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Abstract—We consider the problem of covert sequential testing,
in which a legitimate party attempts to run a sequential test while
escaping detection from an adversary. Specifically, the legitimate
party’s decisions should meet prescribed risk constraints and,
simultaneously, the adversary’s observations induced by the test
should remain indistinguishable from the observations obtained
in the absence of a test. Our main result is the characterization of
the risk exponent -y, which captures the asymptotic exponential
decrease of the risk with the square-root of the averaged stopping
time in the limit of low risk. An example is provided to
illustrate how the covertness constraint influences the design of
the sequential test.

I. INTRODUCTION

The problem of ensuring covertness, or low probability of
detection, has attracted significant attention in the context
of communication systems [1]-[S]. A square root low has
been established, which requires the transmitted codewords to
have weight scaling as the square root of the blocklength to
maintain covertness. A similar law has also been established
for covert sensing [6], [7], which refers to a scenario in which
the estimation of parameters of interest requires the use of
probing signals that emit energy and are therefore detectable.
Specifically, [6], [7] have considered the problem of estimating
an unknown phase while keeping the sensing undetectable by
a passive quantum adversary. This operation is made possible
by the presence of thermal noise, which allows one to hide
the useful sensing signal in the background thermal noise
and results in a mean-square phase estimation error scaling
as O( f) if n is the number of modes.

In contrast to conventional hypothesis testing, active hy-
pothesis testing, also known as controlled sensing, adap-
tively selects the kernel through which unknown parameters
are observed. The estimation can adapt to the observations,
resulting in a potentially faster strategy than non-adaptive
ones. Motivated by recent progress in this area [8]-[10], the
problem of covert active sensing has been analyzed [5], [11],
characterizing the exponent of the probability of detection
error subject to the covertness constraint with non-sequential
and non-adaptive tests and showing the superiority of adaptive
(but still non-sequential) strategies

In the present work, we formulate the problem of covert
sequential testing, in which the objective is to carry out a
sequential test that meets certain risk constraints while keeping
the existence of the test undetectable by the adversary at any
time before the sequential test stops. This problem formulation
is inspired by applications in which the adversary has the
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ability to hinder the estimation if the existence of a test is
detected. In contrast to [5], our work allows the strategy
to be adaptive and sequential. Our main contribution is to
characterize the ratio of the risk exponent to the square root
of the expected number of tests in the limit of low risk.
Conceptually related to the present work, [12] analyzes the
covert communication problem under the setting in which the
adversary does not know when the communication starts and
uses specific sequential tests to determine the existence of
the communication in real-time. An optimization problem is
then formulated and a transmission scheme that maximizes the
total amount of information under the covertness constraint
is proposed. This approach differs from ours in that the
sequential test is a constraint placed on the type of detectors
deployed by adversary, while our model allows the adversary
to deploy its optimal testing strategy.

The rest of the paper is organized as follows. After defining
some notation in Section II, we formulate the problem and
state the main results in Section III. We detail the proofs of
the main results in Section IV. Finally, we provide a numerical
example in Section V.

II. NOTATIONS

For two distributions P,() on some common alphabet
X, D(P|Q) & ¥, P(x)log 5% is the Kullback-Leibler
(KL) divergence between P and . We say P is absolutely
continuous with respect to (w.r.t.) Q, denoted by P < @,
if for all z € X P(z) = 0 if Q(z) = 0. We denote
P®" the product distribution [],_, P on X™. We also define
(PlQ) £, (P(I)Q& The set of all distributions on
X is defined as Py. For any sequence x, we define py as the
type of the sequence x.

Fig. 1. Model for covert detection

III. PROBLEM FORMULATION AND MAIN RESULT

The problem of covert sequential hypothesis testing is
illustrated in Fig 1 and defined as follows. A legitimate party
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(Alice) and an adversary (Willie) are engaged in a sequential
hypothesis testing problem to estimate an unknown parameter
6, which belongs to a known parameter set ©. Let ), Z be the
alphabets for Alice’s and Willie’s observations, respectively,
and U be the set of control inputs that Alice can use to
adapt her estimation. At any time k > 0, the observations
of Alice and Willie depend on the true hypothesis 6 and the
control input u; € U chosen by Alice. Specifically, y, € Y
and 2z, € Z are generated from the kernels py* and g¢,*,
respectively, and the action uy is generated from a closed
loop control policy Py, |y -1 yx—1. Therefore, for any n > 0,
the joint distribution Pynynznjg of (y™, 2", u") under the
hypothesis 6 is

Pynynznjo(y"™, 2", u")

kfl).

= ] pb* (i) as™ (z) oy s om1 (ugly* ' u 1)
k=1

We assume that i) the sets ), Z, and U are finite; ii) there
exists a prior {7;};co on the parameter 6 known by both
Alice and Willie; iii) the kernel sets {pj},,, and {gy'},
are known to both Alice and Willie; iv) the control sequence
u” is unknown by Willie; and v) V6 # ¢’ and Vu € U \ {0},
it holds that 0 < D(p¥||py,) < oo, and D(py||py,) = 0 for all
0" £6.

Remark 1. We assume that D(py||py.) is finite for u € U \
{0} to avoid the trivial case in which the hypothesis can be
determined by a single action. In our problem setting, the null
action O refers to the situation in which Alice does not take
any effective action for estimating the hypothesis. Therefore,
to make the action 0 uninformative from the perspective of
identifying 0, we also assume that D(p})||p3,) for all 6’ # 6.

The sequential test 0 = (¢, 7,0) consists of the following
components: i) a control policy ¢ = { Py, jyx-1 yr-1},, that
allows Alice to generate action uy at time k according/to the
distribution Py, |yx-1 rr-1; ii) @ stopping rule T that allows
Alice to stop the sequential estimation iii) a decision rule ¢ that
allows Alice and Bob to decide on a hypothesis when the test
stops. Let Py be the probability measure under the hypothesis
0. We require that the tests satisfy the risk constraints

Z 7T9/]P)9/{(5(y7—) = 9} < Ry
0'£0

2

for all § € ©, where {Ry}oco are predefined values. Alice’s
goal is to perform a sequential test to meet the risk constraints
in (2) while maintaining covertness with respect to Willie. The
covertness is measured in terms of divergence. Specifically, we
require that for all # € © and 0 < n < T,

lim Py {D(Pznpoll(d)*") <n} =1 3)
for some predetermined value 1 > 0, where Ry =
maxgeo Rg. We say that the control policy converges al-
most surely to P if for any u € U the sequence
{ Py, |yr-1ux-1(u)}r>1 converge almost surely to Ppr(u). We
define (R, n) as the set of sequential tests that have almost

surely convergent control policies and satisfy the constraint
in (2) and (3), where R = (R, ..., Rjg|—1) is a vector of
risk constraints. We are interested in the exponent vy which
is related to the test o and is defined as
—log Ry
Eq(7)

Definition 1. We call the exponent g achievable if there exists
a test o € X(R,n) such that

“4)

it
Yo(0) hirn inf

- log Ry
Eo(7)

The optimal exponent ; is the supremum of all achievable
exponent vy, i.e.,

Z 70 (5)

it
(@) = i

sup  v9(0). (6)

c€X(R,n)

Yo =

Our main result characterizes the value of ;.

Theorem 2. Let © be the set of parameters that are indistin-
guishable from another parameter by choosing the null action
0, ie p) = pg, forall® # 6. Forall 6 € ©, we assume that no
distribution P over U \ {0} is such that 3, P(u)qy = qp-
Then, we have

ming ¢ Zu;ﬁo ( )D (Peref)‘

\/X2 u;éO

Remark 2. The assumption that 3, P(u)qy # qY for all
Pe Pufoy is made to circumvent the special case in which
Alice can simulate the null action output distribution at Willie
by any distribution over U \ {0}.

Yo =+/2n max @)

(w)ggllq9)

Remark 3. We limit ourselves to analyze the best exponent
among all sequential tests that have almost surely convergent
strategies. This assumption allows us to characterize the time
averaged distribution of actions as well as the type of the
action sequence. Furthermore, this assumption is reasonable
because a good strategy is usually a function of the estimated
hypothesis [10], and Alice’s estimation of the true hypothesis
is increasingly accurate as the number of tests increases.

IV. PROOF OF MAIN RESULT
A. Achievability

We first specify the test 0 we choose in the achievability
proof. For any P € Py (0}, 0 € © and any fixed n > 0, we
define the function f(P,6) as

\/ x2 (X
Let ék be the maximum likelih09d estimate of the true
hypothesis 6 at time k, and define Py as

(Pe | |P0/)
||CI9)

2o Plu )

®)
u;éO )

P, = argmax f(ﬁ,gk),
PePy 1oy

9
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ie., P, is the maximizing distribulion of the function f with
the second parameter replaced by . Then, the control policy
Py, xr-1,yr-1 at time k is defined as

A l—ap ifu=0
Fonrsons () = Prlw) = {Oékpk(u) if u#0,
where
_ 21
M T (T Pl 163
ming, g > y0 Pk(“)D(P};‘k |lpg:)

|log ng \
We define the generalized likelihood ratio Lg(n) as
HZ:1 Pg " (Yy)

Ly(n) = - , (10)
maxrzo [Ti_y P (V)
and the stopping time 7 as
T = gréi(ralinf{n : Ly(n) > exp(bg)}, (11)
where
be = log(1/Ry) +log(|©] — 1) + max 7. (12)
Finally, the decision rule is defined as
0(y") =0 if Le(r)= Iérllé%é(Lg/(T). (13)

To evaluate the expected stopping time, we use Theorem 4.2
in [13], which states that if the averaged log likelihood ratio
(LLR) £ Zj 9:(n) with Zy g/ (n) defined as

=3 log

k=1 pe/ )

converges 1-quickly [13] to a number Dy ¢/ under the measure
Py, then Ey(r) = —11287%L (1 4 o(1)). Therefore, in the

ming/ .o Dy g/
following, we would hke to show that *Z.g ¢/ converge 1-
quickly to >~ o, Py (u)D(pg||pg)). where

. l—a* ifu=0
PU == — .
a*Ph(u) if uw#0,

Pj = argmaxpep,, . f(P,0), and

Zg o ( (14)

15)

. _ 21
X2 (X0 P (w)gyl4))
« ming: £ Zu;ﬁO Py (u)D (ngp’é/)'
|10gR9|

To show 1-quickly convergence, we need to show that for any
€ >0, Eg[T'(¢)] is bounded, where
= ne} .

-2 Fiu
We can further define T (e1) and Th(e2) as follows
ney }

(07

Zg, o ( D(pgllpe)| =

T(e) = sup {

-3 A

k=1lucl

Zg, o ( D(psllpy:)| >

T1(e) = sup {

> Y () - i)

k=1uel

(péllper)| =

T>(€) = sup { nez}

By the triangle inequality, it can be shown that T'(e¢) <
max{T1(e/2),Tz(e/2)}. Defining N as the time at which the
estimate of the hypothesis 6 is correct for all n > N, then it
is known from [10, Eq. (63)] that P(N > n) < O, (n~°) for
any ¢ > 0. Therefore, for some K > 0, we have

Py { >N (Pu(w) — Py (u)D > ne/Q}

k=1uel
<Py {NK > ne/2)
<O(n™). (16)

(pg1lper)

Similarly, one can reuse the argument in [14, Appendix] to
show that

w0 {00 - 3°3 Pt > efz) < 000
k=1ueld

a7

for some 71 < 1. Note that both Y~ O(n~¢) and

Y02 1 O(n7) are finite when we choose ¢ > 2, so Eg {T'(¢)}
is bounded, and we obtain from Theorem 4.2 in [13] that

| log Ry|
o ming g 32,0 P (u) D(pglpg:)
2
_ | log Ry
ming 2o Y, 20 Prr(w) D (g |pg:)

X2(2u7$0 P (u)gglag)

x d (1)
n
Finally, we can lower bound the value of vy (o) by

Yo(o) = /21 x

]EQ(T) =

(1+0(1))

(1+ o,

ming £ 3, 20 Py (uw)D(pyllpg)
VX0 P ()5 1df)

ming g Zu;ﬁo P(u)D(py||py)

PePuyn g0y \/Xz(zu;éo P(u |

Next, we analyze the divergence between Py-jo and (gg)®™
under the test 0. By Jensen’s inequality and convexity of KL
divergence, we have

D(Py-16l|(49)®") < E [D(Pzrjo,n(d5)*7)] |

where the expectation is taken over N. For each N, the term
D(Py+19,n]|(q9)®7) can be expressed as

D(PZT|0 NI
= ZD Zpk )aglag) +
DO P

Jagllag)

(18)

> DY

k=N+1 u

Q0 ||QO

q9||q9
<NA+(r—=N

for some A > 0. Then,
E [D(Pzweﬂ(qg)w)]
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(%

by [2, Eq. (13)] and the fact that E4[N] = o,(1). Note
that it can be shown that 7 concentrates around Eg[7] with
high probability because the stopping rule only depends on
the likelihood ratio, and (16) and (17) imply that %Z@ﬁl (n)
converges in probability to P (u)D(py||py,) for any 6" # 6.
Therefore, for any & > 0, with probability at least 1 — £ it
holds that

2
| log Ry|
T g (1 + 5) . D U
(mlne/;se >uzo P*(w)D(pypg)
« X2(Zu¢0 P*(u)qg]lgp)
2n

when |log Ryl is large enough. By plugging in the definition
of o™ and upper bounding the value of 7 by (19), it holds with
probability at least 1 — £ that

1)) < (14 &n(1+ o, (1)).

Since £ > 0 can be arbitrary small, we have shown that

D(PZT\GH(QQ)T) <N

with probability 1 when Ry — 0. Furthermore, it is known that
risk constraints in (2) are satisfied when the stopping rule is
defined as (11) by Lemma 3 of [14]. Therefore, 0 € X(R, 1),
and

X2 ZP* g ldy) + o-((a”) )) +o-(1)

19)

E [D(Pz-0l/(q5) (20)

2L

mingr29 3, P( )D

\/ X2(2uzo P
B. Converse

Let the action Uy be generated from some policy
Py, |xr-1pr-1. From the assumption, we know that for any
w €U, Py, xr—1pr-1 (u|X*~1 UF1) converge almost surely
to some P5(u). Therefore, the number of indices & such that
Py, xci-1ge—1 (u| XL URY) £ P (u) for some u € U is
finite. Define the set K as

(rg|lpg:)
(w)gylag)

Yo = /21 _ max (22)

PGP(/{\{O}

K2 {keN: Py xe1pr1(uX* U = Pi(u) YueU}

With probability 1, it holds that |N \ K| is finite. Then, for
all k € K, Uy, is generated identically and independently from
Pp;. Defining the log likelihood ratio Zy ¢/ as

n

Zg’g/ ('I’L) = Z IOg

k=1

Py~ (V)
pe, (Yk:)

then the following lemma from [10] relates the log likelihood
ratio Zy ¢ and the risk constraints {Rg}gco.

(23)

Lemma 3. For all sequential tests 0 € L(R,

Pg{Zgo (1) >

n), we have

lim inf

log Ryl} =1
R0 o3 (Rom) p|log Rol}

(24)

Jorall & #£0 and 0 < p < 1.

By Azuma’s inequality, we have for any ¢ > 0 and any
o € (R, n) that

T

lim Py {Zgﬁ, (1) >
RH!QXHO k:l

D(py*||pgr) (1 + e)} =0. (25

Combining (25) and Lemma 3, we have

i o PO A0 0> s} <

for all 0 # ¢ and 0 < p < 1. Defining p' = £, we have for
all € >0

i, e {ZD 0" P p'logReI}

- R,E?LOP‘){ 2 D(pg*[lpy*) > p'|1og R,

|Du(u) — P (u)] < Pj(u)e for all u € Z/I}

+ lim PQ{ZD ’“||p > p'|log Ry,

Rinax—0
|Pu(uw) — P (u)| > Pj(u)€ for some u € L{}. (26)
The first term of (26) can be upper bounded by

Rmax—0

lim Pe{TZpu(u (pé1lpsr) = p'|log Rel,
|Pu(u) — Pir(u)| < P(u)e for all u € L{}

< lim PQ{TZPU )(14¢€) (pg”pg/)}p/“ogRe}

Rmax—0

—Rl}lggom{rZPU D(ps |lps) > 1+,|logRe}

while the second term of (26) can be upper bounded by

P (u)| > P (u)e’ for some u € U}

> Pﬁ(u)e'}

lim ]P’g{|pll u) —

max
P, {
ueU

< lim
Rmax—0

LUk = ) - P3(u)

. 1 T—IKN[7]]
< = =u)-————
<dm S [F 3 0= Ty

ueU kexn(r]
K

- Py o)

by the Chernoff bound and the fact that |K¢| is finite with
probability 1. Therefore, we have for any o € %(R,7n), it
holds that

li P P :
B 30 Q{Tmmz v (u)D(pg|pg) = 1+ ,\ ogReI}

=0
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and

) P |log Ry| }

lim P =1
R0 * { ~ 1+ ¢ ming 29 Y, P (u)D(pylipg)

for any ¢ > 0 and 0 < p’ < 1. For any n > 0, we define the
time averaged distribution of actions as follows

1 n
= ZPUklyk,—lUk—l(u)
k=1
a(P,) =1- P,(0)

Pn(“)
By = {airy M7Y
0 u = 0.

Since the policy Py, |yr-1pk-1 (u) converge almost surely to
Py (u) for all u, we have

lim P,(u) = lim fZPUk‘Yk et (u) =

n— 00 n—oo N
k=1

Py (u).

By [4], the covertness requirement implies that
> D(Pzn10l(g9)®™) = nD(Pzllqg9)

for all n < 7 with probability 1 when 7 — oo, where

pZ\H(Z) = %ZPZ,;\G(Z)

*ZZPU;Q\Y’@ ye-1(u)gg (2)
:ZP

‘10gRe\
5 (W) DRI, )” then for Ry small

/
Let n = 1+5 mms/#ez
enough we have

/
P | log Ro|
> - P,
nz 1 + e m1n0l¢0 Zu P[j( ) pe Hpg zu: QG H(ZQ
0 | log Ro|

> - =
1+¢ a(Pf}) ming ¢ Zu#) P (u)D(py||py,)

X ( (ZPU u)qy q9> +0(0¢(PI§)2)> .
u#0

Therefore,
_ 1 + ¢ ming u P (uw)D(p||pY,
a(B,) < +,€ > #£0 0 (w)D(pglpg:)
P | log Ryl
2
x ml (1+ o(1)).
¥ (s P (w)a a5
Then,

2

log R
EQ[TD( . e )
ming ¢ Y, 0 iy (w) D (g |pg,)
xe (Zupo P (w)ag][a) X

X o (

+0o(1)).

Taking the infimum over all possible ]3,}, we have

2
1
Eolr] > _ inf ( . [log Rl , )
P €Puyfoy \ 11Ne 0 Zu;ﬁo Py (u)D(pg||pg:)
X2 (Ewso Py (u)gy ‘ ‘qa)
X 20 (1+o0(1))

Finally,

Yo < /27 sup -
P ePu {0y \/X2 (Zu?ﬁoP (w)qy

V. NUMERICAL EXAMPLE

ming ¢ Eu;ﬂ) f’[} (u)D(pg|Ipg:)
)

In this section, we provide an example to illustrate how the
covertness constraint can influence the policy for a fixed n > 0.
This example is modified from [10] and [5]. Let © = {0, 1, 2},

={0,a,b,c}, and Y = Z = {0,1}. We further assume that
the true hypothesis is & = 0. The kernels {pj} are given in
Table I, and the kernels {gj } for the first and second scenarios
are given in Table II and Table III, respectively. In the first
scenario, 75 = 0.0293,/7 and the optimal control policy is
Pj(u) = 1(u = a). Note that in the first scenario, choosing
either action a, b, or c¢ is the same from the perspective of
covertness because g = 0.4 for all w € U \ {0}. Besides,
there exists a 6§’ # 6 that is indistinguishable from 6 when
choosing the action b or c. Therefore, it is not surprise that the
optimal strategy in the first scenario is 1(u = a). However, in
the second scenario, vy, = 0.0146\[ , and the optimal control
policy becomes Pjy(u) = 0.5 x 1(u = b) + 0.5 x 1(u = ¢).
Note that, in this scenario, the difference between the kernels
g9 and ¢¢ is much larger than the one between ¢J and ¢}
or gi. Therefore, the covertness constraint compromises the
benefit of choosing the action a, leading to a different optimal
strategy.

TABLE 1
Py (1) FOR ALL u AND 6

0 v 0 a b c
0 0.1 | 04 | 06 | 0.6
1 0.1 | 06 | 04 | 0.6
2 0.1 [ 06 | 06 | 04

TABLE II
g (1) FOR ALL u AND @ = 0 IN SCENARIO 1

v 0 a b c

0 001 | 04 | 04 | 04

TABLE III
gy (1) FOR ALL u AND @ = 0 IN SCENARIO 2

u

0 001 | 09 | 04 | 04
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