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Abstract—We consider the problem of identifying param-
eters of a particular class of Markov chains, called Bernoulli
Autoregressive (BAR) processes. The structure of any BAR
model is encoded by a directed graph. Incoming edges to
a node in the graph indicate that the state of the node at a
particular time instant is influenced by the states of the cor-
responding parental nodes in the previous time instant. The
associated edge weights determine the corresponding level
of influence from each parental node. In the simplest setup,
the Bernoulli parameter of a particular node’s state vari-
able is a convex combination of the parental node states in
the previous time instant and an additional Bernoulli noise
random variable. This letter focuses on the problem of
edge weight identification using Maximum Likelihood (ML)
estimation and proves that the ML estimator is strongly
consistent for two variants of the BAR model. We addition-
ally derive closed-form estimators for the aforementioned
two variants and prove their strong consistency.

Index Terms—Identification, Markov chains.

|. INTRODUCTION

HE SPREADING of ideas and information, the prop-
Tagation of viruses and diseases, and the fluctuation of
stock prices are examples of processes evolving over social,
information or other types of networks [1]-[8]. Identifying
the underlying network structure in these systems motivates
the so-called network inference problem, which aims at recov-
ering the underlying connectivity between entities or nodes in
the system based on observed data. The dependencies, corre-
lations or causal relationships between network entities can be
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modeled as undirected or directed edges in a graph. The asso-
ciated dependency strengths can be described as edge weights.
Many algorithms have been proposed to identify the network
structure and edge weights from time series data for vari-
ous processes. Clearly, efficient algorithms in terms of sample
complexity are desired.

The network inference problem for various dynamic
processes has been recently studied in both the machine learn-
ing literature and the system identification literature. The
so-called continuous-time independent cascade model (CICE)
considered in [5], [9], [10] presents a typical model for cap-
turing the dynamics of virus or information spreading in
networks. A discrete-time version of CICE is studied in [11]
and [12]. In [7], the Generalized Linear Model is formulated,
which is a class of diffusion models encompassing both the
discrete and continuous-time CICE models, and the Linear
Voter model [13].

System identification focuses on estimating system parame-
ters from measured input and output data [14]-[16]. Recently
system identification has been used to study the problem
of network inference. Broadly speaking, system identification
methods can be classified as belonging to one of two types:
methods that consider continuous state-spaces [17]-[21] and
those that consider discrete state-spaces [22]. Our paper falls
into the second category.

In this letter, we consider the Bernoulli Autoregressive
(BAR) model, which is a parameterized discrete-time Markov
chain initially introduced in [23]. In this model, the state of
each node is a Bernoulli random variable with probability of
success equal to a convex combination of the parental node
states (or their flipped states) in the previous time step and
an additional binary noise term ensuring persistence of exci-
tation. The BAR model can be used to approximate opinion
dynamics, biological and financial times series, and similar
processes [23]-[25]. Another relevant discrete-time binary pro-
cess is the ALARM model proposed in [26]. In contrast to
the BAR model, the ALARM model defines the transition
probabilities via a logistic function.

Relying on well-established statistical principles, we first
formulate and study the consistency properties of the
Maximum Likelihood (ML) parameter estimator for the BAR
model in which every parental node causally influences each
descendant node positively; the notion of positive correlations
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is formalized in [23]. The consistency of ML estimators in the
case of independent and identically distributed (i.i.d.) random
variables has been studied extensively; see, e.g., [27], [28]
and references therein. The consistency of ML estimators for
Markov chains appears to be less well studied, see [29] for a
reference.

To establish the (strong) consistency of the ML estimator for
the BAR model, we prove that the vectorized transition proba-
bility matrix is an injective mapping of the model parameters.
In the rest of this letter, we call the injectivity of this map-
ping identifiability of the BAR model. The strong consistency
of the ML estimator is then shown by leveraging the injec-
tivity and the continuity of the transition probabilities with
respect to the parameters, as well as the compactness of the
parameter set. By relying on the ML principle, a closed-form
estimator is subsequently provided. Strong consistency is also
shown to hold for this estimator. The identifiability proof is
then extended to the generic BAR model with both positive
and negative correlations, where the notion of negative corre-
lations is also formalized in [23]. This identifiability extension
establishes the strong consistency of the ML estimator for
the general BAR model class. The closed-form estimator and
its consistency are also extended to the generic BAR model.
These analytical results provide a complement to the prior
work [23].

Notation: Matrices and vectors are denoted by bold upper
and lowercase letters, respectively. Probability distributions in
vector form may be either denoted by bold upper or lowercase
letters. Random vectors are also denoted by uppercase bold
letters, while their corresponding realizations are denoted by
lowercase bold letters. Scalar random variables are denoted by
uppercase letters. The i-th entry of a vector x is denoted by x;.
For a matrix A, a;; corresponds to its (i, j)-th entry. Depending
on the context, vector and matrix entries may be indexed more
generally, e.g., by state elements. 1,, and 0, are the m x 1
all-ones and all-zeros vectors, respectively, and 0, is the all-
zeros m x n matrix. I, is the m x m identity matrix. Moreover,
€y, is the i-th column of L,. Form e N, [m] = {1,2,...,m}.
Finally, I(-) stands for the indicator function.

I[I. THE BAR MODEL WITH POSITIVE CORRELATIONS

The BAR model is a special form of a Markov chain defined
on a directed graph ¢ = (¥, &) with |¥| = p nodes. Let
X;(k) € {0, 1} be the state of node i € [p] at time instant k
and let X(k) € {0, 1} be the associated BAR process state
vector at the same time instant. The BAR model with positive
correlations only is described by

Xitk+1) ~ Ber(aIX(k) T Witk + 1)), i=1,...,p, (1)

where a; € [0,1)P,b; € [0,1],i =1, ..., p are parameters of
the BAR model and Ber(p) represents the Bernoulli distribu-
tion with parameter p. Additionally, {W;(k+1) ~ Ber(,owi.)}'?=1
are independent noise random variables, also independent of
X(#) for any t < k+1, where pw; € [Pmin, Pmax] for all i € [p]
with 0 < Pmin < Pmax < 1. Moreover, the initial distribution
is Px(p), i.e., X(0) ~ Px(q)- The interpretation here is that the

entries of X(k + 1) are conditionally independent Bernoulli
random variables given X(k).

To ensure that the Bernoulli random variables in (1) are
well-defined, we require that

P
Za;j+b,-:], Vi € [p. 2)
j=l1

Remark: This can be relaxed to Z"?:] ajj + b; = B;, where
Bi € (0,11, Vi € [pl.

For persistent excitation, we further assume that b; >
bmin, ¥Yi € [p], where b,,;, € (0, 1) is a constant. Notice that if
b; =0 for all i € [p], the BAR Markov chain will get absorbed
in 0, or 1, upon visiting the state 0, or 1,, respectively.

Furthermore, we assume that a; encodes a part of the graph
structure through the equivalence

(G.)eé < a; >0, Vijelpl, (3)

where the ordered pair (j, /) denotes a directed edge from node
Jj to node i. The notion of positive correlations in (1) relies on
the fact that a; > 0 increases the probability of the event
{Xi(k + 1) = 1} when Xj(k) = 1. A more general form of
the BAR model with both positive and negative correlations
is introduced in Section V.

We now let A = [ai, a2, ...,ap]T, i.e., af corresponds
to the r-th row of A, b = [by, by, ...,b ), W =
[Wi, Wa, ..., W,]" and py = [pwi. Puys --- - P, ]"- We note

that {X(k)}i>0 is an irreducible and aperiodic Markov chain
with finite state space {0, 1}’. Moreover, for any vectors
u,vel0l1)

Puv = Ew[P(X(k + 1) = v|X(k) = u, W)]

P Vi
= n[a;ru + ,owi-b,'] [1 - ar-Tu — pw,-b,-]
i=1

1—w;

)

specifies the transition probability from state u to state v. We
denote by w € R? the associated stationary distribution with
component s, corresponding to the state u € {0, 1} and by
P = (puv) € RZ*? the BAR transition probability matrix.

The goal is to recover the model parameters from an
observed sequence {X(k) = x(k)}]_,. Clearly, by inferring
A, estimates of b and the underlying network structure are
direct per (2) and (3), respectively. Moreover, by the subse-
quent analysis it will become apparent that the results in this
letter can be extended to the case where Zj;l aij+b <1
for every i € [p] when the Bernoulli noise parameters p,,; are
assumed to be known.

[1l. MAXIMUM LIKELIHOOD ESTIMATION

In this section, we consider recovering the BAR model
parameters via ML estimation and we establish the strong
consistency of the ML estimator. Suppose that {x(k)}}c;ﬂ is
a sequence of observations generated by the BAR model (1).
Let 6 = (A, b, p,;) with the implicit relationship b = 1,—Al,.
Clearly, b is a redundant parameter, but it is preserved here
to facilitate the subsequent analysis. From (4) the rescaled
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log-likelihood function is given by
T-1

1
Ly(6) = ZlogP(x(k+ DIx(k); 9)+—longm}(x(0) 0)

- —ZZ[x,(k—l— l)log(a x(k)—l—,owb)

k=0 i=1
+ (1 —xi(k + 1)) log(l —a; x(k) —PWf”f)]

1
+ log Px0)(x(0); 6), )

Henceforth we assume that Py is independent of the
model parameters. For this reason, the term containing the
initial measure in (5) and in any subsequent log-likelihood
function in the rest of the letter will be omitted. Such functions
will still be called log-likelihood functions.

For any states u, v € {0, 1}?, we denote by N,y the number
of one-step transitions from state u to state v in the observed
sequence and we let N, = ) N,y be the amount of time
spent in state u over a horizon of T time steps. Then (5) can
be also written as

Z Nl.l\'

Lr(®) = (6)

Remark: The likelihood function in (6) is concave if p,, is
assumed known. A natural assumption for this value could
be p, = (1/2)1,. However, we do not make such an
assumption here, in which case the likelihood function is no
longer concave, in general. In numerical results shown in the
longer version of the paper [30], we use standard numerical
algorithms available in most software packages to find the
maximum of the likelihood function.

Let 6p € ® be the true parameter tuple (A, b, p,), where

r
o={@b,00|Ya+bi=1, a=0vijepl,
j=1

bi > bynin, and Py, € [Omins Pmaxl, Vi € [p]]

is a compact set. An application of the Ergodic Theorem [31]
for Markov chains reveals that

Lr(60) ———> D TuPuv(60) log puv(60).

which is the negative of the entropy rate of the corresponding
BAR chain with parameter tuple 6y and is always finite since
the BAR model has a finite state space.

The ML estimator éj" of 6y satisfies

fr € argmax T - L7(f) = argmax L7(6). 7
=G E=c

In the rest of this section, we will show the strong consistency

of Or, that is,

o~ a.s.
Or —— 6.
T—oo

The proof is provided in Theorem 1 in the following by
verifying that the conditions of in [29, Th. 2.1] for general
discrete-time Markov chains hold for our BAR model and
by combining these conditions with a proper and complete

self—contained derivation. To summarize, we first prove that
P{GT) P(6p). To establish strong consistency, we then
—00

show that the vector-valued mapping p : © — R?” defined
as p(@) = vec(P(0)) is injective, i.e.,

0 #£60" = pO) #p@). (8)

Here, vec(-) denotes the vectorization of a matrix. Finally,
we complete the proof by leveraging the compactness of the
parameter set @ and the continuity of the components of
p(8) = vec(P(6)) or equivalently, of the transition probabili-
ties with respect to the model parameters.

Remark: In the following, we say that the BAR model is
identifiable when (8) holds.

Theorem 1: The ML estimator é;r of 8, defined in (7), for
the BAR model in (1) is strongly consistent.

Proof: We present the proof in three parts.

Part I: We first show that P(QT) T—> P(6p). The proof is a

simplified, self-contained version of the proof of [29, Th. 2.1].

For each u ¢ {0, 1})?, we define the (row) vector Q, =
(Nuy/No)vepo,1p € R? with the convention Q, = 2771),
for Ny = 0 and we let Py = (Pyy)vepo.1pp € R? denote
the transition distribution out of state u, which is also a
row vector in the transition matrix P. In particular, it is
well-known that the set {Qu}ucio,1}r is the ML estimator of
the transition matrix P, assuming no further parameterization
of the transition probabilities. By the non-negativity of the
Kullback—Leibler divergence, we have

_ZN_ul og 2

V0,0 € O,

Puv (9:r)

Dk (Qu Nav/Na

Pu(0r)) =
or equivalently,

Z Nuv 1 Nuv
og
Nu Nu

v

Nyy a
>y e logPu @n).

Multiply both sides of the above inequality by %’! and sum

over u to obtain
Z Nl.l\" 0 NllV :‘_ E
my

where the last inequality is due to (6) and the definition of the
ML estimator. From (9), we can further obtain

Nl.l\'
> Y~ 1ogpuy(®) (9)

wy

Nuv puv(é\T) Nuv pu‘(gﬂ)
0 1 1 . (10
=L ey 2 L e (0
By the Ergodic Theorem for Markov chains,
NI.I\'
UZ; T (11)
and also
ZN“" log Juv _as., Y 7u(B0)puy(60) 1og puy(60). (12)
T ¢ Ny T—oo 4= u(®0)Puv 8Puv®0):

uwv

By (11) and (12) we have that

Nl.l\-' uv a.s.
Z S log Puv(60)

— 0.
u‘v Nyw/Ny T—oo
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This together with (10) yields

Z%log

u,v

Puv (Q\T) as. 0
Nav/Na T—o0

(13)

Employing Pinsker’s inequality [32] and the fact that the total
variation distance between two discrete measures g, r with vec-
tor forms q, r, respectively, is ||g —r|Tv = (1/2)|lq —r]|1, we
have that for each u € {0, 1}

~ 2 1 ~ 2
w—Pulp)| > . |@u—Puén]

>Dxe (Qu|[Put@) >

Multiplying again by %r! and summing over u gives

Nuv uv é Nl.l A Nll" ?
2y et iog 20D 3 B (il - ) 0. 19)

Nl.l\'!‘erl
Now employing again the Ergodic Theorem for Markov
chains, i.e., Ny/T —> Ty > 0,Yu e {0,1}", and

combining (13) and (14) ylelds

(6 )—ﬁ 2250, Y, v) e (0, 1))?
PuvPT Ny | 7o s . .

We then end up with

Pur@r) — pun@)| 2 0, V(W) € (0, 17)2.

Part II (Proof of Identifiability): We reparameterize the BAR
model as # = (A, ¢) with ¢ = diag(b)p,,. Clearly, there is a
one-to-one correspondence between a given set of parameters
(A, c) and (A, b, p,,) via the relations b = 1, —Al, and p,, =
(diag(1, — A1,))~'c, where (-)~! denotes matrix inversion.
Suppose that two different sets of parameters 8 = (A, ¢) and
8’ = (A’, ) lead to the same transition probability matrix, i.e.,
P(9) = P(0’) or equivalently, p(8) = p(8’). First, consider the
case of ¢ # /. The following argument is valid for both the
cases of A = A’ and A # A’. Without loss of generality,
assume that c¢; # c"l Let u = 0 and v be some vector in
{0, 1}? with v = 0. Since puv(P) = puy(P’) and c;, c; # 0
Vi, (4) implies that

P i vi 1—c 1—v;
1—c’1:(1—c1)]_[(—*) ( *) :
i \Ci 1-q

Consider now the transition probability from u = 0 to v/,
where v| = 1 and vj’ =vj forj=2,...,p. Since pyv(¥) =

pu‘,;(Q’),
_ 1—v;
C] —c ]—[(Cr) (l Cr) )

Combining (15) and (16), it is easy to see that ¢; = ¢}, which
is a contradiction. Thus, ¢ # ¢ = P@) # P@) or
equivalently, p(@) # p(0").

Now we consider the second case where ¢ = ¢ and
A # A’. Without loss of generality, let aj; # a);. Consider
u’ = e, 1 and the same v, v’ as before. By our assumption that
Puv(®) = puy (@) and pyy(0) = pyy(8”), the contradiction
ayy = aj, arises. Thus, c = ¢/, A # A’ = P(9) # P(@’) or
equivalently, p(8) # p(8').

(15)

(16)

Finally, it is easy to see that ¢ = ¢/ and A = A’ imply that
b = b’ and p, = p), due to the aforementioned one-to-one
correspondence between (A, ¢) and (A, b, py,).

Part III (Completing the Proof): Let Q be a set of sample
paths such that P(Q;r) converges to P(6p). Suppose Sr does
not converge to #p on one of these sample paths. Since {97}
lies in a compact set, there exists a subsequence {f7,} that
converges. By the continuity of pyy Yu, v, lim,_, o0 Puv (ér,,) =
Puy(lim,,_, oo éyn). Since this limit is equal to pyy(6p), and from
the identifiability result in Part II, we can conclude that @n
converges to 6p. Since this argument applies to every conver-
gent subsequence of {é;r} and ® is a compact set, the original
sequence also converges to 6p. |

IV. A CLOSED-FORM ESTIMATOR

In this section, we provide a closed-form estimator for the
BAR model parameters in (1), i.e., for (A, ¢ = diag(b)pw);
from an estimate for (A, c¢) we can recover an estimate for
(b, pw). Considering the log-likelihood function for 8 =
(A, ), we have

T-1
= 2 2 E I(x(k) = u, x(k + 1) = v) log puy(9)

k=0 u v

-1
= EZEH{x(k} =u, xtk+1)=v)
k=0 u v

P
X Z[v, logP(vy = 1|u) + (1 — v;) log P(v, = 0|u)].

a7

Observe that P(v, = 1|u) and P(v, = O|u) are independent
of v. We can therefore define ¥, ,1 = P((-), = [u), for
[ € {0, 1}. Furthermore, we define Ny ,; = ZT_] I(x(k) =
u, x.(k + 1) = D, which is the number of times the BAR
chain transitions from state u to a state with r-th entry equal
to [. Moreover, Ny 0 + Nuri1 =Ny = ), Nyv. Vu € {0, 1}7
and r € [p]. Suppose that there are m dlstinct states uyp,
up,..., u, in the subsequence {x(k)} of the observed
sequence {x(k)}k _o- Define Uy, = [u1, .. um]T e R™*P and
ym,r—[Nuhr,lf‘Nuls--- umrlf‘N ]

L®)

Now for i € [p], define ¢&; = Zk —o I(x(k) = 0,, xi(k+1) =
1)/ Z ]I(x(k) = 0,) as an estimator of the entry ¢; when
the state 0 is visited at least once in {x(k)} =0 or let ¢ =yl1,

for some y € [DminPmin, Pmax] Otherwise by convention.
Let us rewrite the log-likelihood function in (17) as

p
= Z Z(Nu,r.o log ?y,r,0 + Nu,r,110g 19“",1)'

u r=1

¥ =L®)

Instead of maximizing this function with respect to 8§ =
(A, c), we maximize it with respect to the choice of the
marginal conditional probabilities {?y .0, Pu,r,1}u,r- Consider
the constrained ML estimation problem

max <
{ﬂu,r,ﬂz(}‘ au,r, 1 Zolu,r

s.L. 19u,r,(l +19u,r,] =1, Vue {0, ”P, Vre [P]
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Forming the Lagrangian and setting the gradient (with respect
to {0, Pu.r.1}u,r) to zero, we obtain

3 . Nu,r,i
uri — N 3

u

Yu e {0, 1}?, Vr € [p], Vi € {0, 1}.

Recall that &, , 1 is defined as the probability of transitioning
from state u to some state with r-th component equal to 1.
We can therefore require that

c o= [a+e (18)
N ,r,1 T
[N ] Lon
Un

or Vmr — &l = Upa,. (19)

Note that (18) is reminiscent of the invariance property for
IYIL estimation [27]. Then, whenever U, is full-column rank,
A is an estimator of A, where

~ T -1 T ~
a, = (UTUn) UL (¥mr — & 1), Vrelpl

Finally, a valid estimate of the parameter tuple for any T > 1
is

PR - - -1 +
b= [(A, b =1, — A1y, = (diag(1, — A1) c)] . (20)

where [ - 17 corresponds to a projection onto the parameter
set ©.

Theorem 2: The estimator in (20) is strongly consistent.

Proof: 1t is sufficient to show that (A, ¢) is strongly con-
sistent. Since the BAR chain is finite-state, the stationary
probabilities satisfy m, > 0,Vu e {0, 1}F. Moreover, for
any initial measure, the Ergodic Theorem for Markov chains
implies that

o Y " s,. This further implies that U, ———> Uy
T—oo T—oo
. T oT T
in the sense that [U,, 0,,_ mxp] ﬁng
o Morl 22, p((), = 1u),Yu e {0,1),Vr e
u T—soo
[p] or equivalently, N‘;\‘,"] s uTa, + ¢, Vu €

T—oo

{0, 1}7, Vr € [p]. This implies that y,, , T—> [P(()r =

1/u)]ueqo,1)p, ¥r € [pl, which is a 27 x 1 column vec-

tor, in the sense that [y, 0J,_ 1T Ta—> [P(()r =
’ — 00

L|u)luepo,1)7, ¥r € [p]. As a consequence, ¢ s
—00
Combining these observations with (19) we obtain

Jim Uy 0yl 4 = Jim Uyd, = Uya, as.

and the strong consistency of the closed-form estimator in (20)
follows if Ugp is full-column rank or equivalently if UT Uy is
nonsingular. It is easy to see that UT Uy has dlagonal entries
equal to 27— and off-diagonal entrles equal to 27~2. Thus, we
can write U}, Uy = 27~21,1] +27=2I,,. This matrix is invert-
ible for every p < oo, since 1 +2P=21] (2P 721,)~'1, = 1+
p>0 as the condition in the Sherman—Morrison formula [33]
dictates.

Remark: The closed-form estimator in (20) is obtained from
the ML estimators of the marginal probabilities #, ,; under

appropriate conditions and a projection operation. These fea-
tures lead to a consistency proof different from the key ideas
in the proof of Theorem 1.

V. THE GENERIC BAR MODEL

Motivated by modeling positive and negative influences
from parental nodes, an extension of the BAR model in (1)
has been introduced in [23]. We first reformulate this generic
BAR model.

Denote by .% = .%,7U.# the parental set of node i, where
SN~ = 0. The nodes in .%;" and .%, are said to have
positive and negative influence on i, respectively. The generic

BAR model, parameterized by 6 = (A, A, b, p,,), is defined as
Xitk+1) ~ Ber( TX(k) + a7 (1 — X(k)) + bWk + 1)) @1

for all i € [p], where a and & are the i-th rows of A € RP*P
and A € RP*P, respectlvely. Furthermore, we assume that
5‘;+ = supp(a;) and .%;~ = supp(a;). Here, supp(-) denotes
the support of a vector. As in the previous case, the constraints
Z;;l (@jj+a;j)+b; = 1,Vi e [p] are also required in this case.
Similarly, we assume that a;;, a;; > 0, Vi, j € [pl, b > by, and
Pwi € [Pmin: Pmax], Yi € [p]. Therefore, the parameter set is
defined as

P
=1
Pwi € [Pmins Pmax], Vi € [p], and a;;, @; = 0,
a;a; =0, Vi, j € [p] ] .

Remark: The parameter set O is compact. A brief justifica-
tion of this is provided in [30].

The ML estimator is a maximizer of the rescaled log-
likelihood function, that is,

é;r € arg max ﬂr(g),
fel

where
T 1 p

Lr@) = Z 3 [x,(k +1) log(a x(k) + a; (1 = x(b) + pusb, )
.f( 0 i=1

+ (1 —xitk+ 1) log (1 — a7 x(0) — & (1 —x(0) — puiby) |

The ML estimator for the generic BAR model can be shown
to be strongly consistent via a direct extension of the analy-
sis in Section III. More precisely, it is sufficient to establish
identifiability.

Theorem 3: For the generic BAR model in (21), ] #
9 = P@H) £P@H).VH,0)cO® x 6O with § £ 6.

The key idea of the proof is similar to the identifiability
proof in Theorem 1. For this reason, the complete proof is
presented in [30].

We can also derive a closed-form estimator for the generic
BAR model by first rewriting P(X;(k + 1) = 1|X(k)) as

PXi(k + 1) = 1|X(k) = x(k)) = (a; — &) x(k) +3; 1 + bipy,
=a; x(k) +¢;.
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Here, a; = a;—a; and ¢; = ég—l—l—b,-,owi. for i € [p]. We further
note that due to the nonoverlapping supports of a; and a; for
every i € [p], the vector a; contains the entries of a; and the
entries of a; with flipped signs, each at a different location.

Similarly, we can reparameterize the generic BAR model as
6 = (A,¢), where A = [ay,...,a,] and ¢ = [¢1, ..., pl .
With the same defintions on U, and y,, as before, an
extension of the estimator in (20) can be obtained.

First, Vi € [pl, define & = Y 10 I(x(k) = 0p, x;(k + 1) =
1)/ ZL‘C} I(x(k) = 0,) as an estimator of the entry ¢; when
the state 0, is visited at least once in {x(k)}{;[} orlet ¢ = vl
for some y € [DypinPmin: 1 — Omin + PminPmax] Otherwise by
convention. Then we claim that whenever U,, is full-column
rank, A is an estimator of A, where

- -1 -
a, = (U],,'Um) u’l (ym‘, - 1,,,), vr e [p).

Note that A and A can be separated based on the signs of the
entries in A. Moreover, b = 1, — (A + A)1,, ¢ = ¢ — Al,
and p, = (diag(b))~'¢. Finally, & = [(A, A, b, p,)]* is a
valid estimate of the parameter tuple for any T > 1, where
[-17 corresponds to a projection onto the parameter set © by

preserving the supports of A and A.

The derivation of this closed-form estimator and the proof
of its strong consistency are straightforward based on the
derivation of (20) and the proof of Theorem 2, respectively.

V1. CONCLUSION

In this letter, we studied the problem of estimating the
parameters of a class of Markov chains called BAR mod-
els. ML estimation for BAR chains was shown to be strongly
consistent. Strong consistency was also established for cer-
tain closed-form estimators of the parameters of these BAR
models.
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