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Abstract—Secret-sharing building blocks based on quantum
broadcast communication are studied. The confidential capacity
region of the pure-loss bosonic broadcast channel is determined
with key assistance, under the assumption of the long-standing
minimum output-entropy conjecture. If the main receiver has a
transmissivity of η <

1

2
, then confidentiality solely relies on the

key-assisted encryption of the one-time pad. We also address
conference key agreement for the distillation of two keys, a
public key and a secret key. A regularized formula is derived
for the key-agreement capacity region. In the pure-loss bosonic
case, the key-agreement region is included within the capacity
region of the corresponding broadcast channel with confidential
messages. We then consider a network with layered secrecy,
where three users with different security ranks communicate over
the same broadcast network. We derive an achievable layered-
secrecy region for a pure-loss bosonic channel that is formed by
the concatenation of two beam splitters.

I. INTRODUCTION

Physical-layer security requires the communication of pri-

vate information to be secret regardless of the computational

capabilities of a potential eavesdropper [1]. Secret-key agree-

ment is a promising method to achieve this goal, whereby

the sender and receiver generate a secret key before commu-

nication takes place. Maurer [2] and Ahlswede and Csiszár

[3] independently developed the information-theoretic model

for such a protocol, whereby Alice and Bob use pre-existing

correlations, along with a public insecure channel, to generate

a secret key. Devetak and Winter [4] considered the quantum

counterpart and addressed key distillation from a shared quan-

tum state. In practice, quantum key distribution (QKD) is the

most mature application of quantum information theory [5, 6].

A QKD protocol aims to distribute a secret symmetric key

between authorized partners, with no assumption regarding the

channel but the laws of quantum mechanics. The key can later

be used to communicate using classical encryption schemes,

such as the one-time pad (OTP). Information-theoretic security

is then guaranteed if and only if the entropy of the key string is

at least as large as the message length [7]. Classical channel

coding with key assistance, i.e., given a pre-shared key, is

studied, e.g., in [8, 9].

In some noise models, communication can also be secured

without key assistance. The broadcast channel with confiden-

tial messages is a network setting that involves transmission

of information to two users, such that part of the information

should be accessible for both users, while the other part is only

intended for one of them. In the classical model, the sender

transmits a sequence Xn over a memoryless broadcast chan-

nel, such that the output sequences Y n and Zn are decoded

by two independent receivers. The transmission encodes two

types of messages, a common message sent to both receivers

and a private message sent to Receiver Y , while eavesdropped

by Receiver Z. The broadcast channel with layered secrecy

generalizes the model with confidential messages [10–12]. The

model describes a network in which multiple users have differ-

ent credentials to access confidential information. For example,

consider a WiFi network of an agency, in which a user is

allowed to receive files up to a certain security clearance, but

should be kept ignorant of classified files that require a higher

security level [12]. The agency can set the channel quality on a

clearance basis by assigning more communication resources to

users with a higher security rank. In some models, the layered-

secrecy structure allows the provision of secrecy in hindsight,

deferring the decisions as to which bits are secret to a later

stage [13]. A recent overview of information security can be

found in [14].

The broadcast channel with confidential messages can be

viewed as a generalization of the wiretap channel. Devetak

[15] and Cai et al. [16] addressed the quantum wiretap

channel without key assistance and established a regularized

characterization of the secrecy capacity. Connections to the

coherent information were drawn in [4]. Hsieh et al. [17]

and Wilde [18] presented a regularized formula for the secret-

key-assisted quantum wiretap channel. Quantum state masking

was recently considered in [19]. Key distillation is further

considered in [20, 21]. Quantum broadcast channels were

studied in various settings as well, e.g., [22–24].

Optical communication forms the backbone of the Internet

[25–27]. An optical communication system consists of a

modulated source of photons, the optical channel, and an

optical detector. For a single-mode bosonic broadcast channel,

the channel input is an electromagnetic field mode with

annihilation operator â, and the outputs are associated with

operators b̂ and ê. The annihilation operators correspond to the

transmitter (Alice), the legitimate receiver of the common and

confidential information (Bob), and the receiver that eavedrops

on the confidential information (Eve), respectively. The input-

output relation of the bosonic broadcast channel is given by

b̂ =
√
η â+

√
1− η ĉ (1)

ê =
√
1− η â−√

η ĉ (2)
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where ĉ is associated with the environment noise and the

parameter η is the transmissivity, 0 ≤ η ≤ 1, which captures,

for instance, the absorption length of the optical fiber [28]. The

relation above corresponds to a beam splitter, as illustrated in

Figure 1. The bosonic channel can be viewed as the quantum

counterpart of the classical channel with additive white Gaus-

sian noise (AWGN), which is a well-known model in classical

communications. As the bosonic broadcast channel, from A

to BE (jointly), is isometric, it does not model the distortion

introduced by the communication medium [29]. Instead, the

bosonic broadcast channel models the de-modulation process

at the destination location, where the optical signal is con-

verted into two signals for two independent users by a beam

splitter. In a pure-loss bosonic channel, the noise mode ĉ is in

the vacuum state. The channel is called ‘pure-loss’ since the

marginal channels, from A to B, and from A to E, are non-

reversible and involve loss of photons in favor of the other

receiver.

In this paper, we study secret-sharing building blocks that

are based on quantum broadcast communication. In particular,

we determine the confidential capacity region of the pure-loss

bosonic broadcast channel with shared key assistance, under

the assumption of the long-standing minimum output-entropy

conjecture. The achievability proof is based on rate-splitting,

combining the “superposition coding” strategy with the OTP

cypher using the shared key. The converse proof relies on the

long-standing minimum output entropy conjecture, which is

known to hold in special cases [30]. Without key assistance,

confidential transmission is only possible if Bob’s channel

has a higher transmissivity than Eve’s channel, i.e., η > 1
2 .

Otherwise, if Bob’s channel is noisier than Eve’s, i.e., η < 1
2 ,

then confidentiality solely relies on the key-assisted encryption

of the OTP. Next, we address key agreement for the distillation

and distribution of two keys. The public key is distributed

between Alice, Bob, and Eve, while the confidential key is

only meant for Alice and Bob, and must be hidden from

Eve. We obtain a regularized formula for the key-agreement

capacity region for the distillation of public and secret keys.

We then consider quantum layered secrecy, whereby Alice

communicates with three receivers, Bob, Eve 1, and Eve 2.

The information consists of different security layers. We derive

a regularized formula for the layered-secrecy capacity region

of the degraded quantum broadcast channel and an achievable

region for the pure-loss bosonic broadcast channel. The full

version of this paper with detailed proofs can be found in [31].

â
η

b̂ =
√

η â +
√

1 − η ˆ

ĉ

ê =
√

1 − η â −
√

η ĉ

Fig. 1. The beam splitter relation of the single-mode bosonic broadcast
channel.

II. DEFINITIONS

A. Notation and Channel Model

We use the following notation conventions. Script letters

X ,Y,Z are used for finite sets, X,Y, Z for classical random

variables. The distribution of X is specified by a probability

mass function (pmf) pX(x) over X . In the continuous case,

we use the the probability density function (pdf) fX(x). We

write X ∼ NR(µ, σ
2) to indicate that X is a real-valued

Gaussian variable, with fX(x) = 1√
2πσ2

e−(x−µ)2/2σ2

, and

Z ∼ NC(µ, σ
2) for a complex-valued Gaussian variable with

fZ(z) =
1

2πσ2 e
−|z−µ|2/2σ2

. The state of a quantum system A

is a density operator ρ on the Hilbert space HA. Define the

quantum entropy, conditional entropy, and mutual information

as H(A)ρ , −Tr[ρA log(ρA)], H(A|B)ρ = H(AB)ρ −
H(B)ρ, and I(A;B)ρ = H(A)ρ+H(B)ρ−H(AB)ρ, respec-

tively. For a continuous-variable bosonic system, correspond-

ing to an electromagnetic field, the Fock basis, vacuum state

|0〉, annihilation operator â, coherent state |α〉, and thermal

state, are defined as in [32].

A quantum broadcast channel is a linear, completely posi-

tive, trace-preserving map LA→BE , mapping a quantum state

at the sender to a quantum state at two receivers. Assume

the channel is memoryless, i.e., LAn→BnEn ≡ L⊗n
A→BE . The

marginal channels are denoted by L(1)
A→B and L(2)

A→E . The

transmitter, Receiver 1, and Receiver 2 are often referred to

as Alice, Bob, and Eve, respectively. A quantum broadcast

channel LA→BE is called degraded if there exists a degrading

channel DB→E such that L(2)
A→E ≡ DB→E ◦ L(1)

A→B . Intu-

itively, this means that Eve receives a noisier signal than Bob.

A broadcast channel is called reversely degraded if L(1)
A→B

is degraded with respect to L(2)
A→E . The bosonic broadcast

channel is degraded if η > 1
2 , and reversely degraded if η ≤ 1

2 .

In the former case, the degrading channel is a beam splitter

with transmissivity η′ = 1−η
η .

B. Confidential Coding with and without Key Assistance

We define a confidential code with and without shared key

assistance to transmit classical information over the broadcast

channel. A common message is sent to both receivers, Bob

and Eve, at a rate R0, and a confidential message is sent to

Bob at a rate R1, while eavesdropped by Eve. The secret key

consists of nRK random bits, where RK is a fixed key rate.

Definition 1. A (2nR0 , 2nR1 , n) classical code for the quantum

broadcast channel LA→BE with confidential messages and key

assistance consists of the following: two message index sets

[1 : 2nR0 ] and [1 : 2nR1 ], and a key index set [1 : 2nRK ];
a collection of encoding maps FAn|k from the product set

[1 : 2nR0 ]× [1 : 2nR1 ] to the input Hilbert space HAn , for k ∈
[1 : 2nRK ]; and decoding POVMs, {Γm0,m1

Bn|k }, k ∈ [1 : 2nRK ],

for Bob, and {Ξm0

En} for Eve.

The communication scheme is depicted in Figure 2. The

sender Alice has the system An, and the receivers Bob and

Eve have Bn and En, respectively. A key k is drawn from

[1 : 2nRK ] uniformly at random, and shared between Alice

and Bob. Alice chooses a common message m0 ∈ [1 : 2nR0 ]
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m0, m1

k

F L
An

Bn

m̂0 m̂1

En

m̃0 , m1m1

Fig. 2. The quantum broadcast channel with confidential messages and key
assistance.

which is intended for both users and a confidential message

m1 ∈ [1 : 2nR1 ] for Bob, both uniformly at random. She

encodes the messages by applying the encoding map FAn|k,

resulting in an input state ρ
m0,m1,k
An = FAn|k(m0,m1), and

transmits the system An over n channel uses of LA→BE .

Hence, the output state is ρ
m0,m1,k
BnEn = L⊗n(ρm0,m1,k

An ). Eve

receives the channel output system En, and performs the

measurement {Ξm0

En}, from which she obtains an estimate of

the common message m̃0. Bob uses the key and performs

{Γm0,m1

Bn|k } on the output system Bn in order to find an estimate

(m̂0, m̂1).
The code performance is measured in terms of the prob-

ability of decoding error and the amount of confidential

information that is leaked to Eve. The conditional probability

of error of the code, given that the message pair (m0,m1) was

sent, is given by

P
(n)
e|m0,m1

(F ,Γ,Ξ) =

1− 1

2nRK

2nRK∑

k=1

Tr[(Γm0,m1

Bn|k ⊗ Ξm0

En)ρ
m0,m1,k
BnEn ]. (3)

The confidential message m1 needs to remain secret from Eve.

Thereby, the leakage rate of the code (F ,Γ,Ξ) is defined as

s(n)(F) , I(M1;E
n|M0)ρ, (4)

where M1 is uniformly distributed over [1 : 2nR1 ].
A (2nR0 , 2nR1 , n, ε, δ) confidential code satisfies

1
2n(R0+R1)

∑
m0,m1

P
(n)
e|m0,m1

(F ,Γ,Ξ) ≤ ε and s(n)(F) ≤ δ.

A rate pair (R0, R1) is achievable if for every ε, δ > 0
and sufficiently large n, there exists a (2nR0 , 2nR1 , n, ε, δ)
code with key assistance. The capacity region Ck-a(L) of the

quantum broadcast channel with confidential messages and

key assistance is defined as the set of achievable rate pairs.

Remark 1. Taking R0 = 0, the model reduces to the quantum

wiretap channel, where Eve is is viewed as a malicious party

who is not part of the network. If LA→BE is isometric, then

the secrecy capacity of the wiretap channel is also referred to

as the private capacity of the main channel L(1)
A→B [15].

Remark 2. The condition in (4) is referred to as strong secrecy.

The results can be extended to stronger security criteria using

the methods in [33].

C. Conference Key Agreement

Consider the following source model. Suppose that Alice,

Bob, and Eve share a product state ω⊗n
ABE . We define a code

k0 k1A
n

k̂0 k̂1B
n

F

zb

Γ

ze

k̃0
k1E

n

Ξ

Fig. 3. Public and secret key agreement between three terminals.

for the distillation of two keys using their access to this state,

by local operations and one-way classical communication. A

public key is to be shared with both receivers, Bob and Eve,

at a rate R0, and a secret key is sent to Bob at a rate R1.

Definition 2. A key-agreement code for the distillation of

public and secret keys consists of the following: two index

sets [1 : 2nR0 ] and [1 : 2nR1 ], corresponding to the public key

for both users and the secret key of Bob, respectively; and

three POVMs, {F k0,k1,zb,ze
An }, {Γk0,k1

Bn|zb}, and {Ξk0

En|ze}.

The key-agreement protocol is depicted in Figure 3. Alice,

Bob, and Eve share ω⊗n
ABE . Alice performs the measurement

{F k0,k1,zb,ze
An }, and sends the measurement outcomes zb and

ze to Bob and Eve, respectively, through a public channel.

Upon receiving zb and ze, Bob and Eve perform their respec-

tive measurements. From the measurement outcomes, Alice

obtains (K0,K1), Bob (K̂0, K̂1), and Eve K̃0.

The performance of the code is based on the probability

of distillation error, P
(n)
e (F,Γ,Ξ) = Pr

(
K̃0 6= K0 or

(K̂0, K̂1) 6= (K0,K1)
)
, and the secrecy leakage. The keys

should not be retrieved from the public channel communi-

cation, and K1 needs to remain secret from Eve as well.

Thereby, we define the leakage rates, s
(n)
0 (F ) , I(Zb, Ze;K0)

and s
(n)
1 (F ) , I(Zb, Ze, E

n;K1)ρ. A key-rate pair (R0, R1)
is achievable if for every α, ε, δ > 0 and large n, there

exists a key-agreement code such that 1
nH(Kj) ≥ Rj − α,

P
(n)
e (F,Γ,Ξ) ≤ ε, and s

(n)
j (F ) ≤ δ, for j = 0, 1. The key-

agreement capacity region K(ωABC) is defined as the set of

achievable key-rate pairs (R0, R1).

Remark 3. If one removes the public key, the model reduces

to the single-user key-agreement setting in [4].

III. MAIN RESULTS — CONFIDENTIAL COMMUNICATION

WITH A SECRET KEY

Consider communication of a common message m0 and a

confidential message m1 over a broadcast channel LA→BE

with key assistance, as described in Subsection II-B and

illustrated in Figure 2. If the broadcast channel LA→BE is

reversely degraded, i.e., Bob has a noisier channel than Eve,

then secure communication requires that the private rate is

zero. However, if Alice and Bob are provided with a secret

key, then a positive private rate can be achieved.

We begin with the finite-dimensional case. We give a reg-

ularized capacity formula for the quantum broadcast channel
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Fig. 4. The capacity region of the pure-loss bosonic broadcast channel with confidential messages and key assistance, given the transmissivity η = 0.6, and
input constraint NA = 5. The black, blue, and red lines correspond to the key rates RK = 0, RK = 0.25, and RK = 0.5, respectively. The squares mark
the phase transition (“breaking point”) in each region.

with confidential messages and key assistance. Consider the

broadcast channel LA→BE and define the rate region

Rk-a(L, RK) =

⋃

pT,X , ϕt,x

A





(R0, R1) : R0 ≤ min (I(T ;B)ρ, I(T ;E)ρ)
R1 ≤ [I(X;B|T )ρ − I(X;E|T )ρ]+ +RK

R1 ≤ I(X;B|T )ρ





(5)

where [x]+ = max(x, 0), and the union is over the distri-

bution pT,X of two classical auxiliary random variables and

collections of quantum states {ϕt,x
A }, with ρ

t,x
BE ≡ L(ϕt,x

A ),
|T | ≤ |HA|4 + 3 and |X | ≤ (|HA|4 + 3)(|HA|4 + 2). The

characterization of the key-assisted capacity region is given in

the theorem below.

Theorem 1. The capacity region of a quantum broadcast chan-

nel LA→BE with confidential messages and key assistance in

finite dimensions is given by

Ck-a(L, RK) =
∞⋃

n=1

1

n
Rk-a(L⊗n, nRK).

By taking a zero key rate, i.e., RK = 0, we recover the

unassisted capacity region due to Salek et al. [23]. The proof of

Theorem 1 is given in [31] (see Appendices A-B). To show the

direct part, we use rate-splitting between one-time pad coding

and the unassisted confidential code, similar to [8]. That is, the

private rate is decomposed as R1 = R1k+R1c, where the rates

R1k and R1c correspond to the key-assisted encryption and

the unassisted confidential code, respectively. This requires

R1c ≤ [I(X;B|T )ρ − I(X;E|T )ρ]+. Thus, if the quantum

broadcast channel is reversely degraded, then R1c = 0 and

the confidentiality relies solely on the one-time pad cypher.

Next, we give our main result for the pure-loss bosonic

broadcast channel. We determine the capacity region exactly,

assuming that the minimum output-entropy conjecture holds.

This long-standing conjecure is known to hold in special cases

[30]. Let g(N) denote the thermal state entropy, i.e., g(N) =

(N + 1) log(N + 1) − N log(N) if N > 0, and g(0) = 0,

where N is the mean photon number.

Conjecture 1. Given a pure-loss bosonic channel, if

H(An)ρ = ng(NA), then H(Bn)ρ ≥ ng(ηNA).

Theorem 2. Assume that Conjecture 1 holds. Then, the ca-

pacity region of the pure-loss bosonic broadcast channel with

confidential messages is as follows. If η ≥ 1
2 , then

C(Lpure-loss) =
⋃

0≤β≤1



(R0, R1) : R0 ≤ g((1− η)NA)− g((1− η)βNA)
R1 ≤ g(ηβNA)− g((1− η)βNA) +RK

R1 ≤ g(ηβNA)



 .

Otherwise, if η < 1
2 ,

C(Lpure-loss) =
⋃

0≤β≤1{
(R0, R1) : R0 ≤ g((1− η)NA)− g((1− η)βNA)
R1 ≤ min (g(ηβNA), RK)

}
.

The capacity region of the pure-loss bosonic broadcast

channel is depicted in Figure 4 for different key rates. The

squares mark a transition (“breaking point”) in each region.

For low common rates, the shared key is fully used to

enhance the communication rates, whereas for higher rates,

the key is only partially used. The breaking point corresponds

to β0 such that g((1 − η)β0NA) = RK . The technical

challenge is in the converse proof, which requires the con-

jecture. Achievability is interpreted as a “superposition coding

scheme”, which consists of cloud centers tn(m0) and satellites

xn(m0,m1) = tn(m0) + qn(m0,m1). In order to ensure that

Eve can recover the cloud center, but not the satellite, the

cloud vector qn(m0,m1,c) is chosen at random from a bin

that consists of 2n[g((1−η)βNA)+δ] sequences.

2021 IEEE Information Theory Workshop (ITW)
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m0, m1, m2 F L
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Bn

m̂0 m̂1 m̂2

En
1 m̃0 m̃1 , m2m2

En
2

m̆0 , m1 , m2m1 m2

Fig. 5. The quantum broadcast channel with layered secrecy.

â
η1

b̂

ĉ1

η2

ê1

ĉ2

ê2

Fig. 6. The bosonic broadcast channel with layered secrecy.

IV. MAIN RESULTS – KEY AGREEMENT

Consider the distillation of a public key and a secret key

between Alice, Bob, and Eve, using a correlated state ω⊗n
ABE ,

as described in Subsection II-C. We characterize the key-

agreement capacity region for the case where A, B, and E

have finite dimensions. Define a key-rate region,

K(ωABE) =
⋃

ΛA, pT0,T1|X{
(R0, R1) : R0 ≤ min (I(T0;B)ω, I(T0;E)ω)
R1 ≤ [I(X;B|T0, T1)ω − I(X;E|T0, T1)ω]+

}
(6)

where the union is over the POVM ΛA = {Λx
A}x∈X and distri-

butions pT0,T1|X , with ω
t0,t1,x
BE ≡ TrA ((Λx

A ⊗ ✶⊗ ✶)ωABE).
The key-agreement theorem is given below.

Theorem 3. The key-agreement capacity region for the distil-

lation of a public key and a secret key from ωABE in finite

dimensions is given by

K(ωABC) = lim
n→∞

1

n
K(ω⊗n

ABC).

The proof of Theorem 3 is given in [31]. The auxiliary

variable T1 only emerges in single-letter special cases, such

as a classical channel. Next, we observe the following relation

with the broadcast channel with confidential messages.

Corollary 4. For a degraded broadcast channel,

C(L) =
⋃

ωABE :ωBE=LA→BE(ωA)

K(ωABC).

In particular, the key-agreement capacity region for thermal

states that are associated with a pure-loss bosonic channel is

a subset of the confidential capacity region in Theorem 2.

V. LAYERED SECRECY

The quantum broadcast channel with layered generalizes

the model with confidential messages. Consider a channel

LA→BE1E2
with three receivers, Bob, Eve 1, and Eve 2.

As illustrated in Figure 5, Alice sends three messages. The

common message m0 is intended for all three receivers. In

the next layer, the confidential message m1 is decoded by Bob

and Eve 1 but hidden from Eve 2. The confidential message

m2 is decoded by Bob, while remaining secret from Eve 1 and

Eve 2. It is assumed that the broadcast channel is degraded,

i.e., there exist degrading channels D(1)
B→E1

and D(2)
E1→E2

.

A layered-secrecy code is defined such that a common mes-

sage is sent at a rate R0, and two confidential messages at rates

R1, R2. Alice chooses a common message M0 for all users,

a layer-1 confidential message M1 for Bob and Eve 1, and a

layer-2 message M2 for Bob. She encodes the messages and

transmits An over the channel. Bob, Eve 1, and Eve 2 receive

Bn, En
1 , and En

2 , and measure their estimates, (M̂0, M̂1, M̂2),

(M̃0, M̃1), and M̆0, respectively. The probability of error is

defined accordingly, and the secrecy rates are s
(n)
1 (F) ,

I(M1;E
n
2 |M0)ρ and s

(n)
2 (F) , I(M2;E

n
1 , E

n
2 |M0)ρ. The

layered-secrecy capacity region CLS(L) is defined in a similar

manner as in Subsection II-B. Our main results on layered

secrecy are given below. Define

RLS(L) =
⋃

pX0,X1,X2
, ϕ

x0,x1,x2
A




(R0, R1, R2) : R0 ≤ I(X0;E2)ρ
R1 ≤ [I(X1;E1|X0)ρ − I(X1;E2|X0)ρ]+
R2 ≤ [I(X2;B|X0, X1)ρ − I(X2;E1E2|X0, X1)ρ]+



 .

(7)

Theorem 5. The layered-secrecy capacity region of the quan-

tum degraded broadcast channel LA→BE1E2 in finite dimen-

sions is given by

CLS(L) =
∞⋃

n=1

1

n
RLS(L⊗n).

Theorem 6. A layered-secrecy rate tuple (R0, R1, R2) is

achievable over the pure-loss bosonic broadcast channel if

R0 ≤ g
(
(1− η1)(1− η2)NA

)

− g
(
(β1 + β2)(1− η1)(1− η2)NA

)
,

R1 ≤ g
(
(β1 + β2)η2(1− η1)NA

)
− g

(
β2η2(1− η1)NA

)

−
[
g
(
(β1 + β2)(1− η2)(1− η1)NA

)

− g(β2(1− η2)(1− η1)NA

)]
,

R2 ≤ g
(
η1β2NA

)
− g

(
(1− η1)β2NA

)
, (8)

for some β1, β2 ≥ 0, such that β1 + β2 ≤ 1.

The proofs of Theorem 5 and Theorem 6 are given in [31].
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