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Abstract—We design an explicit code ensuring provably covert
communication over Binary Symmetric Channels (BSCs). This
design complements an earlier work that provides a methodology
for asymptotic optimal performance but falls short of offering
explicit details for operation at finite block length. In particular,
we show how to preserve covertness guarantees when facing the
unavoidable compromises required by finite block length oper-
ation. Compared to the reference scheme without sophisticated
coding, our scheme offers orders of magnitude savings in secret
key bits. Key ingredients of our design include polar codes for
source coding and invertible extractors.

I. INTRODUCTION

While physical-layer security has extensively focused on
confidentiality, there has been recent interest in understanding
covertness, defined as the ability to ensure low-probability
of detection against eavesdroppers. In many situations, covert
communication is governed by a square-root law [1], by which
the number of reliable and covert message bits scales at most
as the square root of the block length. While the constant
associated to the scaling plays the role of the covert capacity
and has now been characterized for several channels and
metrics [2]-[4], few actual codes achieving or approaching
the limits with low-complexity have been proposed.

Such codes are known to exist, as shown with a concate-
nated scheme consisting of an outer Reed-Solomon and an
inner random code of small length [5]. For asynchronous
channels, polar codes provide a possible solution [6]. A non-
linear channel code has also been proposed [7] but without
theoretical guarantees. The most explicit coding scheme with
provable guarantees, in the sense of offering not only a
deterministic construction but also low-complexity encoding
and decoding algorithms, was recently proposed by combin-
ing Pulse-Position Modulation (PPM), Multi-Level Coding
(MLC), polar codes, and channel resolvability codes [8], [9].

Our objective here is to fill a missing gap in [8], [9], by
which the construction of specific component codes was left to
the reader. We offer the full details, including the practical con-
siderations one faces when operating at finite length without
compromising covertness. The rest of the paper is organized
as follows. After briefly reviewing notation (Section II) and
the MLC-PPM coding scheme of [9] (Section III), we show
how to construct polar codes (Section IV-B) and invertible
extractors (Section V) for MLC-PPM. We conclude with an
explicit code design and simulation results (Section VI).

This work was supported by National Science Foundation award 1910859.

II. NOTATION

Calligraphic letters are reserved for sets, and |- | denotes the
cardinality. For two distributions P and @ over the same set
X, the relative entropy is D(P || Q) = >, P(x) log, %, the
variational distance is V(P,Q) £ 13 |P(z) — Q(z)|, and
the chi-squared distance is xo(P[|Q) = >, W.
For a,b € R, if a < b, we define [a,b] £ {|a],|a] +
1,-+-,[b]—1,[b]}. When used as a superscript or a subscript,
a : b also denotes [a, b]. For ¢ € N*, any index set S C [1, ¢],
and a sequence (X;)’ ,, Xs denotes (X;);es. Using the
above notation, we also have X1., = (X;)7_,. For simplicity,
we sometimes let X7 or the vector form X = (X1,---, X,)T
denote a sequence Xi., when it is clear from the context, as
each component in (X;)7_, is a scalar.

For ¢ € N*, m = 29, and i € [1,m], we define a PPM
symbol z; of order m as a binary vector of length m such
that the ¢-th component is one and all other components are
zero. Let d : FY — N be the binary-to-decimal converter,
where the leftmost bit is the least-significant bit, and d~! be
its inverse function. For a set S C [1, ¢, we define A%(zs5) =
(el (d1G —1)s = zs}.

A Binary-Input Discrete Memoryless Channel (BI-DMC)
with transition probability Wy |x is symmetric if there exists
a permutation 7 of Y such that 7' = 7 and Wy x(y|1) =
Wy x(m(y)|0) for every y € Y. The use of PPM of order
m over a BI-DMC defines a super-channel with transition
probability Wy = Wik = [Ii", Wy x whose input
alphabet is X, 2 {#;}7*, and output alphabet is J, = V?".

III. MLC-PPM FOR COVERT COMMUNICATION

We consider a covert communication scheme over a
BI-DMC Wy |x in which a transmitter, Alice, attempts to
reliably communicate a uniformly distributed message W &
[1, M] with a legitimate receiver, Bob, in the presence of a
passive adversary, Willie, who observes Alice’s transmission
through another BI-DMC Wz x. By convention, channel input
“0” is the innocent symbol corresponding to the absence of
communication. We also define, for 6 € {0,1}, Py £ Wy x—¢
and Qp = Wz x—¢. The encoding process is assisted by
a uniformly distributed secret key S € [1, K] shared only
between Alice and Bob.

The objective of Alice is two-fold: 1) communicate with
Bob reliably, measured by the average probability of error
P(W # W); 2) escape detection from the adversary, measured
by the variational distance V(P, QF™) between the output
distribution at Willie induced by the code P; and innocent
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Fig. 1. Illustration of the MLC-PPM encoding scheme with ¢ = 214, m =

224, The encoding structure and numbers are those used in an example in
Section VI

distribution @™, where n is the number of channel uses.
Because of the two-pronged objective, two coding mechanisms
have to be simultaneously deployed: reliability, to control the
probability of error, and resolvability [10], [11] to control
the variational distance. It is shown in [9] that MLC-PPM
with Multi-Stage Decoding (MSD) asymptotically achieves
the covert capacity with polar codes. A transmission block
of MLC-PPM is composed of ¢ PPM symbols, and each
of the PPM symbol is of order m £ 29, ¢ € N*. MLC
allows us to decompose the PPM super-channel into ¢ binary
channels. Alice then divides her message W € [1, M] into
(W;)%_, for each level, encodes every W; into X; € F§
with a component code at each level, and generates PPM
symbols X € X Y/ from the encoded outputs at each level in
parallel through a PPM mapper Z : Z1.q — Tq(zy,,)+1- The
component code of every level has block length ¢, called the
coding block length. The number of channel uses is therefore
n 2 md, called the overall block length. The encoding setup
is illustrated in Fig. 1. In practice, as illustrated in Fig. 1 and
detailed in the next sections, not all levels are actually used
for reliable communication. The lower levels are jointly coded
for reliability and resolvability using polar codes with Cyclic
Redundancy Checks (CRCs) while the higher levels are coded
for resolvability using only invertible extractors.

The choices of n and ¢ are not independent. Specifically,
the PPM order m has to be chosen on the order of the coding
block length ¢ to respect the square root law and ensure
covertness [9], [12]. This creates a potential challenge by
which the code rate at each level may change with the overall
block length. Fortunately, under MSD starting from level ¢,
the channel at every level j € [1,¢] is given by [9, (108)]

Sopg? ) 2lw)

Wyl v |2;) =
| X J )
keAi (z;) Po(yr)

which is invariant with respect to (w.r.t.) the number of levels
q. The channel perceived by the eavesdropper is similar, with
Qg in place of Py. This shows that increasing the coding
block length only increases the number of levels while leaving
each equivalent channel fixed. This also allows one to design
reliability and resolvability codes of fixed rate at each level,
for otherwise polar codes introduced in the following section
would suffer from a slow polarization rate. Only the lower

levels carry significant capacity, which justifies only coding
for reliability and resolvability on the lower levels. For the
higher levels of negligible capacity, one can sacrifice secret
key bits S to only design a channel resolvability code without
worrying about reliability.

Several challenges still remain. While polar codes can
ensure joint reliability and resolvability, this requires the
identification of “good” and “bad” bit channels. Since [9]
relies on source polarization instead of channel polarization,
one must adopt the approach of [13] to identify the bit channels
as described in Section IV. Second, the use of invertible
extractors for resolvability must account for constraints, such
as choosing a finite field compatible with the target block
length as shown in Section V. Third, the analysis in [9],
which is based on the relative entropy, is not tight enough at
finite length, since it incurs penalties associated with using
Pinsker’s and reverse Pinsker’s inequalities repeatedly. We
choose instead the variational distance metric to analyze the
covertness. The variational distance is also the metric more
operationally relevant to covert communications [4] and leads
to a direct analysis in the following sections.

IV. SOURCE POLARIZATION DESIGN
A. Preliminary: channel resolvability
Consider a Discrete Memoryless Channel (DMC)
(X,Wzx,2). Let qx denote the uniform distribution
on X and let ()7 denote the output distribution induced by
qx. Then, the distribution induced by j independent uses of
gx is

S WER (2 x)a¥ (). @)

X

Qzi(#) &

The problem of channel resolvability investigates whether one
can approximate () z; by using codewords chosen uniformly at
random in a (j, K')-code C. Note that the distribution induced

by C is
Pyi(29) WS (29 ) — 3
ZJ Z Z ZlX Z |Xk) K ( )
Rates R = log, K;/j are achievable if there exists a sequence
of (j, Kj)-codes such that lim; oo V(Pgzi,Qzi) = 0 [14],
[15].

B. Joint reliability and resolvability code

Polar codes with binning have been proved in [6], [11],
[16], [17] to provide an explicit construction to achieve both
reliability and resolvability asymptotically based on source
polarization [18]. This requlres identifying polarization sets
associated to the channel WY )X and WZ]‘)X for each level of
the MLC-PPM scheme. Spec1ﬁcally, we combine the channel
input distribution Px with W<] y|x and Wéjl "¢» to obtain two

Discrete Memoryless Sources (DMSs) (X, ), PXW%))() and
(X, Z, Px Wéjl)x) and define the polarization sets

Vx 2 {i € [1,4 (U |U) > 1—ng}, 4)
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Hxpy 2 {i € [1,0] : H(U|U'YY) > ne}, (5)
Vxy £ {i € [1,0] : H(U;|U'YY) > 1—n}, and  (6)
Vxiz 2 {i € [L4 :HU|UTZY) > 1 —n, (7)

where X is polarized as UY £ X‘G, with polar transform
8 . . .

Gy and n, £ 2% with B € (0, %) Based on (4)-(7), a joint

reliability and resolvability code relies on the following sets.

e Vo EH x|y Vx|z, which contains uniformly distributed
bits C' representing the code;

o Vo 2 H x|y NV, which contains non-uniformly (almost
deterministic) distributed bits C”’, which will be secured
by using one-time pad with secret key bits S’;

o« Vi = HS{IY N Vx|z, which contains uniformly dis-
tributed message bits W’ that are almost independent
from Willie’s observation;

o Vi = ( %y N Vx) \ Vw, which contains additional
uniformly distributed message bits W;

e Vs & H x|y N V)cq 7 N Vx, which contains uniformly
distributed secret key bits S.

The set Viy £ Vyyr U Vi is the set of covert message bits,
while Vyy is also held secret from Willie. We also need secret
key bits to secure Vo UVg. Since each equivalent PPM super-
channel W) in (1) is symmetric, the capacity-achieving input
distribution Px is uniform and therefore V§ = &. Note that
if Willie’s channel is degraded w.r.t. to Bob’s channel, then so
is the equivalent channel defined in (1) corresponding to each
level for Willie’s channel [9, (104)].

C. Source upgrading and degrading

We now detail how to construct the polarization sets such
as those in (4)-(7). Given a DMS (X, Y, Pxy) and a coding
block length £, let (X, Y?) ~ PYL denote a sequence
generated by the source. The source polarization applied on
X* equivalently transforms / independent and identical copies
of Pxy into ¢ polar bit-sources, defined as

Pi(ui,u' My ) 2 YT PRV (UG yY),

Uit1:£

via a polar transform G/. Identifying H x|y and Vx |y requires
the knowledge of Pf(u;,u’ 'y’) to obtain H(U;|U'~1Y").
However, i-th bit source has the alphabet size 2t |y Z, which
grows exponentially fast in the block length, making exact
calculations intractable.

In the context of channel polarization, [13], [19] suggest
mitigating the intractable complexity through a quantization
approach, by which the original channels are approximated
through upgrading and degrading while minimizing the ca-
pacity difference. Since the channel polarization preserves the
degradation and upgradation, we can use such an approxima-
tion before each polarization step as in [13, Algorithms A and
B] to obtain upper and lower bounds on capacities or error
probabilities for each bit channel as desired in the construction
of polar codes. This approach can be adapted to source

polarization as follows. Similar to the channel polarization,
we define recursive transforms for the source distribution as

£ Puy + ug,y1)Pluz, y2),  (8)

U2

£ P(uy + u2,y1)P(u2,2).

P~ (U’la yQ)

9)

We then recursively construct the bit sources P} (u;, u'~1y*). It
is useful to view (U;, U=1Y%) ~ P} as a binary input process
U; interacting with a BI-DMC Wyi-1y¢ |y, in which we call
U; the input and U~ 'Y the output. One can then quantize
U1 Y* to get upgraded and degraded source approxima-
tions, as defined next. For brevity, we denote (U;,U'~1Y*)
by (X,Y) in this subsection.

Definition 1. Let (X,Y) ~ Pgo and (X,Z) ~ Qg5 be
DMSs. The source @)z is (stochasncally) degraded wrl

Pg if there exists an intermediate channel <I)Z|Y y Ny
such that

P+(u27 U1y2)

Qzz =Y P79 (lY)Pgy(@.y). (10)

yed

Similarly, Pgy is (stochastically) upgraded w.rt. Q5. One
direct consequence is H(X|Y) < H(X|Z).

a) Source polarization construction: We modify the sub-
optimal channel upgrading and degrading algorithms [13],
[19], apply them to the source distribution with polarization,
and therefore obtain upper and lower bounds on the condi-
tional entropy of each bit source while minimizing the con-
ditional entropy difference introduced due to the quantization.
This allows us to identify the sets in (4)-(7).

b) Encoding and decoding: The encoder and decoder
follow from [18] and many decoding algorithms for channel
polarization can be adopted, such as Successive Cancellation
(SC) decoding [18], [20] and Successive Cancellation List
(SCL) decoding [21].

Remark 1. As the channel W) is symmetric and Px is
chosen to be uniform, the above upgrading and degrading
could rely on the channel upgrading and degrading of [13],
[19]. We have provided the source upgrading and degrading
for completeness.

D. Covertness analysis for polar coding scheme

We next investigate the covertness induced by the polar
coding scheme in terms of the variational distance (See the
discussion at end of Section III). Let P be the output
distribution of the PPM super-channel when coding over /¢
PPM symbols of order m, and let QQpp); be the output induced
by a uniform distribution on PPM symbols of order m. For

J € [1,q], let P;;, denote the output distribution induced
by a code over the channel Wg )X, and let QW denote the

output distribution when the mput is uniform. The variational
distance V(P;, (QPPM)W) satisfies [9, Lemma 8]

q
V(PZ7 glL’M ZV Z(J)7Q2(J)) (11)
Jj=1
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It remains to analyze V(PZU),Q%[J.)) at each level. In fact,
since the channel at each level is symmetric, when a one-
shot transmission with ¢ super-channel uses occurs, we have
V(P ngj)) = 0 [6, Lemma 9]. Therefore, the above polar
coding scheme does not contribute to the covertness metric.
Remark 2. Although we do not consider transmission over
multiple blocks here, an efficient scheme would reuse part
of secret and covert message bits as the key bits for the
next transmission. This is referred to as the chaining tech-
nique [6], [11], [17], [22], [23] and ensures the key rate
is asymptotically optimal. For brevity, we only consider the
situation in which Willie’s channel is degraded w.rt. Bob’s
and therefore seek for the design that transmits more covert
and secret message bits than the secret key bits it consumes.
Handling the general case requires chaining the polar code
construction over blocks as shown in [9] but does not present
design difficulties. In addition, the randomness bits C are
inherently secret from Willie’s observation, and can therefore
be shared publicly between Alice and Bob and also reused for
multiple transmissions.

However, the bits in Vy and V¢ are not perfectly secret,
that is, 1(Z;W'C) is not zero but vanishing in ¢ [6, Lemma
10]. Reusing randomness bits C' and secret message bits
W' for multiple transmissions must account for this leakage,
and therefore V(sz,ngj)) is not zero when we consider
transmission over blocks [6, Lemma 12].

V. INVERTIBLE EXTRACTOR AND CHANNEL
RESOLVABILITY CODE

A. Resolvability code design with invertible extractors

In the MLC-PPM scheme, we can design a single channel
resolvability code for all the higher levels with a two-universal
invertible extractors [9, Section V-D], [24]. Recall that the
equivalent channel from level 41 to ¢ is given by [9, (143)]

D

k€A (xyr1:q)

®27 > Q1(2k)
o ( )Qo(Zk)' (12)

. 1
1: ~
Wg& q(2|xu+1:q) = Su

We instantiate a pair of inverter-extractor for the above equiv-
alent channel containing the following two components:

Ext : S x Féq_u)g — ]Féq_u)é_k : (8, Xug1:q) — b,

Inv: S x FS % 75 5 %1 (s,b, 1) 5 X1,

where Ext is a two-universal extractor with seed s € S and
bin index b € FY ™™’ Let Pop 2 {xup1q € FY 0
Ext(s, Xy41:q) = b} be the pre-image under s and b. For any
s and b, we assume that Ext is regular, that is, all the elements
in Ps,p are uniformly distributed and |Ps1,| = 2F. Consider
the encoder ¢ defined as ¢ : F — FY " . ¢ — Inv(s, b, r).
Let Py g s gy, be the distribution induced by ¢ with seed s
and bin index b, and let Qz be the distribution induced by a
uniform input.

Lemma 2. The above encoder ¢ with secret key rate R, 1.4 =

% with s and b selected randomly according to uniform

distributions qs and qp, respectively, satisfies

]ES,B{V(PZ|S7137 Qi)}

— te? 1 =
< 2 2ls3(ITray) 4 5\/27£(Ru+1:q7H(Xu+1:q:Z)75), (13)

if Ruti:q > (X ut1:q5 Z) + ¢ for any € > 0.

Proof: The proof follows by combining leftover hash
lemma [25], [26] with [27, Lemma 3] and [28, Theorem 1].
|
Similar to [9, (155)], encoding by ¢ achieves channel resolv-
ability regardless of the choice of b because of the symmetry
of the equivalent channel W%“;:q. We implement an explicit
invertible extractor with the finite-field multiplication [10],
[29]. For s € S = FY "\ {0}, define b = Ext(s, Xutlg) =
(S_l © Xu+l:q) ‘[[1,(q—14)€—k]]7 and Inv (S,b,I‘) s © (bHI‘) )
where ® denote the multiplication in the field F gqfu)é’
(*)|[a,5] Tepresents the bit positions in [a, b].

and

Remark 3. There are efficient ways to implement the finite-
field multiplication, e.g., the number-theoretic transform, while
the technical difficulty is to find irreducible polynomials to
construct large finite fields. For instance, [30, Section 7.3.1]
suggests a family of trinomials in the form of x®+x°+1, where
a is some Mersenne exponent, but the available trinomials
of this form are quite limited. Another way is the finite-
field arithmetic using circulant matrices (FACM) [31], which
provides an efficient construction if and only if the desired
degree a of irreducible polynomial satisfies 1) a + 1 is prime,
and 2) 2 is a primitive root modulo a + 1. Compared to the
construction based on the Mersenne exponent, FACM provides
many more available sizes of finite fields and is more suitable
fo our scenario.

B. Truncated invertible extractor

We can efficiently implement the finite-field multiplication
when (¢q—u){ is either a Mersenne exponent or a size satisfying
conditions to apply FACM, but the desired lengths of invertible
extractors imposed by the overall block length might not
match the available sizes. We present a simple remedy to this
inflexibility.

We first generate a resolvability code at a slightly longer
block length, which is an available field size closest to the
desired length of the code. Then, we truncate some bits of the
resulting codeword to fit in the desired coding scheme.

Formally, for n’ > n, a given seed s € S, a bin index
b e ]F;L,_k, and an inverter

Inv:S x ]F;‘/_k x FE 5 F2 : (s,b,r) = 2" 2506 (b|r),
the encoders ¢/ and ¢ are defined as ¢/ : F§ — F% : r —

Inv(s,b,r), and ¢" : F§ — F§ : r — Inv(s,b,r)|[1,n]
respectively, where we have used n’ and n denoting the
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lengths of code before and after truncation. Now, let X n' 4
(X™, X"™). The truncated coding scheme induces

IACOEDY Z Wg';(( 2. (14)
zZ"0 gn! €Psb
Similarly, the uniformly generated input induces
Q) 2 XS W) a9)

z"0 g/

The following lemma, which follows from the fact that
marginalization does not increase variational distance [15],
shows that the truncation does not increase the variational
distance between the distribution induced by the resolvability
code and target distribution.

Lemma 3. If the encoder ¢’ defined above with S and B
selected randomly according to uniform distributions satisfies
lim,/ o0 Es B{V(Pyun,Q 4. )} = 0, then the encoder ¢"
also satisfies lim Eg g{V(Pzn, QZ,L)} =0.
n—oo
Specifically, and b, V(Pzn,Qzn) <

V(P , Q-

for any s

VI. NUMERICAL RESULTS

The overall contribution of polar codes and invertible ex-
tractor in the MLC-PPM scheme to the variational distance is
as follows: for any b € ]F(qfu)gfk and € > 0,

ZV
+]ES{V( Z|S,B:baQZ)}+V((Q%M)®£a me)

_ 0e? -
21og3 (2974 43) 4 1\/27Z(Ru+1:q*H(Xu+1;q;Z)*€)
2

ES{V(P J)vQZ(J))

<2

1) 1
+ —+O(—>:5t,
2 m

where u is the number of level used for reliability, and J is
the parameter that governs the covert stochastic process Qppy
defined in Section IV-D, in terms of V((QQ@M)W, &™) <

$+0(L) such that ¢ = [ﬁw as in [12]. We
ignore the O(-L) term in the following numerical evaluations,
since it is on the order of 279,

We finally conclude with a complete design example shown
in Fig. 1. We consider the situation in which the main
channel Wy |x and Willie’s channel Wz x are BSCs with
crossover probabilities 0.1 and 0.42, respectively. By choosing
§ = 2 x 10~* with coding block length of polar component
codes ¢ = 2, the minimum number of levels of MLC is
g = 24, which means the order of PPM m is 2%4. The
overall block length of the MLC-PPM n = /¢m is 238,
The capacities of the lowest 3 levels of the main channel
are 0.742,0.638, and 0.492 bits, respectively, while those of
Willie’s channel are 0.037,0.019, and 0.0095 bits, respec-
tively. We use the lowest 3 levels for reliability, and the code
rates of each polar component code are chosen experimentally
to be 0.65,0.55, and 0.4, respectively, to back off enough

(16)

from capacities and meet our reliability constraint of the error
rate close to 107°. To further enhance the performance of
SCL decoding, we also use a CRC-8 precoding for each polar
component code, which introduces an additional rate penalty
and requires extra 8 bits of secret key at each level to hide
the dependency by using one-time pads with the appended
bits. This amounts to 26189 covert message bits, with a Bit-
Error-Rate (BER) performance 1.15 x 105 with list size 16
evaluated after 10000 iterations of simulation.

For the levels from 4 to 24, we design the invertible
extractor described as follows. The length of required output
size (¢ — u)f is 344064, so the inverter operates in [F344082
by using FACM, and then we truncate the result. We choose
¢ = 0.7 and the secret key rate Ry 1.4 £ I(Xyy1:9; Z)+1.01e
with [(X4.04; Z) = 0.0095, which requires 11740 bits of secret
key for the inverter, while the resolvability from the inverter
Es{V(Pzs gy @z)} is upper-bounded by 1.82 x 10°.
The total covertness metric (16) is upper bounded by §; =
1.182 x 1072, Note that the theoretical covert capacity of
WyIX derived in [4, (32)] is m[@(Pl || Po) = 1565,
and the number of covert message bits of the present scheme
is 26189, i.e., the covert throughput is #(8?,7%) ~ 3.372.

With g = 0.39, we obtain the sizes of Vyy- ar12d Vg at each
level based on upgrading, and we have 7751,6817 and 4942
bits of covert and secret message bits, while we do not need
any secret key bits for Vg because |Vg| is zero at each level.
This amounts to 19510 covert and secret message bits, which
is more than the number of secret key bits consumed (11764
bits in total, including secret key bits used in inverter, Vg and
CRC). Therefore, we have an efficient one-shot transmission
scheme in terms of the secret key usage.

As a less favorable scenario, we consider the case where
Willie’s channel is a BSC with crossover probability 0.34,
while the main channel and other parameters (i.e., £, 6, ¢, [3)
remain unchanged. The capacities of the lowest 3 levels of
Willie’s channel are 0.143,0.08, and 0.042 bits, respectively.
We need m = 226, n = 2% and (¢ — u)l = 376832.
The inverter operates in 3 5336, In this case, [(Xy.06; Z) =
0.0414, which requires 12263 bits of secret key for the inverter,
we have Es{V(Pygp_,,Qz)} < 5.2 x 10~ 3 and §, =
1.52 x 10~2. The covert throughtput is %&3?%) ~ 1.311,
while the covert capacity is 7.508. Also, the covert and secret
bits at each level are 4603, 4447, and 3267, respectively, while
the additional secret key bits required for Vg are 0,4, and
23 bits, respectively. We still have an efficient scheme, as
12317 > 12263 4 24 + 27.

In summary, for the one-shot transmission of the present
MLC-PPM schemes, we require fewer secret key bits than
the number of covert and secret message bits transmitted.
Although secret key bits are required in our one-shot transmis-
sion, the scheme in [1] would require 26189 + 26189 x 38 ~
106 secret key bits to enable the covert communication, which
is 2 orders of magnitude more than ours.
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