On(n
−c) for

any c > 0. Therefore, for some K > 0, we have

Pθ

{∣∣∣∣∣

n∑

k=1

∑

u∈U
(Pk(u)− P ∗

U (u))D(puθ ||puθ′)

∣∣∣∣∣ > nǫ/2

}

6 Pθ {NK > nǫ/2}
6 O(n−c). (16)

Similarly, one can reuse the argument in [14, Appendix] to

show that

Pθ

{∣∣∣∣∣Zθ,θ′(n)−
n∑

k=1

∑

u∈U
Pk(u)D(puθ ||puθ′)

∣∣∣∣∣ > nǫ/2

}
6 O(γn

1 )

(17)

for some γ1 < 1. Note that both
∑∞

n=1 O(n−c) and∑∞
n=1 O(γn

1 ) are finite when we choose c > 2, so Eθ {T (ǫ)}
is bounded, and we obtain from Theorem 4.2 in [13] that

Eθ(τ) =
| logRθ|

α∗ minθ′ 6=θ

∑
u 6=0 P̄

∗
U (u)D(puθ ||puθ′)

(1 + o(1))

=

(
| logRθ|

minθ′ 6=θ

∑
u 6=0 P̄

∗
U (u)D(puθ ||puθ′)

)2

×
χ2(
∑

u 6=0 P̄
∗
U (u)q

u
θ ||q0θ)

2η
(1 + oτ (1)).

Finally, we can lower bound the value of γθ(σ) by

γθ(σ) >
√
2η ×

minθ′ 6=θ

∑
u 6=0 P̄

∗
U (u)D(puθ ||puθ′)√

χ2(
∑

u 6=0 P̄
∗
U (u)q

u
θ ||q0θ)

=
√

2η max
P̄∈PU\{0}

minθ′ 6=θ

∑
u 6=0 P̄ (u)D(puθ ||puθ′)√

χ2(
∑

u 6=0 P̄ (u)quθ ||q0θ)
.

Next, we analyze the divergence between PZτ |θ and (q0θ)
⊗τ

under the test σ. By Jensen’s inequality and convexity of KL

divergence, we have

D(PZτ |θ||(q0θ)⊗τ ) 6 E
[
D(PZτ |θ,N ||(q0θ)⊗τ )

]
, (18)

where the expectation is taken over N . For each N , the term

D(PZτ |θ,N ||(q0θ)⊗τ ) can be expressed as

D(PZτ |θ,N ||(q0θ)⊗τ )

=
N∑

k=1

D(
∑

u

Pk(u)q
u
θ ||q0θ) +

τ∑

k=N+1

D(
∑

u

P ∗(u)quθ ||q0θ)

6 Nλ+ (τ −N)D(
∑

u

P ∗(u)quθ ||q0θ),

for some λ > 0. Then,

E
[
D(PZτ |θ||(q0θ)⊗τ )

]
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6 τ

(
(α∗)2

2
χ2(
∑

u

P ∗(u)quθ ||q0θ) + oτ ((α
∗)2)

)
+ oτ (1)

by [2, Eq. (13)] and the fact that Eθ[N ] = oτ (1). Note

that it can be shown that τ concentrates around Eθ[τ ] with

high probability because the stopping rule only depends on

the likelihood ratio, and (16) and (17) imply that 1
n
Zθ,θ′(n)

converges in probability to P ∗
U (u)D(puθ ||puθ′) for any θ′ 6= θ.

Therefore, for any ξ > 0, with probability at least 1 − ξ it

holds that

τ 6 (1 + ξ)

(
| logRθ|

minθ′ 6=θ

∑
u 6=0 P̄

∗(u)D(puθ ||puθ′)

)2

×
χ2(
∑

u 6=0 P̄
∗(u)quθ ||q0θ)

2η
(19)

when | logRθ| is large enough. By plugging in the definition

of α∗ and upper bounding the value of τ by (19), it holds with

probability at least 1− ξ that

E
[
D(PZτ |θ||(q0θ)⊗τ )

]
6 (1 + ξ)η(1 + oτ (1)). (20)

Since ξ > 0 can be arbitrary small, we have shown that

D(PZτ |θ||(q0θ)τ ) 6 η (21)

with probability 1 when Rθ → 0. Furthermore, it is known that

risk constraints in (2) are satisfied when the stopping rule is

defined as (11) by Lemma 3 of [14]. Therefore, σ ∈ Σ(R, η),
and

γ∗
θ >

√
2η max

P̄∈PU\{0}

minθ′ 6=θ

∑
u 6=0 P̄ (u)D(puθ ||puθ′)√

χ2(
∑

u 6=0 P̄ (u)quθ ||q0θ)
. (22)

B. Converse

Let the action Uk be generated from some policy
PUk|Xk−1Uk−1 . From the assumption, we know that for any

u ∈ U , PUk|Xk−1Uk−1(u|Xk−1, Uk−1) converge almost surely
to some P ∗

U (u). Therefore, the number of indices k such that
PUk|Xk−1Uk−1(u|Xk−1, Uk−1) 6= P ∗

U (u) for some u ∈ U is
finite. Define the set K as

K , {k ∈ N : PUk|X
k−1Uk−1(u|X

k−1
, U

k−1) = P
∗
U (u) ∀u ∈ U}.

With probability 1, it holds that |N \ K| is finite. Then, for

all k ∈ K, Uk is generated identically and independently from

P ∗
U . Defining the log likelihood ratio Zθ,θ′ as

Zθ,θ′(n) =
n∑

k=1

log
pUk

θ (Yk)

pUk

θ′ (Yk)
, (23)

then the following lemma from [10] relates the log likelihood

ratio Zθ,θ′ and the risk constraints {Rθ}θ∈Θ.

Lemma 3. For all sequential tests σ ∈ Σ(R, η), we have

lim
Rmax→0

inf
σ∈Σ(R,η)

Pθ {Zθ,θ′(τ) > ρ| logRθ|} = 1 (24)

for all θ′ 6= θ and 0 < ρ < 1.

By Azuma’s inequality, we have for any ǫ > 0 and any

σ ∈ Σ(R, η) that

lim
Rmax→0

Pθ

{
Zθ,θ′(τ) >

τ∑

k=1

D(pUk

θ ||pUk

θ′ )(1 + ǫ)

}
= 0. (25)

Combining (25) and Lemma 3, we have

lim
Rmax→0

inf
σ∈Σ(R,η)

Pθ

{
τ∑

k=1

D(p
Uk

θ ||p
Uk

θ′
)(1 + ǫ) > ρ| logRθ|

}

= 1

for all θ′ 6= θ and 0 < ρ < 1. Defining ρ′ = ρ
1+ǫ

, we have for

all ǫ′ > 0

lim
Rmax→0

Pθ

{
τ∑

k=1

D(p
Uk

θ ||p
Uk

θ′
) > ρ

′| logRθ|

}

= lim
Rmax→0

Pθ

{
τ∑

k=1

D(p
Uk

θ ||p
Uk

θ′
) > ρ

′| logRθ|,

|p̂u(u)− P
∗
U (u)| 6 P

∗
U (u)ǫ

′
for all u ∈ U

}

+ lim
Rmax→0

Pθ

{
τ∑

k=1

D(p
Uk

θ ||p
Uk

θ′
) > ρ

′| logRθ|,

|p̂u(u)− P
∗
U (u)| > P

∗
U (u)ǫ

′
for some u ∈ U

}

. (26)

The first term of (26) can be upper bounded by

lim
Rmax→0

Pθ

{

τ
∑

u

p̂u(u)D(puθ ||p
u
θ′) > ρ

′| logRθ|,

|p̂u(u)− P
∗
U (u)| 6 P

∗
U (u)ǫ

′
for all u ∈ U

}

6 lim
Rmax→0

Pθ

{

τ
∑

u

P
∗
U (u)(1 + ǫ

′)D(puθ ||p
u
θ′) > ρ

′| logRθ|

}

= lim
Rmax→0

Pθ

{

τ
∑

u

P
∗
U (u)D(puθ ||p

u
θ′) >

ρ′

1 + ǫ′
| logRθ|

}

,

while the second term of (26) can be upper bounded by

lim
Rmax→0

Pθ

{
|p̂u(u)− P

∗
U (u)| > P

∗
U (u)ǫ

′
for some u ∈ U

}

6 lim
Rmax→0

∑

u∈U

Pθ

{∣∣∣∣∣
1

τ

τ∑

k=1

1(Uk = u)− P
∗
U (u)

∣∣∣∣∣ > P
∗
U (u)ǫ

′

}

6 lim
Rmax→0

∑

u∈U

Pθ

{∣∣∣∣∣∣
1

τ

∑

k∈K∩[τ ]

1(Uk = u)−
τ − |Kc ∩ [τ ]|

τ
P

∗
U (u)

∣∣∣∣∣∣

> P
∗
U (u)ǫ

′ −
|Kc ∩ [τ ]|

τ
P

∗
U (u)−

|Kc ∩ [τ ]|

τ

}

= 0

by the Chernoff bound and the fact that |Kc| is finite with

probability 1. Therefore, we have for any σ ∈ Σ(R, η), it

holds that

lim
Rmax→0

Pθ

{
τ min

θ′ 6=θ

∑

u

P ∗
U (u)D(puθ ||puθ′) >

ρ′

1 + ǫ′
| logRθ|

}
= 1,
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and

lim
Rmax→0

Pθ

{
τ >

ρ′

1 + ǫ′
| logRθ|

minθ′ 6=θ

∑
u P

∗
U (u)D(puθ ||puθ′)

}
= 1

for any ǫ′ > 0 and 0 < ρ′ < 1. For any n > 0, we define the

time averaged distribution of actions as follows

P̄n(u) =
1

n

n∑

k=1

PUk|Y k−1Uk−1(u)

α(P̄n) = 1− P̄n(0)

P̃n(u) =

{
P̄n(u)
α(P̄n)

u 6= 0

0 u = 0.

Since the policy PUk|Y k−1Uk−1(u) converge almost surely to

P ∗
U (u) for all u, we have

lim
n→∞

P̄n(u) = lim
n→∞

1

n

n∑

k=1

PUk|Y k−1Uk−1(u) = P ∗
U (u).

By [4], the covertness requirement implies that

η > D(PZn|θ||(q0θ)⊗n) > nD(P̄Z|θ||q0θ)

for all n 6 τ with probability 1 when τ → ∞, where

P̄Z|θ(z) =
1

n

n∑

k=1

PZi|θ(z)

=
1

n

n∑

k=1

∑

u

PUk|Y k−1Uk−1(u)quθ (z)

=
∑

u

P̄n(u)q
u
θ (z).

Let n = ρ′

1+ǫ′
| logRθ|

minθ′ 6=θ

∑
u
P∗

U
(u)D(pu

θ
||pu

θ′
) , then for Rθ small

enough we have

η >
ρ′

1 + ǫ′
| logRθ|

minθ′ 6=θ

∑
u P ∗

U (u)D(puθ ||p
u
θ′
)
D(

∑

u

P̄n(u)q
u
θ ||q

0
θ)

>
ρ′

1 + ǫ′
| logRθ|

α(P ∗
U )minθ′ 6=θ

∑
u 6=0 P̃

∗
U (u)D(puθ ||p

u
θ′
)

×



α(P ∗
U )

2

2
χ2




∑

u 6=0

P̃
∗
U (u)q

u
θ

∣∣∣∣∣∣

∣∣∣∣∣∣
q
0
θ



+ o(α(P ∗
U )

2)



 .

Therefore,

α(P̄n) 6
1 + ǫ′

ρ′
minθ′ 6=θ

∑
u 6=0 P̃

∗
U (u)D(puθ ||puθ′)

| logRθ|
× 2η

χ2

(∑
u 6=0 P̃

∗
U (u)q

u
θ

∣∣∣
∣∣∣q0θ
) (1 + o(1)).

Then,

Eθ[τ ] >

(
| logRθ|

minθ′ 6=θ

∑
u 6=0 P̃

∗
U (u)D(puθ ||puθ′)

)2

×
χ2

(∑
u 6=0 P̃

∗
U (u)q

u
θ

∣∣∣
∣∣∣q0θ
)

2η
(1 + o(1)).

Taking the infimum over all possible P̃ ∗
U , we have

Eθ[τ ] > inf
P̃∗

U
∈PU\{0}

(
| logRθ|

minθ′ 6=θ

∑
u 6=0 P̃

∗
U (u)D(puθ ||puθ′)

)2

×
χ2

(∑
u 6=0 P̃

∗
U (u)q

u
θ

∣∣∣
∣∣∣q0θ
)

2η
(1 + o(1))

Finally,

γ∗
θ 6

√
2η sup

P̃∗
U
∈PU\{0}

minθ′ 6=θ

∑
u 6=0 P̃

∗
U (u)D(puθ ||puθ′)√

χ2

(∑
u 6=0 P̃

∗
U (u)q

u
θ

∣∣∣
∣∣∣q0θ
) .

V. NUMERICAL EXAMPLE

In this section, we provide an example to illustrate how the

covertness constraint can influence the policy for a fixed η > 0.

This example is modified from [10] and [5]. Let Θ = {0, 1, 2},

U = {0, a, b, c}, and Y = Z = {0, 1}. We further assume that

the true hypothesis is θ = 0. The kernels {puθ} are given in

Table I, and the kernels {quθ } for the first and second scenarios

are given in Table II and Table III, respectively. In the first

scenario, γ∗
θ = 0.0293

√
η and the optimal control policy is

P ∗
U (u) = 1(u = a). Note that in the first scenario, choosing

either action a, b, or c is the same from the perspective of

covertness because qu0 = 0.4 for all u ∈ U \ {0}. Besides,

there exists a θ′ 6= θ that is indistinguishable from θ when

choosing the action b or c. Therefore, it is not surprise that the

optimal strategy in the first scenario is 1(u = a). However, in

the second scenario, γ∗
θ = 0.0146

√
η, and the optimal control

policy becomes P ∗
U (u) = 0.5 × 1(u = b) + 0.5 × 1(u = c).

Note that, in this scenario, the difference between the kernels

q00 and qa0 is much larger than the one between q00 and qb0
or qc0. Therefore, the covertness constraint compromises the

benefit of choosing the action a, leading to a different optimal

strategy.

TABLE I
pu
θ
(1) FOR ALL u AND θ

θ

u
0 a b c

0 0.1 0.4 0.6 0.6

1 0.1 0.6 0.4 0.6

2 0.1 0.6 0.6 0.4

TABLE II
qu
θ
(1) FOR ALL u AND θ = 0 IN SCENARIO 1

θ

u
0 a b c

0 0.01 0.4 0.4 0.4

TABLE III
qu
θ
(1) FOR ALL u AND θ = 0 IN SCENARIO 2

θ

u
0 a b c

0 0.01 0.9 0.4 0.4
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