IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 2, NO. 1, MARCH 2021 5

An Overview of Information-Theoretic Security and
Privacy: Metrics, Limits and Applications

Matthieu Bloch

, Senior Member, IEEE, Onur Giinlii

, Member, IEEE, Aylin Yener ~, Fellow, IEEE,

Frédérique Oggier ~, H. Vincent Poor ~, Life Fellow, IEEE, Lalitha Sankar ~, Senior Member, IEEE, and

Rafael F. Schaefer

Abstract—This tutorial reviews fundamental contributions to
information security. An integrative viewpoint is taken that
explains the security metrics, including secrecy, privacy, and oth-
ers, the methodology of information-theoretic approaches, along
with the arising system design principles, as well as techniques
that enable the information-theoretic designs to be applied in
real communication and computing systems. The tutorial, while
summarizing these contributions, argues for the simultaneous
pivotal role of fundamental limits and coding techniques for
secure communication system design.
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I. INTRODUCTION

NFORMATION security, a broad umbrella term that
I includes attributes including secrecy, privacy, and trust, has
arguably become as important as information reliability in
system design, especially so, as society at large conducts most
operations virtually and as future generations of applications
and devices emerge that amalgamates communication, sens-
ing, computing, and control. In current systems, information
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security is largely treated as an addition to the network opera-
tions rather than a foundational design constraint at the outset.
Consequently, securing information that flows over networked
systems is largely guaranteed by higher network layer protocols.
While this layered approach has had undeniable success,
future and emerging systems exhibit unique characteristics
that challenge this prevalent view of security. The deployment
of 5@, the advent of the IoT, the current and upcoming cyber-
physical autonomous systems, and the envisioned all connected
6G world have all exacerbated the concerns for security and
privacy in communication networks. In the next decade and
beyond, tens of billions of devices are expected to be collect-
ing and transmitting data over networks. The heterogeneity
of these devices in terms of resources and capabilities, e.g.,
battery power, computational power, communication and stor-
age capabilities, renders the approach to date of relying solely
on computational approaches for security, e.g., cryptographic
solutions, difficult. For example, networks with energy and
computational power-limited IoT devices would benefit from
lightweight security mechanisms that do not incur the over-
head of traditional public-key infrastructures. Similarly, the
stringent performance constraints of cyber-physical systems
make increasingly apparent that security cannot be handled
independently of other parameters, such as power consump-
tion and latency, leading to unavoidable application dependent
trade-offs. Cyber-physical systems would then benefit from
bringing security closer to control in order to reduce overhead
and latency in operation. Finally, all future massively con-
nected systems would benefit from security mechanisms built
into their foundation, e.g., to avoid the costly software updates
required when new more powerful attacks emerge as a result of
increasing computing power. Noting information security and
privacy has a much larger domain of interest and impact, this
tutorial focuses on communications as an exemplar to highlight
recent advances in information-theoretic security.
Information-theoretic security [1], [2] aims at providing solu-
tions to the aforementioned challenges, by offering a framework
in which the security of information flows can be measured with
quantitative information-theoretic metrics and enforced using a
combination of signaling and coding mechanisms at the lower
layers of the communication protocols. At its core, information-
theoretic security embraces the observation structures inherent
to communication systems. Specifically, acknowledging that
legitimate users and adversaries obtain distinct signals through
noisy and lossy channels, the asymmetry is harnessed through
signal processing and coding mechanisms to control information
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flows and information leakage. This tutorial provides a com-
prehensive review of information-theoretic security from the
foundational concepts to the advances of the past two decades.
Moreover, the tutorial seeks to highlight three crucial aspects
of information-theoretic security that justify its relevance for
securing information systems.

First, the tutorial makes the case that information-theoretic
secrecy and privacy metrics have well-grounded crypto-
graphic properties (Section II). Information-theoretic security
metrics have naturally started out by measuring and con-
trolling the mutual information rafe. In recent years, how-
ever, information-theoretic security and privacy metrics have
evolved significantly and are now defined in a much more
principled way from a cryptographic perspective. In particular,
semantic security precisely measures the ability of an adver-
sary to infer information in secret communication setups, while
maximum information leakage and its tunable variants offer
a principled and operationally motivated way of measuring
information leakage in privacy problems.

Second, the tutorial reviews how models for information-
theoretic security have evolved since the beginning of the
field (Section III). In particular, we make the point that
the fundamental limits of models under which information-
theoretic security holds have been characterized to accommo-
date increasingly more powerful adversaries. It is now known
how to communicate secretly in the presence of adversaries
that are not merely passive, but strategic in how they choose
to acquire signals and even adversarial in their manipulation
of the information.

Third, the tutorial emphasizes the meaningful connections
between the foundational results and the tools that would
accurately reflect the foundational insights in system design
(Section IV). More specifically, we highlight coding and ran-
domization as the mains tool towards realizing the potential of
information-theoretic security. A main reason for doing so is to
emphasize the distinguishing feature of information-theoretic
security and privacy as compared with reliability that drove
communication system design for many decades. In essence,
whereas for reliability, separation of physical layer and error-
correction coding techniques is often possible, enabling design
insights from uncoded communication systems to carry through,
this is not the case for security guarantees. This fact, at the
outset, establishes the need for coding techniques for security
to be an integral part of any real communication system design
that guarantees information security.

The scope of information-theoretic security is ever-growing
as new challenges dictated by emerging applications arise. We
very briefly review a select subset of these in this tutorial
(Section V) and point to several we were not able to accom-
modate into this article in the Conclusions and Forward look
(Section VI).

II. INFORMATION-THEORETIC METRICS: SECRECY,
PRIVACY, AND BEYOND

In this section, we introduce the metrics that are commonly
used in information-theoretic security to quantify secrecy, pri-
vacy, authentication, and covertness. Conceptually, many of
these metrics reduce to measuring distances between prob-
ability distributions using an f-divergence [3]; however, the

operational interpretation of the metrics depends on the secu-
rity objective and not all metrics are equally amenable to
analysis. Our main objective here is to clearly articulate these
ideas independently of the specific models in which the metrics
would be analyzed.

A. Information-Theoretic Secrecy

Secrecy is concerned with the problem of keeping the
information content of a signal confidential from unautho-
rized parties, e.g., an adversary that intercepts signals emitted
from the transmitter(s). In information theory, the digital
information content is represented by a message, described
as random variable W taking a value from a discrete set
W £ ({l,...,M)}. The signal carrying the message and
observed by the adversary is described as random vector Z",
consisting of n symbols taking value in a set Z. The param-
eter n, hereafter called the blocklength, captures the fact that
messages are typically coded into sequences. In the simplest
situation, the joint distribution pwz» of W and Z" is known,
which implicitly assumes that i) the statistics of the source of
information are fully controlled; and ii) the statistical models
that describe the processes relating the observation Z" to the
message W are fully characterized. Contemporary approaches
to information-theoretic secrecy offer solutions to deal with
channel uncertainties [4], [5], examples of which are discussed
in Sections V-A and V-B. Perfect secrecy mandates that W and
Z" be statistically independent, i.e.,!

Yw e W,VZ" € 2" pwzr(w, ") = pww)pze ("),
I(W;Z2") =0 (1)

1.e.,

where I(W; Z") is the mutual information between the mes-
sage and the adversary’s observation. Operationally, perfect
secrecy has several interpretations. Writing (1) equivalently
as pwiz»(w|Z") = pw(w) shows that perfect secrecy guaran-
tees that the best attack an eavesdropper may launch is to
guess the message at random according to pw. Writing (1)
as pznw(Z"lw) = pz«(Z") shows that perfect secrecy ensures
that every message induces the same statistical distribution of
the eavesdropper’s observation; this also implies that a coding
scheme with perfect secrecy maintains its guarantees regard-
less of the specific distribution pw. Finally, perfect secrecy
already hints at the coding mechanisms that must be deployed
for information-theoretic security. W cannot be a function of
Z", which suggests that some form of randomization must be
present for secrecy to hold. This aspect is further discussed in
Section IV. Despite these appealing cryptographic properties,
perfect secrecy is often of little practical use. As recognized
by Shannon [1], perfect secrecy requires excessive additional
secret resources, in the form of uniformly distributed secret
keys shared by legitimate parties, to act as a one-time pad.

To make information-theoretic secrecy actionable as a
system design methodology, metrics that relax perfect secrecy
have been introduced. Wyner’s weak secrecy [2], replaces (1)
with

1
—I(W; Z”) < € for some suitably small € > 0. 2)
n

IWithout loss of generality, we consider that W and Z" have full support,
i.e., pwzn(w, Z") > 0 for all pairs (w, 7).
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Since the mutual information can be expressed in terms of
the relative entropy D(pwz:|[pwpz) between the joint dis-
tribution pwz» and the product of marginals pwpz:, weak
secrecy retains the spirit of perfect secrecy. The factor %,
makes weak secrecy a measure of information leakage rate,
that measures how many bits are leaked about the message
W per symbol of the sequence Z". Consequently, no mat-
ter how small the parameter ¢ > 0 is, one can construct
schemes that guarantee weak secrecy while leaking many bits
of information [6]. Despite this weakness, weak secrecy has
enabled system design and coding mechanisms for secrecy,
as further discussed in Sections III and IV. Strong secrecy,
introduced in [7], strengthens (2) as:

I(W; Z’l) < € for some suitably small € > 0. 3)

. . 1
By dropping the normalization ., strong secrecy measures

an amount of leaked information instead of a rate, which
strengthens the security guarantee. That said, as (3) is equiv-
alently expressed as Ew (D(pznjwllpzr)) < €, strong secrecy
is dependent on the message distribution pw. This leaves
open the possibility that some very unlikely messages may
be poorly protected because D(pz:w=wllpz») could be large
while pw(w) would be small.

Semantic secrecy, named after its connection with semantic
security in standard cryptography [8], closes the last loophole
of strong secrecy by requiring

rgax I(W; Z") < € for some suitably small € > 0. (4
w

In essence, semantic secrecy requires strong secrecy to hold
regardless of the distribution of the message pw. Compared
with perfect secrecy, the main relaxation of semantic secrecy
consists of introducing some slack in the independence
requirement. Operationally, one can show that, under seman-
tic secrecy, an adversary cannot do much better than randomly
guessing any function of the message W [8]. Semantic secrecy
can be further strengthened by making € vanish with #; in par-
ticular, most of the results surveyed in Section III hold with
€ =27 for some ¢ > 0.

While weak, strong, and semantic secrecy are here
expressed in terms of a relative entropy, one can devise similar
quantities based of other f-divergences. In particular, the total
variation distance and Rényi entropies often appear [9]-[12].
While the exact dependence between the message set size M
and the secrecy parameter ¢ depends on the chosen metric,
the underlying coding mechanisms and the fundamental limits
are surprisingly robust and often remain unchanged no matter
which metric is used.

B. Information-Theoretic Privacy

Information leakage pervades all modern data applications
that require a user to disclose data in order to receive util-
ity; these applications pose a privacy risk through unwanted
inferences [13]-[18]. Quantifying information leakage is the
first step towards limiting such leakage. Finding solutions that
strike an acceptable compromise between privacy and utility
has been a long standing research problem, see, e.g., [19],
which has attracted growing interest over the past decade with

the introduction of several often overlapping definitions of
privacy/information leakage. Differential privacy (DP), which
was first introduced within the context of querying databases,
has emerged as a widely adopted worst-case privacy mea-
sure [20], [21]. DP seeks to ensure that changes in the database
entries do not significantly influence the value of a query
thereby limiting the inference of any specific entry from the
query output. DP makes such a guarantee uniformly (hence,
worst-case measure) for all “adjacent”2 entries, and thus,
requires noising the data to avoid such a distinction.

Taking a more average-case approach, a variety of
information-theoretic measures have also been proposed
as leakage measures. Foremost among them is mutual
information: its use as a privacy measure in [22]-[31] is
inspired by the common appearance of mutual information as
an operationally-meaningful quantity throughout the literature
on communication systems. In a similar vein, divergence-based
quantities such as total variation distance between the prior and
posterior distributions of the released data [32] have also been
proposed as leakage measures. In fact, information-theoretic
measures have been studied in the DP community via Rényi
differential privacy which, based on Rényi divergence [33],
allows relaxing the original definition of DP in order to achieve
utility guarantees.

Similar to the secrecy metrics described in Section II-A,
privacy metrics can be operationally motivated. However,
while secrecy exclusively focuses on a regime in which the
information leakage is made negligible, privacy may more
generally tolerate some leakage, if it is carefully controlled,
to obtain some utility in return. Note that there is no univer-
sal privacy vs. utility tradeoff, and how much leakage about
sensitive attributes is required (if at all) to obtain some util-
ity is application dependent. Having an operational motivation
of privacy is therefore crucial to appreciate and interpret the
resulting tradeoffs. As an illustration, consider the following
setup. Let S € § and X € X denote the sensitive and non-
sensitive attributes of a dataset, respectively, and let ¥ € Y
denote the released data; without loss of generality, assume
that S, X, and Y are all discrete. Denote the leakage of S via Y
as £)(S — Y) where (-) denotes a chosen adversarial model
as detailed below. An operationally motivated privacy measure
was introduced recently in [34] (see also [28], [35], [36]) as
the information leaked to a “guessing” adversary. The authors
measure the leakage £.(S — Y) in terms of an adversary’s
gain in the probability of correctly guessing S after observing
the disclosed data as:

L(S—>Y)2 _P;(fg )
C

)
where  Pc(S|Y) = 3 yPy(y) maxses Psiy(sly) =
Zyey maxses Ps(s)Py|s(y|s). Measures based on proba-
bility of correctly guessing have also been considered in [37].
While £.(S — Y) focuses on quantifying leakage about
a specific S, more generally, one could also quantify the
leakage to an adversary that can guess any function of the
sensitive S or just the non-sensitive X from Y. To this end,

2With respect to some measure of similarity.
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in [38] (see also, [39], [40]), maximal leakage (MaxL),
LmaxL(X — Y), is introduced, as the maximal logarithmic
gain in the probability of correctly guessing any arbitrary
function of the original data X from the released data Y
given by

maxp;, [PU|Y(U|Y)]

Ly (X = ¥) 2
deL( ) max,, PU(M)

sup log (6)

U-X-Y

where U represents an estimator taking values from the
same arbitrary finite support as U and U —-X—Y is
a Markov chain relating any (potentially random) func-
tion U of X to Y. It is shown that Ly (X — Y) =
logzﬁy maxPX(E;;C Pyix(ylx) = Io(X; Y), where I(X;Y)

is the Sibson mutual information of order oo [41], and that
MaxL satisfies well-accepted desiderata for information mea-
sures including: (i) the data processing inequality, Lyjaxr (X —
Z) < min{lpax.X — V), Lvax. (Y — Z)} for a Markov
chain X — Y — Z; (ii) the independence property: Lypaxp. (X —
Y) = 0 if and only if X and Y are independent; and (iii) the
additivity property: if (X1, Y1) and (X, Y») are independent,
then LOpaxL((X1,X2) — (Y1,Y2)) = LMaxt (X1 — Y1) +
LMaxL (X2 — 12).

An adversarial model based on the probability of correctly
guessing focuses on an adversary that makes a hard decision
(see (5) and (6)). Yet, in many practical settings including
machine learning, adversaries can make soft decisions prior
to making a hard decision. Motivated by this, [42] introduces
a parameterized class of adversarial models via a tunable loss
function, a-loss, o € [0, oo], where each « captures a specific
adversarial action. Thus, for X, Y and X such that X — Y — X
form a Markov chain and X is an estimator of X, the a-loss,
for o € (1, 00), of an adversarial strategy PX’IY in estimating
X from Y is

o
_* (1 _
—1

ta(x v Pyy) = Py ). ()

Specifically, for « = 1 and o = 00, by continuous extension,
we have £1(x, y, P)Am,) = —log P;m,(xly) and £ (x, y, P)?IY) =
1 - P;m,(x|y). An adversary minimizing this loss effectively

a—1

maximizes the estimate Pf(Ty' By varying «, «-loss captures
adversarial strategies ranging from the probability of cor-
rectly guessing for ¢ = oo to the posterior distribution for
o = 1 about data X from the disclosed Y. Using these loss
functions, [42] introduces two kinds of leakage measures: «-
leakage and maximal «-leakage (Max-«L), wherein the former
captures the leakage of X from Y while the latter captures the
maximal such leakage over all functions of X.

Formally, given a joint distribution Pyy and an estimator
X with the same support as X, the «-leakage, £,(X — Y),
and Max-aL, L™ (X — Y), from X to Y are defined as for
a € (1, 00) and by the continuous extension of (8) for o =1
and oo as

A InaXP [ X|y(X| ) l]
LoX—>Y)= log , (8)
a—1 maxp, ]E[PX(X)T]
LOX(X — Y) 2 sup Lo(U—Y), 9)

U-X-Y

where 1 < o < 00, and U is any function of X taking values
from an arbitrary finite alphabet.

One can show that £, (X — Y) and L5**(X — Y) simplify
to the Arimoto mutual information and the Sibson capacity of
order «, respectively. Furthermore, Max-aL satisfies the data
processing, independence, and additivity properties, is robust
to adversarial side information [40], [43], and is monotonically
increasing in «. For @ = 00, Lo(S — Y) is the guessing gain
in (5) for an § — X — Y setting while L2 (X — Y) is MaxL
in (6). Finally, both measures also allow quantifying leakage
between sensitive features S and the release Y.

While Max-«L, and therefore, MaxL., capture the worst case
leakage over all distributions of X, [40] showed that local DP,
a stronger version of DP, upper bounds MaxL, and therefore,
LU (X — Y) for all @ € [1, 00). Local DP is a variant of DP
where privacy has to be guaranteed over all pair of data entries.
Such relationships have also been studied in [44]. There con-
tinues to be interest in exploring both the information-theoretic
foundations of DP (e.g., [45]) and understanding how maxaL
and «-leakage relax the strong privacy requirements of DP
thereby assuring more utility, particularly in context-aware
settings [46]-[48].

The role of these measures in practical data sharing and
learning settings continues to be studied including understand-
ing how multiple queries or uses of the data (e.g., learning
gradients privately over all samples in a dataset) requires the
composition of privacy measures. A key challenge here is
in understanding the limits of data usage for a fixed privacy
budget or alternately, the allocation of the total budget to dif-
ferent private operations. While such bounds exist for DP,
information-theoretic measures can enhance existing bounds
as shown recently in [45].

C. Authentication, Stealth and Covertness

Information-theoretic metrics also capture security concerns
beyond secrecy and privacy.

a) Authentication: Authentication aims at ensuring that a
message received at a terminal is indeed the one transmitted
by a legitimate transmitter [49], [50]. An attacker can thwart
authentication by launching one of two attacks: i) an imperson-
ation attack, by which the attacker forges a new message; ii) a
substitution attack by which the attacker first intercepts a trans-
mitted signal and tries to substitute it for another. Formally, the
problem can be cast as a binary hypothesis test on a received
signal Y" to distinguish between a signal Y” that has not been
manipulated (hypothesis Hp) and a signal Y” that has been
tampered with (Hypothesis Hp). An effective authentication
scheme is then one that achieves good detection performance
for this hypothesis test. The main challenge behind authen-
tication is that it is impossible to accomplish without using
additional resources, either in the form of shared secret keys
between the legitimate parties to facilitate the detection of tam-
pering [49], or in the form of restrictions on the manipulation
that an adversary can perform [51].

b) Stealth and covertness: Stealth and covertness aim at
concealing the fact that communication is taking place and at
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ensuring that signals generated by a communicating terminal
can be transmitted with low-probability of intercept (LPI) or
a low probability of detection (LPD). Unlike secrecy and pri-
vacy, which are concerned about the information content of
transmitted signals, stealth and covertness are constraints on
the signals themselves. Although the systematic study of such
security constraints in the context of communication chan-
nels is relatively recent [52], the problem can be traced back
to steganography where the objective is to embed an unde-
tectable stegotext into a covertext [53], [54]. Denoting the
observations of the signals intercepted by an eavesdropper
Z", stealth requires that the statistical distribution induced
by a coding scheme, pz:, be nearly indistinguishable from
a reference innocent looking distribution gz, as

D(pz»|lgzr) < € for some suitably small € > 0.  (10)

This measure of stealth assumes that the statistical distri-
bution pz» and gz» are known. Operationally, ensuring that
D(pz|lgz») is small ensures that no detector deployed by
the eavesdropper can perform much better than a “blind
guess” [55]. More formally, in Neyman-Pearson detection
theory, the performance of any reasonable detector is char-
acterized by a trade-off between probability of false alarm «
(detecting P, when Qz» is true) and probability of missed
detection (detecting Qz» when Pz takes place) of the form
1 >a+pB >1—./D(@pzlqz). Ensuring that D(pzn||qz)
is small ensures that « + 8 = 1 for any test, which is no
better than the trade-off of a guess made without knowing
Z". Covertness corresponds to a special case of stealth, in
which the innocent looking distribution Qz» is the one induced
by the absence of communication, e.g., background noise.
This subtle difference has important consequences when ana-
lyzing communication systems, as covertness is often much
more stringent than stealth and leads to a so-called square-
root law [56], by which the rate of communication scales as
the inverse of the square root of the coding blocklength.

It is crucial to note that stealth and secrecy are not equiva-
lent; said otherwise, being stealth does not necessarily protect
information content and vice versa. One elegant way to
combine requirements is to enforce effective secrecy [57]
defined as

D(pumz lpmqzr) < € for some suitably small € > 0. (11)

One can rewrite the effective secrecy criterion as
D(pmzrllpmaz) = 1(M;Z") + D(pznllqzn), which high-
lights that effective secrecy combines strong secrecy and
stealth in a single metric.

III. INFORMATION-THEORETIC SECURITY MODELS:
FUNDAMENTAL LIMITS

A. Wiretap Channel Models

The wiretap channel (WT) goes back to Wyner [2] and
refers to the simplest building block that models secure com-
munications over noisy channels. Specifically, Wyner consid-
ered that the adversary observes the communication between
the legitimate parties through a channel that is degraded with

respect to the legitimate channel, and showed that secure com-
munication is possible irrespective of the computational power
of the adversary. This model explicitly brings in the notion that
if the channel between the legitimate entities has an advantage
over the channel to an adversary, e.g., as measured in [58],
then coding (more specifically stochastic encoding with care-
fully selected rates) leads to quantifiable guarantees that limit
information leakage, specifically under the metric now known
as weak secrecy, see Section II-A.

It is worth emphasizing that the significance of Wyner’s
original wiretap channel model is (1) to demonstrate the pos-
sibility of information theoretically secure transmission over
noisy channels and (2) to establish the fundamental limits of
reliable information transport under information leakage con-
straints to an external entity that has access to the receiver’s
observations (which the receiver obtains from the transmit-
ter through a Discrete Memoryless Channel (DMC)) through
a second DMC. The need for the explicit channel advantage
of single user models [58], [59] should not be attributed as
a limiting factor of information theoretic secrecy in general.
Indeed, the advent of multiuser information theory, notably
revived with the advent of wireless communication networks
that operate in shared multiuser channels, has also led to a
plethora of models where a network advantage can be cre-
ated utilizing the broadcast nature of the wireless medium,
see Section V-A.

About a decade later than the original wiretap chan-
nel, Ozarow and Wyner proposed the Wiretap Channel II
(WT-II) [60]. The channel model in this case is even more
specific than the wiretap channel, namely, the paper considers
a noiseless channel between the legitimate transmitter and the
receiver, and a specific erasure model for the adversary, i.e., the
eavesdropper. At the same time a new capability is introduced
to the eavesdropper which can be interpreted as the first strate-
gic adversary model in information-theoretic security. More
specifically, the significance of this second landmark paper
lies in the additional ability of the eavesdropper to be able to
tap noiselessly « fraction of the symbols, of its own choosing,
sent by the transmitter, while seeing erasures in the remain-
ing positions. It was shown that irrespective of the positions
chosen by the adversary, coding guarantees secrecy capacity
to be identical to that of the case if the erasures seen by the
adversary happened randomly at the same rate, i.e., through a
BEC with erasure probability identical to the fraction in the
WT-II model, «.

Recently, a generalized wiretap channel model was intro-
duced that unifies the two models. Specifically, the model
considers a strategic adversary who can choose « fraction
of symbols to tap in its observation, like WT-II, while
observing the rest through a DMC with transition proba-
bility Pzx (as opposed to them being erasures), providing
the adversary with the capabilities of both WT and WT-II.
The main channel between the legitimate transmitter and the
receiver is a DMC with transition probability Py)x as is
the case in WT. In this generalized set up, and considering
strong secrecy (see Section II-A), [61] established the fol-
lowing secrecy capacity result, for channel model details see
also [61], [62].
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Theorem 1 [61, Th. 1]: For 0 < « < 1, the strong secrecy
capacity of the generalized wiretap channel is given by

Cola) = max [I(U:Y) —I(U: V) —el(U; X[VI*, (12)

where the maximization is over all the distributions pyx which
satisfy the Markov chain U — X — YV, and the cardinality of
U can be restricted as |U| < |X].

An equivalent characterization for the strong secrecy capac-
ity of the generalized wiretap channel is given by

I(U;Y) —al(U; X)

+
Cs(a) = Umax |: —(1 = a)I(U: V):| , (13)

-X—YV
which clarifies the cost of providing the strategic ability to the
eavesdropper.

Corollary 1 [61, Corollary 1]: By setting the tapped subset
by the wiretapper, S, to the null set, or equivalently o = 0,
the secrecy capacity in (12) is equal to the secrecy capacity of
the discrete memoryless wiretap channel in [58, Corollary 2],
ie.,

— . AN R
Cs(0) = UEI)I(a—XYV[I(U’ Y)—-I(U; V] (14)
Corollary 2 [61, Corollary 2]: By setting the wiretapper’s
DMC through which she observes the (1 — «a)n symbols she
does not choose, py|x, to be an erasure channel with erasure
probability one, the secrecy capacity in (12) is equal to the
secrecy capacity of the wiretap channel II with a noisy main
channel in [63, Th. 2], i.e.,

15)

Ci(a) = Um}zgy[l(U; Y) —al(U; )1

Comparing (12) and (14), we observe that the secrecy cost,
with respect to the classical wiretap channel, of the additional
capability of the wiretapper to choose a subset of size an
of the codewords to access perfectly, is equal to al(U; X|V).
Comparing (13) and (15), the secrecy cost, with respect to the
wiretap channel II with a noisy main channel, of the additional
capability of the wiretapper of observing (1 —«) fraction of the
codeword through the DMC py\x, is equal to (1 —a)I(U; V).

Secrecy capacity [61] captures the fundamental limit of
confidential reliable communications. While this formulation
considers the asymptotic blocklength regime, recent references
have also analyzed wiretap channels in the finite blocklength
regime, see, e.g., [64], [65].

B. Secret-Key Agreement Models

Another information-theoretic confidentiality problem aims
to agree on a secret key by using a noisy channel in addition
to a noiseless public channel. The aim of the legitimate parties
is to extract a secret key from the noise in the channel such
that the key is hidden from an adversary, which is different
from communicating a message secretly over a noisy channel
considered in Section III-A. The secret key can then be used,
e.g., for authentication, identification, secure transmission with
public key cryptography, etc. There are two main models for
the secret-key agreement problem: source model and chan-
nel model, introduced in [66], [67]. A result in [68] shows
that it is possible to authenticate the public channel between

the legitimate parties by using a small amount of secret key,
which follows steps that are entirely similar to quantum key
distribution (QKD) protocols discussed in Section V-D.

In the source model, the two legitimate parties n i.i.d. sym-
bols of random variables X and Y, respectively, while the
adversary observes n i.i.d. symbols of a random variable Z.
The model assumes that these random variables are dependent,
i.e., they are distributed according to a given joint proba-
bility mass function (pmf) pxyz(x,y,z) for x € X, y € Y,
z € Z with X, Y, and Z finite sets. The legitimate parties
exchange public messages Fp sequentially based on both
the previous messages exchanged and their random sequences,
which can include local randomness, for k rounds. Each party
then extracts a secret key § that is almost uniformly distributed
over its set by using all locally available information. The reli-
ability constraint requires the two keys to be equal with high
probability, i.e., probability of not agreeing on the same key
should tend to zero with increasing blocklength n. The secrecy
criterion is to ensure that the secret key S is almost indepen-
dent of the adversary’s information (Z", Fy.x), which can be
imposed as a weak or strong security constraint. Consider the
weak secrecy constraint for the source model problem

%I(S; Z" Fix) <e. (16)
Define the secret-key rate as Ry = %H (S) and the supremum of
all achievable key rates as the source model secret-key capacity
S(X; Y||Z). We have the following upper and lower bounds on
the source model secret-key capacity [66], [67]

IX;Y) —min{l(X; Z2),I(Y;Z)}

=SX; Y2) = min{I(X; Y), I(X; Y|2)}. A7)

The lower bounds can be achieved by using a one-way com-
munication, which is possible in two different directions and
this explains the two lower bounds. We remark that the secret-
key capacity S(X; Y||Z) is not known for general probability
distributions, but the lower and upper bounds given in (17) are
tight for various cases. Furthermore, if the number of rounds
is fixed to k = 1, the one-way secret-key capacity is given
as [67]

Si=1(X; Y12) = max

I(U; Y|V) = I(U; Z|V) (18)
(U, V)=X—(Y,Z)

which is a valid lower bound for the general case and does
not require local randomness. As an extension of the coding
method used to achieve the one-way secret-key capacity, a sin-
gle letter interactive communication lower bound is obtained
in [69, Th. 7].

There is a method to convert a coding method that
achieves weak secrecy (16) into a code that achieves
strong secrecy by applying the steps given in [7], which
mainly follows because a secret key does not carry any
information by itself. The steps to achieve strong secrecy
follow a QKD-based protocol, called sequential key distilla-
tion that consists of three main steps: advantage distillation,
information reconciliation, and privacy amplification. The
first step is introduced to gain an advantage over an adver-
sary by using multi-round communications, which allows to
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achieve non-zero secret-key rates that cannot be achieved
by using one-way communication methods [66], [70]. Thus,
feedback improves the secret-key rate. Powerful advantage
distillation methods combined with matching information rec-
onciliation methods are shown to improve the secret-key
rates [71]-[76]. The last two steps are discussed in more
details in Section I'V-B.

Various improvements to the upper bounds on the source
model secret-key capacity given in (17) have been provided.
The intrinsic mutual information upper bound By(X; Y||Z) fol-
lows from the basic idea that by degrading the observations of
the adversary the secret-key capacity does not decrease, i.e.,
we have [67, Remark 2], [77]

SX; Y||1Z2) <minSX; Y||J) < Bo(X; Y||Z) = minI(X; Y|J).
Pjz Pz

19)

Further improvements are given in [69], [78]-[80]; see
also [71] for a new interpretation of the best known upper
bound given in [69] by relating it to deviation from the /ess
noisy condition, introduced in [81] originally for broadcast
channels.

Unlike the source model, the channel model allows one of
the legitimate parties to control an input sequence X" that is the
input to a DMC Pyzx whose outputs Y" and Z" are observed
by the other legitimate user and the adversary, respectively. In
the channel model, the sequence X" is not necessarily i.i.d.,
unlike in the source model. Similar to the source model, a
public, noiseless, and authentic channel is assumed to be avail-
able between the legitimate users. Thus, the channel model
can be modeled as a WTC, defined in Section III-A, with
an additional public channel over which the legitimate par-
ties can communicate in multiple rounds. Imposing the same
reliability and secrecy constraints to the channel model as
being imposed to the source model, one can observe that all
source model achievable secret-key rates are achievable also
for the channel model as the channel model is more gen-
eral than the source model. Similarly, by following the same
steps as for the source model, similar upper bounds can be
given for the channel model. Furthermore, due to the gener-
ality of the channel model, it is generally harder to find the
channel model secret-key capacity. However, the secret-key
capacity of a specific channel model is established in [66]
by converting the problem into a virtual WTC problem. This
example also illustrates that the channel model secret-key
capacity can be positive, even if the secrecy capacity is zero for
a DMC P YZ|X-

Various extensions to multiple parties, continuous random
variables, and cases with limited public communications rates
can be found, e.g., in [6], [82]—-[88]. Furthermore, the source
and channel model secret-key agreement problem assumes
that the adversary is passive, i.e., it does not intervene
the secret-key agreement process and simply observes what
is available. However, there can be active adversaries or
uncertainties in channel or source statistics as for example
in [89], [90].

IV. CODING FOR SECURITY: THE ROLE OF RANDOMNESS

The term coding broadly refers to any technique that
involves mapping a set of elements (typically with a mathe-
matical structure, e.g., the binary alphabet {0, 1}, a finite field,
lattice points) into a larger set. Coding problems tradition-
ally emerge from communication systems, where a transmitter
wishes to communicate messages to a receiver over a noisy
communication channel, and coding is needed to combat the
noise. Coding is however also useful in engineering applica-
tions that fit a communication model although the problem at
hand may not be reliable communication per se. The objective
of this section is to shed the light on how to code for security
and achieve the limits identified in Section III, as well as to
highlight the central role played by randomness.

A. Coding for the Wiretap Channel

In the wiretap channel model, the security objective is to
ensure that a message W, encoded as a codeword X" =
(X1, ...,X,) and observed by an eavesdropper as Z", is not
leaked, as measured, e.g., by a strong secrecy constraint
I(W;Z") < €. As alluded to in Section II-A, ensuring the
secrecy constraint requires a non-bijective mapping between
W and X", for otherwise the information leakage grows lin-
early with n in general. Specifically, writing I(W;Z") =
IX"; 72" — (X", Z"|W) shows that controlling I(W;Z")
requires H(X"|W) to be non zero. In other words, multiple
codewords X" should represent the same codeword W and ran-
domness must be injected in the encoding process. To build
further intuition, consider the following small example from an
instance of Wiretap Channel II (see Section III-A). The chan-
nel between Alice and Bob is noiseless, while Eve’s channel
is described as follows: out of any n bits sent by Alice, she
gets exactly p of them. Alice knows it, but she does not know
which symbols Eve will get. A wiretap coding strategy for this
scenario consists in Alice mixing random bits with information
bits. In the simplest case where n = 2 and p = 1, Alice sends
(s 4+ r,r) where r is a random bit chosen uniformly at ran-
dom, s is a secret bit of information. Whether Eve gets r or
r + s, she knows nothing about u, which can be formalized
as 1(S; S + R) = 0. When Alice wishes to send [ secret bits
S1, ..., she appends n — [ random bits ry, ..., r,—;, chosen
uniformly at random, and encodes them as follows:

M
[sl,...,sl,rl,...,rn_l][G]

=[Sl,...,S1]M+[r1,..

coset choice

-5 1 n—l]G
random codeword

where G is chosen to be of rank n — [, so it forms a genera-
tor matrix of a linear code C (the subspace generated by the
rows of G), to which the codeword [ry, ..., r,—;]G belongs,
and M contains / linearly independent vectors, which are not
contained in C. Since we can write the whole space {0, 1}"
as a disjoint union of 2! subsets, called cosets of C of the
form C + ¢ (imagine all the points in the subspace C trans-
lated by 1), for t = [s1,...,s]]M, Alice’s strategy is often
called coset coding: it maps a secret to a coset, and then ran-
domness is coming from choosing a codeword uniformly at
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random within the coset. When n = 2, the above example
corresponds to G = [1, 1] (a repetition code), {0, 1}2 contains
only {(0,0), (0, 1), (1,0), (1, 1)}, which contains the code
C ={(0,0), (1, )} and its coset C + (1,0) = {(1, 0), (0, 1)}.
To send say s = 0, Alice picks uniformly at random a code-
word of C. This can equivalently be expressed as: to send,
say s = 0, Alice picks uniformly at random a vector among
vectors x = [x1, x»] satisfying [1, 1]x7 = 0. The matrix [1, 1]
here corresponds to the parity check of the code C (which
so happens to be equal to G, this is an example of self-dual
code). Description of coset coding in terms of parity check is
common. Let H be an (n—1[) x n parity check matrix for C, by
definition this means that Hx! = 0 exactly when x € C. Alice
chooses the secret s she wants to send, then solving Hx! = s
will give her as solution for x all 2/ vectors in a given coset,
then she is left to choose uniformly at random the vector x
she will actually send.

The fundamental insight to take away is that from the
moment there is noise (even small) in an eavesdropper’s
channel, the transmitter can amplify this noise by properly
encoding its secrets, inserting its own controlled randomness.
The concept of coset coding highlighted above generalizes
beyond linear codes, as already established in the seminal
works [2], [58], [59] using bins of codewords representing
the same message.

In recent years, much efforts have been devoted to develop
explicit codes for the wiretap channel with rates approaching
the fundamental limits [91], [92]. Coset coding has been suc-
cessfully analyzed with several families of codes, including
low-density parity-check codes [93], polar codes [94]-[97],
and lattice codes [98]. In particular, polar codes have proved
useful to bridge the gap between information-theoretic lim-
its and algorithms in a host of multi-user security models
[99]-[105]. Another powerful approach has been to adopt
a modular approach and combine invertible extractors with
an error control code [8], [106]-[108] to create the bins
of codewords representing the same message. For the spe-
cial case of erasure channels, it is also possible to relate
the information leakage to algebraic properties of the codes,
such as generalized Hamming weights [109]. Very recently,
a deep learning-based approach to the code design problem
has been considered based on autoencoders [110]-[113]. The
coding mechanisms for secrecy have also provided traction to
enforce stealth and covertness (see Section II-C) [114], which
although different from secrecy also require the introduction
of randomization in the encoding [55], [115].

B. Coding for Secret-Key Agreement

In the secret key agreement model, the security objective is
to ensure that a key K can be extracted from an observation
X" against an eavesdropper observing Z”, in the sense of guar-
anteeing, e.g., I(K; Z") < €. Writing I(K; Z") = I(X"; Z") —
I(X"; Z"|K) shows that controlling /(K; Z") requires H(X"|K)
to be non zero, i.e., multiple sequences should map to the
same key. The major difference with the wiretap model is that
the coding operation consists here of extracting the secret key
rather than encoding a secret message.

Interestingly, this operation is simpler than the design of
codes for the wiretap channel and is embodied in a result
known as the left-over hash lemma [116], [117]; an exten-
sive review of the left-over hash lemma and its variants in
information theory is available in [118]. In simplified terms,
the left-over hash lemma states that given the knowledge of
the conditional entropy H(X"|Z"), applying a randomly chosen
universal hash function [119] with output size slightly smaller
than H(X"|Z") to the sequence X" results in an output that
is secret from Z". There exist many powerful variations of
the left-over hash lemma, e.g., [67], [120]-[122], in which the
knowledge of the conditional entropy is expressed using dif-
ferent entropy metrics. The result of the left-over hash lemma
is also known under the name privacy amplification [117] to
emphasize its operational meaning, by which the privacy of the
sequence X" is amplified through the use of a hash function.
One key aspect of the left-over hash lemma is its universality,
meaning that the secrecy of the resulting key is guaranteed
knowing only the conditional entropy of X" given Z", regard-
less of the actual joint distribution py»z:. This makes it a
powerful tool with many applications, such as quantum key
distribution briefly discussed in Section V-D.

The secret key agreement model also includes a reliability
objective, by which transmitting public messages collectively
denoted F allows a terminal observing Y” correlated to Z" to
reconstruct the key. This operation is effectively an instance
of a source coding with side information problem [123], also
known as reconciliation, for which many constructions are
now known [124] and which can be easily combined with
privacy amplification [125].

V. CONTEMPORARY APPROACHES TO
INFORMATION-THEORETIC SECURITY

A. Role of Wireless Medium: Multi-User Secure Physical
Layer Design

The past two decades have seen a flurry of research activity
in wiretap channels and wireless physical layer security, fol-
lowing wireless taking over as the dominant medium of com-
munications [126]-[128]. Though being a broadcast medium
is a vulnerability for wireless with respect to security attacks,
e.g., eavesdropping, it was recognized that studying wiretap
models in wireless channels could lead to design insights
that effectively turn this vulnerability into an advantage. As
such, properties of wireless medium can serve as security
resources, and designing the physical layer accordingly pro-
vides information-theoretic security guarantees. Efforts along
these lines include utilizing multiple antennas for improving
secure communication rates [129]-[131] and utilizing channel
variations in various time-scales (fading states) for creating
a channel advantage [132]-[134]. Natural to the broadcast
properties of wireless, multi-terminal wiretap channel mod-
els have been studied, e.g., [135] and led to new design
insights such as cooperative jamming where some legitimate
terminals can generate judicious interference tailored to harm
the adversary for better network-wide secure communication

3The privacy referred to here should be understood colloquially and differs
from the formal privacy discussed in Section II-B.
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rates [136]. A number of network information theoretic secu-
rity models emerged in the past two decades focusing on the
design principles that the models can offer with respect to
interference alignment, broadcast and relaying, see for exam-
ple, [137]-[147] and many others. Multi-terminal models with
multiple antennas have been studied with [148], [149] or with-
out channel state information where the latter relies on a
network advantage with more antennas at the legitimate ter-
minals and provides universal strong secrecy irrespective of
eavesdropper’s channel [4], [150], [151]. For other models
of varying channel state information in wiretap channels, see
also Section V-B. The impact of having a massive number of
antennas has also been studied [152], [153], including con-
nections to computational hardness [154] further discussed in
Section V-E.

Finally, extensive experimental efforts have explored key
generation from wireless channel states [155]-[160].

B. Role of Channel State Information: Compound and
Arbitrarily Varying Models

Earlier wiretap studies often start with models where the
channels to the adversaries and/or to the legitimate parties are
known. As these are clearly assumptions whose validity can be
questioned in practical networks, including those in wireless
systems, information-theoretic security models have branched
out to address uncertainties in channels.

The classical concept of compound channels [161], [162]
provides a first step in the direction of more realistic and prac-
tically relevant assumptions on channel knowledge to capture
the effects of channel uncertainty. Here, the actual channel
that governs the transmission is unknown. Rather, the users
only know that the true channel belongs to a known set of
channels and that it remains constant for the whole duration
of transmission. Secure communication over compound chan-
nels is then captured by the compound wiretap channel which
has been studied in [133], [163]-[171]. Despite considerable
effort, a single-letter characterization of the secrecy capacity
is only known for special cases [133], [163], [166]-[169].

While for compound channels the unknown channel real-
ization remains constant for the entire duration of transmis-
sion, the concept of an arbitrarily varying channel (AVC)
[172]-[174] provides a model in which this realization may
vary from channel use to channel use in an unknown and arbi-
trary manner. The corresponding arbitrarily varying wiretap
channel (AVWC) has been studied in [171], [175]-[181] and it
has been shown that it makes a difference whether unassisted
or common randomness (CR) assisted codes are used by the
transmitter and legitimate receiver. In particular, if the chan-
nel to the legitimate receiver possesses the so-called property
of symmetrizability, the unassisted secrecy capacity is zero,
while the CR-assisted secrecy capacity may be non-zero. A
complete characterization of the relation between the unas-
sisted and CR-assisted secrecy capacity is established in [176],
[180]; but similar to the compound wiretap channel, a single-
letter characterization of the secrecy capacity itself remains
open. CR-assisted achievable secrecy rates are known only
under certain circumstances [175], [176], [178]. Recently, a

multi-letter description of the CR-assisted secrecy capacity has
been found in [196].

The presence of feedback offers new avenues to deal with
channel state information, e.g., by allowing legitimate ter-
minals to learn the channel and adapt to changes without
compromising secrecy [182].

C. Role of Digital Circuits: Physical Unclonable Functions
(PUFs)

The problem of reliably identifying a human being by
using biometric features (or biometric identifiers [183]) such
as retina characteristics, iris color, fingerprint, palm print,
voice characteristics, or signature has been an important secu-
rity problem throughout the history. Biometric features are
used for, e.g., identifying or authenticating a person accord-
ing to a pre-determined set of permissions. Such applications
require the feature used to be unique and reliable for every
human being, which resulted in numerous signal processing,
cryptographic, algebraic-code based, and information-theoretic
algorithms and system designs especially in the last two
decades; see [184]-[187]. Similar methods are proposed later
to be used for correctly identifying a digital device, which
helps solve the security and privacy problems faced in the
digital transformation by defining unique and reliable physi-
cal identifiers as the outputs of a digital circuit embodied by
the digital device. The first contemporary physical identifiers
apply the cryptographic concept of “one-way functions”, i.e.,
functions that are easy to evaluate but (on average) difficult to
invert [188], to physical systems to implement “physical one-
way functions” (POWFs). As the first example of POWFs,
the speckle pattern obtained from coherent waves propagat-
ing through a disordered medium is a one-way function of
both the physical randomness in the medium and the angle
of the laser beam used to generate the optical waves [189].
To allow a widespread usage of such a security primitive,
one needs to replace the disordered medium, used as a source
of randomness in POWFs, with a digital component that can
be used to provide security and privacy to (in principle) all
digital devices with low-complexity. One auspicious solution
is to determine physical identifiers for each digital device,
similar to biometric identifiers of human beings. The most gen-
eral name for such physical identifiers is “physical unclonable
functions” (PUFs) [190], which mainly refers to a physical
function embodied in a digital device such that its challenge-
response (or input-output) pairs cannot be cloned physically
or digitally.

A PUF is commonly defined as a complex challenge-
response mapping determined by random and uncontrollable
variations in a physical object. Contemporary applications of
PUFs include the following scenarios.

o Consider 5G/6G mobile devices that embody a set of
static random access memories (SRAMs), which put out
random binary outputs. Randomness in SRAM outputs
allows to use them as a PUF (i.e., SRAM PUF) such
that each mobile device can be assigned an identifier that
is the output bit sequence put out by its SRAMs. SRAM
PUFs can be used as a local source of randomness, which
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can be used for data encryption or identification via chan-
nels [191] in combination with higher layer cryptographic
security primitives.

o Consider any information-theoretic problem where it
helps to use a local randomness, i.e., randomization either
improves the performance or is required. For instance,
since a WTC encoder is a digital device that can embody
digital circuits that can be used as a PUF, the PUF outputs
at the encoder can be used to confuse the eavesdropper.

o Consider an autonomous vehicle, whose controller area
network (CAN) bus standard is illustrated in [192]
to be vulnerable to denial-of-service attacks due to
insufficiently-secured transmission of messages over the
network. This problem threatens people’s lives since crit-
ical inputs such as throttle and brakes would then be
susceptible to attacks. Similar problems are faced in using
unmanned military drones, recently addressed by PUF
companies. Determining digital components in the cor-
responding hardware that are appropriate to be used as
a PUF would allow to enforce a better authentication
procedure that can save lives.

There are a massive number of PUF types and constraints
imposed to use PUFs in different applications; see [193] for a
summary. We consider only the information-theoretically rele-
vant constraints to analyze PUFs that use digital circuit outputs
and model the PUF usage problem as a secure, reliable, and
private identifier (or secret key) agreement problem. The most
common and practical PUFs that are of information-theoretical
interest use oscillation frequencies of ring oscillators (ROs) or
the random binary outputs of SRAMs as the source of ran-
domness. Thus, for the remaining analysis we consider such
PUFs for modeling. For this purpose, it is useful to follow
Shannon’s approach of removing the complex practical con-
straints of a problem until the remaining part can be tackled
by using information-theoretic analyses in such a way that
removed parts can be inserted back to extend the basic results.
Therefore, the basic information-theoretic model of the PUF
problem used in the literature considers two i.i.d. dependent
sequences used to agree on a physical identifier. This basic
model is shown in [194] to fit with the reality if transform-
coding algorithms are applied, which is mainly borrowed from
the biometrics literature [184], [187], [195].

The basic PUF model consists of two random sequences
X" and Y” that are i.i.d. according to a joint probability dis-
tribution Pyy and that represent the noiseless and noisy PUF
outputs, respectively. An encoder Enc(-) that observes X" gen-
erates a uniformly-random index (or an identifier) S € & during
an enrollment step, which represents that the identifier is being
enrolled to a security system that will use it. At a later time,
the noisy PUF outputs Y” are observed by a decoder Dec(-)
(which is likely to be in the same digital device that embod-
ies the PUF) to reconstruct S during a reconstruction step. To
reliably reconstruct S, the decoder in general requires extra
information from the encoder. In the biometrics and PUF lit-
erature, the extra public information W € ‘W provided to the
decoder is called helper data, which is the only data accessible
to an eavesdropper during key agreement in addition to fixed
encoding and decoding operations. This model is depicted

S

)

W —~
(5.10) = Enc(X") ———+1 § = Dec (v, )|

Enrollment Reconstruction

Fig. 1. Basic key agreement with PUFs problem model.

in Fig. 1. The reliability constraint imposes that Pr[S # S
should be negligible, the strong secrecy-leakage constraint
that 1(S; W) should be negligible, and the storage-rate con-
straint that log |W|/n should be minimized. These constraints
illustrate the close connection of PUFs to the information-
theoretic key agreement problem discussed in [66], [67], [85].
A privacy-rate constraint that minimizes /(X"; W)/n is intro-
duced in [187], [196], shown in [197] to provide an upper
bound on the overall secrecy leakage if the same PUF is used
by other encoder-decoder pairs that were not considered during
code and system design. Thus, such a privacy-leakage con-
straint might be useful to design key agreement schemes with
varying number of security mechanisms that use the same PUF
(or biometrics) as the source of randomness.

Comparisons between information-theoretic rate regions
obtained and performance of available (cryptographic) code
constructions such as code-offset fuzzy extractors [198] and
the fuzzy commitment scheme [199] illustrate that to improve
the privacy and storage performance new code constructions
are necessary [99], [200]-[204]. Since in storage-limited key
agreement models satisfying reliability and secrecy constraints
separately is suboptimal [205], code constructions that sat-
isfy all constraints jointly are proposed, including (nested)
random linear codes, (nested) polar codes, invertible extrac-
tors, nested convolutional codes, and nested polar subcodes.
Depending on the practical constraints such as the available
number of PUF circuits, which affects the blocklength of the
codes used, and assumed source and channel models, different
code constructions are expected to be preferred for different
applications.

The most interesting extensions of the basic model (from
an information-theoretic optimality perspective with real-
istic assumptions) include the extra constraint of identi-
fying the device or the user [206], [207], analysis of
false-acceptance exponents [208], [209] and false-rejection
exponents [210], multiple enrollments by using the same
or different noisy PUF outputs with remote (or hidden)
sources [197], [211]-[213], cost-constrained actions at the
decoder to control the decoder-measurement channel qual-
ity [214], [215], compound sources to accommodate possible
uncertainty in source statistics [90], measurement channels
with correlated noise components [215], [216] caused by
surrounding hardware logic [217], and an equivalent WTC
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model [218]. Following Shannon’s approach towards prob-
lems with complex practical constraints, mentioned above,
these extensions manage to solve the key agreement with
PUFs problem accurately enough. However, there are fur-
ther interesting open problems that should be addressed by
using information- and coding-theoretic tools to gain deeper
insights into hardware-intrinsic security and privacy. We pro-
vide an open information-theoretic problem below; see [219]
for open problems related to signal-processing and coding-
theoretic methods applied to the key agreement with PUFs
problem.

« RO and SRAM PUFs discussed above are considered as
“weak (or key obfuscating) PUFs” since there is only a
single input-output pair for these PUFs, i.e., if there is
no noise, then one can challenge only the same digital
circuits and obtain the same response. However, “strong
PUFs” such as optical PUFs (or optical POWFs) [189]
allow multiple challenge-response pairs for each PUF,
where the noiseless response can be modeled as X"[c]
and the noisy response as Y”[c] given a challenge ¢ € C.
In practice, it is required that an attacker who observed a
set of challenges {c1, c2, ...} and corresponding noiseless
responses {X"[c1], X"[c2], ...} should not be able to guess
a challenge-response pair (¢, X"[c]) for a challenge ¢ cho-
sen uniformly at random from the set C\{cy, c2, ...}. Due
to correlations between responses of each PUF, there is a
need for a post-processing step to satisfy this requirement.
Furthermore, correlations between the challenge-response
pairs of different PUFs, embodied by different digi-
tal devices, should also be eliminated to protect PUF
responses when an attacker obtains challenge-response
pairs of multiple PUFs. Such security problems are tack-
led in the literature mostly by applying heuristic methods
and metrics. Thus, there is a need to propose information-
theoretic metrics with operational meanings to obtain the
ultimate limits for the key agreement with strong PUFs
problem and then to design code constructions that can
achieve or approach the ultimate limits.

D. Role of Quantum: Quantum Key Distribution and Beyond

Perhaps one the most criticized aspect of information-
theoretic security and privacy is the need for known sta-
tistical models. Coding for secure communication over
the wiretap channel [2], key generation from common
randomness [66], [67], and many privacy coding tech-
niques [26] require knowledge of statistical distributions to
properly set the design parameters of the coding schemes.
This is especially problematic in presence of passive adver-
saries that do not disclose their presence and do not provide
signals from which to infer statistical models of observations.
Although uncertainty can be factored into the models [5], e.g.,
with compound channels [133], [161], state dependent chan-
nels [4], [179], [220], or layered-secrecy coding [221], such
approaches still leave open the possibility that the true chan-
nel is not properly captured by the model, in which case none
of the security guarantees hold. At a more conceptual level,
the crux of the challenge is that the statistical models must be
postulated rather than built from first principles.

One solution to resolve this conundrum, at least in the
context of secure communication and key generation, is to
leave the classical realm and embrace a quantum formalism
for the models. The laws of quantum mechanics have consis-
tently resisted theoretical and experimental attempts to break
them, thereby offering a powerful framework in which to build
information-theoretic security models from first principles.
Quantum models offer two main advantages over classical
ones: i) it is sometimes possible to indirectly infer bounds
on the information leaked to unknown adversaries, which we
shall see forms the cornerstone of Quantum Key Distribution
(QKD); and ii) the presence of noise can be guaranteed by
physics, such as the presence of thermal background noise or
the presence of unavoidable quantum noise in detectors. While
quantum information theory allows the study of models that
exceed today’s technological capabilities, quantum phenom-
ena already appear in low-power free-space and fiber optical
communication systems. Consequently, quantum-secured com-
munication are already a reality and have “leaped out of the
lab” [222], [223].

Historically, the discovery in 1984 by Bennett and
Brassard [224], followed in 1991 by Ekert [225], that quan-
tum mechanics would allow legitimate parties to indirectly
infer bounds on the information leaked to an a priori unknown
quantum adversary pioneered the field of QKD. QKD predates
the information-theoretic works on secret-key generation from
common randomness [66], [67] but we shall see that QKD
is effectively a secret-key generation protocol that bootstraps
1) the laws of quantum mechanics to infer the information
leaked to an eavesdropper; and 2) source coding with side
information and privacy amplification to effectively extract a
key. There exist many excellent reviews of QKD [226]-[228]
and, rather than duplicate these, we offer here a concise
description of typical QKD operation, tying in to some of
the concepts exposed in earlier sections. Heuristically, QKD
exploits the fact that quantum states cannot be perfectly
cloned [229] to ensure that any measurement by an adver-
sary attempting to eavesdrop would result in a measurable
distortion by the legitimate parties. More formally, this can be
achieved by sharing n maximally entangled two-qubit states
between two legitimate parties. During this sharing phase, an
eavesdropper may interact with the states in any way allowed
by quantum mechanics. In a second phase, Alice and Bob
publicly agree to measure each state a randomly chosen basis,
denoted by ®". Alice’s classical measurements are denoted
by X" while Bob’s classical measurements are denoted by Y”.
Eve has access to her quantum state E” and ®". Note that this
protocol effectively induces a source model for key generation
between Alice, Bob, and Eve as in Section III-B. Unlike the
classical case, however, there is a limit to how much Bob and
Eve can simultaneously know about Alice’s measurements,
captured by the entropic uncertainty relation

H(X"|Y") + H(X"|E"®") > n. (20)

By disclosing a fraction of their measurements, Alice and Bob
can estimate H(X"|Y") and thereby obtain a lower bound on
H(X"|E"®™"). Alice and Bob can finally run a classical key
generation protocol consisting of the two coding mechanisms
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of Section IV-B: 1) source coding with side information to
correct the discrepancies between their measurements; and
2) privacy amplification, which can be shown to hold against
quantum observations [230].

Since its inception, research in QKD has made significant
strides both in theory and practice. On the practical side, tech-
nological advances have taken us closer to large scale QKD
networks, as exemplified by a recent satellite-based demon-
stration of QKD [231]. On the theoretical side, security proofs
have evolved to include the statistical finite length effect that
affect the estimation of the leaked information [232], as well
as situations in which the apparatus used by the legitimate par-
ties is partially under the control of the adversary [228]. The
fundamental limits of QKD rates as a function of distance are
known [233], and much of the current research focuses on
closing the remaining gaps between theory and practice and
exploring multi-dimensional qubits protocols to increase rates.

The wiretap channel model also possesses a quantum equiv-
alent for which [9], [234]-[236] characterize secrecy capacity.
Recent efforts have also analyzed and demonstrated the use-
fulness of quantum noise for covert communications [237],
[238], including early attempts at covert QKD [239]-[242] to
combine secrecy and covertness constraints.

E. Role of Crypto: Bridging Computational and
Information-Theoretic Security

A usual goal in information theory is finding the capacity of
a communication scenario or, at least, some coding schemes
that achieve a certain rate. Such a task is considered to be
accomplished once a single-letter entropic expression of the
capacity has been found as such a characterization is implic-
itly assumed to be numerically computable (or evaluable) on a
digital computer. Surprisingly, the requirement of being algo-
rithmically computable has not been specified explicitly in
general, though the notion of computational information the-
ory was already identified by [243], motivated by cryptography
considerations.

To address this issue from a fundamental algorithmic point
of view, the concept of a Turing machine [244]-[246] and
the corresponding computability framework can be used. A
Turing machine is a mathematical model of an abstract
machine that manipulates symbols on a strip of tape accord-
ing to certain given rules. It can simulate any given algorithm
and therewith provides a simple but very powerful model
of computation. Turing machines have no limitations on
computational complexity, unlimited computing capacity and
storage, and execute programs completely error-free. They are
further equivalent to the von Neumann-architecture without
hardware limitations and the theory of recursive functions,
see also [247]-[251]. Accordingly Turing machines provide
fundamental performance limits for today’s digital comput-
ers. Therefore, they are the ideal concept to study whether
or not certain capacity expressions can be algorithmically
(i.e., numerically) computed and whether or not the corre-
sponding optimal codes can be constructed algorithmically in
principle (without putting any constraints on the computational
complexity of such an algorithm).

Communication from a computability or algorithmic point
of view has attracted some attention recently. In [252] the
computability of the capacity functions of the wiretap channel
under channel uncertainty and adversarial attacks is studied.
The secrecy capacity of the wiretap channel is shown to be
Turing computable so that its expression can be numerically
evaluated. However, it is also observed that the secrecy capac-
ity becomes non-computable in the case of adversarial attacks
so that it is no longer numerically evaluable. These works have
in common that they analyze the capacity function of various
communication scenarios and analyze under which conditions
the capacity function is non-computable. However, they tackle
this is issue from a probabilistic or random coding point of
view and do not consider actual code constructions.

A key observation from [243] is that the use of random-
ness in the context of computational information theory is the
same as in the context of Wyner’s wiretap channel in that it
enhances the security of the system considered, e.g., a trap-
door function in the former case and a communication channel
in the latter. Two examples of the use of noise to construct a
hard computational problem from an easy one are McEliece’s
cryptosystem [253], and Regev’s cryptosystem [254].

Public-key cryptosystems refer to a cryptography setting
that involve two players, Alice and Bob, who are communi-
cating using pairs of keys: public keys (for encryption, known
to anyone) and private keys (for decryption, known only to
the owner, meaning that Alice has her own key, and so does
Bob). If Alice wants to write to Bob, she takes Bob’s public
key, encrypts her message and sends it to Bob who will use
his private key to decrypt. A private key is usually obtained
from a function computationally hard to compute, while the
public key is easily computed.

McEliece cryptosystem is an example of code-based cryp-
tosystem, in which the generator matrix of a Goppa code is
hidden by scrambling/permuting its entries, which becomes a
public key. A plaintext is encrypted by being encoded with
this generator matrix, and then x-ored with some small (with
respect to the code’s parameters) weight error. The difficult
part (leading to the private key) is to be able to decode, or
more precisely, it is based on the hardness of decoding a ran-
dom linear code, and depends on the introduction of noise (the
small weight error). Its disadvantage though is the (huge) size
of the keys.

Regev’s cryptosystem is an example of a cryptosystem
based on the so-called learning with errors (LWE) hard
problem. The underlying problem behind LWE is solving a
system of linear equations (an easy task) that becomes diffi-
cult once noise gets added. Namely, a secret s is fixed, and
one can ask noisy linear equations in s, the goal of LWE
being to find s. The LWE problem can be expressed as lattice
problem, by introducing g-ary lattices, n-dimensional lattices
that contain ¢gZ", in which case it becomes a bounded distance
decoding on lattices. This variation of the LWE problem thus
fits within the area of lattice-based cryptography.

Code-based and lattice-based cryptography [255] are two
families that are considered in the area of post-quantum cryp-
tography, where cryptography protocols that are resistant to
quantum computing are studied.
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VI. CONCLUSION AND FORWARD LOOK

In this tutorial, we have reviewed information-theoretic
security and privacy approaches. Starting from initial for-
mulations, we have provided the progressive development in
metrics, problems and models that are increasingly connected
to real systems and can provide foundational security and pri-
vacy guarantees for emerging applications going forward. We
have covered the role of information-theoretic security and pri-
vacy approaches in communication system design as well as
the relevant coding techniques needed in these designs. We
have touched upon some of the contemporary directions in
information-theoretic security, namely that of the roles of wire-
less medium, realistic channel assumptions, digital circuits,
and provided connections to quantum and to computational
security. The current and forward looking directions we were
not able to cover include content security and privacy, e.g.,
secure caching and private information retrieval, privacy aided
by and concerned by distributed, e.g., federated, learning, con-
nections with adversarial machine learning and many others.
We conclude the article by stating that information-theoretic
approaches to security and privacy remain vibrant, as rele-
vant metrics for emerging applications continue to encourage
designs that focus on security and privacy as foundational
necessity in networked information flow.
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