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Covert MIMO Communications Under Variational
Distance Constraint

Shi-Yuan Wang™, Student Member, IEEE, and Matthieu R. Bloch

Abstract—The problem of covert communication over
Multiple-Input Multiple-Output (MIMO) Additive White
Gaussian Noise (AWGN) channels is investigated, in which a
transmitter attempts to reliably communicate with a legitimate
receiver while avoiding detection by a passive adversary. The
covert capacity of the MIMO AWGN channel is characterized
under a variational distance covertness constraint when the
MIMO channel matrices are static and known. The characteriza-
tion of the covert capacity is also extended to a class of channels in
which the legitimate channel matrix is known but the adversary’s
channel matrix is only known up to a rank and a spectral norm
constraint.

Index Terms—Physical-layer security, covert communica-
tion, Multiple-Input Multiple-Output (MIMO)-Additive White
Gaussian Noise (AWGN) channels, variational distance,
compound channels.

I. INTRODUCTION

OVERT communications, also known as communica-

tions with low probability of detection, have long been
used to transmit sensitive information without raising suspi-
cion. While technologies such as spread-spectrum communi-
cations have been widely deployed, the information-theoretic
limits of covert communication had not been investigated until
recently. Much of the interest has been spurred by the discov-
ery of a square-root law [1], which limits the scaling with the
coding blocklength n of the number of reliable and covert com-
munication bits over memoryless channels to O(4/n). In other
words, the standard capacity of covert communications is zero
but the number of bits still grows with the blocklength. The
optimal constant behind the O(4/n) scaling then plays the role
of the covert capacity and has been characterized for many
channels, including Discrete Memoryless Channels (DMCs)
and AWGN channels, using both relative entropy [2], [3] and
variational distance [4], [5] as a covertness metric. Covert
communications often require secret keys as an enabling
resource, the amount of which can be characterized [3]; in
particular, no secret keys are required when the legitimate
receiver obtains better observations than the adversary [6].
Refined characterizations of the message and key sizes for
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finite length [7], [8] and second-order asymptotics [4] are
also known, although they are often not complete. Recent
advances include the characterization of the covert capacity in
network information theory problems [9]-[12], quantum chan-
nels [13], [14], low-complexity code constructions [15]-[19],
and system-level considerations highlighting how to allocate
resources in the presence of covertness constraints [20],
[21]. Particularly relevant to the present work, there have
been attempts at studying MIMO-AWGN channels when
measuring covertness using relative entropy as a covertness
metric [22]-[24].

Covertness must be measured in terms of a metric that
captures how different the statistics of the observations are in
presence and in absence of communication. Relative entropy
has been a popular choice [2], [3] because of its conve-
nient analytical properties; however, variational distance is
the metric that is operationally relevant to the performance
of the adversary’s detector [4]. In this work, we therefore
use variational distance to measure covertness, which requires
specific techniques, especially in the converse proof.

The contributions of the present work are twofold. 1) We
revisit the MIMO-AWGN channel model of [22]-[24] and,
under the assumption that the null space of the main and adver-
sary’s channel matrices are trivial, we obtain a closed-form of
the covert capacity with variational distance as the covertness
metric. Our approach extends the techniques developed in [4],
[5] and the crux of contribution is the converse proof. 2) We
investigate the problem of covert communication over com-
pound MIMO-AWGN channels, in particular, the situation in
which the adversary’s channel matrix is only known up to a
rank constraint and a spectral norm constraint [22]-[25]. Our
approach differs from the analysis in [22]-[25] and borrows
ideas from [26] to avoid implicit constraints on the adversary’s
operation when dealing with uncountable compound channels.

A preliminary version of these results was presented
in [27] but without complete proofs. The present work offers
self-contained and detailed proofs.

II. CHANNEL MODEL
A. Notation

Both log and exp should be understood in base e; hence, all
information-theoretic quantities are nats. Calligraphic letters
are used for sets and |- | denotes their cardinality. (-)* denotes
the Moore-Penrose inverse of a matrix. M > 0 denotes
a positive semi-definite matrix M. H(-), & (-), I(; ), and
hp (+) denote the usual entropy, differential entropy, mutual
information, and binary entropy function, respectively.
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For a continuous alphabet Q and any two distributions P, Q
with densities fp, fp, respectively, the variational distance
between P and Q is defined as V(P, Q) £ % olfp(x) —
fo (x)|dx or equivalently V(P, Q) = supgcq|P(S) —
Q (S)|. The relative entropy between P and 0 is defined

as D(P | Q) £ [, fr(x)log gggdx. Pinsker’s inequality

ensures that V(P, 0)* < 3min(D(P || Q),D(Q || P)). Let
X € X and Y € Y be jointly distributed random variables
according to P-W, where P has density fp,and W : (x, y) —
W (y|x) is a transition probability from X — ) with density
fw. We define the marginal distribution of ¥ as P o W with
density [y fw(ylx)fp(x)dx.

Moreover, for two integers |a] and [b] such that |a] < [b],
we define [[a, b]| £ {la], la]+1, ..., [b]1—1, [b]}; otherwise
[a,b] £ @. For any x € R, we also define the Q-function

7X2 . . .
O(x) £ [* —Le ™2 dx and its inverse function Q! ().

Neza

B. System Model

We consider a MIMO-AWGN channel in which a transmit-
ter (Alice) with N, antennas attempts to reliably communicate
with a legitimate receiver (Bob) with N, antennas in the
presence of a passive adversary (the warden Willie) equipped
with N, antennas. We assume that Bob and Willie possess
more antennas than Alice, i.e., N, < Np and N, < N,,. Bob
and Willie’s received signals at every channel use are then

y=Hyx+n, and z=H,x+n,, (1)

respectively, where x € RN« is Alice’s transmitted signal and
H, and H,, are Bob’s and Willie’s channel matrices, assumed
known to everyone. We further assume that both matrices have
full rank, i.e., m = rank (Hp) = rank (H,) = N,. Hence,
both channel matrices can be decomposed with a Generalized
Singular Value Decomposition (GSVD) [28], [29] as

H, = U, Z,Q "WT = UpA,VT,
H, =U,%,Q "¥T=U,A,VT, )

where ¥ € R¥*Na, U e RM>*No and U, € RNo*No are
orthogonal, Q € R™ ™ is lower triangular and nonsingular,
and VT £ Q9T Both X, € R¥*” and ¥, € RNoxm
are diagonal with positive elements, {4y, j};f’zl and {1, j};."zl,
respectively. We truncate U} and U, into U, € R¥>*™ and

U, € RNoxm and define A, = diag (Hb,j};L]) and A, =

diag ({iw,j ’}':1). The noise vectors n, € R and n,, € R are

realizations of AWGN distributed according to N (0, abzIN,,)
and N (0, auz)INw), respectively, assumed known to everyone.
Furthermore, for n € N*, we define the innocent symbol
corresponding to the absence of communication as xog = 0;
the output distributions induced by the innocent symbol at
Bob and Willie are denoted Py = N (0,571y,) and Qg =
N (0, aiINw), respectively. The associated product distribu-
tions are denoted by P = [[_, Py and Q%" =[]}, Qo.
Remark 1: We assume that both Hy, and H,, have a trivial
null space equal to {0}. If this were not the case, the presence
of a null space would result in the following scenarios.
If Hy, has a non-trivial null space, Alice can overcome the
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square-root law by steering her beam in the corresponding
directions [22]-[24]. If Hp, has a non-trivial null space, Alice
has no incentive to use the corresponding directions and would
simply ignore them. We offer further discussion in Appendix A.

C. Problem Formulation

Alice transmits a uniformly-distributed message W €
[1, M, ] by encoding it into a codeword X" = [X] ... X,,] €
RNax" of blocklength n with the aid of a uniformly-distributed
secret key S € [1, K, ]| shared with Bob. The resulting code
is called an (n, M,, K,)-code C, assumed known to everyone.
Whether Alice communicates or not is controlled by ¢ €
{0, 1}, with ¢ = 1 indicating the transmission. Upon observing
Y" =[Y; ... Y,] € R¥>*" Bob uses his knowledge of the
secret key to form a reliable estimate W of W. Reliability is
measured by the maximal average probability of error

P 2 max P(s) +P(§ = 11¢ = 0), G)

where P{"(s) 2 P(W # W|S=s5,4 = 1), and we define
P 2 Eg{P(W # WIS, ¢ =1)} +P(¢ = 1|¢ = 0). In con-
trast, Willie’s objective is to detect whether Alice is transmit-
ting based on the observations Z" = [Z1 ... Z,] € RNvx"
via a hypothesis test 7 (Z"). In particular, Willie expects
Q?" when there is no transmissign between Alice and Bob
(i.e., the null hypothesis) and Q" when the transmission
occurs (i.e., the alternative hypothesis), where @" is the output
distribution induced by the code C used by Alice and Bob,
V7" e RN'”X",
| M Ky
0" () = 3 2 Wk ()@

(=1 k=1

In the sequel, we use V(@”, Q(‘?") as our covertness metric.
When testing the null hypothesis Qggj" against the alternative
hypothesis Q", any test T (Z") conducted by Willie on the
observations Z" satisfies 1 > o +f > 1 — V(@”, Q%a"),
where o and f are the probabilities of false alarm and
missed detection, respectively, and the lower bound can be
achieved by an optimal test [30, Theorem 13.1.1]. In addition,
the trade-off @ + f = 1 is achieved with blind tests that do
not use the observations. Consequently, making V(@”, Qgg” )
vanish amounts to rendering the adversary’s hypothesis test
effectively blind and hence achieves covertness.

Definition 1: A reliable and covert throughput r € Ry is
achievable with corresponding key throughput k € R, if there
exists a sequence of (n, My, K,,d)-codes with increasing
blocklength n such that

log M, log M, K,

hnrglg NG >, lil:rfgop W <r+k, 5)

and
lim P =0, V(Q", 0F") <4, ©)
where d = Q’1 (1775) The covert capacity Ccovert IS the

supremum of achievable throughputs r.
Note that, in our definition, we normalize the message
and key size by /nd instead of the usual choice, n; this is
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essential to unveil the square-root law behind the covertness
and is justified a posteriori by the results in Section III. Intu-
itively, the square-root law exists, for we are hiding messages
in “statistical noise”, whose standard deviation behaves as
O(1/+/n) [3, Section IILA].

Remark 2: Our use of V(Q”, Q(c)gn) is motivated by the
following considerations. As a strong converse states that the
optimal code rate has no dependency to the target constraint in
the first asymptotics, it is clear that there is no strong converse
for the value of 6 with respect to (w.r.t.) the covert throughput,
i.e., the covert throughput depends on the value 6 through
d = Q7! (1%‘;) which is directly related to V(Q", o%™).
This can be seen from Definition 1 and Theorem 1 where
the notion of throughput depends on the covertness metric;
hence, the choice of covertness metric matters. Many earlier
works [2], [3], [22]-[24] measure covertness using the rela-
tive entropy D(@" I Qg?"). Unfortunately, relative entropy is
only a loose proxy for variational distance since Pinsker’s
inequality is not tight [4] and is then less directly related
to the operational test of the adversary. Furthermore, both
]DD(Q” I Qgg”) and ]D)(Qgg" I @”) could in principle be used
but, depending on which metric is chosen, different conclusions
regarding the optimal signaling over AWGN channels can be
reached [31].

Remark 3: Our model does not include a power constraint
on the channel input. This is justified since we only consider
channel matrices with trivial null space and since any power
constraint on the input is weaker than the covertness con-
straint [2, Section V.]. Previous works [22]-[24] impose the
power constraint precisely because they allow non-trivial null
spaces.

III. MAIN RESULTS

Theorem 1: The covert capacity of a MIMO-AWGN channel
with full knowledge of the channel matrices is

2 4
_ % 4 (r—1
Ceoverr = 52 \/ZH‘ (Ab (Aw ) ) @)

b
The covert capacity is achievable with key throughput

tr (Ag (2Aw1)4)
x (tr (Aﬁ (Awl)z)

where (x)T £ max(x, 0).

Rkey =

Uuz) 4 -1\* ’
_O_—bZtr(Ab (Aw ) )) . ®)

A. Converse Proof for Variational Distance

Proposition 1: Consider a sequence of covert MIMO-
AWGN communication schemes for the model in (1) with
increasing blocklength n € N*, characterized by €, = Pe(")
and 6 > V(Q", O&"). If limy—o0 €, = 0 and lim M, = oo,

n—o0
then we have

o log M, o2 ( 1 4)
liminf —=—" < -2 ir{A*(A . 9
n—oo  /nQ~1 (155) o-bz\/ b( v ) ©
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Proof: The proof extends the techniques developed in [1],
[4], [5] by constructing a test for Willie that is simple enough
to be analyzed yet powerful enough to obtain a tight bound.
Since we do not have any knowledge of the specific code
exploited in the converse proof, the crux of our converse is to
show that there cannot be too many high-power codewords,
for otherwise the covertness would be compromised. We then
analyze the maximal size of the low-power subcode, which is
“good” in the sense that both reliability and covertness can be
ensured. We first recall the Berry-Esseen Theorem.

Theorem 2 (Berry-Esseen Theorem): Let Xi,...,X, be
independent random variables such that for k € [1,n],
we have E{Xy} = u, akz = Var(Xy), and tp =

IE{|Xk—,uk|3}. If we define 6> = = O'k2 and T =
> i—y Ik, then we have
" 6T
P2 Xe—u)>ho )= <—. (10)
k=1

1) Lower Bound on Covertness Metric: We start by estab-
lishing a lower bound relating the covertness metric to the
minimum received power of codewords at Bob within a given
code M. Consider a simple hypothesis testing problem with
two hypotheses Ho and H; corresponding to distributions Qgg”
and Q", respectively. We define a sub-optimal power detector

T(z”) éﬂ{iSi > T},

where S; £ S (z;) £ |H, (H,)" 71|13, and the threshold 7 will
be specified later. The intuition behind the test is to realign
Willie’s observations with those of Bob. Note that, HJ)Hw
is invertible because of the full-rank assumption. Hence,
we rewrite the test S; using the GSVD as

(1)

s AT ATA
Si=(Hy 1) ) (B M)'2) =272, (12)
where z; = AbAglUZ)zi. The following lemma, which is
proved in Appendix B, characterizes upper bounds for both
the false-alarm and the missed-detection probabilities.
Lemma 1: Consider a specific code M with codewords

indexed by k, X" = [ng) X,Sk)] € C. By defining P, &

ming ||be(k)” ”i = ming tr (AiP(k)) the minimum power of
Bob’s received codewords, and setting the detection threshold
tot = % + nauz)tr (Ai (A;l)z),

<0 P 4 Do (13)
(LSS =
4 vn
2\/2ntr (A;; (a5") )03)
P,
B<O -
2\/2ntr (A;; (a5") )03)
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P2 (A7 (A1) B,
4yTn3/ 2 (A;; (a5") ) ol

where By and By are some constants independent of n.
Hence, the covertness metric can be lower-bounded as

V", 05" 2 1—a—f

Py

4 -1 4 2
2 [ontr (A4 (Aw) o2

R&r(Ai(Agﬁz)

N a\ 3/2
4/mn3 2t (A2 (A;l) ) o
By + By
N
which only depends on the code through the minimum power
of Bob’s received codewords.

2) Existence of a Good Sub-Code: For a covert code C,
we develop a bound for the maximum power of a non-empty
low-power sub-code in the following lemma, which is proved
in Appendix C. The key idea is to use (15) to analyze the
covertness for the high-power sub-code and argue the existence
of a low-power sub-code.

Lemma 2: For any covert channel code C, given a decreas-
ing sequence {y,}72, with y, € (0,1), hm 1 I = 0, there

7n IC| and

=1-20

5)

exists a subset of codewords C© such that |C (f) |
IHpX"||% < Ay/n, where

4
AL 2\/2tr (A;; (a3") )a,i
12
v2tr (Ai (Awl) )
NRE
4. /mntr (Aé (A; ) ) ol

1| 1-9
x Q 2 —

— 7n s

(16)

and v depends on the channel.

3) Upper Bound on Covert Message Size Within a Good
Sub-Code: The code C can be partitioned into K, sub-codes
Cy indexed by the key value s for all s € [1, K, ] such that
C = Useqt,k,1Cs. and the size of each sub-code is M,. Let
Cs([) 2 ¢, nc®. By the pigeonhole principle, there exists
a sub-code C; satisfying ’Cs(f)’ > ynM,. Furthermore, since
the average probability of error of C is at most ¢,, we have
P, (m) (C(f)) < e—” which vanishes in the limit of large n upon

° , such that lim ;” =0.

n—o0’n
Let W denote the uniformly distributed variable over the

messages in C 2 . By standard techniques, we therefore have

choosing {y,}°2

A7)
(18)

log |c)| = H(W|s = s)
=I(W; Y"S =) + H(W[Y"S = 5)
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<I(W:Y"|S =s) + [—mg’c(")’ + hy ( )}
Vn

(19)
<H(X”;Y"|S=s)+[ “)‘Jrhb( )}
Vn Vn
(20)
PI(%; ¥) + ~log €] 41, 1)
Vn

where the random variables X and Y have distributions

1
ZHX (x) = Z -0 Z I{x = x;}

i=1 s X”ECS([)
A
and Pgy = HgWyx.

Mg (x) £ -

Let E{XXT} = Q,. Note that E{YYT} = H,Q,H] +
abIN,, Then,
I(X:Y) = h(Y) —h(Y]X) 22
1 1
< 5 log |y, + —H,Q,H (23)
2 o}
1 1 T
= Etr log{ Iy, + 2HanH (24)
%
@ 1 b A
< ——tr (H < —5—> 25
20} (H,QH;) 202 n (2)

where (a) follows since for any A > 0 and ||A], < 1,
r(log 1+ A)) = 3, log (1 + 4;(A) < 3, 4i(A) = tr (A),
where {4;(A)}; is the set of eigenvalues of A and we have used
log (1 +x) < x for all x > 0, and (b) follows from the def-
inition of C(‘;) and tr (HbQ,,HT) ‘C“) ZX,I c® ||H,x" ||F

Combining (16), (21), (25), and the fact that lim y, = 0,

n—o0
we have
4 (x-1Y"N 2 oot (126
2mr (AF (A7) 207 (139) + O ()
S 1_64
Vn
(26)
We further choose the sequence {y,};2, such that
lim ——10gm _ _ Finally, we obtain
n—00 ﬁQ—l(?)
lo
log M, g¥n
liminf Ogl " < liminf (27
oo QT (50) e it ()
2 4
= v oy (Ag (A;l) ) (28)
%
|

Unfortunately, we have not found a matching converse
argument for the key throughput.

B. Achievability Proof for Variational Distance

Proposition 2: Consider a MIMO-AWGN covert commu-
nication channel in (1). There exist covert communication
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schemes such that

lim —_ 08 Mn ﬁ\/Ztr (A“ (A )4)
e i (10) T o

log M, K, P 2

(29)

lim tr (Ai (Al)z)
n—>00, /nQ-! (1%6) tr (Ai (Awl)4)
(30)
lim P =0, V(Q", 05" <9 3D

Proof: Our proof follows [2], [3], [5] to construct a
Binary Phase-Shift Keying (BPSK) code achieving the desired
throughput pair. Note that we could also use a Gaussian
codebook, but this would require extra care to deal with the
power of codewords.

1) Covert Stochastic Process [3]: We introduce another
input process Ilg, with covariance matrix Q, and its associ-
ated distribution at the output of channel Wzx, O, £ Mg, o
Wyzx. Additionally, the associated product distributions are
Hg: [1i; Mg, and Q%" = [[_, Q. The achlevablhty
proof decomposes the covertness metrlc V(Q” Q ") into
two pieces, V(Q" Q%" and V(Q%" ) by the triangle
inequality. The former term is related to the channel output
approximation problem, and we rely on the channel resolv-
ability to analyze its behavior [3], [32]. We upper-bound the
latter term by a covertness constraint J — Ln Essentially,
this constraint makes Q%" asymptotically indistinguishable
from the output distribution of the innocent symbol Qg?"
accordingly, Q%" is called a covert stochastic process. The
rationale for introducing such a process is to find a proxy
to control the discrepancy captured by the covertness metrics
by a carefully designed covariance matrix Q,, which is the
counterpart of low-weight codewords designed in the covert
communication scheme over DMCs [3], [4].

2) Random Code Generation: We decompose the channel
into m parallel sub-channels defined by the GSVD precod-
ing with the input alphabet X = {—a,1,0,a,1} X --- X
{—an.m,0, aym}, where m = rank (Hp) = rank (H,) = N,.
Throughout the section, tildes refer to the operations over the
parallel sub-channels. Let M,,, K, € N*. Alice independently
generates M, K, codewords X" (£, k) € H —ii—an,j,anj}"
jointly over all the sub-channels with ¢ € [1, M,] and
k € [1, K], according to the distribution H;-"zl I1,, ; such
that I, ; (an;) = I, ; (~an;) = 5, and I, (0) = 0,
where {p,, ;} is a set of non-negative real numbers defined as

() 2

Y —u
ﬁ n,j?

Pn,j =
and {7 ]-}71:1 is determined later via an optimization program.
We define two diagonal matrices P, and T with {p,, j}'j" | and
{r j} '_; as the diagonal entries, respectively. For simplicity,
we stack codewords into X" (£, k) € R™*". Alice then employs
the precoding matrix (VT)~! to form x* = (VT)~' %", and
therefore the input covariance matrix after the precoding is
Q, = (V)~!'P,V~! where we design P, carefully as in (32).

vjell,ml, (32)
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Bob and Willie postprocess their observations from channel
outputs y" € RM*" and 2" e RM>*" by transforming
them via Ug and UJ to get y* € R™" and 7" € R™*",
respectively. There is no loss of generality in making this
assumption for Willie, as the post-processing Uy, performs
an orthogonal transform and then discards the components
in the observations corresponding to Null(HJ), which only
contain noise. These operations result in, Vi € [1,n], §; =
Ap%; + 1y, and Z; = AyX; + Ry, i, where fiy, ~ N (0, 071,)
and @i, ~ N (0,0 ) From the perspective of the m sub-
channels ( Z|X’Z) with j = R™, and Z =
R™, we therefore define the following statistics: Ilp, (X) =
17~ Oy, (%), Op' = [T e, Pn = Tp, o Wy,
P& =T['_, Py, Qn = Tlp, o W% and 0%" =TT, On.
Note that because of the parallelness of sub-channels, we can
derive simple forms as follows:

YlX»y

m
- 1 1
= (EN (_Ab,jan,j’ 0-172) + EN (/lb,jan,j» o-bz)) ’
=1

~.

~ 1 1
O, = H (EN (—ﬂ.wjjan’j,O'uz)) + 5./\/' (ﬂ.wjjan’j,O'uz))) .
j=l1
In the sequel, we also use the notation Pn . £
N

N (<hvjanj.op) + 3N (A janj.op) and QOn;

IN (=2, jan,j, 02) + SN (Aw,jan,j, 02) to represent distri-

butions at each sub channel in the above decomposition. Sim-

ilarly, we also use Po,j £ N~(O, o?) and Qo £ N (0,02).
Hence, Py = [[}_, Po,;j and Qo =[], Qo,;-

3) Channel Reliability Analysis:

Lemma 3: By choosing

—1(1=0

Vo' (%)

logM, = (1 -5 Y= 2

33
7 (33)

tr (AgT) :

the average probability of error satisfies

- _ -1(1=d
efpn] <o)
where ¢ € (0, 1), and 6; > 0.
The proof is provided in Appendix D.
4) Covertness Analysis:
Lemma 4: By choosing T such that

1 C
4o, Vno='(55°)

for some C > 0, and

(34)

(35)

N

1-6
log My Ky = (1 4 &) %u (Aﬁ)T) . (36)

the expected covertness metric is bounded as follows:

e_‘gz“/ﬁQ_I (1%;) _

E{V(Q", 0§")} <+ (37)

5

where ¢ € (0, 1), and 6>, > 0 are some constants.
The proof is provided in Appendix E.
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5) Identification of a Specific Code: Choosing &, log M,
and log K, to satisfy Lemma 8 and Lemma 9, Markov’s
inequality allows us to conclude that there exists at least
one specific code C with n large enough and appropriate

_ _ 110
constants &,¢& > 0 such that P < o Ve (2)
and V(Q", Q(?”) <0 — ﬁ +e /0" ( ) Although a

code C with vanishing 136(") does not necessary satisfy the
reliability constraint (3), which requires Pe(") to vanish as n
goes to infinity, the following lemma from [5] gives us such
a guarantee by merely rearranging the codewords in C.
Lemma 5: Suppose a code C contains K,, sub-codes of size

~1(1=0
M, such that P" < e, and V(Q", 08" <e —aVne ( 2 )+
0 — ﬁ Then, there exists a code C/ containing K, sub-

codes of size M), such that Pe(") < ¢, and v(Q", Q(c)gn) <
Vi (1) e

! !
lim M” =1, and lim Ilg— =1
n—o0 n—oo tn .

6) Constellatzon Power Design: Next, we design the
optimal constellation points that result in the largest achievable
message set size satisfying the covertness constraint. We for-
malize our optimization program by combining (33) and (35)
as follows:

. . . ,
f‘ In particular, nh_r)nooe,, = nh_r)nooen =0,

1 2
max @u (AbT), (38a)
| c
St ——tr (A4 TZ) <2——— . (38b)
4of  \0 Vo~ (152)

To solve this, we regard the term % as a pertur-
Vo (52)

bation. Consider the optimization

1
max (A,%T), (39a)
& O'b
1 4 2
st —tr (AL T?) <2 (39b)

w

The optimal Lagrange multiplier x# and solution T

tr (A;‘; (Awl)4), and T =

, respectively. Let p and p’ denote the

2
— O-UI
to (39) are u = T
A3z’
/tr(A}‘;(A;'r)
optimal objective values of (39) and (38), respectively. By the
sensitivity analysis [33, Ch. 8.5], we have

which shows the perturbation is negligible as n goes to infinity.

Consequently,
_ —\/ 2 (Af (A5') )

(41)

24202

p>p’>p—0( (40)

logM
lim =
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e (07

r (A‘g (Aw1)4)

Since for any ¢ € (0, 1), there exists a scheme satisfying all
the requirements, we can therefore make ¢ arbitrarily small,
i.e.,, & — 0T. The result then follows.

The reader might wonder why the optimal solution to (39)
is not the usual water-filling solution. This is a unique
phenomenon due to the covertness constraint. The usual
water-filling solution would encourage the use of high power
in the sub-channels in which Bob has better observations
than Willie. In contrast, the square-root law discourages
the use of high power, as allocating too much power to
sub-channels that have better observations increases the risk
of detection. Hence, one should not expect the water-filling
solution to appear here. Specifically, our power allocation uses
all the sub-channels and suggests that each sub-channel j

mg’jiw IQ (

/tr(A;g(A D) )

which is aligned with the direction of the diagonal elements
of (A2 (A51)%). m

. log M, K,
lim T -1 (1=
(2%)

i sy = (40

(42)

contribute (1 + ¢) ) to log M, K,

IV. COVERT COMMUNICATION WITH UNKNOWN
WARDEN CHANNEL STATE

We now assume that only partial channel state information
of Willie’s channel is available. Specifically, all parties know
the exact Hy, while Alice only knows that H,, belongs to the
following uncertainty set:

_{Hw =UpAyp VT ”A ”2 /10,

x m = rank (H,) = rank (Hp) = N,}, (43)

where U, is known to Willie and hence can be canceled by
post-processing [25]. Thus, the set S contains all the channels
that are fully aligned with the main channel and for which
the singular-value matrix is less than or equal to Ag £ AoL,.
The channel realization is fixed during the transmission period.
This model corresponds to a quasi-static scenario where the
adversary cannot be closer to the transmitter than a certain
protection distance [25].

For an (n, M,, K, d)-code C designed for the compound
channel induced by S, the covertness metric at Willie is
SUPH, cS V(Q\”Hw, 0", where Q\”Hw is the distribution when
communication occurs over the channel realization H,,,

(z |X(€k)n)’
t=1 k=1

vz" € RNoXm and Wyzx—x ~ N (wa, aiINw).

We show that the compound covert capacity is equal to the
worst-case covert capacity at channel realization U, AgVT.
Here we only present the achievability proof for the compound
covert capacity under the variational distance, in which we
show that there exists a compound covert code achieving the
worst-case covert capacity. The converse proof follows from

M, Ky

M X, (44)
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the fact that the worst-case covert capacity within the uncer-
tainty set S upper-bounds the compound covert capacity, for a
compound covert code also works on the worst-case channel
realization by definition as pointed out in [25, Corollary 1].

Proposition 3: Consider a compound MIMO-AWGN covert
communication channel in (1) and the uncertainty set S in (43)
containing all possible channel realizations of the warden.
There exist covert communication schemes such that

log M, 2 4
lim % > U—“z)\/2tr (A@ (Ag‘) ) (45)
oo /nQ7 (50) g

(46)

sup V(@"Hw, Q(?”) <.
S

(47)
Note that (46) does not depend on Willie’s channel. As men-
tioned previously, the power allocation makes each sub-

L a0 (159) 1o

/tr(A2 (A31)4)

log M, K,,, which is aligned with the direction of the diagonal

channel j contribute (1 + ¢)

2
elements of A12> (Aa 1) ) Since we show that the worst-case

channel capacity at Ao is achievable, the fact that Ay is
isotropic makes the result independent of Willie’s channel.
Proof: We extends the proof in [25], using ideas from [26].
The idea of the proof in [25] is to extend the result of
compound secrecy capacity for uncountably infinite compound
DMCs to continuous alphabets through a sequence of succes-
sively finer quantizers, which quantize the input and output
alphabets at all parties. The compound secrecy rate derived
from quantized alphabets can be made arbitrarily close to the
compound secrecy capacity with a sufficiently fine quantizer.
Unfortunately, this process requires the adversary to obey the
quantization rule and implicitly assumes that the adversary
should cooperate with Alice and Bob. We propose a small cor-
rection that circumvents the issue by considering an adversary
that directly operates on the channel output without quantiza-
tion, and directly analyzes the difference in terms of covertness
induced by a code between two close channel states.

A. Discretization

Since the uncertainty set S described in (43) is uncountable,
we first discretize S to construct a countably finite uncertainty
set S, with a suitable choice of discretization level and
discretization points.

Note that since the uncertainty set S is subject to the
spectral norm constraint, which results in an m-dimensional
hypercube with length A9 on each side, a natural way to
discretize is to uniformly slice S into 2" hypercubic regions
with length €, £ /927" on each side. The discretization points
constructing the set S, are chosen as follows:

Sy 2 {H=UA,;VT: A; =diag (ji€n, ..., jm€n),
X J =1, Jm), je € [1,2"], V€ € [1, m]},
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where J is an index for the elements in S,, and since U
is known to Willie, we henceforth omit its impact in the
remaining.

Each discretization point H; is associated with a neighbor-
hood

Sin 2 H=UAVT:A; = A, [A;— Al <€), (48)

which covers a portion of the original uncertainty set. By con-
struction, Uy ¢, S, = S. As discussed in previous sections,
without loss of generality, we directly investigate the parallel
sub-channels described by Ay and A,.

B. Approximation
—1(1=0

Consider a BPSK constellation p, ; = % for all
Jj € [1,m]] with {rj}?:1 defined in a way similar to (32).

—1(1=0
LetP, = 2\ 2) J(ﬁz ) ht
the covertness metric at any channel realization H is close
to that measured at the corresponding discretization point H.
Precisely, we show that the difference of covertness metric
between them vanishes fast with respect to the blocklength n
in the following lemma, which is proved in Appendix F.

Lemma 6: For any He S J.n and its associated discretiza-
tion point H € S,

V(. 0F") — V(i 05" < O (nie™2). (49)

T. For any of the above neighborhoods,

Thus, the covertness metric of any point in & can be
closely approximated by some discretization point in S, for a
sufficiently large n.

C. Existence

To show the existence of a compound code applicable
for the entire uncertainty set S, note that by the property
of supremum and our approximation argument (49), for n
sufficiently large, we have

sup V(Q}, .

0§") — max V(Qy, , OF")
H,eS H,eS,

<O (nie2?). (50)
Accordingly, we choose maxy,cs, V(@"Hw, Qgg”) as our
optimization constraint by using (50). This modification only
causes a small perturbation in the throughput, which is negli-
gible in the limit of large n. Furthermore, we have
max V(Q\"Hw, Q(c)gn)

wE€n

< max V(QR', 0F") + max V(Qy,, Of"). (5D
w € n v Hll) ESII v v
Note that for any H, H € S such that

H - H = 0 and for n large enough, V(QF", O5") —

4.2
V(R 05" = ZQ(,/%Z’}’_l e U (—‘25)) -
42
2003 20 =0t (132)) = 0, where {2;¥7_, and
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{/1 }’" | are the diagonal elements of A and A corresponding
to H and H defined in (43), respectively. To ensure

1
<5__’
y<o-

for large enough n, by using (124) and (125) in Appendix E,
we have the optimization constraint

1 ¢
4oy, Vot (5°)

for some C > 0. Also, choosing

V ®l’l’ ®n 52
Hrilgé’,, (QHH, 05 (52)

(33)

1ogM1<,,_(1+5) tr(AZT)fQ (25), (54)

ensures that maxy, cs, Ec {V(QHw, QHw)} vanishes in
exp (—O (Vn0 ™' (552))). where it follows from (129) and
(130) in Appendix E.
We next show that
maxg,es, V(Oy, » O

maxy,, es, Ec{V(Of, . O}
Lemma 7: For any generated code, set

for any BPSK random code,
can be upper-bounded by

gL [ max V(QH Q

wESH

x < max EC{V(Q"H ,Q%n)}-i-an], (55)
H,eS, w w

where o, = o (%) Then, P(E) > 1—|S, | exp (—2M,,K,,a,2l).
Proof: We have
@ —~
PE) =1- > P(V(Q"H, oF")
HeS,
> max ]EC{V(QH . O} )}+an) (56)
wE€On
®) _~ —~
> 1— > P(V(0y, Of") > Ec{V(Qh, OF")) + an)
HeS,
(57)
1 — [S,] exp (—2Mn K,,a,%) , (58)

where (a) follows frog the union bound, (132 follows
since maxp,es, Ec{V(Qy, . O)) = Ec{V(Qh. Of")
for any H € &,, and (c) follows from McDiarmid’s
Theorem [4, Lemma 2]. |

Hence, we have P(£) — 1 asn — oo since, with our choice
in (54), exp(~M,K,) = exp(—exp (O (vn0~' (52))))
and |S,| = exp (O (n)). If n is large enough, with overwhelm-
ing probability, we can rewrite (51) as follows:

max V(0. 05"
< max V(QF', 08"
wesn w

+ exp (—O (ﬁQ‘l (17_5))) +an.  (59)

As a result, we show that for n large enough, there exists
a random code C,. generated according to the constraints (53)
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and (54), which is also a compound covert code for the whole
discretized uncertainty set S, i.e.,

max V(Q} , Q%"
) (Qn,- 20 )

<6o— % + exp (—0 (ﬁQ‘l (1%5))) +a, (60)

(L) o 2 o
= ﬁ 0 NG < ﬁ

is ensured for sufficiently large n and some D > 0.

Eventually, combining the above with the triangle inequality
and (50), for n large enough, we can develop a bound similar
to (37) as follows:

5—24-0( 7 —n10g2)<5.

sup V(Qf, . 05" < 7

H,cS
(62)

Therefore, C. is also a compound covert code for the entire
uncertainty set S.

D. Constellation Power Design
The power design follows the same steps as in (38)-(42).
To find the optimal design point of T, we first ignore the
S S
7 ()
perturbation as in (40). By solving an optimization program
similar to (39), we obtain

logM _ ol 1\4

term in the (53) and include it later as a

(63)

Therefore, by using (62), we can further normalize (63) and
obtain (45). (46) follows similarly. |

V. COMPARISON AND DISCUSSION

We now compare our results with the ones obtained when
measuring covertness with relative entropy in [23], [24]. There
are several key distinctions between the present work and [23],
[24]: 1) We analyze covertness in terms of variational distance,
which is a more operationally relevant covertness metric, and
leads to a higher number of covert bits. 2) We do not assume
that Alice and Bob use a large amount of key to create
independent and identically distributed (i.i.d.) codewords, and
resort instead to a channel resolvability analysis and a con-
servative amount of secret key S € [1, K, ]| shared between
Alice and Bob. 3) We develop a complete characterization of
the covert capacity, which is only implicitly defined in [23],
[24] through an optimization problem that depends on the
blocklength n [23, Appendix B]. 4) We do not require the
covert bits to be secret. In our opinion, requiring the covert
bits to be secret makes the problem closer to a wiretap channel
and we want to exclusively focus on covertness. 5) We do
not investigate in depth what happens when channel matrices
have non-trivial null spaces, except for a short discussion in
Remark 1 and Appendix A. In our opinion, these situations
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are not particularly difficult to analyze because the optimal
signaling schemes are rather straightforward.

Note that [23] does not completely fit into our framework
since the codebook is assumed to be secret from Willie
in [23, Theorems 1 and 2] and Willie directly observes an
i.i.d. stochastic process. Nevertheless, one can still compare
resulting rates.

Note that the result obtained in [23, Theorem 2] is not
a closed-form expression, for it involves the characteriza-
tion of “normalized KL divergence” defined in [23, (15)].
This characterization remains incomplete therein, for the
authors do not exactly solve the power allocation prob-
lem in [23, Appendix B]. Hence, the optimal scaling L
in [23, Theorem 2], which plays the role of the covert capac-
ity, has an implicit dependency on the blocklength n. To make
a fair comparison, we specialize the result in the same sce-
nario as ours (i.e., the signal, the channel matrices, and the
AWGN are all real number, we consider the same full-rank
assumption and our assumption on numbers of antennas, and
the covertness requirement is ]D)(Q” | Qgg” ) < J) to obtain

1 1
max = log |L, + ?AanA; , (64a)
b
1 1 1 (5
st. —tr | AP, AT —log (L, + — — AwPy AT -,
2 \o2 o2 n
(64b)

By following the same line of reasoning as in [2, Section V]
and the sensitivity analysis in the proof of Proposition 2,
we can actually solve the power allocation problem of [23,
Appendix B] and (64) to obtain the first-order asymptotics.
Because the power vanishes with n, we also introduce the

notation p,_; £ j\/g forall j € [1, m]. The power allocation
problem, (64a)-(64b), reduces to

1
I’lr‘lﬁi)( Wtr (A%T) , (65a)
- b
1 4 2
s tr (AwT ) <1, (65b)
w

where we have ignored higher-order terms vanishing with n
because of the sensitivity analysis. The optimal solution to (65)
A2 (Ag)

tr(Ag (A;1)4)

is T = 202 . We therefore express the covert

capacity under a relative entropy metric as follows:
lim log My, p auz)
im ==

A4 Afl 4

n— 00 \/— sz = b ( v ) '
Hence, the first-order asymptotics of the optimal covert

throughput under a relative entropy constraint ]D)(Q” I Q " <

0 and a variational distance constraint V(Q” Q " < (5 can
be expressed as

(66)

log M, p (9) o2

lim ————~ = -2
n—o0 ﬁ al72

(A“( ))5_fD(5) and

(67)
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0.253475 fv(V/9/2) — fp(d)
Ip(0)

0253450 4 === V/7/2—1~2.53314x10""
$ 0.253425
<
I
-£0.253400 -
o
2
5
<
< 0.253375
<

0.253350 1

0.253325 1

1078 1077 107° 107° 1074 107°
Covertness 0
Fig. 1. Relative increase of the first-order asymptotics of optimal covert

throughput as a function of covertness.

_logM,v() _ og al -\ i (106
T U o /2t f(w(a) ) e (37)
£ fv(9), (68)

respectively. Note that the above results are consistent with the
ones for the AWGN channel under a relative entropy metric [2,
Theorem 5] and a variational distance metric [5] if we consider
Single-Input Single-Output (SISO) channels with unit gain.
As remarked in [4, Remark 2], since 2V(§", an")
DO" | Qgg”) by  Pinsker’s  inequality,  requiring

D" I1Q§") < 0
v(Q", 08") < \/3/2. Consequently,

() < fv(/9)2).

We illustrate the above relation with a simple numer-
ical example. We consider a compound channel case in
which both channel matrices are 4 x 4 real matrices and
Ao = 0.05, the main channel has generalized singular value
Ap = diag(0.385,0.214,0.172,0.028), and o2 = 207 =
0.001. As shown in Fig. 1, using the variational distance metric
results in at least a 25% relative increase in covert throughput.
In fact, by the Maclaurin series for the inverse error function
erf~!, we have

(Vo) _
fp(9)

is more stringent than requiring

(69)

V20 (42
-0 Vo
. 2erf~1(\/3/2)

lim
0—0

0—0 \/3
Derf! L+ 0@
— lim L(x) > /2 lim 2)67()6)
x—=0  /2x2 x—0 X
T
= /=, 70
> (70)
APPENDIX A

FURTHER DISCUSSION OF THE ASSUMPTION ON RANK
AND NUMBERS OF ANTENNAS

In this section, we provide a more detailed discussion of
our full-rank assumption for channel matrices H,, and Hj
using a GSVD and the analysis of [28, Section II.A]. Without
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any assumption on the channel matrices, we first define the
following subspaces

S, £ Null(Hp)* N Null(H,),
Sp.w 2 Null(Hp)~ N Null(H,,)*,
Sw £ Null(Hp) N Null(H,,)*,
S, £ Null(H,) N Null(H,,),

which correspond to whether the signal in the subspaces can
be observed by Bob or Willie. Let

H
m = ran (|:Hu)

p = dim(Sp), and ¢ = dim(Sp,,). Clearly, N, > m,
dim(S,)) = N, —m, and dim(S,) = m — p — ¢q. Both channel
matrices can be decomposed with a GSVD as

Hy, = U, S[Q7" O vy—m) 19T,

Hy = U, 2,007 Opxn,—m 19T,
where ¥ € RNexNa Ul € RM>Noand U, € RNv*No are

orthogonal, Q € R™ ™ is lower triangular and nonsingular,
and

m—p—q q 14
Np—p—q 0 0 O
Xp = q [ 0 Ap 0}
p 0 0 I
m—p—q q 14
M7p7q I 0 0
Ly = q [ 0 Ay 0],
Ny+p—m 0 0 0

with Ap = diag ({zb,,-}jzl) and A, = diag (uw,,-}jzl).
Note that the following cases do not contribute to the inves-
tigation of the square-root law. 1) If Sp, is not trivial, Alice
can steer her signal in these directions without being detected
by Willie, and therefore overcome the square-root law (i.e.,
the covert capacity as defined in (5) is unbounded). The use
of these directions contributes nothing to the covertness metric,
and a power constraint must be active for the rates to be finite.
The optimal power allocation is then the usual water-filling
solution. We exclude this case by assuming p = 0. 2) If S,
is not trivial, Alice would avoid using these directions, since
the signals in those directions cannot be observed by Bob.
We exclude this case by assuming m = p +¢q. 3) If S, is not
trivial, Alice would similarly avoid using these directions, and
we also exclude this case by assuming N, = m.

In summary, only S, is relevant to the square-root law.
By excluding the above three cases, if N, < N, and
N, < Ny, we have the full-rank assumption m = rank (Hp) =
rank (H,) = N,. If N, > N, or N, > N, some of the
mentioned null spaces may not be trivial, and this still falls
into the scenarios we point out in Remark 1, which does not
affect the investigation of the square-root law. For instance,
if N, > Np, then either N, > m or N, = m is true, and
the former case corresponds to a non-trivial S,. If we also
have N, = m, since m = N, > N, > ¢, at least one
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of m > p+gq or p > 0 is true, which corresponds to the
non-trivial S;, or Sp. Hence, we also impose the assumption
that both Bob and Willie possess more antennas than Alice.
The assumptions on numbers of antennas and rank are with-
out loss of generality, and the reason is simply to exclude
some perhaps less interesting cases to reveal the constant
before the square-root instead of preventing any technical
difficulty.

APPENDIX B
PROOF OF LEMMA 5
Proof: Under the null hypothesis Hyp, for all i € [[1,n]]
Zi ~ N (0.021y,), so that Zi ~ N (0,024 (A;1)°) <
R™. Hence, we have the following statistics:

n 2

Ho = ZEQO{Si} = nauz)tr (Ai (A;l) ) s (71)
i=1
n 4

o5 = > Var(5;) = 2noir (Aﬁ (A;l) ) , (72)
i=1

to,i = IEQo{|Si - ,UO,i|3} =0), =Y 10i=0@).
i=1
(73)

where uo,; £ Eo,{Si}. We use the Berry-Esseen Theorem to
obtain an upper bound for the probability of false alarm as
follows:

o= ]P’HO(Z S; > r) (74)
i=1
t —noltr (A2 (A, :
<0 (4 42') 5
P
\/2ntr (A‘g (Aw1)4)03) 0
T —noltr (AZ (A;l)z) Bo
<0 ; + T (76)
\/2ntr (A‘g (A;1> )03)

The bound on the probability of false alarm (13) follows by
applying the threshold 7 = % + nauz)tr (A% (A;l)z).

Similarly, under the hypothesis H;, we know that given a
codeword x®" transmitted over the channel Wg%, for every

i e [Lnl ZiIX; = x® ~ N (H,xP, 621y, ), so that
Z:.1X; = ii(k) ~ N(Abil(k),al%A% (A;l)z), where ii(k) =
Vix®. Let 0 2 vix®n gng p 2 3 g0ZOT
Hence, we have the following statistics:

n
i = 3 ofsis =)

i=1

2
— (Af,P"") + nolir (A,’f (A;l) ) , 77)
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n
o2 = ZVar(S,-|X,- - xl.("))
i=1
2 4(x=1) pk) 4 4 (r-1\*
= 402t (A} (Aw) PO ) + 2ot (A2 (Aw) :

(78)
tl(’? ]E@{|Si

Z o8 =

()

WX =xP}=om,

O, (719)

where 1 EQ{S 1Xi = x( )} We use again the Berry-
Esseen Theorem to obtain an upper bound for the proba-
bility of missed detection. For the k-th codeword, by defin-
ing pO = Py, (>r) Si < TIX” :x(k)”), we have (80),
shown at the bottom of the next page, where (a) follows

since Ap, Ay, P¥ = 0, and since tr (A4 (A P(k)) <
tr (Ai (ALY ) tr (A2P®W). By setting the detection threshold

% + nal%tr (A% (A;l)z), we further obtain (81),

shown at the bottom of the next page, where (a) follows since
2p(k) 2p(k)

tr (AiP(k)) — % > LAZ’; ) > % and _uPh)

o7 =

atr(AZP®)+b
P, 1 .
TP Th Ya,b > 0, (b) follows from T > 1

5, Vx > 0, and (c) follows from Q(x —-y) = 0(x) +
X u?

Ji . rexp(—T)du <0+ f V0 <y < x. Note

that the upper bound (81) is independent of the codeword x%)",

and hence we can use the bound on all the #®)’s. Therefore,
we obtain

B = Pgl(i S < ‘r) Z o

i=1 x(k)neM
<0 i
X
2 2ntr (A;; (a5') )e2
P2 (A7 (A)7) B,
—. (82
+ N + NG (82)
4./mn3 2t (Aé (A; ) ) ol
]
APPENDIX C

PROOF OF LEMMA 6

Proof: ~ We partition the code C into two different
sub-codes, a low-power sub-code C©) and a high-power sub-
code CM, where CO) 2 {x" € C : |[Hpx"||% < Ay/n}), CP) &
C\C. The output distributions induced by these two sub-
codes are

~ 1
0 () = ]C(f)’ 2 Wik (#'1x),
X”EC([)
and Q™ (zn) _ ’C(h) Z W%’& (z [x" ) (83)
x"eCHh)
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O] ¢

—~ ()
respectively. Note that Q" = T 00 ‘C | Q(h) For a code

C such that V(Q”, Q(‘?") < 4, we have
> V(Q", 05" (84)
<a> CP] A €Ol S0 e
C] ——Vv(", 0¥ )—WV(Q »00) (85)
_ c® - -
= v, of" - % V@™, 05" +V(@", 05")
(86)
® cO
> V™", 08" - 2% (87)
©
>1-20 Avn
4
2\/2ntr (A;; (a5") )03)
_1\2
) Alntr (Ag (A7) ) Byt By
4\3/2 n
4T3 2 (Ag (A;l) ) od Vi
|
—2W (88)
_1\2
— 54 20 (AI% (Awl) ) B By + B
- 4\ 3/2 ﬁ
4. /mntr (A; (A;l) ) ol
A2 (A7 (A7) c©|
— . 32 + 2yn — ZW (89)
4 /mntr (A; (A;l) ) ol
d) |c©]
> 642y, —2 o (90)
where (a) follows from
|C(h)| ) H@n
WV(Q »00) o1
1, ~ cOl , .
= 5[(@" = 25" - % (09 -0§)|  ©
1
5 [ e
< V(0" 05" + WV(Q‘ ), 0%, (93)

(b) follows since the variational distance between any two
distributions is upper bounded by 1, (c) follows from (15),
and (d) follows by choosing v to satisfy

22 (A7 (A1)’
a 3/2
4 (-1 4
dmntr | Aj (Aw ) oy
12
A2 (A7 (A1)
N N 3/2
4t (Agt (A;l) ) ol
Hence, we can bound the cardinality of the low-power sub-

code CO from below as ‘C(f)‘ > 7, |C|, which shows the
existence of such a low-power sub-code. [ ]

_ Bo+ B
Jn

> 0.

(94)
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APPENDIX D
PROOF OF LEMMA 8

Proof: We specialize [3, Lemma 3] and [4, Lemma 1]
into the following lemma.
Lemma 8: For any y > 0,

_ P®n Y"
5 F0) < e (E[iiz])
0

W®n (Yn|Xn)
(logYXi <y ) 095

+ P n n
ng"we P(;@n (Yn)

Qn " YIX

where f_’e(”) is the average probability of error.
We first analyze the first term on the right-hand side of (95)
as follows:
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m /12 D
H cosh(ib’j 2’1’1 )
j=1

Op
(b) 2".1: 24 p2 .
< exp(flib‘;/”’/ , 97)
20,

where (a) follows from the facts that we apply the orthogonal
transform U;)T to the observation Y, each sub-channel is
independent, and this mapping is one-to-one and onto. Note
that after the orthogonal transform, we could truncate the last
Np — m components, since they contain pure noise (as they
correspond to the null space of HII) and thus do not affect

2
the decoding process. (b) follows from cosh(x) < eZ and the
exponential property. Therefore, we know that

PO (Y" n > A Py
EP,?”{M} < exp(M =0().

o [0)
£, | O @ 185 {— (96) g (Y™) 20,
B Py (Y) Pl = 7= 0 b
j=1 Po,j( j) (98)
2p(k 2 2 (A-1)2
o tr (AFP®) + no2ir (A7 (AL1)7) = 7 1Y
Y <0 - ; + —3
o
\/401%& (Aé (A;l) P(k)) +2nojtr (Aé (A;l) ) !
@) tr (AJPW) + no2ur (A% (A;l)z) -7 B
<0 +—, (80)
2 2 -1 2 4 —1 4 ﬁ
4ol (AZP®)1r (AZ (A5")") + 200 (A7 (AT")
(@) L B
'g(k) <0 2 + 20
2 (A-1)? 4 (-1} v
4Pt (A3 (AG')) + 2n0der (Af (A7)
P, 1 B
4 12 Jn
2\/2ntr (A@ (A;l) )05) L ZP*H(A%(AM‘) )
naZtr(A;ﬁ(A,;‘)4)
_1\2
(b) P, Paar (A7 (A51)%) B
< 1- + 7
4 4 (a1 n
2 \/Zntr (Ag (As') )au% nogtr (Ab (a5") )
_1\2
(<C) P, P*ztr (AI% (Awl) ) B, 31
X Q 2 ) 71 4 3/2 + ﬁ? ( )
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Next, we turn to analyze the last term of (95). Similarly,
with the above orthogonal transform, note that

m 1
Z Y(J)|X(1) ( J)

p®
5 ()

1
_ z(“”?
1 j=1

i=

Wyx (Y"X")
PE" (YM)

99)

2 yv2
j‘b,inj
20'b2 '

(100)

Since each sub-channel is independent and fijlf(ij =
fij ~ N(ibjjfij,O'bz) and fij € {_an,j’a",j} for
Wiz (71X =5)

ﬁO,.i(?i./‘)

A n, 2 n.Jj .
> 1]\/'( bibnt Zh.ik ’J). Therefore, by  setting

%

every j, we have >, log

12
Ay pn,j .
=( —e)nZ'}'zl b’2’:;”, where € € (0,1), and using
b

Hoeffding’s inequality, we have

n_m Ws Yiil%
Yy x ) ( i l])
Puor (303 tog X0
YIX=% i=1 j=I PO (Yl_]
m /12 P
b,jFn.J
<n(l—c¢€
( )z 20172 )
j=1
m 621% D, j
<exp|-—n - 101
P Z 80’b2 (101)
j=1
Then, we have
WL (Y"X")
X
Prenyen | log ——————— < 102
Hg W%X(Og P(;@n RO) Y ( )
® ~
= > Mg, ()
el 7 {~an.j.an,;}"
Y(I)|X(I) (17] |le)
Pyer > e
X= i=1 j=1 ( )
p
<n(l- e)z b, jfn.
292
m ¢ ib,jpnjj (103)

< exp —nZT .
j=1 %

Eventually, by combining (95), (98), and (103), we have

m 2117 Dn,j
E{P(”)} <exp | —n Z 71 +Myue™? (1+ O(1)).
("b
(104)
Hence, by using (32), if we choose
m 12 P i
logM, = (1 —w) (1 —e)nz b’zj znjj
j=1 =%
m /’{2 T «/—Q 1_—5

—(1_6)2 b,j"J (2), (105)

b
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where w € (0, 1) and ¢ = %[(l—i-w)(l—i-e)—(l—w)(l—e)] > 0,
the result follows. |

APPENDIX E
PROOF OF LEMMA 9

Proof: In the following, we apply the triangle inequality
to upper-bound the covertness metric, put a direct constraint
on V(Q%" Qgg”), and show the remaining term vanishes
exponentially fast. First note that, by the triangle inequality,
we have

V(Q", 0§") < V(Q", 0%") + V(02", 0$").  (106)

We first analyze the second term on the left-hand side
of (106). By the basic property of the variational distance,
we have

V(%" 08"
= Pyen (07" (2") = 05" (Z"))
- ]PQ®”(Q®n (z") = o™ ("))

On (Zl)
= P ®n 1 O
— . On(Z))
— PQ?H(; 10 QO (Zl) 0)

a) L ..
®n /- ~
{ PQ,I Z Z log >

(107)

(108)

(109)

where (a) follows since we apply the orthogonal transform
U, to the per-channel-use observation Z;, and this mapping
does not reduce the variational distance (i.e., the equality of
data-processing inequality holds). Note that after the orthogo-
nal transform, we could truncate the last N, —m components,
since they contain pure noise (as they correspond to the null
space of H})). Then, for every i € [[1,n],

On.j (Zi)
w2 Eényj[lo on (Z)} (110)
A, jPr.j Aw,janj Zi
= IEQM [_W + log (cosh (T))
(111)
Ay pp
w,jn,j 3
= = +0(p3;) (112)
Zi
012j £ Var(log gz o EZ ;) (113)
J
Onj (Zi)
—E; {log? =2/ o (p* . 114
Q”"’[ o8 0o, (Z)} (/)n,,) e
’110 Jp"] 3
- o). a1
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an( z)

1l 3

AT~
tlj o EQll,j | O

Therefore, by the Berry-Esseen Theorem, we have
én J (Zl])

—F— =0

Qo,j (Zij)

n m

(117)

(118)

Similarly, for every i € [[1, n]],

~ 4
On,j (Zi) K 1P 3
A
wnoj = E5 {log=—"—— 7+Op ),
! QOJ[ 00.; (Zi) 403 ( "’1)
(119)
Z /1 i
aozjéVar logQ’”( D)) Z fwd "]—i—(’)( ), (120)
Qo,; (Z) 20'
Qn Xn,j\&i) ( t) 3
We therefore have
nnn én,j (th
o (2D ioe L
i=1 j=1 Qo,j (Zu)
4 2
>0 n < /110 iPn.j _ 6nz_]=1 0j (122)
= 2 4 40_3) m 2 3/2
\ J=1 (n Zj:l O-Oj
m 14 n2
n w,jPn, j 1
=0 - —L =) 0O (—) ) (123)
\ 2 121 4o} Jn

V(QF", 05") <

where the —in term is added to ensure that the V(Q%", Qgg”)

term is less than 0 for n large enough. Equivalently, we impose
a covertness constraint

C
«/—Q (1 6)

for some C > 0 and the constraint (125) would be the main
concern in the power design optimization. Combining (106)
with (124), we therefore have, for n large enough,

V(Q", 0§") < V(Q", 02") + V(02", 05"
< V", 08" + 6 - L

tr (A TATA,TAT) <2 — (125)

44

(126)
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For the term V(Q”, Qf?”) in (126), our analysis follows
from [3, Lemma 5], and we recall the following lemma.
Lemma 9: For any 6 > 0,

. W®n (Zn|Xn)
E{V(Qn, Q?n)} < ]P)Hgn W@;{(log L 2 0

2 05" @)
1 ef
2\ M, K,

(127)

Similarly, we apply the orthogonal transform Uy to the
observations and decompose them into observations on each
sub-channel; we obtain

W20 (sz |ij)

00 (%)

Weii o Z‘f(:;
. ~ m z(./)|x(./)( iyl 'J)
Since ¥ij € {—an,j,an,j}, 27 log —

Qo,./(zf./)
72
Puj Hw P
~ N( www, w,sz)
o-lU

Therefore, by
/1120 ‘p"a.'
A+end" 2’-;1%’,

inequality, we have PH;‘E’”W%”;( (log

W%?& (Zn X") n o m

Q®n (Zn = Z Z

i=1 j=I

(128)

setting

0 = and using Hoeffding’s

Wik (Z"'1X")
oy 2 0)S

exp( ”Z’&%) Therefore, E{V(Q", 0®")} <

2 1 .
exp (_e nz,g; w, /ﬂn,_/) + % —Mi()K,,' Eventually,
recalling (32), if we choose
m 42 Pn.j
logM, K, = (1 +w) (1 +e)njz;w2’]T
m 22 T \/_Q (1;6)
= ) J 2 (12
=1+, 702 . (129)
j=1
then
-~ _ —1(1=0
E(V(@", 02"} < 0 (), (130)

for some appropriate choice of 6, > 0. The result follows by
combining (126) and (130). |

APPENDIX F
PROOF OF LEMMA 12

Proof We start by using V(QH, Q ") to approximate
V(Q” , Q ™). For a fixed P, by the trlangle inequality,

V(0. 0§ — V(Qh. 05 < V(0. Ofp.  (131)
Note that for a given code C and x{n ¢ ¢
V(0%. Of)
Mn ZKn
< Mn k IV(W®n (an ([’k)n) Wi@% (an ([’k)n))
Kl‘l
@ >y

k=1 ®n n g (Ck)n ®n n c(lk)n
SISV @R W @),
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where (a) follows since the orthogonal transformation pre-
serves the~variational distanc~e. To characterize the behavior of
Vw2 (zrxny | W?'f (Z|%0my) | we follow the proof of

X
[26, E‘emma 5] and consider a specific codeword X",

V(W (2R, WEE (ZM1%")

Z|X
_ ®Nn mngny ®n mngn =n
= L. Wi|5( (Z"|x") Wi|5( (Z"1x")| dz (132)
= WS (@|K") — W (2% dZ"
/ o lE-As 5> LOAX Zx

dz"

On mnieny _ yy®n (snign
WZ\X (" 1x™") WZ\X (" |1x™")

+
S Iz —A% |3 <2
(133)
. ~_ 2
<Pgen| D 17 — A%y > 17

7 X
! i=1

n
~ ~~ 12
#Pugg (X 1 sl 2

W2 (@'|R") — WL (Z'%")

on dz"
ZIX ZIX ’

/ -
> ||ii*/\’~‘i||§<’r%
(134)

where 7, = /nm(l +€)o2 + €,|X" ||, which is close to

/nm(1 + €)o2 as n grows to infinity, and € € (0, 1). Note that
the first term of (134) can be bounded by the concentration

inequality for the sub-exponential random variables as follows:

n
s w2
Pigg( X - Al >
_(r,%—nma

2)2
L ):exp(—@(n)). (135)

S exp ( 8nm

Also, by the triangle inequality for the Frobenius norm,
we have

|2 = A" < 2" = A%+ (A= A) R, (136)
n

<2 - Az, + (@D 113 (37
i=1

= |2 = AX"|  + en][ %" - (138)

Therefore, > !, ||il — AX; H; > r? implies that

< 2
(rn —&lX"llp)* = nm(1 + e)oy.
Accordingly, we can use the concentration inequality
for the sub-exponential random variables and obtain
N O 2
]P’W% (Z?:l |zi — Axi|; = r,%) < exp (—%). We next

investigate the variation between densities Wg"x and W;’;{

caused by the difference between H and H as follows:

Do HZ — AX; H; >

®n r=n|gn

oc ”Z\f( z"x")
(RN (mnign
Wi\f( (Z"|x™")

1 n
> (12 - Rxill3 - 1 — A%i13)

= — 139
77 (139)

i=1
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(@ 1 nom . _ i
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n m
+ 120D (i)’ (140)
i=1 j=I
® 1 | o~ | o
<2 ;Hzi —AxiHZG,%lenII%—i-Eezuxnup
(141)

where (a) follows from the definition of Sy, and the triangle
inequality, and (a) follows from the Cauchy-Schwartz inequal-
ity. Then, for the last term of (134), we proceed as follows:

dz"

N ceneny _ yu®n csnign
WZ|X " |x") WZ|X " |x")

/ZL 12 —Asi |3 <12
(a) ~
SR (hro (7))

i lz—Axi |y <r? !
(142)

2 hto (f,%) =0 (n% |%" HFe*"‘ng) , (143)

L [22)%n)2 1 22
g’% rnen”X ”F + 20-1%6}1”)( |IF9
<

r2, (a) and (b) follow

ne

where we let f, =

since >, ||iz - A% H;
W%%(i”\i")

—_— f’l — — 7f)1
W%);-((in‘in) g max{e 19 1 e } <

since ‘ 1—

fu + O(f?). Therefore, we have, for n large enough,
VWER @R WER @R) < O (n3IR e 2,
and from (132), we obtain

g (ton

e—n10g2) ]
F

~ o~ Mn Kn 1 |

V(0 O < 2D 70 (n?
= = n n

(=1 k=1 (144)

For any BPSK code generated independently according
to H%”, the power of generated codewords are fixed, and
therefore we have

V(0. Ofp) <O (n%e*” ‘ng) . (145)
Eventually, combining (131) with (145), the result
follows. [ |
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