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Abstract— The problem of covert communication over
Multiple-Input Multiple-Output (MIMO) Additive White
Gaussian Noise (AWGN) channels is investigated, in which a
transmitter attempts to reliably communicate with a legitimate
receiver while avoiding detection by a passive adversary. The
covert capacity of the MIMO AWGN channel is characterized
under a variational distance covertness constraint when the
MIMO channel matrices are static and known. The characteriza-
tion of the covert capacity is also extended to a class of channels in
which the legitimate channel matrix is known but the adversary’s
channel matrix is only known up to a rank and a spectral norm
constraint.

Index Terms— Physical-layer security, covert communica-
tion, Multiple-Input Multiple-Output (MIMO)-Additive White
Gaussian Noise (AWGN) channels, variational distance,
compound channels.

I. INTRODUCTION

C
OVERT communications, also known as communica-

tions with low probability of detection, have long been

used to transmit sensitive information without raising suspi-

cion. While technologies such as spread-spectrum communi-

cations have been widely deployed, the information-theoretic

limits of covert communication had not been investigated until

recently. Much of the interest has been spurred by the discov-

ery of a square-root law [1], which limits the scaling with the

coding blocklength n of the number of reliable and covert com-

munication bits over memoryless channels to O(
√

n). In other

words, the standard capacity of covert communications is zero

but the number of bits still grows with the blocklength. The

optimal constant behind the O(
√

n) scaling then plays the role

of the covert capacity and has been characterized for many

channels, including Discrete Memoryless Channels (DMCs)

and AWGN channels, using both relative entropy [2], [3] and

variational distance [4], [5] as a covertness metric. Covert

communications often require secret keys as an enabling

resource, the amount of which can be characterized [3]; in

particular, no secret keys are required when the legitimate

receiver obtains better observations than the adversary [6].

Refined characterizations of the message and key sizes for
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finite length [7], [8] and second-order asymptotics [4] are

also known, although they are often not complete. Recent

advances include the characterization of the covert capacity in

network information theory problems [9]–[12], quantum chan-

nels [13], [14], low-complexity code constructions [15]–[19],

and system-level considerations highlighting how to allocate

resources in the presence of covertness constraints [20],

[21]. Particularly relevant to the present work, there have

been attempts at studying MIMO-AWGN channels when

measuring covertness using relative entropy as a covertness

metric [22]–[24].

Covertness must be measured in terms of a metric that

captures how different the statistics of the observations are in

presence and in absence of communication. Relative entropy

has been a popular choice [2], [3] because of its conve-

nient analytical properties; however, variational distance is

the metric that is operationally relevant to the performance

of the adversary’s detector [4]. In this work, we therefore

use variational distance to measure covertness, which requires

specific techniques, especially in the converse proof.

The contributions of the present work are twofold. 1) We

revisit the MIMO-AWGN channel model of [22]–[24] and,

under the assumption that the null space of the main and adver-

sary’s channel matrices are trivial, we obtain a closed-form of

the covert capacity with variational distance as the covertness

metric. Our approach extends the techniques developed in [4],

[5] and the crux of contribution is the converse proof. 2) We

investigate the problem of covert communication over com-

pound MIMO-AWGN channels, in particular, the situation in

which the adversary’s channel matrix is only known up to a

rank constraint and a spectral norm constraint [22]–[25]. Our

approach differs from the analysis in [22]–[25] and borrows

ideas from [26] to avoid implicit constraints on the adversary’s

operation when dealing with uncountable compound channels.

A preliminary version of these results was presented

in [27] but without complete proofs. The present work offers

self-contained and detailed proofs.

II. CHANNEL MODEL

A. Notation

Both log and exp should be understood in base e; hence, all

information-theoretic quantities are nats. Calligraphic letters

are used for sets and | · | denotes their cardinality. (·)† denotes

the Moore-Penrose inverse of a matrix. M � 0 denotes

a positive semi-definite matrix M. H(·), h (·), I(·; ·), and

hb (·) denote the usual entropy, differential entropy, mutual

information, and binary entropy function, respectively.
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For a continuous alphabet � and any two distributions P, Q

with densities fP , fQ , respectively, the variational distance

between P and Q is defined as V(P, Q) � 1
2

∫
� | fP (x) −

fQ (x) |dx or equivalently V(P, Q) = supS⊆� |P (S) −
Q (S) |. The relative entropy between P and Q is defined

as D(P k Q) �
∫
� fP (x) log

fP (x)
fQ(x)

dx . Pinsker’s inequality

ensures that V(P, Q)2 � 1
2

min (D(P k Q) , D(Q k P)). Let

X ∈ X and Y ∈ Y be jointly distributed random variables

according to P ·W , where P has density fP , and W : (x, y) 7→
W (y|x) is a transition probability from X → Y with density

fW . We define the marginal distribution of Y as P ◦ W with

density
∫
X

fW (y|x) f P(x)dx .

Moreover, for two integers bac and dbe such that bac � dbe,

we define [[a, b]] � {bac, bac+1, . . . , dbe−1, dbe}; otherwise

[[a, b]] � ∅. For any x ∈ R, we also define the Q-function

Q(x) �
∫∞

x
1√
2π

e
−x2

2 dx and its inverse function Q−1(·).

B. System Model

We consider a MIMO-AWGN channel in which a transmit-

ter (Alice) with Na antennas attempts to reliably communicate

with a legitimate receiver (Bob) with Nb antennas in the

presence of a passive adversary (the warden Willie) equipped

with Nw antennas. We assume that Bob and Willie possess

more antennas than Alice, i.e., Na � Nb and Na � Nw . Bob

and Willie’s received signals at every channel use are then

y = Hbx + nb and z = Hwx + nw, (1)

respectively, where x ∈ R
Na is Alice’s transmitted signal and

Hb and Hw are Bob’s and Willie’s channel matrices, assumed

known to everyone. We further assume that both matrices have

full rank, i.e., m = rank (Hb) = rank (Hw) = Na . Hence,

both channel matrices can be decomposed with a Generalized

Singular Value Decomposition (GSVD) [28], [29] as

Hb = U0
b6b�

−19⊺ = Ub3bV⊺,

Hw = U0
w6w�−19⊺ = Uw3wV⊺, (2)

where 9 ∈ R
Na×Na , U0

b ∈ R
Nb×Nb , and U0

w ∈ R
Nw×Nw are

orthogonal, � ∈ R
m×m is lower triangular and nonsingular,

and V⊺ � �−19⊺. Both 6b ∈ R
Nb×m and 6w ∈ R

Nw×m

are diagonal with positive elements, {λb, j }m
j=1 and {λw, j }m

j=1,

respectively. We truncate U0
b and U0

w into Ub ∈ R
Nb×m and

Uw ∈ R
Nw×m , and define 3b = diag

(
{λb, j }m

j=1

)
and 3w =

diag
(
{λw, j }m

j=1

)
. The noise vectors nb ∈ R and nw ∈ R are

realizations of AWGN distributed according to N
(
0, σ 2

b INb

)

and N
(
0, σ 2

wINw

)
, respectively, assumed known to everyone.

Furthermore, for n ∈ N
∗, we define the innocent symbol

corresponding to the absence of communication as x0 = 0;

the output distributions induced by the innocent symbol at

Bob and Willie are denoted P0 � N
(
0, σ 2

b INb

)
and Q0 �

N
(
0, σ 2

wINw

)
, respectively. The associated product distribu-

tions are denoted by P⊗n
0 =

∏n
i=1 P0 and Q⊗n

0 =
∏n

i=1 Q0.

Remark 1: We assume that both Hb and Hw have a trivial

null space equal to {0}. If this were not the case, the presence

of a null space would result in the following scenarios.

If Hw has a non-trivial null space, Alice can overcome the

square-root law by steering her beam in the corresponding

directions [22]–[24]. If Hb has a non-trivial null space, Alice

has no incentive to use the corresponding directions and would

simply ignore them. We offer further discussion in Appendix A.

C. Problem Formulation

Alice transmits a uniformly-distributed message W ∈
[[1, Mn]] by encoding it into a codeword Xn = [X1 . . . Xn] ∈
R

Na×n of blocklength n with the aid of a uniformly-distributed

secret key S ∈ [[1, Kn]] shared with Bob. The resulting code

is called an (n, Mn , Kn)-code C, assumed known to everyone.

Whether Alice communicates or not is controlled by φ ∈
{0, 1}, with φ = 1 indicating the transmission. Upon observing

Yn = [Y1 . . . Yn] ∈ R
Nb×n , Bob uses his knowledge of the

secret key to form a reliable estimate Ŵ of W . Reliability is

measured by the maximal average probability of error

P(n)
e � max

s
P̄(n)

e (s) + P
(
φ̂ = 1|φ = 0

)
, (3)

where P̄
(n)
e (s) � P

(
W 6= Ŵ |S = s, φ = 1

)
, and we define

P̄
(n)
e � ES

{
P
(
W 6= Ŵ |S, φ = 1

)}
+ P

(
φ̂ = 1|φ = 0

)
. In con-

trast, Willie’s objective is to detect whether Alice is transmit-

ting based on the observations Zn = [Z1 . . . Zn] ∈ R
Nw×n

via a hypothesis test T (Zn). In particular, Willie expects

Q⊗n
0 when there is no transmission between Alice and Bob

(i.e., the null hypothesis) and Q̂n when the transmission

occurs (i.e., the alternative hypothesis), where Q̂n is the output

distribution induced by the code C used by Alice and Bob,

∀ zn ∈ R
Nw×n ,

Q̂n
(
zn
)

= 1

Mn Kn

Mn∑

`=1

Kn∑

k=1

W⊗n
Z|X

(
zn |x(`k)n

)
. (4)

In the sequel, we use V(Q̂n, Q⊗n
0 ) as our covertness metric.

When testing the null hypothesis Q⊗n
0 against the alternative

hypothesis Q̂n , any test T (Zn) conducted by Willie on the

observations Zn satisfies 1 � α + β � 1 − V(Q̂n, Q⊗n
0 ),

where α and β are the probabilities of false alarm and

missed detection, respectively, and the lower bound can be

achieved by an optimal test [30, Theorem 13.1.1]. In addition,

the trade-off α + β = 1 is achieved with blind tests that do

not use the observations. Consequently, making V(Q̂n, Q⊗n
0 )

vanish amounts to rendering the adversary’s hypothesis test

effectively blind and hence achieves covertness.

Definition 1: A reliable and covert throughput r ∈ R+ is

achievable with corresponding key throughput k ∈ R+, if there

exists a sequence of (n, Mn , Kn, δ)-codes with increasing

blocklength n such that

liminf
n→∞

log Mn√
nd

� r, limsup
n→∞

log Mn Kn√
nd

� r + k, (5)

and

lim
n→∞

P(n)
e = 0, V(Q̂n, Q⊗n

0 ) � δ, (6)

where d = Q−1
(

1−δ
2

)
. The covert capacity Ccovert is the

supremum of achievable throughputs r .

Note that, in our definition, we normalize the message

and key size by
√

nd instead of the usual choice, n; this is
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essential to unveil the square-root law behind the covertness

and is justified a posteriori by the results in Section III. Intu-

itively, the square-root law exists, for we are hiding messages

in “statistical noise”, whose standard deviation behaves as

O(1/
√

n) [3, Section III.A].

Remark 2: Our use of V(Q̂n, Q⊗n
0 ) is motivated by the

following considerations. As a strong converse states that the

optimal code rate has no dependency to the target constraint in

the first asymptotics, it is clear that there is no strong converse

for the value of δ with respect to (w.r.t.) the covert throughput,

i.e., the covert throughput depends on the value δ through

d = Q−1
(

1−δ
2

)
, which is directly related to V(Q̂n, Q⊗n

0 ).

This can be seen from Definition 1 and Theorem 1 where

the notion of throughput depends on the covertness metric;

hence, the choice of covertness metric matters. Many earlier

works [2], [3], [22]–[24] measure covertness using the rela-

tive entropy D(Q̂n k Q⊗n
0 ). Unfortunately, relative entropy is

only a loose proxy for variational distance since Pinsker’s

inequality is not tight [4] and is then less directly related

to the operational test of the adversary. Furthermore, both

D(Q̂n k Q⊗n
0 ) and D(Q⊗n

0 k Q̂n) could in principle be used

but, depending on which metric is chosen, different conclusions

regarding the optimal signaling over AWGN channels can be

reached [31].

Remark 3: Our model does not include a power constraint

on the channel input. This is justified since we only consider

channel matrices with trivial null space and since any power

constraint on the input is weaker than the covertness con-

straint [2, Section V.]. Previous works [22]–[24] impose the

power constraint precisely because they allow non-trivial null

spaces.

III. MAIN RESULTS

Theorem 1: The covert capacity of a MIMO-AWGN channel

with full knowledge of the channel matrices is

Ccovert = σ 2
w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

. (7)

The covert capacity is achievable with key throughput

Rkey =
√√√√√

2

tr

(
34

b

(
3−1

w

)4
)

×
(

tr

(
32

b

(
3−1

w

)2
)

− σ 2
w

σ 2
b

tr

(
34

b

(
3−1

w

)4
))+

, (8)

where (x)+ � max(x, 0).

A. Converse Proof for Variational Distance

Proposition 1: Consider a sequence of covert MIMO-

AWGN communication schemes for the model in (1) with

increasing blocklength n ∈ N
∗, characterized by �n � P

(n)
e

and δ � V(Q̂n, Q⊗n
0 ). If limn→∞ �n = 0 and lim

n→∞
Mn = ∞,

then we have

liminf
n→∞

log Mn√
nQ−1

(
1−δ

2

) �
σ 2

w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

. (9)

Proof: The proof extends the techniques developed in [1],

[4], [5] by constructing a test for Willie that is simple enough

to be analyzed yet powerful enough to obtain a tight bound.

Since we do not have any knowledge of the specific code

exploited in the converse proof, the crux of our converse is to

show that there cannot be too many high-power codewords,

for otherwise the covertness would be compromised. We then

analyze the maximal size of the low-power subcode, which is

“good” in the sense that both reliability and covertness can be

ensured. We first recall the Berry-Esseen Theorem.

Theorem 2 (Berry-Esseen Theorem): Let X1, . . . , Xn be

independent random variables such that for k ∈ [[1, n]],
we have E{Xk} = μk , σ 2

k = Var(Xk), and tk =
E
{
|Xk − μk |3

}
. If we define σ 2 =

∑n
k=1 σ 2

k and T =∑n
k=1 tk , then we have

∣∣∣∣∣P
(

n∑

k=1

(Xk − μk) � λσ

)
− Q (λ)

∣∣∣∣∣ �
6T

σ 3
. (10)

1) Lower Bound on Covertness Metric: We start by estab-

lishing a lower bound relating the covertness metric to the

minimum received power of codewords at Bob within a given

code M. Consider a simple hypothesis testing problem with

two hypotheses H0 and H1 corresponding to distributions Q⊗n
0

and Q̂n , respectively. We define a sub-optimal power detector

T
(
zn
)

� 1

{
n∑

i=1

Si > τ

}
, (11)

where Si � S (zi ) � kHb (Hw)† zik2
2, and the threshold τ will

be specified later. The intuition behind the test is to realign

Willie’s observations with those of Bob. Note that, H
⊺
wHw

is invertible because of the full-rank assumption. Hence,

we rewrite the test Si using the GSVD as

Si =
(

Hb (Hw)† zi

)⊺ (
Hb (Hw)† zi

)
= ẑ

⊺
i ẑi , (12)

where ẑi = 3b3
−1
w U

⊺
wzi . The following lemma, which is

proved in Appendix B, characterizes upper bounds for both

the false-alarm and the missed-detection probabilities.

Lemma 1: Consider a specific code M with codewords

indexed by k, x(k)n =
[
x

(k)
1 . . . x

(k)
n

]
∈ C. By defining P∗ �

mink

∥∥Hbx(k)n
∥∥2

F
= mink tr

(
32

bP(k)
)

the minimum power of

Bob’s received codewords, and setting the detection threshold

to τ = P∗
2

+ nσ 2
wtr
(
32

b

(
3−1

w

)2)
,

α � Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

+ B0√
n
, (13)

β � Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠
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+
P2

∗ tr
(
32

b

(
3−1

w

)2)

4
√

πn3/2tr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

+ B1√
n

, (14)

where B0 and B1 are some constants independent of n.

Hence, the covertness metric can be lower-bounded as

V(Q̂n, Q⊗n
0 ) � 1 − α − β

� 1 − 2Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

−
P2

∗ tr
(
32

b

(
3−1

w

)2)

4
√

πn3/2tr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

− B0 + B1√
n

, (15)

which only depends on the code through the minimum power

of Bob’s received codewords.

2) Existence of a Good Sub-Code: For a covert code C,

we develop a bound for the maximum power of a non-empty

low-power sub-code in the following lemma, which is proved

in Appendix C. The key idea is to use (15) to analyze the

covertness for the high-power sub-code and argue the existence

of a low-power sub-code.

Lemma 2: For any covert channel code C, given a decreas-

ing sequence {γn}∞n=1 with γn ∈ (0, 1), lim
n→∞

γn = 0, there

exists a subset of codewords C(`) such that
∣∣C(`)

∣∣ � γn |C| and

kHbxnk2
F � A

√
n, where

A � 2

√
2tr

(
34

b

(
3−1

w

)4
)

σ 2
w

× Q−1

⎛
⎜⎜⎜⎝

1 − δ

2
−

ν2tr
(
32

b

(
3−1

w

)2)

4
√

πntr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

− γn

⎞
⎟⎟⎟⎠ ,

(16)

and ν depends on the channel.

3) Upper Bound on Covert Message Size Within a Good

Sub-Code: The code C can be partitioned into Kn sub-codes

Cs indexed by the key value s for all s ∈ [[1, Kn]] such that

C = ∪s∈[[1,Kn]]Cs , and the size of each sub-code is Mn . Let

C
(`)
s � Cs ∩ C(`). By the pigeonhole principle, there exists

a sub-code Cs satisfying

∣∣∣C(`)
s

∣∣∣ � γn Mn . Furthermore, since

the average probability of error of Cs is at most �n , we have

P̄
(n)
e

(
C

(`)
s

)
� �n

γn
, which vanishes in the limit of large n upon

choosing {γn}∞n=1 such that lim
n→∞

�n

γn
= 0.

Let W̃ denote the uniformly distributed variable over the

messages in C
(`)
s . By standard techniques, we therefore have

log

∣∣∣C(`)
s

∣∣∣ = H
(
W̃ |S = s

)
(17)

= I
(
W̃ ; Yn|S = s

)
+ H

(
W̃ |Yn S = s

)
(18)

� I
(
W̃ ; Yn|S = s

)
+
[

�n

γn

log

∣∣∣C(`)
s

∣∣∣+ hb

(
�n

γn

)]

(19)

� I
(
Xn; Yn|S = s

)
+
[

�n

γn

log

∣∣∣C(`)
s

∣∣∣+ hb

(
�n

γn

)]

(20)

� nI
(
X̄; Ȳ

)
+ �n

γn

log

∣∣∣C(`)
s

∣∣∣+ 1, (21)

where the random variables X̄ and Ȳ have distributions

5X̄ (x) �
1

n

n∑

i=1

5Xi (x) = 1

n

n∑

i=1

1∣∣∣C(`)
s

∣∣∣

∑

xn∈C(`)
s

1{x = xi }

and PX̄Ȳ � 5X̄WY|X.

Let E
{
X̄X̄⊺

}
= Qn . Note that E

{
ȲȲ⊺

}
= HbQnH

⊺
b +

σ 2
b INb . Then,

I
(
X̄; Ȳ

)
= h

(
Ȳ
)
− h

(
Ȳ|X̄

)
(22)

�
1

2
log

∣∣∣∣∣INb + 1

σ 2
b

HbQnH
⊺
b

∣∣∣∣∣ (23)

= 1

2
tr

(
log

(
INb + 1

σ 2
b

HbQnH
⊺
b

))
(24)

(a)
�

1

2σ 2
b

tr
(
HbQnH

⊺
b

) (b)
�

A

2σ 2
b

√
n
, (25)

where (a) follows since for any A � 0 and kAk2 � 1,

tr (log (I + A)) =
∑

i log (1 + λi (A)) �
∑

i λi (A) = tr (A),

where {λi (A)}i is the set of eigenvalues of A and we have used

log (1 + x) � x for all x > 0, and (b) follows from the def-

inition of C(`) and tr
(
HbQnH

⊺
b

)
= 1

n

∣∣∣C(`)
s

∣∣∣

∑
xn∈C(`)

s
kHbxnk2

F .

Combining (16), (21), (25), and the fact that lim
n→∞

γn = 0,

we have

log

∣∣∣C(`)
s

∣∣∣ �

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

σ 2
b

Q−1
(

1−δ
2

)
+ O (1)

1 − �n

γn

.

(26)

We further choose the sequence {γn}∞n=1 such that

lim
n→∞

− log γn√
nQ−1

(
1−δ

2

) = 0. Finally, we obtain

liminf
n→∞

log Mn√
nQ−1

(
1−δ

2

) � liminf
n→∞

log

∣∣∣C(`)
s

∣∣∣− log γn

√
nQ−1

(
1−δ

2

) (27)

= σ 2
w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

. (28)

Unfortunately, we have not found a matching converse

argument for the key throughput.

B. Achievability Proof for Variational Distance

Proposition 2: Consider a MIMO-AWGN covert commu-

nication channel in (1). There exist covert communication
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schemes such that

lim
n→∞

log Mn√
nQ−1

(
1−δ

2

) �
σ 2

w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

, (29)

lim
n→∞

log Mn Kn√
nQ−1

(
1−δ

2

) �

√√√√√
2

tr

(
34

b

(
3−1

w

)4
) tr

(
32

b

(
3−1

w

)2
)

,

(30)

lim
n→∞

P(n)
e = 0, V(Q̂n, Q⊗n

0 ) � δ. (31)

Proof: Our proof follows [2], [3], [5] to construct a

Binary Phase-Shift Keying (BPSK) code achieving the desired

throughput pair. Note that we could also use a Gaussian

codebook, but this would require extra care to deal with the

power of codewords.

1) Covert Stochastic Process [3]: We introduce another

input process 5Qn with covariance matrix Qn and its associ-

ated distribution at the output of channel WZ|X, Qn � 5Qn ◦
WZ|X. Additionally, the associated product distributions are

5⊗n
Qn

=
∏n

i=1 5Qn and Q⊗n
n =

∏n
i=1 Qn . The achievability

proof decomposes the covertness metric V(Q̂n, Q⊗n
0 ) into

two pieces, V(Q̂n, Q⊗n
n ) and V(Q⊗n

n , Q⊗n
0 ) by the triangle

inequality. The former term is related to the channel output

approximation problem, and we rely on the channel resolv-

ability to analyze its behavior [3], [32]. We upper-bound the

latter term by a covertness constraint δ − 1√
n

. Essentially,

this constraint makes Q⊗n
n asymptotically indistinguishable

from the output distribution of the innocent symbol Q⊗n
0 ;

accordingly, Q⊗n
n is called a covert stochastic process. The

rationale for introducing such a process is to find a proxy

to control the discrepancy captured by the covertness metrics

by a carefully designed covariance matrix Qn , which is the

counterpart of low-weight codewords designed in the covert

communication scheme over DMCs [3], [4].

2) Random Code Generation: We decompose the channel

into m parallel sub-channels defined by the GSVD precod-

ing with the input alphabet X̃ � {−an,1, 0, an,1} × · · · ×
{−an,m, 0, an,m}, where m = rank (Hb) = rank (Hw) = Na .

Throughout the section, tildes refer to the operations over the

parallel sub-channels. Let Mn, Kn ∈ N
∗. Alice independently

generates Mn Kn codewords x̃n (`, k) ∈
∏m

j=1{−an, j , an, j }n

jointly over all the sub-channels with ` ∈ [[1, Mn]] and

k ∈ [[1, Kn]], according to the distribution
∏m

j=1 5ρn, j such

that 5ρn, j

(
an, j

)
= 5ρn, j

(
−an, j

)
= 1

2
, and 5ρn, j (0) = 0,

where {ρn, j } is a set of non-negative real numbers defined as

ρn, j �
τ j Q−1

(
1−δ

2

)
√

n
= a2

n, j , ∀ j ∈ [[1, m]], (32)

and {τ j }m
j=1 is determined later via an optimization program.

We define two diagonal matrices Pn and T with {ρn, j }m
j=1 and

{τ j }m
j=1 as the diagonal entries, respectively. For simplicity,

we stack codewords into x̃n (`, k) ∈ R
m×n . Alice then employs

the precoding matrix (V⊺)−1 to form xn = (V⊺)−1 x̃n , and

therefore the input covariance matrix after the precoding is

Qn = (V⊺)−1PnV−1, where we design Pn carefully as in (32).

Bob and Willie postprocess their observations from channel

outputs yn ∈ R
Nb×n and zn ∈ R

Nw×n by transforming

them via U
⊺
b and U

⊺
w to get ỹn ∈ R

m×n and z̃n ∈ R
m×n ,

respectively. There is no loss of generality in making this

assumption for Willie, as the post-processing U
⊺
w performs

an orthogonal transform and then discards the components

in the observations corresponding to Null(H
⊺
w), which only

contain noise. These operations result in, ∀i ∈ [[1, n]], ỹi =
3bx̃i + ñb,i , and z̃i = 3w x̃i + ñw,i , where ñb ∼ N

(
0, σ 2

b Im

)

and ñw ∼ N
(
0, σ 2

wIm

)
. From the perspective of the m sub-

channels
(
X̃ , W

Ỹ|X̃, Ỹ, W
Z̃|X̃, Z̃

)
with Ỹ = R

m , and Z̃ =
R

m , we therefore define the following statistics: 5Pn (x̃) =∏m
j=1 5ρn, j

(
x̃ j

)
, 5⊗n

Pn
=
∏n

i=1 5Pn , P̃n = 5Pn ◦ W
Ỹ|X̃,

P̃⊗n
n =

∏n
i=1 P̃n, Q̃n = 5Pn ◦ W

Z̃|X̃, and Q̃⊗n
n =

∏n
i=1 Q̃n .

Note that because of the parallelness of sub-channels, we can

derive simple forms as follows:

P̃n =
m∏

j=1

(
1

2
N
(
−λb, j an, j , σ

2
b

)
+ 1

2
N
(
λb, j an, j , σ

2
b

))
,

Q̃n =
m∏

j=1

(
1

2
N
(
−λw, j an, j , σ

2
w

)
+ 1

2
N
(
λw, j an, j , σ

2
w

))
.

In the sequel, we also use the notation P̃n, j �
1
2
N
(
−λb, j an, j , σ

2
b

)
+ 1

2
N
(
λb, j an, j , σ

2
b

)
and Q̃n, j �

1
2
N
(
−λw, j an, j , σ

2
w

)
+ 1

2
N
(
λw, j an, j , σ

2
w

)
to represent distri-

butions at each sub-channel in the above decomposition. Sim-

ilarly, we also use P̃0, j � N
(
0, σ 2

b

)
and Q̃0, j � N

(
0, σ 2

w

)
.

Hence, P̃0 =
∏m

j=1 P̃0, j and Q̃0 =
∏m

j=1 Q̃0, j .

3) Channel Reliability Analysis:

Lemma 3: By choosing

log Mn = (1 − ξ)

√
n Q−1

(
1−δ

2

)

2σ 2
b

tr
(
32

bT
)

, (33)

the average probability of error satisfies

E

{
P̄(n)

e

}
� e

−θ1
√

nQ−1
(

1−δ
2

)

, (34)

where ξ ∈ (0, 1), and θ1 > 0.

The proof is provided in Appendix D.

4) Covertness Analysis:

Lemma 4: By choosing T such that

1

4σ 4
w

tr
(
34

wT2
)

� 2 − C
√

nQ−1
(

1−δ
2

) , (35)

for some C > 0, and

log Mn Kn = (1 + ξ)

√
n Q−1

(
1−δ

2

)

2σ 2
w

tr
(
32

wT
)

, (36)

the expected covertness metric is bounded as follows:

E{V(Q̂n, Q⊗n
0 )} � δ + e

−θ2
√

nQ−1
(

1−δ
2

)

− 1√
n
, (37)

where ξ ∈ (0, 1), and θ2 > 0 are some constants.

The proof is provided in Appendix E.
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5) Identification of a Specific Code: Choosing ξ , log Mn

and log Kn to satisfy Lemma 8 and Lemma 9, Markov’s

inequality allows us to conclude that there exists at least

one specific code C with n large enough and appropriate

constants ξ1, ξ2 > 0 such that P̄
(n)
e � e

−ξ1
√

nQ−1
(

1−δ
2

)

and V(Q̂n, Q⊗n
0 ) � δ − 1√

n
+ e

−ξ2
√

nQ−1
(

1−δ
2

)

. Although a

code C with vanishing P̄
(n)
e does not necessary satisfy the

reliability constraint (3), which requires P
(n)
e to vanish as n

goes to infinity, the following lemma from [5] gives us such

a guarantee by merely rearranging the codewords in C.

Lemma 5: Suppose a code C contains Kn sub-codes of size

Mn such that P̄
(n)
e � �n and V(Q̂n, Q⊗n

0 ) � e
−ξ2

√
nQ−1

(
1−δ

2

)

+
δ − 1√

n
. Then, there exists a code C 0 containing K 0

n sub-

codes of size M 0
n such that P

(n)
e � �0

n and V(Q̂n, Q⊗n
0 ) �

e
−ξ2

√
nQ−1

(
1−δ

2

)

+δ− 1√
n

. In particular, lim
n→∞

�n = lim
n→∞

�0
n = 0,

lim
n→∞

M 0
n

Mn
= 1, and lim

n→∞
K 0

n

Kn
= 1.

6) Constellation Power Design: Next, we design the

optimal constellation points that result in the largest achievable

message set size satisfying the covertness constraint. We for-

malize our optimization program by combining (33) and (35)

as follows:

max
T�0

1

2σ 2
b

tr
(
32

bT
)

, (38a)

s.t.
1

4σ 4
w

tr
(
34

wT2
)

� 2 − C
√

n Q−1
(

1−δ
2

) . (38b)

To solve this, we regard the term C√
nQ−1

(
1−δ

2

) as a pertur-

bation. Consider the optimization

max
T�0

1

2σ 2
b

tr
(
32

bT
)

, (39a)

s.t.
1

4σ 4
w

tr
(
34

wT2
)

� 2. (39b)

The optimal Lagrange multiplier μ and solution T

to (39) are μ = σ 2
w

2
√

2σ 2
b

√
tr

(
34

b

(
3−1

w

)4
)

, and T =

2
√

2σ 2
w

32
b

(
3−1

w

)4
√

tr

(
34

b

(
3−1

w

)4
) , respectively. Let ρ and ρ0 denote the

optimal objective values of (39) and (38), respectively. By the

sensitivity analysis [33, Ch. 8.5], we have

ρ � ρ0 � ρ − O

(
1

√
nQ−1

(
1−δ

2

)
)

, (40)

which shows the perturbation is negligible as n goes to infinity.

Consequently,

lim
n→∞

log Mn√
nQ−1

(
1−δ

2

) = (1 − ξ)
σ 2

w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

,

(41)

lim
n→∞

log Mn Kn√
nQ−1

(
1−δ

2

) = (1 + ξ)

√
2tr
(
32

b

(
3−1

w

)2)

√
tr

(
34

b

(
3−1

w

)4
) . (42)

Since for any ξ ∈ (0, 1), there exists a scheme satisfying all

the requirements, we can therefore make ξ arbitrarily small,

i.e., ξ → 0+. The result then follows.

The reader might wonder why the optimal solution to (39)

is not the usual water-filling solution. This is a unique

phenomenon due to the covertness constraint. The usual

water-filling solution would encourage the use of high power

in the sub-channels in which Bob has better observations

than Willie. In contrast, the square-root law discourages

the use of high power, as allocating too much power to

sub-channels that have better observations increases the risk

of detection. Hence, one should not expect the water-filling

solution to appear here. Specifically, our power allocation uses

all the sub-channels and suggests that each sub-channel j

contribute (1 + ξ)

√
2λ2

b, j λ
−2
w, j√

tr

(
34

b

(
3−1

w

)4
)
√

n Q−1
(

1−δ
2

)
to log Mn Kn ,

which is aligned with the direction of the diagonal elements

of
(
32

b

(
3−1

w

)2)
.

IV. COVERT COMMUNICATION WITH UNKNOWN

WARDEN CHANNEL STATE

We now assume that only partial channel state information

of Willie’s channel is available. Specifically, all parties know

the exact Hb, while Alice only knows that Hw belongs to the

following uncertainty set:

S � {Hw = Uw3wV⊺ : k3wk2 � λ0,

× m = rank (Hw) = rank (Hb) = Na}, (43)

where Uw is known to Willie and hence can be canceled by

post-processing [25]. Thus, the set S contains all the channels

that are fully aligned with the main channel and for which

the singular-value matrix is less than or equal to 30 � λ0Im .

The channel realization is fixed during the transmission period.

This model corresponds to a quasi-static scenario where the

adversary cannot be closer to the transmitter than a certain

protection distance [25].

For an (n, Mn , Kn, δ)-code C designed for the compound

channel induced by S, the covertness metric at Willie is

supHw∈S V(Q̂n
Hw

, Q⊗n
0 ), where Q̂n

Hw
is the distribution when

communication occurs over the channel realization Hw,

Q̂n
Hw

(
zn
)

= 1

Mn Kn

Mn∑

`=1

Kn∑

k=1

W⊗n
Z|X

(
zn |x(`k)n

)
, (44)

∀zn ∈ R
Nw×n , and WZ|X=x ∼ N

(
Hwx, σ 2

wINw

)
.

We show that the compound covert capacity is equal to the

worst-case covert capacity at channel realization Uw30V⊺.

Here we only present the achievability proof for the compound

covert capacity under the variational distance, in which we

show that there exists a compound covert code achieving the

worst-case covert capacity. The converse proof follows from
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the fact that the worst-case covert capacity within the uncer-

tainty set S upper-bounds the compound covert capacity, for a

compound covert code also works on the worst-case channel

realization by definition as pointed out in [25, Corollary 1].

Proposition 3: Consider a compound MIMO-AWGN covert

communication channel in (1) and the uncertainty set S in (43)

containing all possible channel realizations of the warden.

There exist covert communication schemes such that

lim
n→∞

log Mn√
n Q−1

(
1−δ

2

) �
σ 2

w

σ 2
b

√
2tr

(
34

b

(
3−1

0

)4
)

, (45)

lim
n→∞

log Mn Kn√
n Q−1

(
1−δ

2

) �

√
2

tr
(
34

b

) tr
(
32

b

)
, (46)

lim
n→∞

Pe = 0, sup
Hw∈S

V(Q̂n
Hw

, Q⊗n
0 ) � δ.

(47)

Note that (46) does not depend on Willie’s channel. As men-

tioned previously, the power allocation makes each sub-

channel j contribute (1 + ξ)

√
2λ2

b, j λ
−2
0√

tr

(
34

b

(
3−1

0

)4
)
√

n Q−1
(

1−δ
2

)
to

log Mn Kn , which is aligned with the direction of the diagonal

elements of

(
32

b

(
3−1

0

)2
)

. Since we show that the worst-case

channel capacity at 30 is achievable, the fact that 30 is

isotropic makes the result independent of Willie’s channel.

Proof: We extends the proof in [25], using ideas from [26].

The idea of the proof in [25] is to extend the result of

compound secrecy capacity for uncountably infinite compound

DMCs to continuous alphabets through a sequence of succes-

sively finer quantizers, which quantize the input and output

alphabets at all parties. The compound secrecy rate derived

from quantized alphabets can be made arbitrarily close to the

compound secrecy capacity with a sufficiently fine quantizer.

Unfortunately, this process requires the adversary to obey the

quantization rule and implicitly assumes that the adversary

should cooperate with Alice and Bob. We propose a small cor-

rection that circumvents the issue by considering an adversary

that directly operates on the channel output without quantiza-

tion, and directly analyzes the difference in terms of covertness

induced by a code between two close channel states.

A. Discretization

Since the uncertainty set S described in (43) is uncountable,

we first discretize S to construct a countably finite uncertainty

set Sn with a suitable choice of discretization level and

discretization points.

Note that since the uncertainty set S is subject to the

spectral norm constraint, which results in an m-dimensional

hypercube with length λ0 on each side, a natural way to

discretize is to uniformly slice S into 2mn hypercubic regions

with length �n � λ02−n on each side. The discretization points

constructing the set Sn are chosen as follows:

Sn � {H = U3J V⊺ : 3J = diag ( j1�n, . . . , jm�n) ,

× J = ( j1, . . . , jm) , j` ∈ [[1, 2n]],∀` ∈ [[1, m]]},

where J is an index for the elements in Sn , and since U

is known to Willie, we henceforth omit its impact in the

remaining.

Each discretization point HJ is associated with a neighbor-

hood

SJ,n � {H̃ = U3̃V⊺ : 3J � 3̃, k3J − 3̃k2 < �n}, (48)

which covers a portion of the original uncertainty set. By con-

struction, ∪HJ ∈Sn
SJ,n = S. As discussed in previous sections,

without loss of generality, we directly investigate the parallel

sub-channels described by 3b and 3w.

B. Approximation

Consider a BPSK constellation ρn, j �
τ j Q−1

(
1−δ

2

)

√
n

for all

j ∈ [[1, m]] with {τ j }m
j=1 defined in a way similar to (32).

Let Pn =
Q−1

(
1−δ

2

)

√
n

T. For any of the above neighborhoods,

the covertness metric at any channel realization H̃ is close

to that measured at the corresponding discretization point H.

Precisely, we show that the difference of covertness metric

between them vanishes fast with respect to the blocklength n

in the following lemma, which is proved in Appendix F.

Lemma 6: For any H̃ ∈ SJ,n and its associated discretiza-

tion point H ∈ Sn ,

|V(Q̂n

H̃
, Q⊗n

0 ) − V(Q̂n
H, Q⊗n

0 )| � O
(

n
3
4 e−n log 2

)
. (49)

Thus, the covertness metric of any point in S can be

closely approximated by some discretization point in Sn for a

sufficiently large n.

C. Existence

To show the existence of a compound code applicable

for the entire uncertainty set S, note that by the property

of supremum and our approximation argument (49), for n

sufficiently large, we have
∣∣∣∣∣ sup
Hw∈S

V(Q̂n
Hw

, Q⊗n
0 ) − max

Hw∈Sn

V(Q̂n
Hw

, Q⊗n
0 )

∣∣∣∣∣

� O
(

n
3
4 e−n log 2

)
. (50)

Accordingly, we choose maxHw∈Sn
V(Q̂n

Hw
, Q⊗n

0 ) as our

optimization constraint by using (50). This modification only

causes a small perturbation in the throughput, which is negli-

gible in the limit of large n. Furthermore, we have

max
Hw∈Sn

V(Q̂n
Hw

, Q⊗n
0 )

� max
Hw∈Sn

V(Q⊗n
Hw

, Q⊗n
0 ) + max

Hw∈Sn

V(Q̂n
Hw

, Q⊗n
Hw

). (51)

Note that for any H, H̃ ∈ S such that

H − H̃ � 0 and for n large enough, V(Q⊗n
H , Q⊗n

0 ) −

V(Q⊗n

H̃
, Q⊗n

0 ) � 2Q

(√
1
2

∑m
j=1

λ̃4
j τ

2
j

4σ 4
w

Q−1
(

1−δ
2

)
)

−

2Q

(√
1
2

∑m
j=1

λ4
j τ

2
j

4σ 4
w

Q−1
(

1−δ
2

)
)

� 0, where {λ j }m
j=1 and
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{̃λ j }m
j=1 are the diagonal elements of 3 and 3̃ corresponding

to H and H̃ defined in (43), respectively. To ensure

max
Hw∈Sn

V(Q⊗n
Hw

, Q⊗n
0 ) � δ − 1√

n
, (52)

for large enough n, by using (124) and (125) in Appendix E,

we have the optimization constraint

1

4σ 4
w

tr
(
34

0T2
)

� 2 − C̄
√

nQ−1
(

1−δ
2

) (53)

for some C̄ > 0. Also, choosing

log Mn Kn =(1 + ξ)
1

2σ 2
w

tr
(
32

0T
)√

nQ−1

(
1 − δ

2

)
, (54)

ensures that maxHw∈Sn
EC{V(Q̂n

Hw
, Q⊗n

Hw
)} vanishes in

exp
(
−O

(√
nQ−1

(
1−δ

2

)))
, where it follows from (129) and

(130) in Appendix E.

We next show that for any BPSK random code,

maxHw∈Sn
V(Q̂n

Hw
, Q⊗n

Hw
) can be upper-bounded by

maxHw∈Sn
EC{V(Q̂n

Hw
, Q⊗n

Hw
)}.

Lemma 7: For any generated code, set

E �

{
max

Hw∈Sn

V(Q̂n
Hw

, Q⊗n
Hw

)

× � max
Hw∈Sn

EC{V(Q̂n
Hw

, Q⊗n
Hw

)} + αn

}
, (55)

where αn = o
(

1√
n

)
. Then, P(E) � 1−|Sn | exp

(
−2Mn Knα2

n

)
.

Proof: We have

P(E)
(a)

� 1 −
∑

H∈Sn

P

(
V(Q̂n

H, Q⊗n
H )

� max
Hw∈Sn

EC{V(Q̂n
Hw

, Q⊗n
Hw

)} + αn

)
(56)

(b)

� 1 −
∑

H∈Sn

P(V(Q̂n
H, Q⊗n

H ) � EC{V(Q̂n
H, Q⊗n

H )} + αn)

(57)
(c)
� 1 − |Sn | exp

(
−2Mn Knα

2
n

)
, (58)

where (a) follows from the union bound, (b) follows

since maxHw∈Sn
EC{V(Q̂n

Hw
, Q⊗n

Hw
)} � EC{V(Q̂n

H, Q⊗n
H )}

for any H ∈ Sn , and (c) follows from McDiarmid’s

Theorem [4, Lemma 2].

Hence, we have P(E) → 1 as n → ∞ since, with our choice

in (54), exp (−Mn Kn) = exp
(
− exp

(
O
(√

nQ−1
(

1−δ
2

))))

and |Sn | = exp (O (n)). If n is large enough, with overwhelm-

ing probability, we can rewrite (51) as follows:

max
Hw∈Sn

V(Q̂n
Hw

, Q⊗n
0 )

� max
Hw∈Sn

V(Q⊗n
Hw

, Q⊗n
0 )

+ exp

(
−O

(√
n Q−1

(
1 − δ

2

)))
+ αn . (59)

As a result, we show that for n large enough, there exists

a random code Cc generated according to the constraints (53)

and (54), which is also a compound covert code for the whole

discretized uncertainty set Sn , i.e.,

max
Hw∈Sn

V(Q̂n
Hw

, Q⊗n
0 )

� δ − 1√
n

+ exp

(
−O

(√
nQ−1

(
1 − δ

2

)))
+ αn (60)

= δ − 1√
n

+ o

(
1√
n

)
� δ − D√

n
(61)

is ensured for sufficiently large n and some D > 0.

Eventually, combining the above with the triangle inequality

and (50), for n large enough, we can develop a bound similar

to (37) as follows:

sup
Hw∈S

V(Q̂n
Hw

, Q⊗n
0 ) � δ − D√

n
+ O

(
n

3
4 e−n log 2

)
� δ.

(62)

Therefore, Cc is also a compound covert code for the entire

uncertainty set S.

D. Constellation Power Design

The power design follows the same steps as in (38)-(42).

To find the optimal design point of T, we first ignore the

O

(
1√

nQ−1
(

1−δ
2

)

)
term in the (53) and include it later as a

perturbation as in (40). By solving an optimization program

similar to (39), we obtain

lim
n→∞

log Mn√
nQ−1

(
1−δ

2

) = (1 − ξ)
σ 2

w

σ 2
b

√
2tr

(
34

b

(
3−1

0

)4
)

.

(63)

Therefore, by using (62), we can further normalize (63) and

obtain (45). (46) follows similarly.

V. COMPARISON AND DISCUSSION

We now compare our results with the ones obtained when

measuring covertness with relative entropy in [23], [24]. There

are several key distinctions between the present work and [23],

[24]: 1) We analyze covertness in terms of variational distance,

which is a more operationally relevant covertness metric, and

leads to a higher number of covert bits. 2) We do not assume

that Alice and Bob use a large amount of key to create

independent and identically distributed (i.i.d.) codewords, and

resort instead to a channel resolvability analysis and a con-

servative amount of secret key S ∈ [[1, Kn]] shared between

Alice and Bob. 3) We develop a complete characterization of

the covert capacity, which is only implicitly defined in [23],

[24] through an optimization problem that depends on the

blocklength n [23, Appendix B]. 4) We do not require the

covert bits to be secret. In our opinion, requiring the covert

bits to be secret makes the problem closer to a wiretap channel

and we want to exclusively focus on covertness. 5) We do

not investigate in depth what happens when channel matrices

have non-trivial null spaces, except for a short discussion in

Remark 1 and Appendix A. In our opinion, these situations
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are not particularly difficult to analyze because the optimal

signaling schemes are rather straightforward.

Note that [23] does not completely fit into our framework

since the codebook is assumed to be secret from Willie

in [23, Theorems 1 and 2] and Willie directly observes an

i.i.d. stochastic process. Nevertheless, one can still compare

resulting rates.

Note that the result obtained in [23, Theorem 2] is not

a closed-form expression, for it involves the characteriza-

tion of “normalized KL divergence” defined in [23, (15)].

This characterization remains incomplete therein, for the

authors do not exactly solve the power allocation prob-

lem in [23, Appendix B]. Hence, the optimal scaling L

in [23, Theorem 2], which plays the role of the covert capac-

ity, has an implicit dependency on the blocklength n. To make

a fair comparison, we specialize the result in the same sce-

nario as ours (i.e., the signal, the channel matrices, and the

AWGN are all real number, we consider the same full-rank

assumption and our assumption on numbers of antennas, and

the covertness requirement is D(Q̂n k Q⊗n
0 ) � δ) to obtain

max
Pn�0

1

2
log

∣∣∣∣∣Im + 1

σ 2
b

3bPn3
⊺
b

∣∣∣∣∣, (64a)

s.t.
1

2
tr

(
1

σ 2
w

3wPn3
⊺
w − log

(
Im + 1

σ 2
w

3wPn3
⊺
w

))
�

δ

n
,

(64b)

By following the same line of reasoning as in [2, Section V]

and the sensitivity analysis in the proof of Proposition 2,

we can actually solve the power allocation problem of [23,

Appendix B] and (64) to obtain the first-order asymptotics.

Because the power vanishes with n, we also introduce the

notation ρn, j � τ j

√
δ
n

for all j ∈ [[1, m]]. The power allocation

problem, (64a)-(64b), reduces to

max
T�0

1

2σ 2
b

tr
(
32

bT
)

, (65a)

s.t.
1

4σ 4
w

tr
(
34

wT2
)

� 1, (65b)

where we have ignored higher-order terms vanishing with n

because of the sensitivity analysis. The optimal solution to (65)

is T = 2σ 2
w

32
b

(
3−1

w

)4
√

tr

(
34

b

(
3−1

w

)4
) . We therefore express the covert

capacity under a relative entropy metric as follows:

lim
n→∞

log Mn,D√
nδ

= σ 2
w

σ 2
b

√
tr

(
34

b

(
3−1

w

)4
)

. (66)

Hence, the first-order asymptotics of the optimal covert

throughput under a relative entropy constraint D(Q̂n k Q⊗n
0 ) �

δ and a variational distance constraint V(Q̂n, Q⊗n
0 ) � δ can

be expressed as

lim
n→∞

log Mn,D(δ)√
n

= σ 2
w

σ 2
b

√
tr

(
34

b

(
3−1

w

)4
)

δ � fD(δ), and

(67)

Fig. 1. Relative increase of the first-order asymptotics of optimal covert
throughput as a function of covertness.

lim
n→∞

log Mn,V (δ)√
n

= σ 2
w

σ 2
b

√
2tr

(
34

b

(
3−1

w

)4
)

Q−1

(
1 − δ

2

)

� fV (δ), (68)

respectively. Note that the above results are consistent with the

ones for the AWGN channel under a relative entropy metric [2,

Theorem 5] and a variational distance metric [5] if we consider

Single-Input Single-Output (SISO) channels with unit gain.

As remarked in [4, Remark 2], since 2V(Q̂n, Q⊗n
0 ) �

D(Q̂n k Q⊗n
0 ) by Pinsker’s inequality, requiring

D(Q̂n k Q⊗n
0 ) � δ is more stringent than requiring

V(Q̂n, Q⊗n
0 ) �

√
δ/2. Consequently,

fD(δ) � fV (
√

δ/2). (69)

We illustrate the above relation with a simple numer-

ical example. We consider a compound channel case in

which both channel matrices are 4 × 4 real matrices and

λ0 = 0.05, the main channel has generalized singular value

3b = diag (0.385, 0.214, 0.172, 0.028), and σ 2
w = 2σ 2

b =
0.001. As shown in Fig. 1, using the variational distance metric

results in at least a 25% relative increase in covert throughput.

In fact, by the Maclaurin series for the inverse error function

erf−1, we have

lim
δ→0

fV (
√

δ/2)

fD(δ)
= lim

δ→0

√
2Q−1(

1−√
δ/2

2
)

√
δ

= lim
δ→0

2erf−1(
√

δ/2)√
δ

= lim
x→0

2erf−1(x)√
2x2

�
√

2 lim
x→0

√
π

2
x + O(x3)

x

=
√

π

2
. (70)

APPENDIX A

FURTHER DISCUSSION OF THE ASSUMPTION ON RANK

AND NUMBERS OF ANTENNAS

In this section, we provide a more detailed discussion of

our full-rank assumption for channel matrices Hw and Hb

using a GSVD and the analysis of [28, Section II.A]. Without
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any assumption on the channel matrices, we first define the

following subspaces

Sb � Null(Hb)
⊥ ∩ Null(Hw),

Sb,w � Null(Hb)
⊥ ∩ Null(Hw)⊥,

Sw � Null(Hb) ∩ Null(Hw)⊥,

Sn � Null(Hb) ∩ Null(Hw),

which correspond to whether the signal in the subspaces can

be observed by Bob or Willie. Let

m � rank

([
Hb

Hw

])
,

p � dim(Sb), and q � dim(Sb,w). Clearly, Na � m,

dim(Sn) = Na − m, and dim(Sw) = m − p − q . Both channel

matrices can be decomposed with a GSVD as

Hb = U0
b6b[�−1 0m×(Na−m)]9⊺,

Hw = U0
w6w[�−1 0m×(Na−m)]9⊺,

where 9 ∈ R
Na×Na , U0

b ∈ R
Nb×Nb , and U0

w ∈ R
Nw×Nw are

orthogonal, � ∈ R
m×m is lower triangular and nonsingular,

and

6b =

m−p−q q p[ ]
Nb−p−q 0 0 0

q 0 3b 0

p 0 0 I

6w =

m−p−q q p[ ]
m−p−q I 0 0

q 0 3w 0

Nw+p−m 0 0 0

,

with 3b = diag
(
{λb, j }q

j=1

)
and 3w = diag

(
{λw, j }q

j=1

)
.

Note that the following cases do not contribute to the inves-

tigation of the square-root law. 1) If Sb is not trivial, Alice

can steer her signal in these directions without being detected

by Willie, and therefore overcome the square-root law (i.e.,

the covert capacity as defined in (5) is unbounded). The use

of these directions contributes nothing to the covertness metric,

and a power constraint must be active for the rates to be finite.

The optimal power allocation is then the usual water-filling

solution. We exclude this case by assuming p = 0. 2) If Sw

is not trivial, Alice would avoid using these directions, since

the signals in those directions cannot be observed by Bob.

We exclude this case by assuming m = p + q . 3) If Sn is not

trivial, Alice would similarly avoid using these directions, and

we also exclude this case by assuming Na = m.

In summary, only Sb,w is relevant to the square-root law.

By excluding the above three cases, if Na � Nb and

Na � Nw , we have the full-rank assumption m = rank (Hb) =
rank (Hw) = Na . If Na > Nb or Na > Nw , some of the

mentioned null spaces may not be trivial, and this still falls

into the scenarios we point out in Remark 1, which does not

affect the investigation of the square-root law. For instance,

if Na > Nb , then either Na > m or Na = m is true, and

the former case corresponds to a non-trivial Sn . If we also

have Na = m, since m = Na > Nb � q , at least one

of m > p + q or p > 0 is true, which corresponds to the

non-trivial Sw or Sb. Hence, we also impose the assumption

that both Bob and Willie possess more antennas than Alice.

The assumptions on numbers of antennas and rank are with-

out loss of generality, and the reason is simply to exclude

some perhaps less interesting cases to reveal the constant

before the square-root instead of preventing any technical

difficulty.

APPENDIX B

PROOF OF LEMMA 5

Proof: Under the null hypothesis H0, for all i ∈ [[1, n]]
Zi ∼ N

(
0, σ 2

wINw

)
, so that Ẑi ∼ N

(
0, σ 2

w32
b

(
3−1

w

)2) ∈
R

m . Hence, we have the following statistics:

μ0 =
n∑

i=1

EQ0
{Si } = nσ 2

wtr

(
32

b

(
3−1

w

)2
)

, (71)

σ 2
0 =

n∑

i=1

Var(Si ) = 2nσ 4
wtr

(
34

b

(
3−1

w

)4
)

, (72)

t0,i = EQ0

{
|Si − μ0,i |3

}
= O (1) , t0 =

n∑

i=1

t0,i = O (n) ,

(73)

where μ0,i � EQ0
{Si }. We use the Berry-Esseen Theorem to

obtain an upper bound for the probability of false alarm as

follows:

α = PH0

(
n∑

i=1

Si � τ

)
(74)

� Q

⎛
⎜⎜⎜⎜⎝

τ − nσ 2
wtr
(
32

b

(
3−1

w

)2)

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

+ 6t0

σ 3
0

(75)

� Q

⎛
⎜⎜⎜⎜⎝

τ − nσ 2
wtr
(
32

b

(
3−1

w

)2)

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

+ B0√
n

. (76)

The bound on the probability of false alarm (13) follows by

applying the threshold τ = P∗
2

+ nσ 2
wtr
(
32

b

(
3−1

w

)2)
.

Similarly, under the hypothesis H1, we know that given a

codeword x(k)n transmitted over the channel W⊗n
Z|X, for every

i ∈ [[1, n]] Zi |Xi = x
(k)
i ∼ N

(
Hwx

(k)
i , σ 2

wINw

)
, so that

Ẑi |X̃i = x̃
(k)
i ∼ N

(
3bx̃

(k)
i , σ 2

w32
b

(
3−1

w

)2)
, where x̃

(k)
i =

V⊺x
(k)
i . Let x̃(k)n � V⊺x(k)n and P(k) �

∑n
i=1 x̃

(k)
i x̃

(k)⊺
i .

Hence, we have the following statistics:

μ
(k)
1 =

n∑

i=1

EQ̂

{
Si |Xi = x

(k)
i

}

= tr
(
32

bP(k)
)

+ nσ 2
wtr

(
32

b

(
3−1

w

)2
)

, (77)
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σ
(k)2
1 =

n∑

i=1

Var
(

Si |Xi = x
(k)
i

)

= 4σ 2
wtr

(
34

b

(
3−1

w

)2
P(k)

)
+ 2nσ 4

wtr

(
34

b

(
3−1

w

)4
)

,

(78)

t
(k)
1,i = EQ̂

{
|Si − μ

(k)
1,i |3|Xi = x

(k)
i

}
= O (1) ,

t
(k)
1 =

n∑

i=1

t
(k)
1,i = O (n) , (79)

where μ
(k)
1,i � EQ̂

{
Si |Xi = x

(k)
i

}
. We use again the Berry-

Esseen Theorem to obtain an upper bound for the proba-

bility of missed detection. For the k-th codeword, by defin-

ing β(k) = PH1

(∑n
i=1 Si < τ |Xn = x(k)n

)
, we have (80),

shown at the bottom of the next page, where (a) follows

since 3b, 3w, Pk � 0, and since tr
(
34

b

(
3−1

w

)2
P(k)

)
�

tr
(
32

b

(
3−1

w

)2)
tr
(
32

bP(k)
)
. By setting the detection threshold

to τ = P∗
2

+ nσ 2
wtr
(
32

b

(
3−1

w

)2)
, we further obtain (81),

shown at the bottom of the next page, where (a) follows since

tr
(
32

bP(k)
)

− P∗
2

�
tr
(
32

bP(k)
)

2
� P∗

2
and

tr
(
32

bP(k)
)

√
atr
(
32

bP(k)
)
+b

�

P∗√
a P∗+b

, ∀a, b > 0, (b) follows from 1√
1+x

� 1 −
x
2
, ∀x > 0, and (c) follows from Q (x − y) = Q (x) +∫ x

x−y
1√
2π

exp
(
− u2

2

)
du � Q (x) + y√

2π
∀ 0 < y < x . Note

that the upper bound (81) is independent of the codeword x(k)n ,

and hence we can use the bound on all the β(k)’s. Therefore,

we obtain

β = PH1

(
n∑

i=1

Si < τ

)
= 1

|M|
∑

x(k)n∈M
β(k)

� Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

+
P2

∗ tr
(
32

b

(
3−1

w

)2)

4
√

πn3/2tr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

+ B1√
n
. (82)

APPENDIX C

PROOF OF LEMMA 6

Proof: We partition the code C into two different

sub-codes, a low-power sub-code C(`) and a high-power sub-

code C(h), where C(`) � {xn ∈ C : kHbxnk2
F � A

√
n}, C(h) �

C\C(`). The output distributions induced by these two sub-

codes are

Q̂(`)
(
zn
)

= 1∣∣C(`)
∣∣
∑

xn∈C(`)

W⊗n
Z|X
(
zn |xn

)
,

and Q̂(h)
(
zn
)

= 1∣∣C(h)
∣∣
∑

xn∈C(h)

W⊗n
Z|X
(
zn|xn

)
, (83)

respectively. Note that Q̂n =
∣∣C(`)

∣∣
|C| Q̂(`)+

∣∣C(h)
∣∣

|C| Q̂(h). For a code

C such that V(Q̂n, Q⊗n
0 ) � δ, we have

δ � V(Q̂n, Q⊗n
0 ) (84)

(a)

�

∣∣C(h)
∣∣

|C| V(Q̂(h), Q⊗n
0 ) −

∣∣C(`)
∣∣

|C| V(Q̂(`), Q⊗n
0 ) (85)

= V(Q̂(h), Q⊗n
0 ) −

∣∣C(`)
∣∣

|C| (V(Q̂(h), Q⊗n
0 )+V(Q̂(`), Q⊗n

0 ))

(86)

(b)
� V(Q̂(h), Q⊗n

0 ) − 2

∣∣C(`)
∣∣

|C| (87)

(c)

� 1 − 2Q

⎛
⎜⎜⎜⎜⎝

A
√

n

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

−
A2ntr

(
32

b

(
3−1

w

)2)

4
√

πn3/2tr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

− B0 + B1√
n

− 2

∣∣C(`)
∣∣

|C| (88)

= δ +
2ν2tr

(
32

b

(
3−1

w

)2)

4
√

πntr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

− B0 + B1√
n

−
A2tr

(
32

b

(
3−1

w

)2)

4
√

πntr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

+ 2γn − 2

∣∣C(`)
∣∣

|C| (89)

(d)

� δ + 2γn − 2

∣∣C(`)
∣∣

|C| (90)

where (a) follows from∣∣C(h)
∣∣

|C| V(Q̂(h), Q⊗n
0 ) (91)

= 1

2

∥∥∥∥∥
(
Q̂n − Q⊗n

0

)
−
∣∣C(`)

∣∣
|C|

(
Q̂(`) − Q⊗n

0

)∥∥∥∥∥
1

(92)

� V(Q̂n, Q⊗n
0 ) +

∣∣C(`)
∣∣

|C| V(Q̂(`), Q⊗n
0 ), (93)

(b) follows since the variational distance between any two

distributions is upper bounded by 1, (c) follows from (15),

and (d) follows by choosing ν to satisfy

2ν2tr
(
32

b

(
3−1

w

)2)

4
√

πntr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

− B0 + B1√
n

−
A2tr

(
32

b

(
3−1

w

)2)

4
√

πntr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

> 0. (94)

Hence, we can bound the cardinality of the low-power sub-

code C(`) from below as
∣∣C(`)

∣∣ � γn |C|, which shows the

existence of such a low-power sub-code.
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APPENDIX D

PROOF OF LEMMA 8

Proof: We specialize [3, Lemma 3] and [4, Lemma 1]

into the following lemma.

Lemma 8: For any γ > 0,

E

{
P̄(n)

e

}
� Mne−γ

(
1 + EP⊗n

n

{
P⊗n

n (Yn)

P⊗n
0 (Yn)

})

+ P5⊗n
Qn

W ⊗n
Y|X

(
log

W⊗n
Y|X (Yn|Xn)

P⊗n
0 (Yn)

� γ

)
, (95)

where P̄
(n)
e is the average probability of error.

We first analyze the first term on the right-hand side of (95)

as follows:

EPn

{
Pn (Y)

P0 (Y)

}
(a)=

m∏

j=1

EP̃n, j

⎧
⎨
⎩

P̃n, j

(
Ỹ j

)

P̃0, j

(
Ỹ j

)

⎫
⎬
⎭ (96)

=
m∏

j=1

cosh

(
λ2

b, jρn, j

σ 2
b

)

(b)

� exp

(∑m
j=1 λ4

b, jρ
2
n, j

2σ 4
b

)
, (97)

where (a) follows from the facts that we apply the orthogonal

transform U
0⊺
b to the observation Y, each sub-channel is

independent, and this mapping is one-to-one and onto. Note

that after the orthogonal transform, we could truncate the last

Nb − m components, since they contain pure noise (as they

correspond to the null space of H
⊺
b ) and thus do not affect

the decoding process. (b) follows from cosh(x) � e
x2

2 and the

exponential property. Therefore, we know that

EP⊗n
n

{
P⊗n

n (Yn)

P⊗n
0 (Yn)

}
� exp

(
n
∑m

j=1 λ4
b, j ρ

2
n, j

2σ 4
b

)
= O (1) .

(98)

β(k) � Q

⎛
⎜⎜⎜⎜⎝

tr
(
32

bP(k)
)
+ nσ 2

wtr
(
32

b

(
3−1

w

)2)− τ
√

4σ 2
wtr

(
34

b

(
3−1

w

)2
P(k)

)
+ 2nσ 4

wtr

(
34

b

(
3−1

w

)4
)

⎞
⎟⎟⎟⎟⎠

+ 6t
(k)
1

σ
(k)3
1

(a)

� Q

⎛
⎜⎜⎜⎜⎝

tr
(
32

bP(k)
)
+ nσ 2

wtr
(
32

b

(
3−1

w

)2)− τ
√

4σ 2
wtr
(
32

bP(k)
)

tr

(
32

b

(
3−1

w

)2
)

+ 2nσ 4
wtr

(
34

b

(
3−1

w

)4
)

⎞
⎟⎟⎟⎟⎠

+ B1√
n
, (80)

β(k)
(a)

� Q

⎛
⎜⎜⎜⎜⎝

P∗
2√

4P∗σ 2
wtr

(
32

b

(
3−1

w

)2
)

+ 2nσ 4
wtr

(
34

b

(
3−1

w

)4
)

⎞
⎟⎟⎟⎟⎠

+ B1√
n

= Q

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

1√√√√√1 +
2P∗tr

(
32

b

(
3−1

w

)2
)

nσ 2
w tr

(
34

b

(
3−1

w

)4
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ B1√
n

(b)
� Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎛
⎜⎜⎝1 −

P∗tr
(
32

b

(
3−1

w

)2)

nσ 2
wtr

(
34

b

(
3−1

w

)4
)

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

+ B1√
n

(c)
� Q

⎛
⎜⎜⎜⎜⎝

P∗

2

√
2ntr

(
34

b

(
3−1

w

)4
)

σ 2
w

⎞
⎟⎟⎟⎟⎠

+
P2

∗ tr
(
32

b

(
3−1

w

)2)

4
√

πn3/2tr

(
34

b

(
3−1

w

)4
)3/2

σ 4
w

+ B1√
n
, (81)
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Next, we turn to analyze the last term of (95). Similarly,

with the above orthogonal transform, note that

log
W⊗n

Y|X (Yn|Xn)

P⊗n
0 (Yn)

=
m∑

j=1

log
W⊗n

Ỹ ( j)|X̃ ( j)

(
Ỹ n

j |X̃n
j

)

P̃⊗n
0, j

(
Ỹ n

j

) (99)

=
n∑

i=1

m∑

j=1

(
λb, j X̃ i j Ỹi j

σ 2
b

−
λ2

b, j X̃2
i j

2σ 2
b

)
.

(100)

Since each sub-channel is independent and Ỹi j |X̃ i j =
x̃i j ∼ N

(
λb, j x̃i j , σ

2
b

)
and x̃i j ∈ {−an, j , an, j } for

every j , we have
∑m

j=1 log
W

Ỹ ( j)|X̃( j)

(
Ỹi j |X̃ i j =x̃i j

)

P̃0, j

(
Ỹi j

) ∼

∑m
j=1 N

(
λ2

b, j ρn, j

2σ 2
b

,
λ2

b, j ρn, j

σ 2
b

)
. Therefore, by setting

γ = (1 − �) n
∑m

j=1

λ2
b, j ρn, j

2σ 2
b

, where � ∈ (0, 1), and using

Hoeffding’s inequality, we have

PW ⊗n

Ỹ|X̃=x̃n

⎛
⎝

n∑

i=1

m∑

j=1

log
WỸ ( j)|X̃ ( j)

(
Ỹi j |x̃i j

)

P̃0

(
Ỹi j

)

� n (1 − �)

m∑

j=1

λ2
b, jρn, j

2σ 2
b

⎞
⎠

� exp

⎛
⎝−n

m∑

j=1

�2λ2
b, jρn, j

8σ 2
b

⎞
⎠. (101)

Then, we have

P5⊗n
Qn

W ⊗n
Y|X

(
log

W⊗n
Y|X (Yn|Xn)

P⊗n
0 (Yn)

� γ

)
(102)

=
∑

x̃n∈
∏m

j=1{−an, j ,an, j}n

5⊗n
Pn

(
x̃n
)

PW ⊗n

Ỹ|X̃=x̃n

⎛
⎝

n∑

i=1

m∑

j=1

log
WỸ ( j)|X̃ ( j)

(
Ỹi j |x̃i j

)

P̃0

(
Ỹi j

)

� n (1 − �)

m∑

j=1

λ2
b, jρn, j

2σ 2
b

⎞
⎠

� exp

⎛
⎝−n

m∑

j=1

�2λ2
b, jρn, j

8σ 2
b

⎞
⎠. (103)

Eventually, by combining (95), (98), and (103), we have

E

{
P̄(n)

e

}
�exp

⎛
⎝−n

m∑

j=1

�2λ2
b, j ρn, j

8σ 2
b

⎞
⎠+Mne−γ (1 + O(1)).

(104)

Hence, by using (32), if we choose

log Mn = (1 − ω) (1 − �) n

m∑

j=1

λ2
b, jρn, j

2σ 2
b

= (1 − ξ)

m∑

j=1

λ2
b, jτ j

√
n Q−1

(
1−δ

2

)

2σ 2
b

, (105)

where ω ∈ (0, 1) and ξ = 1
2
[(1+ω)(1+�)−(1−ω)(1−�)] > 0,

the result follows.

APPENDIX E

PROOF OF LEMMA 9

Proof: In the following, we apply the triangle inequality

to upper-bound the covertness metric, put a direct constraint

on V(Q⊗n
n , Q⊗n

0 ), and show the remaining term vanishes

exponentially fast. First note that, by the triangle inequality,

we have

V(Q̂n, Q⊗n
0 ) � V(Q̂n, Q⊗n

n ) + V(Q⊗n
n , Q⊗n

0 ). (106)

We first analyze the second term on the left-hand side

of (106). By the basic property of the variational distance,

we have

V(Q⊗n
n , Q⊗n

0 )

= PQ⊗n
n

(
Q⊗n

n

(
Zn
)

� Q⊗n
0

(
Zn
))

− PQ⊗n
0

(
Q⊗n

n

(
Zn
)

� Q⊗n
0

(
Zn
))

(107)

= PQ⊗n
n

(
n∑

i=1

log
Qn (Zi )

Q0 (Zi )
� 0

)

− PQ⊗n
0

(
n∑

i=1

log
Qn (Zi )

Q0 (Zi )
� 0

)
(108)

(a)= PQ̃⊗n
n

⎛
⎝

n∑

i=1

m∑

j=1

log
Q̃n, j

(
Z̃ i j

)

Q̃0, j

(
Z̃ i j

) � 0

⎞
⎠

− PQ̃⊗n
0

⎛
⎝

n∑

i=1

m∑

j=1

log
Q̃n, j

(
Z̃ i j

)

Q̃0, j

(
Z̃ i j

) � 0

⎞
⎠, (109)

where (a) follows since we apply the orthogonal transform

U
0⊺
w to the per-channel-use observation Zi , and this mapping

does not reduce the variational distance (i.e., the equality of

data-processing inequality holds). Note that after the orthogo-

nal transform, we could truncate the last Nw −m components,

since they contain pure noise (as they correspond to the null

space of H
⊺
w). Then, for every i ∈ [[1, n]],

μ1 j � EQ̃n, j

{
log

Q̃n, j (Z i )

Q̃0, j (Z i )

}
(110)

= EQ̃n, j

{
−

λ2
w, j ρn, j

2σ 2
w

+ log

(
cosh

(
λw, j an, j Z i

σ 2
w

))}

(111)

=
λ4

w, j ρ
2
n, j

4σ 4
w

+ O
(
ρ3

n, j

)
, (112)

σ 2
1 j � Var

(
log

Q̃n, j (Z i )

Q̃0, j (Z i )

)
(113)

= EQ̃n, j

{
log2 Q̃n, j (Z i )

Q̃0, j (Z i )

}
− O

(
ρ4

n, j

)
(114)

=
λ4

w, j ρ
2
n, j

2σ 4
w

+ O
(
ρ3

n, j

)
, (115)
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t1 j � EQ̃n, j

⎧
⎨
⎩

∣∣∣∣∣log
Q̃n, j (Z i )

Q̃0, j (Z i )
− μ1 j

∣∣∣∣∣

3
⎫
⎬
⎭ = O

(
ρ3

n, j

)
. (116)

Therefore, by the Berry-Esseen Theorem, we have

PQ̃⊗n
n

⎛
⎝

n∑

i=1

m∑

j=1

log
Q̃n, j

(
Z̃ i j

)

Q̃0, j

(
Z̃ i j

) � 0

⎞
⎠

� Q

⎛
⎝−

√√√√n

2

m∑

j=1

λ4
w, j ρ

2
n, j

4σ 4
w

⎞
⎠+

6n
∑m

j=1 t1 j

(
n
∑m

j=1 σ 2
1 j

)3/2
(117)

= 1 − Q

⎛
⎝
√√√√n

2

m∑

j=1

λ4
w, jρ

2
n, j

4σ 4
w

⎞
⎠+ O

(
1√
n

)
. (118)

Similarly, for every i ∈ [[1, n]],

μ0 j � EQ̃0, j

{
log

Q̃n, j (Z i )

Q̃0, j (Z i )

}
= −

λ4
w, j ρ

2
n, j

4σ 4
w

+ O
(
ρ3

n, j

)
,

(119)

σ 2
0 j � Var

(
log

Q̃n, j (Z i )

Q̃0, j (Z i )

)
=

λ4
w, j ρ

2
n, j

2σ 4
w

+ O
(
ρ3

n, j

)
, (120)

t0 j � EQ̃0, j

⎧
⎨
⎩

∣∣∣∣∣log
Q̃n, j (Z i )

Q̃0, j (Z i )
− μ1 j

∣∣∣∣∣

3
⎫
⎬
⎭ = O

(
ρ3

n, j

)
. (121)

We therefore have

PQ̃⊗n
0

⎛
⎝

n∑

i=1

m∑

j=1

log
Q̃n, j

(
Z̃ i j

)

Q̃0, j

(
Z̃ i j

) � 0

⎞
⎠

� Q

⎛
⎝
√√√√n

2

m∑

j=1

λ4
w, jρ

2
n, j

4σ 4
w

⎞
⎠−

6n
∑m

j=1 t0 j

(
n
∑m

j=1 σ 2
0 j

)3/2
(122)

= Q

⎛
⎝
√√√√n

2

m∑

j=1

λ4
w, jρ

2
n, j

4σ 4
w

⎞
⎠− O

(
1√
n

)
. (123)

Eventually, we find an upper bound for (109) as follows:

V(Q⊗n
n , Q⊗n

0 ) � 1 − 2Q

⎛
⎝
√√√√n

2

m∑

j=1

λ4
w, j ρ

2
n, j

4σ 4
w

⎞
⎠

+O

(
1√
n

)
� δ − 1√

n
, (124)

where the − 1√
n

term is added to ensure that the V(Q⊗n
n , Q⊗n

0 )

term is less than δ for n large enough. Equivalently, we impose

a covertness constraint

1

4σ 4
w

tr
(
3wT3⊺

w3wT3⊺
w

)
� 2 − C

√
nQ−1

(
1−δ

2

) , (125)

for some C > 0 and the constraint (125) would be the main

concern in the power design optimization. Combining (106)

with (124), we therefore have, for n large enough,

V(Q̂n, Q⊗n
0 ) � V(Q̂n, Q⊗n

n ) + V(Q⊗n
n , Q⊗n

0 )

� V(Q̂n, Q⊗n
n ) + δ − 1√

n
. (126)

For the term V(Q̂n, Q⊗n
n ) in (126), our analysis follows

from [3, Lemma 5], and we recall the following lemma.

Lemma 9: For any θ > 0,

E{V(Q̂n, Q⊗n
n )} � P5⊗n

Qn
W ⊗n

Z|X

(
log

W⊗n
Z|X (Zn |Xn)

Q⊗n
0 (Zn)

� θ

)

+ 1

2

√
eθ

Mn Kn

. (127)

Similarly, we apply the orthogonal transform U
0⊺
w to the

observations and decompose them into observations on each

sub-channel; we obtain

log
W⊗n

Z|X (Zn |Xn)

Q⊗n
0 (Zn)

=
n∑

i=1

m∑

j=1

log
WZ̃ ( j)|X̃ ( j)

(
Z̃ i j |X̃ i j

)

Q̃0, j

(
Z̃ i j

) . (128)

Since x̃i j ∈ {−an, j , an, j },
∑m

j=1 log
W

Z̃( j)|X̃( j)

(
Z̃i j |X̃ i j =x̃i j

)

Q̃0, j

(
Z̃i j

)

∼
∑m

j=1 N

(
λ2

w, j ρn, j

2σ 2
w

,
λ2

w, j ρn, j

σ 2
w

)
. Therefore, by setting

θ = (1 + �) n
∑m

j=1

λ2
w, j ρn, j

2σ 2
w

, and using Hoeffding’s

inequality, we have P5⊗n
Pn

W ⊗n
Z|X

(
log

W ⊗n
Z|X(Zn |Xn)

Q⊗n
0 (Zn )

� θ

)
�

exp

(
− �2n

∑m
j=1 λ2

w, j ρn, j

8σ 2
w

)
. Therefore, E{V(Q̂n, Q⊗n

n )} �

exp

(
− �2n

∑m
j=1 λ2

w, j ρn, j

8σ 2
w

)
+ 1

2

√
eθ

Mn Kn
. Eventually,

recalling (32), if we choose

log Mn Kn = (1 + ω) (1 + �) n

m∑

j=1

λ2
w, j ρn, j

2σ 2
w

= (1 + ξ)

m∑

j=1

λ2
w, j τ j

√
nQ−1

(
1−δ

2

)

2σ 2
w

, (129)

then

E{V(Q̂n, Q⊗n
n )} � e

−θ2
√

nQ−1
(

1−δ
2

)

, (130)

for some appropriate choice of θ2 > 0. The result follows by

combining (126) and (130).

APPENDIX F

PROOF OF LEMMA 12

Proof: We start by using V(Q̂n
H, Q⊗n

0 ) to approximate

V(Q̂n

H̃
, Q⊗n

0 ). For a fixed Pn , by the triangle inequality,

|V(Q̂n

H̃
, Q⊗n

0 ) − V(Q̂n
H, Q⊗n

0 )| � V(Q̂n

H̃
, Q̂n

H). (131)

Note that for a given code C and x(`k)n ∈ C,

V(Q̂n

H̃
, Q̂n

H)

�

∑Mn

`=1

∑Kn

k=1

Mn Kn

V(W̃⊗n
Z|X (Zn |x(`k)n) , W⊗n

Z|X (Zn |x(`k)n))

(a)=
∑Mn

`=1

∑Kn

k=1

Mn Kn

V(W̃⊗n

Z̃|X̃ (Z̃n |x̃(`k)n) , W⊗n

Z̃|X̃ (Z̃n |x̃(`k)n)),
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where (a) follows since the orthogonal transformation pre-

serves the variational distance. To characterize the behavior of

V(W̃⊗n

Z̃|X̃ (Z̃n |x̃(`k)n) , W⊗n

Z̃|X̃ (Z̃n |x̃(`k)n)), we follow the proof of

[26, Lemma 5] and consider a specific codeword x̃n ,

2V(W̃⊗n

Z̃|X̃ (Z̃n|x̃n) , W⊗n

Z̃|X̃ (Z̃n |x̃n))

=
∫

z̃n

∣∣∣W̃⊗n

Z̃|X̃ (z̃n |x̃n) − W⊗n

Z̃|X̃ (z̃n |x̃n)
∣∣∣ d z̃n (132)

=
∫
∑n

i=1 kz̃i−3̃x̃ik2

2�r2
n

∣∣∣W̃⊗n

Z̃|X̃ (z̃n|x̃n) − W⊗n

Z̃|X̃ (z̃n|x̃n)

∣∣∣ d z̃n

+
∫
∑n

i=1 kz̃i−3̃x̃ik2

2<r2
n

∣∣∣W̃⊗n

Z̃|X̃ (z̃n |x̃n) − W⊗n

Z̃|X̃ (z̃n |x̃n)
∣∣∣ d z̃n

(133)

� PW̃ ⊗n

Z̃|X̃

(
n∑

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
� r2

n

)

+ PW ⊗n

Z̃|X̃

(
n∑

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
� r2

n

)

+
∫
∑n

i=1 kz̃i−3̃x̃ik2

2<r2
n

∣∣∣W̃⊗n

Z̃|X̃ (z̃n |x̃n) − W⊗n

Z̃|X̃ (z̃n |x̃n)
∣∣∣ d z̃n,

(134)

where rn �
√

nm(1 + �)σ 2
w + �nkx̃nkF , which is close to√

nm(1 + �)σ 2
w as n grows to infinity, and � ∈ (0, 1). Note that

the first term of (134) can be bounded by the concentration

inequality for the sub-exponential random variables as follows:

PW̃ ⊗n

Z̃|X̃

(
n∑

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
� r2

n

)

� exp

(
− (r2

n − nmσ 2
w)2

8nm

)
= exp (−O (n)) . (135)

Also, by the triangle inequality for the Frobenius norm,

we have

∥∥z̃n − 3̃x̃n
∥∥

F
�
∥∥z̃n − 3x̃n

∥∥
F

+
∥∥(3 − 3̃

)
x̃n
∥∥

F
(136)

�
∥∥z̃n − 3x̃n

∥∥
F

+

√√√√�2
n

n∑

i=1

kx̃ik2
2 (137)

=
∥∥z̃n − 3x̃n

∥∥
F

+ �n

∥∥x̃n
∥∥

F
. (138)

Therefore,
∑n

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
� r2

n implies that
∑n

i=1

∥∥z̃i − 3x̃i

∥∥2

2
� (rn − �nkx̃nkF )2 = nm(1 + �)σ 2

w.

Accordingly, we can use the concentration inequality

for the sub-exponential random variables and obtain

PW ⊗n

Z̃|X̃

(∑n
i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
� r2

n

)
� exp

(
− nm�2

8

)
. We next

investigate the variation between densities W⊗n

Z̃|X̃ and W̃⊗n

Z̃|X̃
caused by the difference between H and H̃ as follows:
∣∣∣∣∣∣
log

W⊗n

Z̃|X̃ (z̃n |x̃n)

W̃⊗n

Z̃|X̃ (z̃n |x̃n)

∣∣∣∣∣∣

= 1

2σ 2
w

∣∣∣∣∣

n∑

i=1

(
kz̃i − 3̃x̃ik2

2 − kz̃i − 3x̃ik2
2

)∣∣∣∣∣ (139)

(a)

�
1

2σ 2
w

⎛
⎝
∣∣∣∣∣∣

n∑

i=1

m∑

j=1

2(z̃i j − λ̃ j x̃i j )(�n x̃i j )

∣∣∣∣∣∣

+

∣∣∣∣∣∣

n∑

i=1

m∑

j=1

(�n x̃i j )
2

∣∣∣∣∣∣

⎞
⎠ (140)

(b)

�
1

σ 2
w

√√√√
n∑

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
�2

nkx̃nk2
F + 1

2σ 2
w

�2
n

∥∥x̃n
∥∥2

F
,

(141)

where (a) follows from the definition of SJ,n and the triangle

inequality, and (a) follows from the Cauchy-Schwartz inequal-

ity. Then, for the last term of (134), we proceed as follows:
∫
∑n

i=1 kz̃i−3̃x̃ik2

2<r2
n

∣∣∣W̃⊗n

Z̃|X̃ (z̃n |x̃n) − W⊗n

Z̃|X̃ (z̃n |x̃n)
∣∣∣ d z̃n

(a)
�

∫
∑n

i=1 kz̃i−3̃x̃ik2

2<r2
n

W̃⊗n

Z̃|X̃ (z̃n |x̃n)
(

fn + O
(

f 2
n

))
d z̃n

(142)
(b)

� fn + O
(

f 2
n

)
= O

(
n

1
2

∥∥x̃n
∥∥

F
e−n log 2

)
, (143)

where we let fn = 1
σ 2

w

√
r2

n �2
nkx̃nk2

F + 1
2σ 2

w
�2

nkx̃nk2
F ,

since
∑n

i=1

∥∥z̃i − 3̃x̃i

∥∥2

2
< r2

n , (a) and (b) follow

since

∣∣∣∣1 −
W ⊗n

Z̃|X̃(z̃n |x̃n)

W̃ ⊗n

Z̃|X̃(z̃n |x̃n)

∣∣∣∣ � max{e fn − 1, 1 − e− fn } �

fn + O
(

f 2
n

)
. Therefore, we have, for n large enough,

V(W̃⊗n

Z̃|X̃ (Z̃n |x̃n) , W⊗n

Z̃|X̃ (Z̃n |x̃n)) � O
(

n
1
2 kx̃nkF e−n log 2

)
,

and from (132), we obtain

V(Q̂n

H̃
, Q̂n

H) �

Mn∑

`=1

Kn∑

k=1

1

Mn Kn

O
(

n
1
2

∥∥∥x̃(`k)n
∥∥∥

F
e−n log 2

)
.

(144)

For any BPSK code generated independently according

to 5⊗n
Pn

, the power of generated codewords are fixed, and

therefore we have

V(Q̂n

H̃
, Q̂n

H) � O
(

n
3
4 e−n log 2

)
. (145)

Eventually, combining (131) with (145), the result

follows.
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