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Abstract—This tutorial reviews fundamental contributions to
information security. An integrative viewpoint is taken that
explains the security metrics, including secrecy, privacy, and oth-
ers, the methodology of information-theoretic approaches, along
with the arising system design principles, as well as techniques
that enable the information-theoretic designs to be applied in
real communication and computing systems. The tutorial, while
summarizing these contributions, argues for the simultaneous
pivotal role of fundamental limits and coding techniques for
secure communication system design.
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I. INTRODUCTION

I
NFORMATION security, a broad umbrella term that

includes attributes including secrecy, privacy, and trust, has

arguably become as important as information reliability in

system design, especially so, as society at large conducts most

operations virtually and as future generations of applications

and devices emerge that amalgamates communication, sens-

ing, computing, and control. In current systems, information
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security is largely treated as an addition to the network opera-

tions rather than a foundational design constraint at the outset.

Consequently, securing information that flows over networked

systems is largely guaranteed by higher network layer protocols.

While this layered approach has had undeniable success,

future and emerging systems exhibit unique characteristics

that challenge this prevalent view of security. The deployment

of 5G, the advent of the IoT, the current and upcoming cyber-

physical autonomous systems, and the envisioned all connected

6G world have all exacerbated the concerns for security and

privacy in communication networks. In the next decade and

beyond, tens of billions of devices are expected to be collect-

ing and transmitting data over networks. The heterogeneity

of these devices in terms of resources and capabilities, e.g.,

battery power, computational power, communication and stor-

age capabilities, renders the approach to date of relying solely

on computational approaches for security, e.g., cryptographic

solutions, difficult. For example, networks with energy and

computational power-limited IoT devices would benefit from

lightweight security mechanisms that do not incur the over-

head of traditional public-key infrastructures. Similarly, the

stringent performance constraints of cyber-physical systems

make increasingly apparent that security cannot be handled

independently of other parameters, such as power consump-

tion and latency, leading to unavoidable application dependent

trade-offs. Cyber-physical systems would then benefit from

bringing security closer to control in order to reduce overhead

and latency in operation. Finally, all future massively con-

nected systems would benefit from security mechanisms built

into their foundation, e.g., to avoid the costly software updates

required when new more powerful attacks emerge as a result of

increasing computing power. Noting information security and

privacy has a much larger domain of interest and impact, this

tutorial focuses on communications as an exemplar to highlight

recent advances in information-theoretic security.

Information-theoretic security [1], [2] aims at providing solu-

tions to the aforementioned challenges, by offering a framework

in which the security of information flows can be measured with

quantitative information-theoretic metrics and enforced using a

combination of signaling and coding mechanisms at the lower

layers of the communication protocols. At its core, information-

theoretic security embraces the observation structures inherent

to communication systems. Specifically, acknowledging that

legitimate users and adversaries obtain distinct signals through

noisy and lossy channels, the asymmetry is harnessed through

signal processing and coding mechanisms to control information
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flows and information leakage. This tutorial provides a com-

prehensive review of information-theoretic security from the

foundational concepts to the advances of the past two decades.

Moreover, the tutorial seeks to highlight three crucial aspects

of information-theoretic security that justify its relevance for

securing information systems.

First, the tutorial makes the case that information-theoretic

secrecy and privacy metrics have well-grounded crypto-

graphic properties (Section II). Information-theoretic security

metrics have naturally started out by measuring and con-

trolling the mutual information rate. In recent years, how-

ever, information-theoretic security and privacy metrics have

evolved significantly and are now defined in a much more

principled way from a cryptographic perspective. In particular,

semantic security precisely measures the ability of an adver-

sary to infer information in secret communication setups, while

maximum information leakage and its tunable variants offer

a principled and operationally motivated way of measuring

information leakage in privacy problems.

Second, the tutorial reviews how models for information-

theoretic security have evolved since the beginning of the

field (Section III). In particular, we make the point that

the fundamental limits of models under which information-

theoretic security holds have been characterized to accommo-

date increasingly more powerful adversaries. It is now known

how to communicate secretly in the presence of adversaries

that are not merely passive, but strategic in how they choose

to acquire signals and even adversarial in their manipulation

of the information.

Third, the tutorial emphasizes the meaningful connections

between the foundational results and the tools that would

accurately reflect the foundational insights in system design

(Section IV). More specifically, we highlight coding and ran-

domization as the mains tool towards realizing the potential of

information-theoretic security. A main reason for doing so is to

emphasize the distinguishing feature of information-theoretic

security and privacy as compared with reliability that drove

communication system design for many decades. In essence,

whereas for reliability, separation of physical layer and error-

correction coding techniques is often possible, enabling design

insights from uncoded communication systems to carry through,

this is not the case for security guarantees. This fact, at the

outset, establishes the need for coding techniques for security

to be an integral part of any real communication system design

that guarantees information security.

The scope of information-theoretic security is ever-growing

as new challenges dictated by emerging applications arise. We

very briefly review a select subset of these in this tutorial

(Section V) and point to several we were not able to accom-

modate into this article in the Conclusions and Forward look

(Section VI).

II. INFORMATION-THEORETIC METRICS: SECRECY,

PRIVACY, AND BEYOND

In this section, we introduce the metrics that are commonly

used in information-theoretic security to quantify secrecy, pri-

vacy, authentication, and covertness. Conceptually, many of

these metrics reduce to measuring distances between prob-

ability distributions using an f -divergence [3]; however, the

operational interpretation of the metrics depends on the secu-

rity objective and not all metrics are equally amenable to

analysis. Our main objective here is to clearly articulate these

ideas independently of the specific models in which the metrics

would be analyzed.

A. Information-Theoretic Secrecy

Secrecy is concerned with the problem of keeping the

information content of a signal confidential from unautho-

rized parties, e.g., an adversary that intercepts signals emitted

from the transmitter(s). In information theory, the digital

information content is represented by a message, described

as random variable W taking a value from a discrete set

W � {1, . . . , M}. The signal carrying the message and

observed by the adversary is described as random vector Zn,

consisting of n symbols taking value in a set Z. The param-

eter n, hereafter called the blocklength, captures the fact that

messages are typically coded into sequences. In the simplest

situation, the joint distribution pWZn of W and Zn is known,

which implicitly assumes that i) the statistics of the source of

information are fully controlled; and ii) the statistical models

that describe the processes relating the observation Zn to the

message W are fully characterized. Contemporary approaches

to information-theoretic secrecy offer solutions to deal with

channel uncertainties [4], [5], examples of which are discussed

in Sections V-A and V-B. Perfect secrecy mandates that W and

Zn be statistically independent, i.e.,1

∀w ∈ W,∀zn ∈ Zn pWZn

(
w, zn

)
= pW(w)pZn

(
zn

)
,

i.e., I
(
W; Zn

)
= 0 (1)

where I(W; Zn) is the mutual information between the mes-

sage and the adversary’s observation. Operationally, perfect

secrecy has several interpretations. Writing (1) equivalently

as pW|Zn(w|zn) = pW(w) shows that perfect secrecy guaran-

tees that the best attack an eavesdropper may launch is to

guess the message at random according to pW . Writing (1)

as pZn|W(zn|w) = pZn(zn) shows that perfect secrecy ensures

that every message induces the same statistical distribution of

the eavesdropper’s observation; this also implies that a coding

scheme with perfect secrecy maintains its guarantees regard-

less of the specific distribution pW . Finally, perfect secrecy

already hints at the coding mechanisms that must be deployed

for information-theoretic security. W cannot be a function of

Zn, which suggests that some form of randomization must be

present for secrecy to hold. This aspect is further discussed in

Section IV. Despite these appealing cryptographic properties,

perfect secrecy is often of little practical use. As recognized

by Shannon [1], perfect secrecy requires excessive additional

secret resources, in the form of uniformly distributed secret

keys shared by legitimate parties, to act as a one-time pad.

To make information-theoretic secrecy actionable as a

system design methodology, metrics that relax perfect secrecy

have been introduced. Wyner’s weak secrecy [2], replaces (1)

with

1

n
I
(
W; Zn

)
≤ ǫ for some suitably small ǫ > 0. (2)

1Without loss of generality, we consider that W and Zn have full support,
i.e., pWZn (w, zn) > 0 for all pairs (w, zn).
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Since the mutual information can be expressed in terms of

the relative entropy D(pWZn‖pWpZn) between the joint dis-

tribution pWZn and the product of marginals pWpZn , weak

secrecy retains the spirit of perfect secrecy. The factor 1
n

,

makes weak secrecy a measure of information leakage rate,

that measures how many bits are leaked about the message

W per symbol of the sequence Zn. Consequently, no mat-

ter how small the parameter ǫ > 0 is, one can construct

schemes that guarantee weak secrecy while leaking many bits

of information [6]. Despite this weakness, weak secrecy has

enabled system design and coding mechanisms for secrecy,

as further discussed in Sections III and IV. Strong secrecy,

introduced in [7], strengthens (2) as:

I
(
W; Zn

)
≤ ǫ for some suitably small ǫ > 0. (3)

By dropping the normalization 1
n

, strong secrecy measures

an amount of leaked information instead of a rate, which

strengthens the security guarantee. That said, as (3) is equiv-

alently expressed as EW(D(pZn|W‖pZn)) ≤ ǫ, strong secrecy

is dependent on the message distribution pW . This leaves

open the possibility that some very unlikely messages may

be poorly protected because D(pZn|W=w‖pZn) could be large

while pW(w) would be small.

Semantic secrecy, named after its connection with semantic

security in standard cryptography [8], closes the last loophole

of strong secrecy by requiring

max
pW

I
(
W; Zn

)
≤ ǫ for some suitably small ǫ > 0. (4)

In essence, semantic secrecy requires strong secrecy to hold

regardless of the distribution of the message pW . Compared

with perfect secrecy, the main relaxation of semantic secrecy

consists of introducing some slack in the independence

requirement. Operationally, one can show that, under seman-

tic secrecy, an adversary cannot do much better than randomly

guessing any function of the message W [8]. Semantic secrecy

can be further strengthened by making ǫ vanish with n; in par-

ticular, most of the results surveyed in Section III hold with

ǫ = 2−cn for some c > 0.

While weak, strong, and semantic secrecy are here

expressed in terms of a relative entropy, one can devise similar

quantities based of other f -divergences. In particular, the total

variation distance and Rényi entropies often appear [9]–[12].

While the exact dependence between the message set size M

and the secrecy parameter ǫ depends on the chosen metric,

the underlying coding mechanisms and the fundamental limits

are surprisingly robust and often remain unchanged no matter

which metric is used.

B. Information-Theoretic Privacy

Information leakage pervades all modern data applications

that require a user to disclose data in order to receive util-

ity; these applications pose a privacy risk through unwanted

inferences [13]–[18]. Quantifying information leakage is the

first step towards limiting such leakage. Finding solutions that

strike an acceptable compromise between privacy and utility

has been a long standing research problem, see, e.g., [19],

which has attracted growing interest over the past decade with

the introduction of several often overlapping definitions of

privacy/information leakage. Differential privacy (DP), which

was first introduced within the context of querying databases,

has emerged as a widely adopted worst-case privacy mea-

sure [20], [21]. DP seeks to ensure that changes in the database

entries do not significantly influence the value of a query

thereby limiting the inference of any specific entry from the

query output. DP makes such a guarantee uniformly (hence,

worst-case measure) for all “adjacent”2 entries, and thus,

requires noising the data to avoid such a distinction.

Taking a more average-case approach, a variety of

information-theoretic measures have also been proposed

as leakage measures. Foremost among them is mutual

information: its use as a privacy measure in [22]–[31] is

inspired by the common appearance of mutual information as

an operationally-meaningful quantity throughout the literature

on communication systems. In a similar vein, divergence-based

quantities such as total variation distance between the prior and

posterior distributions of the released data [32] have also been

proposed as leakage measures. In fact, information-theoretic

measures have been studied in the DP community via Rényi

differential privacy which, based on Rényi divergence [33],

allows relaxing the original definition of DP in order to achieve

utility guarantees.

Similar to the secrecy metrics described in Section II-A,

privacy metrics can be operationally motivated. However,

while secrecy exclusively focuses on a regime in which the

information leakage is made negligible, privacy may more

generally tolerate some leakage, if it is carefully controlled,

to obtain some utility in return. Note that there is no univer-

sal privacy vs. utility tradeoff, and how much leakage about

sensitive attributes is required (if at all) to obtain some util-

ity is application dependent. Having an operational motivation

of privacy is therefore crucial to appreciate and interpret the

resulting tradeoffs. As an illustration, consider the following

setup. Let S ∈ S and X ∈ X denote the sensitive and non-

sensitive attributes of a dataset, respectively, and let Y ∈ Y

denote the released data; without loss of generality, assume

that S, X, and Y are all discrete. Denote the leakage of S via Y

as L(·)(S → Y) where (·) denotes a chosen adversarial model

as detailed below. An operationally motivated privacy measure

was introduced recently in [34] (see also [28], [35], [36]) as

the information leaked to a “guessing” adversary. The authors

measure the leakage Lc(S → Y) in terms of an adversary’s

gain in the probability of correctly guessing S after observing

the disclosed data as:

Lc(S → Y) �
Pc(S|Y)

Pc(S)
(5)

where Pc(S|Y) :=
∑

y∈Y PY(y) maxs∈S PS|Y(s|y) =∑
y∈Y maxs∈S PS(s)PY|S(y|s). Measures based on proba-

bility of correctly guessing have also been considered in [37].

While Lc(S → Y) focuses on quantifying leakage about

a specific S, more generally, one could also quantify the

leakage to an adversary that can guess any function of the

sensitive S or just the non-sensitive X from Y . To this end,

2With respect to some measure of similarity.
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in [38] (see also, [39], [40]), maximal leakage (MaxL),

LMaxL(X → Y), is introduced, as the maximal logarithmic

gain in the probability of correctly guessing any arbitrary

function of the original data X from the released data Y

given by

LMaxL(X → Y) � sup
U−X−Y

log
maxP

Û|Y E
[
P

Û|Y(U|Y)

]

maxu PU(u)
(6)

where Û represents an estimator taking values from the

same arbitrary finite support as U and U − X − Y is

a Markov chain relating any (potentially random) func-

tion U of X to Y . It is shown that LMaxL(X → Y) =
log

∑
y∈Y max x∈X:

PX(x)>0
PY|X(y|x) = I∞(X; Y), where I∞(X; Y)

is the Sibson mutual information of order ∞ [41], and that

MaxL satisfies well-accepted desiderata for information mea-

sures including: (i) the data processing inequality, LMaxL(X →
Z) ≤ min{LMaxL(X → Y),LMaxL(Y → Z)} for a Markov

chain X − Y − Z; (ii) the independence property: LMaxL(X →
Y) = 0 if and only if X and Y are independent; and (iii) the

additivity property: if (X1, Y1) and (X2, Y2) are independent,

then LMaxL((X1, X2) → (Y1, Y2)) = LMaxL(X1 → Y1) +
LMaxL(X2 → Y2).

An adversarial model based on the probability of correctly

guessing focuses on an adversary that makes a hard decision

(see (5) and (6)). Yet, in many practical settings including

machine learning, adversaries can make soft decisions prior

to making a hard decision. Motivated by this, [42] introduces

a parameterized class of adversarial models via a tunable loss

function, α-loss, α ∈ [0,∞], where each α captures a specific

adversarial action. Thus, for X, Y and X̂ such that X − Y − X̂

form a Markov chain and X̂ is an estimator of X, the α-loss,

for α ∈ (1,∞), of an adversarial strategy P
X̂|Y in estimating

X from Y is

ℓα

(
x, y, P

X̂|Y

)
= α

α − 1

(
1 − P

X̂|Y(x|y) α−1
α

)
. (7)

Specifically, for α = 1 and α = ∞, by continuous extension,

we have ℓ1(x, y, P
X̂|Y) = − log P

X̂|Y(x|y) and ℓ∞(x, y, P
X̂|Y) =

1 − P
X̂|Y(x|y). An adversary minimizing this loss effectively

maximizes the estimate P
α−1
α

X̂|Y . By varying α, α-loss captures

adversarial strategies ranging from the probability of cor-

rectly guessing for α = ∞ to the posterior distribution for

α = 1 about data X from the disclosed Y . Using these loss

functions, [42] introduces two kinds of leakage measures: α-

leakage and maximal α-leakage (Max-αL), wherein the former

captures the leakage of X from Y while the latter captures the

maximal such leakage over all functions of X.

Formally, given a joint distribution PXY and an estimator

X̂ with the same support as X, the α-leakage, Lα(X → Y),

and Max-αL, Lmax
α (X → Y), from X to Y are defined as for

α ∈ (1,∞) and by the continuous extension of (8) for α = 1

and ∞ as

Lα(X → Y) �
α

α − 1
log

maxP
X̂|Y E

[
P

X̂|Y(X|Y)
α−1
α

]

maxP
X̂
E

[
P

X̂
(X)

α−1
α

] , (8)

Lmax
α (X → Y) � sup

U−X−Y

Lα(U → Y), (9)

where 1 ≤ α ≤ ∞, and U is any function of X taking values

from an arbitrary finite alphabet.

One can show that Lα(X → Y) and Lmax
α (X → Y) simplify

to the Arimoto mutual information and the Sibson capacity of

order α, respectively. Furthermore, Max-αL satisfies the data

processing, independence, and additivity properties, is robust

to adversarial side information [40], [43], and is monotonically

increasing in α. For α = ∞, L∞(S → Y) is the guessing gain

in (5) for an S − X − Y setting while Lmax
∞ (X → Y) is MaxL

in (6). Finally, both measures also allow quantifying leakage

between sensitive features S and the release Y .

While Max-αL, and therefore, MaxL, capture the worst case

leakage over all distributions of X, [40] showed that local DP,

a stronger version of DP, upper bounds MaxL, and therefore,

Lmax
α (X → Y) for all α ∈ [1,∞). Local DP is a variant of DP

where privacy has to be guaranteed over all pair of data entries.

Such relationships have also been studied in [44]. There con-

tinues to be interest in exploring both the information-theoretic

foundations of DP (e.g., [45]) and understanding how maxαL

and α-leakage relax the strong privacy requirements of DP

thereby assuring more utility, particularly in context-aware

settings [46]–[48].

The role of these measures in practical data sharing and

learning settings continues to be studied including understand-

ing how multiple queries or uses of the data (e.g., learning

gradients privately over all samples in a dataset) requires the

composition of privacy measures. A key challenge here is

in understanding the limits of data usage for a fixed privacy

budget or alternately, the allocation of the total budget to dif-

ferent private operations. While such bounds exist for DP,

information-theoretic measures can enhance existing bounds

as shown recently in [45].

C. Authentication, Stealth and Covertness

Information-theoretic metrics also capture security concerns

beyond secrecy and privacy.

a) Authentication: Authentication aims at ensuring that a

message received at a terminal is indeed the one transmitted

by a legitimate transmitter [49], [50]. An attacker can thwart

authentication by launching one of two attacks: i) an imperson-

ation attack, by which the attacker forges a new message; ii) a

substitution attack by which the attacker first intercepts a trans-

mitted signal and tries to substitute it for another. Formally, the

problem can be cast as a binary hypothesis test on a received

signal Yn to distinguish between a signal Yn that has not been

manipulated (hypothesis H0) and a signal Yn that has been

tampered with (Hypothesis H1). An effective authentication

scheme is then one that achieves good detection performance

for this hypothesis test. The main challenge behind authen-

tication is that it is impossible to accomplish without using

additional resources, either in the form of shared secret keys

between the legitimate parties to facilitate the detection of tam-

pering [49], or in the form of restrictions on the manipulation

that an adversary can perform [51].

b) Stealth and covertness: Stealth and covertness aim at

concealing the fact that communication is taking place and at
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ensuring that signals generated by a communicating terminal

can be transmitted with low-probability of intercept (LPI) or

a low probability of detection (LPD). Unlike secrecy and pri-

vacy, which are concerned about the information content of

transmitted signals, stealth and covertness are constraints on

the signals themselves. Although the systematic study of such

security constraints in the context of communication chan-

nels is relatively recent [52], the problem can be traced back

to steganography where the objective is to embed an unde-

tectable stegotext into a covertext [53], [54]. Denoting the

observations of the signals intercepted by an eavesdropper

Zn, stealth requires that the statistical distribution induced

by a coding scheme, pZn , be nearly indistinguishable from

a reference innocent looking distribution qZn , as

D(pZn‖qZn) ≤ ǫ for some suitably small ǫ > 0. (10)

This measure of stealth assumes that the statistical distri-

bution pZn and qZn are known. Operationally, ensuring that

D(pZn‖qZn) is small ensures that no detector deployed by

the eavesdropper can perform much better than a “blind

guess” [55]. More formally, in Neyman-Pearson detection

theory, the performance of any reasonable detector is char-

acterized by a trade-off between probability of false alarm α

(detecting Pn
Z when QZn is true) and probability of missed

detection (detecting QZn when PZn takes place) of the form

1 ≥ α + β ≥ 1 −
√

D(pZn‖qZn). Ensuring that D(pZn‖qZn)

is small ensures that α + β ≈ 1 for any test, which is no

better than the trade-off of a guess made without knowing

Zn. Covertness corresponds to a special case of stealth, in

which the innocent looking distribution QZn is the one induced

by the absence of communication, e.g., background noise.

This subtle difference has important consequences when ana-

lyzing communication systems, as covertness is often much

more stringent than stealth and leads to a so-called square-

root law [56], by which the rate of communication scales as

the inverse of the square root of the coding blocklength.

It is crucial to note that stealth and secrecy are not equiva-

lent; said otherwise, being stealth does not necessarily protect

information content and vice versa. One elegant way to

combine requirements is to enforce effective secrecy [57]

defined as

D(pMZn‖pMqZn) ≤ ǫ for some suitably small ǫ > 0. (11)

One can rewrite the effective secrecy criterion as

D(pMZn‖pMqZn) = I(M; Zn) + D(pZn‖qZn), which high-

lights that effective secrecy combines strong secrecy and

stealth in a single metric.

III. INFORMATION-THEORETIC SECURITY MODELS:

FUNDAMENTAL LIMITS

A. Wiretap Channel Models

The wiretap channel (WT) goes back to Wyner [2] and

refers to the simplest building block that models secure com-

munications over noisy channels. Specifically, Wyner consid-

ered that the adversary observes the communication between

the legitimate parties through a channel that is degraded with

respect to the legitimate channel, and showed that secure com-

munication is possible irrespective of the computational power

of the adversary. This model explicitly brings in the notion that

if the channel between the legitimate entities has an advantage

over the channel to an adversary, e.g., as measured in [58],

then coding (more specifically stochastic encoding with care-

fully selected rates) leads to quantifiable guarantees that limit

information leakage, specifically under the metric now known

as weak secrecy, see Section II-A.

It is worth emphasizing that the significance of Wyner’s

original wiretap channel model is (1) to demonstrate the pos-

sibility of information theoretically secure transmission over

noisy channels and (2) to establish the fundamental limits of

reliable information transport under information leakage con-

straints to an external entity that has access to the receiver’s

observations (which the receiver obtains from the transmit-

ter through a Discrete Memoryless Channel (DMC)) through

a second DMC. The need for the explicit channel advantage

of single user models [58], [59] should not be attributed as

a limiting factor of information theoretic secrecy in general.

Indeed, the advent of multiuser information theory, notably

revived with the advent of wireless communication networks

that operate in shared multiuser channels, has also led to a

plethora of models where a network advantage can be cre-

ated utilizing the broadcast nature of the wireless medium,

see Section V-A.

About a decade later than the original wiretap chan-

nel, Ozarow and Wyner proposed the Wiretap Channel II

(WT-II) [60]. The channel model in this case is even more

specific than the wiretap channel, namely, the paper considers

a noiseless channel between the legitimate transmitter and the

receiver, and a specific erasure model for the adversary, i.e., the

eavesdropper. At the same time a new capability is introduced

to the eavesdropper which can be interpreted as the first strate-

gic adversary model in information-theoretic security. More

specifically, the significance of this second landmark paper

lies in the additional ability of the eavesdropper to be able to

tap noiselessly α fraction of the symbols, of its own choosing,

sent by the transmitter, while seeing erasures in the remain-

ing positions. It was shown that irrespective of the positions

chosen by the adversary, coding guarantees secrecy capacity

to be identical to that of the case if the erasures seen by the

adversary happened randomly at the same rate, i.e., through a

BEC with erasure probability identical to the fraction in the

WT-II model, α.

Recently, a generalized wiretap channel model was intro-

duced that unifies the two models. Specifically, the model

considers a strategic adversary who can choose α fraction

of symbols to tap in its observation, like WT-II, while

observing the rest through a DMC with transition proba-

bility PZ|X (as opposed to them being erasures), providing

the adversary with the capabilities of both WT and WT-II.

The main channel between the legitimate transmitter and the

receiver is a DMC with transition probability PY|X as is

the case in WT. In this generalized set up, and considering

strong secrecy (see Section II-A), [61] established the fol-

lowing secrecy capacity result, for channel model details see

also [61], [62].
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Theorem 1 [61, Th. 1]: For 0 ≤ α ≤ 1, the strong secrecy

capacity of the generalized wiretap channel is given by

Cs(α) = max
U−X−YV

[I(U; Y) − I(U; V) − αI(U; X|V)]+, (12)

where the maximization is over all the distributions pUX which

satisfy the Markov chain U − X − YV , and the cardinality of

U can be restricted as |U| ≤ |X|.
An equivalent characterization for the strong secrecy capac-

ity of the generalized wiretap channel is given by

Cs(α) = max
U−X−YV

[
I(U; Y) − αI(U; X)

−(1 − α)I(U; V)

]+
, (13)

which clarifies the cost of providing the strategic ability to the

eavesdropper.

Corollary 1 [61, Corollary 1]: By setting the tapped subset

by the wiretapper, S, to the null set, or equivalently α = 0,

the secrecy capacity in (12) is equal to the secrecy capacity of

the discrete memoryless wiretap channel in [58, Corollary 2],

i.e.,

Cs(0) = max
U−X−YV

[I(U; Y) − I(U; V)]+. (14)

Corollary 2 [61, Corollary 2]: By setting the wiretapper’s

DMC through which she observes the (1 − α)n symbols she

does not choose, pV|X , to be an erasure channel with erasure

probability one, the secrecy capacity in (12) is equal to the

secrecy capacity of the wiretap channel II with a noisy main

channel in [63, Th. 2], i.e.,

Cs(α) = max
U−X−Y

[I(U; Y) − αI(U; X)]+. (15)

Comparing (12) and (14), we observe that the secrecy cost,

with respect to the classical wiretap channel, of the additional

capability of the wiretapper to choose a subset of size αn

of the codewords to access perfectly, is equal to αI(U; X|V).

Comparing (13) and (15), the secrecy cost, with respect to the

wiretap channel II with a noisy main channel, of the additional

capability of the wiretapper of observing (1−α) fraction of the

codeword through the DMC pV|X , is equal to (1 − α)I(U; V).

Secrecy capacity [61] captures the fundamental limit of

confidential reliable communications. While this formulation

considers the asymptotic blocklength regime, recent references

have also analyzed wiretap channels in the finite blocklength

regime, see, e.g., [64], [65].

B. Secret-Key Agreement Models

Another information-theoretic confidentiality problem aims

to agree on a secret key by using a noisy channel in addition

to a noiseless public channel. The aim of the legitimate parties

is to extract a secret key from the noise in the channel such

that the key is hidden from an adversary, which is different

from communicating a message secretly over a noisy channel

considered in Section III-A. The secret key can then be used,

e.g., for authentication, identification, secure transmission with

public key cryptography, etc. There are two main models for

the secret-key agreement problem: source model and chan-

nel model, introduced in [66], [67]. A result in [68] shows

that it is possible to authenticate the public channel between

the legitimate parties by using a small amount of secret key,

which follows steps that are entirely similar to quantum key

distribution (QKD) protocols discussed in Section V-D.

In the source model, the two legitimate parties n i.i.d. sym-

bols of random variables X and Y , respectively, while the

adversary observes n i.i.d. symbols of a random variable Z.

The model assumes that these random variables are dependent,

i.e., they are distributed according to a given joint proba-

bility mass function (pmf) pXYZ(x, y, z) for x ∈ X, y ∈ Y,

z ∈ Z with X, Y, and Z finite sets. The legitimate parties

exchange public messages F1:k sequentially based on both

the previous messages exchanged and their random sequences,

which can include local randomness, for k rounds. Each party

then extracts a secret key S that is almost uniformly distributed

over its set by using all locally available information. The reli-

ability constraint requires the two keys to be equal with high

probability, i.e., probability of not agreeing on the same key

should tend to zero with increasing blocklength n. The secrecy

criterion is to ensure that the secret key S is almost indepen-

dent of the adversary’s information (Zn, F1:k), which can be

imposed as a weak or strong security constraint. Consider the

weak secrecy constraint for the source model problem

1

n
I
(
S; Zn, F1:k

)
≤ ǫ. (16)

Define the secret-key rate as Rs = 1
n
H(S) and the supremum of

all achievable key rates as the source model secret-key capacity

S(X; Y‖Z). We have the following upper and lower bounds on

the source model secret-key capacity [66], [67]

I(X; Y) − min{I(X; Z), I(Y; Z)}
≤ S(X; Y‖Z) ≤ min{I(X; Y), I(X; Y|Z)}. (17)

The lower bounds can be achieved by using a one-way com-

munication, which is possible in two different directions and

this explains the two lower bounds. We remark that the secret-

key capacity S(X; Y‖Z) is not known for general probability

distributions, but the lower and upper bounds given in (17) are

tight for various cases. Furthermore, if the number of rounds

is fixed to k = 1, the one-way secret-key capacity is given

as [67]

Sk=1(X; Y‖Z) = max
(U,V)−X−(Y,Z)

I(U; Y|V) − I(U; Z|V) (18)

which is a valid lower bound for the general case and does

not require local randomness. As an extension of the coding

method used to achieve the one-way secret-key capacity, a sin-

gle letter interactive communication lower bound is obtained

in [69, Th. 7].

There is a method to convert a coding method that

achieves weak secrecy (16) into a code that achieves

strong secrecy by applying the steps given in [7], which

mainly follows because a secret key does not carry any

information by itself. The steps to achieve strong secrecy

follow a QKD-based protocol, called sequential key distilla-

tion that consists of three main steps: advantage distillation,

information reconciliation, and privacy amplification. The

first step is introduced to gain an advantage over an adver-

sary by using multi-round communications, which allows to
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achieve non-zero secret-key rates that cannot be achieved

by using one-way communication methods [66], [70]. Thus,

feedback improves the secret-key rate. Powerful advantage

distillation methods combined with matching information rec-

onciliation methods are shown to improve the secret-key

rates [71]–[76]. The last two steps are discussed in more

details in Section IV-B.

Various improvements to the upper bounds on the source

model secret-key capacity given in (17) have been provided.

The intrinsic mutual information upper bound B0(X; Y||Z) fol-

lows from the basic idea that by degrading the observations of

the adversary the secret-key capacity does not decrease, i.e.,

we have [67, Remark 2], [77]

S(X; Y‖Z) ≤ min
PJ|Z

S(X; Y‖J) ≤ B0(X; Y||Z) = min
PJ|Z

I(X; Y|J).

(19)

Further improvements are given in [69], [78]–[80]; see

also [71] for a new interpretation of the best known upper

bound given in [69] by relating it to deviation from the less

noisy condition, introduced in [81] originally for broadcast

channels.

Unlike the source model, the channel model allows one of

the legitimate parties to control an input sequence Xn that is the

input to a DMC PYZ|X whose outputs Yn and Zn are observed

by the other legitimate user and the adversary, respectively. In

the channel model, the sequence Xn is not necessarily i.i.d.,

unlike in the source model. Similar to the source model, a

public, noiseless, and authentic channel is assumed to be avail-

able between the legitimate users. Thus, the channel model

can be modeled as a WTC, defined in Section III-A, with

an additional public channel over which the legitimate par-

ties can communicate in multiple rounds. Imposing the same

reliability and secrecy constraints to the channel model as

being imposed to the source model, one can observe that all

source model achievable secret-key rates are achievable also

for the channel model as the channel model is more gen-

eral than the source model. Similarly, by following the same

steps as for the source model, similar upper bounds can be

given for the channel model. Furthermore, due to the gener-

ality of the channel model, it is generally harder to find the

channel model secret-key capacity. However, the secret-key

capacity of a specific channel model is established in [66]

by converting the problem into a virtual WTC problem. This

example also illustrates that the channel model secret-key

capacity can be positive, even if the secrecy capacity is zero for

a DMC PYZ|X .

Various extensions to multiple parties, continuous random

variables, and cases with limited public communications rates

can be found, e.g., in [6], [82]–[88]. Furthermore, the source

and channel model secret-key agreement problem assumes

that the adversary is passive, i.e., it does not intervene

the secret-key agreement process and simply observes what

is available. However, there can be active adversaries or

uncertainties in channel or source statistics as for example

in [89], [90].

IV. CODING FOR SECURITY: THE ROLE OF RANDOMNESS

The term coding broadly refers to any technique that

involves mapping a set of elements (typically with a mathe-

matical structure, e.g., the binary alphabet {0, 1}, a finite field,

lattice points) into a larger set. Coding problems tradition-

ally emerge from communication systems, where a transmitter

wishes to communicate messages to a receiver over a noisy

communication channel, and coding is needed to combat the

noise. Coding is however also useful in engineering applica-

tions that fit a communication model although the problem at

hand may not be reliable communication per se. The objective

of this section is to shed the light on how to code for security

and achieve the limits identified in Section III, as well as to

highlight the central role played by randomness.

A. Coding for the Wiretap Channel

In the wiretap channel model, the security objective is to

ensure that a message W, encoded as a codeword Xn =
(X1, . . . , Xn) and observed by an eavesdropper as Zn, is not

leaked, as measured, e.g., by a strong secrecy constraint

I(W; Zn) ≤ ǫ. As alluded to in Section II-A, ensuring the

secrecy constraint requires a non-bijective mapping between

W and Xn, for otherwise the information leakage grows lin-

early with n in general. Specifically, writing I(W; Zn) =
I(Xn; Zn) − I(Xn; Zn|W) shows that controlling I(W; Zn)

requires H(Xn|W) to be non zero. In other words, multiple

codewords Xn should represent the same codeword W and ran-

domness must be injected in the encoding process. To build

further intuition, consider the following small example from an

instance of Wiretap Channel II (see Section III-A). The chan-

nel between Alice and Bob is noiseless, while Eve’s channel

is described as follows: out of any n bits sent by Alice, she

gets exactly µ of them. Alice knows it, but she does not know

which symbols Eve will get. A wiretap coding strategy for this

scenario consists in Alice mixing random bits with information

bits. In the simplest case where n = 2 and µ = 1, Alice sends

(s + r, r) where r is a random bit chosen uniformly at ran-

dom, s is a secret bit of information. Whether Eve gets r or

r + s, she knows nothing about u, which can be formalized

as I(S; S + R) = 0. When Alice wishes to send l secret bits

s1, . . . , sl, she appends n − l random bits r1, . . . , rn−l, chosen

uniformly at random, and encodes them as follows:

[
s1, . . . , sl, r1, . . . , rn−l

][M

G

]

= [s1, . . . , sl]M︸ ︷︷ ︸
coset choice

+
[
r1, . . . , rn−l

]
G

︸ ︷︷ ︸
random codeword

where G is chosen to be of rank n − l, so it forms a genera-

tor matrix of a linear code C (the subspace generated by the

rows of G), to which the codeword [r1, . . . , rn−l]G belongs,

and M contains l linearly independent vectors, which are not

contained in C. Since we can write the whole space {0, 1}n

as a disjoint union of 2l subsets, called cosets of C of the

form C + t (imagine all the points in the subspace C trans-

lated by t), for t = [s1, . . . , sl]M, Alice’s strategy is often

called coset coding: it maps a secret to a coset, and then ran-

domness is coming from choosing a codeword uniformly at
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random within the coset. When n = 2, the above example

corresponds to G = [1, 1] (a repetition code), {0, 1}2 contains

only {(0, 0), (0, 1), (1, 0), (1, 1)}, which contains the code

C = {(0, 0), (1, 1)} and its coset C + (1, 0) = {(1, 0), (0, 1)}.
To send say s = 0, Alice picks uniformly at random a code-

word of C. This can equivalently be expressed as: to send,

say s = 0, Alice picks uniformly at random a vector among

vectors x = [x1, x2] satisfying [1, 1]xT = 0. The matrix [1, 1]

here corresponds to the parity check of the code C (which

so happens to be equal to G, this is an example of self-dual

code). Description of coset coding in terms of parity check is

common. Let H be an (n− l)×n parity check matrix for C, by

definition this means that HxT = 0 exactly when x ∈ C. Alice

chooses the secret s she wants to send, then solving HxT = s

will give her as solution for x all 2l vectors in a given coset,

then she is left to choose uniformly at random the vector x

she will actually send.

The fundamental insight to take away is that from the

moment there is noise (even small) in an eavesdropper’s

channel, the transmitter can amplify this noise by properly

encoding its secrets, inserting its own controlled randomness.

The concept of coset coding highlighted above generalizes

beyond linear codes, as already established in the seminal

works [2], [58], [59] using bins of codewords representing

the same message.

In recent years, much efforts have been devoted to develop

explicit codes for the wiretap channel with rates approaching

the fundamental limits [91], [92]. Coset coding has been suc-

cessfully analyzed with several families of codes, including

low-density parity-check codes [93], polar codes [94]–[97],

and lattice codes [98]. In particular, polar codes have proved

useful to bridge the gap between information-theoretic lim-

its and algorithms in a host of multi-user security models

[99]–[105]. Another powerful approach has been to adopt

a modular approach and combine invertible extractors with

an error control code [8], [106]–[108] to create the bins

of codewords representing the same message. For the spe-

cial case of erasure channels, it is also possible to relate

the information leakage to algebraic properties of the codes,

such as generalized Hamming weights [109]. Very recently,

a deep learning-based approach to the code design problem

has been considered based on autoencoders [110]–[113]. The

coding mechanisms for secrecy have also provided traction to

enforce stealth and covertness (see Section II-C) [114], which

although different from secrecy also require the introduction

of randomization in the encoding [55], [115].

B. Coding for Secret-Key Agreement

In the secret key agreement model, the security objective is

to ensure that a key K can be extracted from an observation

Xn against an eavesdropper observing Zn, in the sense of guar-

anteeing, e.g., I(K; Zn) < ǫ. Writing I(K; Zn) = I(Xn; Zn) −
I(Xn; Zn|K) shows that controlling I(K; Zn) requires H(Xn|K)

to be non zero, i.e., multiple sequences should map to the

same key. The major difference with the wiretap model is that

the coding operation consists here of extracting the secret key

rather than encoding a secret message.

Interestingly, this operation is simpler than the design of

codes for the wiretap channel and is embodied in a result

known as the left-over hash lemma [116], [117]; an exten-

sive review of the left-over hash lemma and its variants in

information theory is available in [118]. In simplified terms,

the left-over hash lemma states that given the knowledge of

the conditional entropy H(Xn|Zn), applying a randomly chosen

universal hash function [119] with output size slightly smaller

than H(Xn|Zn) to the sequence Xn results in an output that

is secret from Zn. There exist many powerful variations of

the left-over hash lemma, e.g., [67], [120]–[122], in which the

knowledge of the conditional entropy is expressed using dif-

ferent entropy metrics. The result of the left-over hash lemma

is also known under the name privacy amplification [117] to

emphasize its operational meaning, by which the privacy of the

sequence Xn is amplified through the use of a hash function.3

One key aspect of the left-over hash lemma is its universality,

meaning that the secrecy of the resulting key is guaranteed

knowing only the conditional entropy of Xn given Zn, regard-

less of the actual joint distribution pXnZn . This makes it a

powerful tool with many applications, such as quantum key

distribution briefly discussed in Section V-D.

The secret key agreement model also includes a reliability

objective, by which transmitting public messages collectively

denoted F allows a terminal observing Yn correlated to Zn to

reconstruct the key. This operation is effectively an instance

of a source coding with side information problem [123], also

known as reconciliation, for which many constructions are

now known [124] and which can be easily combined with

privacy amplification [125].

V. CONTEMPORARY APPROACHES TO

INFORMATION-THEORETIC SECURITY

A. Role of Wireless Medium: Multi-User Secure Physical

Layer Design

The past two decades have seen a flurry of research activity

in wiretap channels and wireless physical layer security, fol-

lowing wireless taking over as the dominant medium of com-

munications [126]–[128]. Though being a broadcast medium

is a vulnerability for wireless with respect to security attacks,

e.g., eavesdropping, it was recognized that studying wiretap

models in wireless channels could lead to design insights

that effectively turn this vulnerability into an advantage. As

such, properties of wireless medium can serve as security

resources, and designing the physical layer accordingly pro-

vides information-theoretic security guarantees. Efforts along

these lines include utilizing multiple antennas for improving

secure communication rates [129]–[131] and utilizing channel

variations in various time-scales (fading states) for creating

a channel advantage [132]–[134]. Natural to the broadcast

properties of wireless, multi-terminal wiretap channel mod-

els have been studied, e.g., [135] and led to new design

insights such as cooperative jamming where some legitimate

terminals can generate judicious interference tailored to harm

the adversary for better network-wide secure communication

3The privacy referred to here should be understood colloquially and differs
from the formal privacy discussed in Section II-B.
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rates [136]. A number of network information theoretic secu-

rity models emerged in the past two decades focusing on the

design principles that the models can offer with respect to

interference alignment, broadcast and relaying, see for exam-

ple, [137]–[147] and many others. Multi-terminal models with

multiple antennas have been studied with [148], [149] or with-

out channel state information where the latter relies on a

network advantage with more antennas at the legitimate ter-

minals and provides universal strong secrecy irrespective of

eavesdropper’s channel [4], [150], [151]. For other models

of varying channel state information in wiretap channels, see

also Section V-B. The impact of having a massive number of

antennas has also been studied [152], [153], including con-

nections to computational hardness [154] further discussed in

Section V-E.

Finally, extensive experimental efforts have explored key

generation from wireless channel states [155]–[160].

B. Role of Channel State Information: Compound and

Arbitrarily Varying Models

Earlier wiretap studies often start with models where the

channels to the adversaries and/or to the legitimate parties are

known. As these are clearly assumptions whose validity can be

questioned in practical networks, including those in wireless

systems, information-theoretic security models have branched

out to address uncertainties in channels.

The classical concept of compound channels [161], [162]

provides a first step in the direction of more realistic and prac-

tically relevant assumptions on channel knowledge to capture

the effects of channel uncertainty. Here, the actual channel

that governs the transmission is unknown. Rather, the users

only know that the true channel belongs to a known set of

channels and that it remains constant for the whole duration

of transmission. Secure communication over compound chan-

nels is then captured by the compound wiretap channel which

has been studied in [133], [163]–[171]. Despite considerable

effort, a single-letter characterization of the secrecy capacity

is only known for special cases [133], [163], [166]–[169].

While for compound channels the unknown channel real-

ization remains constant for the entire duration of transmis-

sion, the concept of an arbitrarily varying channel (AVC)

[172]–[174] provides a model in which this realization may

vary from channel use to channel use in an unknown and arbi-

trary manner. The corresponding arbitrarily varying wiretap

channel (AVWC) has been studied in [171], [175]–[181] and it

has been shown that it makes a difference whether unassisted

or common randomness (CR) assisted codes are used by the

transmitter and legitimate receiver. In particular, if the chan-

nel to the legitimate receiver possesses the so-called property

of symmetrizability, the unassisted secrecy capacity is zero,

while the CR-assisted secrecy capacity may be non-zero. A

complete characterization of the relation between the unas-

sisted and CR-assisted secrecy capacity is established in [176],

[180]; but similar to the compound wiretap channel, a single-

letter characterization of the secrecy capacity itself remains

open. CR-assisted achievable secrecy rates are known only

under certain circumstances [175], [176], [178]. Recently, a

multi-letter description of the CR-assisted secrecy capacity has

been found in [196].

The presence of feedback offers new avenues to deal with

channel state information, e.g., by allowing legitimate ter-

minals to learn the channel and adapt to changes without

compromising secrecy [182].

C. Role of Digital Circuits: Physical Unclonable Functions

(PUFs)

The problem of reliably identifying a human being by

using biometric features (or biometric identifiers [183]) such

as retina characteristics, iris color, fingerprint, palm print,

voice characteristics, or signature has been an important secu-

rity problem throughout the history. Biometric features are

used for, e.g., identifying or authenticating a person accord-

ing to a pre-determined set of permissions. Such applications

require the feature used to be unique and reliable for every

human being, which resulted in numerous signal processing,

cryptographic, algebraic-code based, and information-theoretic

algorithms and system designs especially in the last two

decades; see [184]–[187]. Similar methods are proposed later

to be used for correctly identifying a digital device, which

helps solve the security and privacy problems faced in the

digital transformation by defining unique and reliable physi-

cal identifiers as the outputs of a digital circuit embodied by

the digital device. The first contemporary physical identifiers

apply the cryptographic concept of “one-way functions”, i.e.,

functions that are easy to evaluate but (on average) difficult to

invert [188], to physical systems to implement “physical one-

way functions” (POWFs). As the first example of POWFs,

the speckle pattern obtained from coherent waves propagat-

ing through a disordered medium is a one-way function of

both the physical randomness in the medium and the angle

of the laser beam used to generate the optical waves [189].

To allow a widespread usage of such a security primitive,

one needs to replace the disordered medium, used as a source

of randomness in POWFs, with a digital component that can

be used to provide security and privacy to (in principle) all

digital devices with low-complexity. One auspicious solution

is to determine physical identifiers for each digital device,

similar to biometric identifiers of human beings. The most gen-

eral name for such physical identifiers is “physical unclonable

functions” (PUFs) [190], which mainly refers to a physical

function embodied in a digital device such that its challenge-

response (or input-output) pairs cannot be cloned physically

or digitally.

A PUF is commonly defined as a complex challenge-

response mapping determined by random and uncontrollable

variations in a physical object. Contemporary applications of

PUFs include the following scenarios.

• Consider 5G/6G mobile devices that embody a set of

static random access memories (SRAMs), which put out

random binary outputs. Randomness in SRAM outputs

allows to use them as a PUF (i.e., SRAM PUF) such

that each mobile device can be assigned an identifier that

is the output bit sequence put out by its SRAMs. SRAM

PUFs can be used as a local source of randomness, which
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can be used for data encryption or identification via chan-

nels [191] in combination with higher layer cryptographic

security primitives.

• Consider any information-theoretic problem where it

helps to use a local randomness, i.e., randomization either

improves the performance or is required. For instance,

since a WTC encoder is a digital device that can embody

digital circuits that can be used as a PUF, the PUF outputs

at the encoder can be used to confuse the eavesdropper.

• Consider an autonomous vehicle, whose controller area

network (CAN) bus standard is illustrated in [192]

to be vulnerable to denial-of-service attacks due to

insufficiently-secured transmission of messages over the

network. This problem threatens people’s lives since crit-

ical inputs such as throttle and brakes would then be

susceptible to attacks. Similar problems are faced in using

unmanned military drones, recently addressed by PUF

companies. Determining digital components in the cor-

responding hardware that are appropriate to be used as

a PUF would allow to enforce a better authentication

procedure that can save lives.

There are a massive number of PUF types and constraints

imposed to use PUFs in different applications; see [193] for a

summary. We consider only the information-theoretically rele-

vant constraints to analyze PUFs that use digital circuit outputs

and model the PUF usage problem as a secure, reliable, and

private identifier (or secret key) agreement problem. The most

common and practical PUFs that are of information-theoretical

interest use oscillation frequencies of ring oscillators (ROs) or

the random binary outputs of SRAMs as the source of ran-

domness. Thus, for the remaining analysis we consider such

PUFs for modeling. For this purpose, it is useful to follow

Shannon’s approach of removing the complex practical con-

straints of a problem until the remaining part can be tackled

by using information-theoretic analyses in such a way that

removed parts can be inserted back to extend the basic results.

Therefore, the basic information-theoretic model of the PUF

problem used in the literature considers two i.i.d. dependent

sequences used to agree on a physical identifier. This basic

model is shown in [194] to fit with the reality if transform-

coding algorithms are applied, which is mainly borrowed from

the biometrics literature [184], [187], [195].

The basic PUF model consists of two random sequences

Xn and Yn that are i.i.d. according to a joint probability dis-

tribution PXY and that represent the noiseless and noisy PUF

outputs, respectively. An encoder Enc(·) that observes Xn gen-

erates a uniformly-random index (or an identifier) S ∈ S during

an enrollment step, which represents that the identifier is being

enrolled to a security system that will use it. At a later time,

the noisy PUF outputs Yn are observed by a decoder Dec(·)
(which is likely to be in the same digital device that embod-

ies the PUF) to reconstruct S during a reconstruction step. To

reliably reconstruct S, the decoder in general requires extra

information from the encoder. In the biometrics and PUF lit-

erature, the extra public information W ∈ W provided to the

decoder is called helper data, which is the only data accessible

to an eavesdropper during key agreement in addition to fixed

encoding and decoding operations. This model is depicted

Fig. 1. Basic key agreement with PUFs problem model.

in Fig. 1. The reliability constraint imposes that Pr [S �= Ŝ]

should be negligible, the strong secrecy-leakage constraint

that I(S; W) should be negligible, and the storage-rate con-

straint that log |W|/n should be minimized. These constraints

illustrate the close connection of PUFs to the information-

theoretic key agreement problem discussed in [66], [67], [85].

A privacy-rate constraint that minimizes I(Xn; W)/n is intro-

duced in [187], [196], shown in [197] to provide an upper

bound on the overall secrecy leakage if the same PUF is used

by other encoder-decoder pairs that were not considered during

code and system design. Thus, such a privacy-leakage con-

straint might be useful to design key agreement schemes with

varying number of security mechanisms that use the same PUF

(or biometrics) as the source of randomness.

Comparisons between information-theoretic rate regions

obtained and performance of available (cryptographic) code

constructions such as code-offset fuzzy extractors [198] and

the fuzzy commitment scheme [199] illustrate that to improve

the privacy and storage performance new code constructions

are necessary [99], [200]–[204]. Since in storage-limited key

agreement models satisfying reliability and secrecy constraints

separately is suboptimal [205], code constructions that sat-

isfy all constraints jointly are proposed, including (nested)

random linear codes, (nested) polar codes, invertible extrac-

tors, nested convolutional codes, and nested polar subcodes.

Depending on the practical constraints such as the available

number of PUF circuits, which affects the blocklength of the

codes used, and assumed source and channel models, different

code constructions are expected to be preferred for different

applications.

The most interesting extensions of the basic model (from

an information-theoretic optimality perspective with real-

istic assumptions) include the extra constraint of identi-

fying the device or the user [206], [207], analysis of

false-acceptance exponents [208], [209] and false-rejection

exponents [210], multiple enrollments by using the same

or different noisy PUF outputs with remote (or hidden)

sources [197], [211]–[213], cost-constrained actions at the

decoder to control the decoder-measurement channel qual-

ity [214], [215], compound sources to accommodate possible

uncertainty in source statistics [90], measurement channels

with correlated noise components [215], [216] caused by

surrounding hardware logic [217], and an equivalent WTC
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model [218]. Following Shannon’s approach towards prob-

lems with complex practical constraints, mentioned above,

these extensions manage to solve the key agreement with

PUFs problem accurately enough. However, there are fur-

ther interesting open problems that should be addressed by

using information- and coding-theoretic tools to gain deeper

insights into hardware-intrinsic security and privacy. We pro-

vide an open information-theoretic problem below; see [219]

for open problems related to signal-processing and coding-

theoretic methods applied to the key agreement with PUFs

problem.

• RO and SRAM PUFs discussed above are considered as

“weak (or key obfuscating) PUFs” since there is only a

single input-output pair for these PUFs, i.e., if there is

no noise, then one can challenge only the same digital

circuits and obtain the same response. However, “strong

PUFs” such as optical PUFs (or optical POWFs) [189]

allow multiple challenge-response pairs for each PUF,

where the noiseless response can be modeled as Xn[c]

and the noisy response as Yn[c] given a challenge c ∈ C.

In practice, it is required that an attacker who observed a

set of challenges {c1, c2, . . .} and corresponding noiseless

responses {Xn[c1], Xn[c2], . . .} should not be able to guess

a challenge-response pair (c̃, Xn[c̃]) for a challenge c̃ cho-

sen uniformly at random from the set C\{c1, c2, . . .}. Due

to correlations between responses of each PUF, there is a

need for a post-processing step to satisfy this requirement.

Furthermore, correlations between the challenge-response

pairs of different PUFs, embodied by different digi-

tal devices, should also be eliminated to protect PUF

responses when an attacker obtains challenge-response

pairs of multiple PUFs. Such security problems are tack-

led in the literature mostly by applying heuristic methods

and metrics. Thus, there is a need to propose information-

theoretic metrics with operational meanings to obtain the

ultimate limits for the key agreement with strong PUFs

problem and then to design code constructions that can

achieve or approach the ultimate limits.

D. Role of Quantum: Quantum Key Distribution and Beyond

Perhaps one the most criticized aspect of information-

theoretic security and privacy is the need for known sta-

tistical models. Coding for secure communication over

the wiretap channel [2], key generation from common

randomness [66], [67], and many privacy coding tech-

niques [26] require knowledge of statistical distributions to

properly set the design parameters of the coding schemes.

This is especially problematic in presence of passive adver-

saries that do not disclose their presence and do not provide

signals from which to infer statistical models of observations.

Although uncertainty can be factored into the models [5], e.g.,

with compound channels [133], [161], state dependent chan-

nels [4], [179], [220], or layered-secrecy coding [221], such

approaches still leave open the possibility that the true chan-

nel is not properly captured by the model, in which case none

of the security guarantees hold. At a more conceptual level,

the crux of the challenge is that the statistical models must be

postulated rather than built from first principles.

One solution to resolve this conundrum, at least in the

context of secure communication and key generation, is to

leave the classical realm and embrace a quantum formalism

for the models. The laws of quantum mechanics have consis-

tently resisted theoretical and experimental attempts to break

them, thereby offering a powerful framework in which to build

information-theoretic security models from first principles.

Quantum models offer two main advantages over classical

ones: i) it is sometimes possible to indirectly infer bounds

on the information leaked to unknown adversaries, which we

shall see forms the cornerstone of Quantum Key Distribution

(QKD); and ii) the presence of noise can be guaranteed by

physics, such as the presence of thermal background noise or

the presence of unavoidable quantum noise in detectors. While

quantum information theory allows the study of models that

exceed today’s technological capabilities, quantum phenom-

ena already appear in low-power free-space and fiber optical

communication systems. Consequently, quantum-secured com-

munication are already a reality and have “leaped out of the

lab” [222], [223].

Historically, the discovery in 1984 by Bennett and

Brassard [224], followed in 1991 by Ekert [225], that quan-

tum mechanics would allow legitimate parties to indirectly

infer bounds on the information leaked to an a priori unknown

quantum adversary pioneered the field of QKD. QKD predates

the information-theoretic works on secret-key generation from

common randomness [66], [67] but we shall see that QKD

is effectively a secret-key generation protocol that bootstraps

1) the laws of quantum mechanics to infer the information

leaked to an eavesdropper; and 2) source coding with side

information and privacy amplification to effectively extract a

key. There exist many excellent reviews of QKD [226]–[228]

and, rather than duplicate these, we offer here a concise

description of typical QKD operation, tying in to some of

the concepts exposed in earlier sections. Heuristically, QKD

exploits the fact that quantum states cannot be perfectly

cloned [229] to ensure that any measurement by an adver-

sary attempting to eavesdrop would result in a measurable

distortion by the legitimate parties. More formally, this can be

achieved by sharing n maximally entangled two-qubit states

between two legitimate parties. During this sharing phase, an

eavesdropper may interact with the states in any way allowed

by quantum mechanics. In a second phase, Alice and Bob

publicly agree to measure each state a randomly chosen basis,

denoted by �n. Alice’s classical measurements are denoted

by Xn while Bob’s classical measurements are denoted by Yn.

Eve has access to her quantum state En and �n. Note that this

protocol effectively induces a source model for key generation

between Alice, Bob, and Eve as in Section III-B. Unlike the

classical case, however, there is a limit to how much Bob and

Eve can simultaneously know about Alice’s measurements,

captured by the entropic uncertainty relation

H
(
Xn|Yn

)
+ H

(
Xn|En�n

)
≥ n. (20)

By disclosing a fraction of their measurements, Alice and Bob

can estimate H(Xn|Yn) and thereby obtain a lower bound on

H(Xn|En�n). Alice and Bob can finally run a classical key

generation protocol consisting of the two coding mechanisms
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of Section IV-B: 1) source coding with side information to

correct the discrepancies between their measurements; and

2) privacy amplification, which can be shown to hold against

quantum observations [230].

Since its inception, research in QKD has made significant

strides both in theory and practice. On the practical side, tech-

nological advances have taken us closer to large scale QKD

networks, as exemplified by a recent satellite-based demon-

stration of QKD [231]. On the theoretical side, security proofs

have evolved to include the statistical finite length effect that

affect the estimation of the leaked information [232], as well

as situations in which the apparatus used by the legitimate par-

ties is partially under the control of the adversary [228]. The

fundamental limits of QKD rates as a function of distance are

known [233], and much of the current research focuses on

closing the remaining gaps between theory and practice and

exploring multi-dimensional qubits protocols to increase rates.

The wiretap channel model also possesses a quantum equiv-

alent for which [9], [234]–[236] characterize secrecy capacity.

Recent efforts have also analyzed and demonstrated the use-

fulness of quantum noise for covert communications [237],

[238], including early attempts at covert QKD [239]–[242] to

combine secrecy and covertness constraints.

E. Role of Crypto: Bridging Computational and

Information-Theoretic Security

A usual goal in information theory is finding the capacity of

a communication scenario or, at least, some coding schemes

that achieve a certain rate. Such a task is considered to be

accomplished once a single-letter entropic expression of the

capacity has been found as such a characterization is implic-

itly assumed to be numerically computable (or evaluable) on a

digital computer. Surprisingly, the requirement of being algo-

rithmically computable has not been specified explicitly in

general, though the notion of computational information the-

ory was already identified by [243], motivated by cryptography

considerations.

To address this issue from a fundamental algorithmic point

of view, the concept of a Turing machine [244]–[246] and

the corresponding computability framework can be used. A

Turing machine is a mathematical model of an abstract

machine that manipulates symbols on a strip of tape accord-

ing to certain given rules. It can simulate any given algorithm

and therewith provides a simple but very powerful model

of computation. Turing machines have no limitations on

computational complexity, unlimited computing capacity and

storage, and execute programs completely error-free. They are

further equivalent to the von Neumann-architecture without

hardware limitations and the theory of recursive functions,

see also [247]–[251]. Accordingly Turing machines provide

fundamental performance limits for today’s digital comput-

ers. Therefore, they are the ideal concept to study whether

or not certain capacity expressions can be algorithmically

(i.e., numerically) computed and whether or not the corre-

sponding optimal codes can be constructed algorithmically in

principle (without putting any constraints on the computational

complexity of such an algorithm).

Communication from a computability or algorithmic point

of view has attracted some attention recently. In [252] the

computability of the capacity functions of the wiretap channel

under channel uncertainty and adversarial attacks is studied.

The secrecy capacity of the wiretap channel is shown to be

Turing computable so that its expression can be numerically

evaluated. However, it is also observed that the secrecy capac-

ity becomes non-computable in the case of adversarial attacks

so that it is no longer numerically evaluable. These works have

in common that they analyze the capacity function of various

communication scenarios and analyze under which conditions

the capacity function is non-computable. However, they tackle

this is issue from a probabilistic or random coding point of

view and do not consider actual code constructions.

A key observation from [243] is that the use of random-

ness in the context of computational information theory is the

same as in the context of Wyner’s wiretap channel in that it

enhances the security of the system considered, e.g., a trap-

door function in the former case and a communication channel

in the latter. Two examples of the use of noise to construct a

hard computational problem from an easy one are McEliece’s

cryptosystem [253], and Regev’s cryptosystem [254].

Public-key cryptosystems refer to a cryptography setting

that involve two players, Alice and Bob, who are communi-

cating using pairs of keys: public keys (for encryption, known

to anyone) and private keys (for decryption, known only to

the owner, meaning that Alice has her own key, and so does

Bob). If Alice wants to write to Bob, she takes Bob’s public

key, encrypts her message and sends it to Bob who will use

his private key to decrypt. A private key is usually obtained

from a function computationally hard to compute, while the

public key is easily computed.

McEliece cryptosystem is an example of code-based cryp-

tosystem, in which the generator matrix of a Goppa code is

hidden by scrambling/permuting its entries, which becomes a

public key. A plaintext is encrypted by being encoded with

this generator matrix, and then x-ored with some small (with

respect to the code’s parameters) weight error. The difficult

part (leading to the private key) is to be able to decode, or

more precisely, it is based on the hardness of decoding a ran-

dom linear code, and depends on the introduction of noise (the

small weight error). Its disadvantage though is the (huge) size

of the keys.

Regev’s cryptosystem is an example of a cryptosystem

based on the so-called learning with errors (LWE) hard

problem. The underlying problem behind LWE is solving a

system of linear equations (an easy task) that becomes diffi-

cult once noise gets added. Namely, a secret s is fixed, and

one can ask noisy linear equations in s, the goal of LWE

being to find s. The LWE problem can be expressed as lattice

problem, by introducing q-ary lattices, n-dimensional lattices

that contain qZn, in which case it becomes a bounded distance

decoding on lattices. This variation of the LWE problem thus

fits within the area of lattice-based cryptography.

Code-based and lattice-based cryptography [255] are two

families that are considered in the area of post-quantum cryp-

tography, where cryptography protocols that are resistant to

quantum computing are studied.
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VI. CONCLUSION AND FORWARD LOOK

In this tutorial, we have reviewed information-theoretic

security and privacy approaches. Starting from initial for-

mulations, we have provided the progressive development in

metrics, problems and models that are increasingly connected

to real systems and can provide foundational security and pri-

vacy guarantees for emerging applications going forward. We

have covered the role of information-theoretic security and pri-

vacy approaches in communication system design as well as

the relevant coding techniques needed in these designs. We

have touched upon some of the contemporary directions in

information-theoretic security, namely that of the roles of wire-

less medium, realistic channel assumptions, digital circuits,

and provided connections to quantum and to computational

security. The current and forward looking directions we were

not able to cover include content security and privacy, e.g.,

secure caching and private information retrieval, privacy aided

by and concerned by distributed, e.g., federated, learning, con-

nections with adversarial machine learning and many others.

We conclude the article by stating that information-theoretic

approaches to security and privacy remain vibrant, as rele-

vant metrics for emerging applications continue to encourage

designs that focus on security and privacy as foundational

necessity in networked information flow.
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