Statistics and Probability Letters 173 (2021) 109071

Contents lists available at ScienceDirect

STATISTICS &
PROBABILITY
ETTERS

Statistics and Probability Letters

journal homepage: www.elsevier.com/locate/stapro

On concentration inequalities for vector-valued Lipschitz )

Check for

functions

Dimitrios Katselis **, Xiaotian Xie ", Carolyn L. Beck®, R. Srikant

2 ECE Department, University of Illinois at Urbana-Champaign, USA
b ISE Department and Coordinated Science Lab, University of Illinois at Urbana-Champaign, USA
¢ ECE Department and Coordinated Science Lab, University of Illinois at Urbana-Champaign, USA

ARTICLE INFO ABSTRACT

Article history: We derive two upper bounds for the probability of deviation of a vector-valued Lipschitz
Rece@ved }4July 2020 function of a collection of random variables from its expected value. The resulting upper
Received in revised form 11 February 2021 bounds can be tighter than bounds obtained by a direct application of a classical theorem

Accepted 17 February 2021

Available online 3 March 2021 due to Bobkov and Gotze.

© 2021 Elsevier B.V. All rights reserved.

MSC:
00-01
99-00

Keywords:

Theorem of Bobkov and Gotze
Concentration

Markov chain

Transportation cost inequality

1. Introduction

In many statistical settings, vector-valued estimators naturally arise and determining their statistical rates is essential.

As an example, assume that X = (Xi,...,X,) corresponds to a random sample drawn from a product measure vgz’”,
denoted by X ~ v(_;@”, where 6 is a parameter vector taking values in a compact set ® C R¥ with a fixed dimension
k independent of n. In this case, 6, = f(X) is a candidate vector-valued estimator of 6, where f is a measurable

function with respect to X. In such settings, we are interested in knowing how close f(X) is to its expectation E, [f(X)].
Concentration inequalities for f(X) when the deviation from E, [f(X)] is measured in terms of a metric, often norm-induced,
are important.

The derivation of concentration bounds relies on imposing smoothness conditions on f, which guarantee that f is not
very sensitive to any particular coordinate variable (Boucheron et al., 2013; Raginsky and Sason, 2014; Van Handel, 2016).
This sensitivity is quantified either locally via gradients or globally via Lipschitz properties of f. Marton introduced the
transportation method to establish concentration of measure for product measures and Markov chains (Marton, 1986, 1996)
by showing that transportation cost inequalities can be used to deduce concentration. In Bobkov and Gétze (1999), Bobkov
and Gotze extended Marton’s argument into an equivalence by showing that Wasserstein distances and relative entropies
are comparable only when the moment-generating functions of real-valued Lipschitz functions defined with respect to the
underlying metric can be controlled and vice versa. The connection between moment-generating functions and the two
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aforementioned indices of closeness of probability measures is established via the Gibbs variational principle (Van Handel,
2016, Lemma 4.10), (Dembo and Zeitouni, 1998) or alternatively, via the Donsker-Varadhan lemma (Rezakhanlou, 2015).

A key example in showing the connection between concentration of measure and Lipschitz functions is McDiarmid’s or
bounded-difference inequality (McDiarmid, 1997), traditionally viewed as a result of the martingale approach in establishing
concentration (Boucheron et al.,, 2013; Raginsky and Sason, 2014; Van Handel, 2016). Let each X; take values in a
measurable space X; and equip the product space X = X; x - x X, with the weighted Hamming metric d.(x,y) =
Z?=1 cil{x; # y;i}, where x = (x1,...,%,),¥ = (J1,--.,¥n) € X. For X € X with independent entries, f(X) is a sub-
Gaussian random variable with parameter 0% = Z}; cl.z/4 for every f : X — R which is 1-Lipschitz with respect to d. by
McDiarmid’s inequality. Motivated by this example, a question of interest is for which measures v on a metric space (X, d)
such that X ~ v, the random variable f(X) is o?-sub-Gaussian for every real-valued 1-Lipschitz function f : X — R. The
answer to this question is given by the aforementioned theorem of Bobkov and Goétze (1999). In this paper, we focus on
Lipschitz mappings f : X — Y between metric spaces (X, dx) and (Y, dy), where Y € R¥ and dy is any £p-metric forp > 1.
In the spirit of Marton (1986, 1996), Bobkov and Gotze (1999), we prove a concentration inequality when a transportation
cost inequality can be shown to hold. We then provide a simple stationary measure estimation example for Markov chains
demonstrating that the derived inequality gives better results than directly applying the theorem of Bobkov and Gotze or
by combining the aforementioned theorem with Boole’s inequality. An interesting observation regarding the role of the
particular £,-norm is also highlighted via this example.

2. Preliminaries and main result

Let (X, dx) be a Polish space and p be a (Borel) probability measure on (X, dx). The triplet (X, dx, p) defines a metric
probability space in the sense of Gromov (Raginsky and Sason, 2014, p. 103), (Gromov, 2007). Given two metric spaces
(X, dx) and (Y, dy), let f : X — Y be a Lipschitz mapping with Lipschitz constant ||f ||ip, i.e., dy(f(x), f(X)) < IIf lLipdx(x, X),
Vx, x € X. In the following, the set of all such mappings will be denoted by Lip(X, Y, dx, dy). Moreover, let P;(X) denote
the set of all probability measures p on X such that E,[dx(X, Xo)] < oo holds for an arbitrary (and therefore for all) xo € X.
The L' Wasserstein distance between p, p € P1(X) is defined as

Wi(p, p)= inf E[dx(X,X)] = inf f dx(x, %)y (dx, dX). (1)
XxX

X~p.X~p y€l(p,p)

The infimum in the first part is taken over all jointly distributed pairs (X, X) on the product space X = X x X with
marginals p, p, respectively. In the last part, I7(p, o) denotes the set of all possible couplings of p, p. An optimal coupling
y* € II(p, p) achieving the infimum exists (Raginsky and Sason, 2014, p. 109), (Villani, 2008, Ch. 6). Additionally, a
different measure gauging the dissimilarity between two probability measures p, p is the relative entropy or Kullback-
Leibler divergence D(p || p) = E; [log Z—Z] =E, [Z—ﬁ log xffor p < pand D(p || p) = oo otherwise, where dp/dp is the
Radon-Nikodym derivative of p with respect to p and p < p denotes that p is absolutely continuous with respect to p.

The following theorem provides a concentration inequality for f(X) when the deviation from E, [f(X)] is measured in
terms of the ¢,-metric.

Theorem 1. Let (X, dx) and (Y, dv) be two Polish spaces, where Y C R¥ and dy(y, §) = |ly—¥ |2 with ||-||2 being the Euclidean
norm. Let X be a random variable taking values in X and assume that X ~ v, where v is a probability measure on (X, dx).
Then, the inequality W1(w, v) < /202D(u || v), Vi implies that Ve > 0, Ve € (0, 1] and for any f € Lip(X, Y, dx, || - |I2)
such that ||E,[f]llc < 00,

62(1—5)2 2

k
2 - kT
PULFOX) — EF(O]]> > €) < min <1+7> e Uy b “WIE, | )
&

The proof of this theorem is provided in Section 3. This result can be straightforwardly extended to any £,-metric for
p > 1,p # 2. Define

_ ly = Eu[f (X1l
T, = Sup ———————. (3)
yere Iy — EufF (XDl
Here, y is assumed different from E,[f(X)] if E,[f(X)] € f(X), since for y = E,[f(X)] (if E,[f(X)] € f(X)) the inequality
ly = E,lf X)1llp < tplly — Eu[f(X)]ll2 trivially holds for any 7, > 0. Then, (2) can be replaced by

62(1*5)2 2

k
INE - :
PUCO) = BN, = €) < min (1+;> e Wity 2be Iy 4)

due to {[If(X) — E,[f(X)]ll, = €} S {IIf(X) — E,[f(X)]ll2 = €/7p} by (3).
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3. Proof of Theorem 1 and Additional Results

Proof of the first bound in (2). The proof of the first bound relies on covering arguments; see Vershynin (2018),
Wainwright (2019), Lattimore and Szepesvari (2020) and references therein for results based on such arguments. For
some ¢ in the interval (0, 1], let A/(¢) be an e-net of the unit Euclidean sphere S¥~! in R¥ with cardinality [N (g)| <
(1+ f)k (Vershynin, 2018, Corollary 4.2.13). Additionally, by Exercise 4.4.2 in Vershynin (2018),

IfF(X) = E,[f(X)1ll2 = sup (w, f(X) = E[f(X)]) as. (5)

1—¢ wen(e)
By (5) and by Boole’s inequality (union bound) we have that
P(If(X) = E,[f (X)1ll2 = €) < P( sup (w, f(X) — E,[f(X)]) = €(1 —8))
weN(g)

< D P(w.fX) = EIfX)]) = e(1—¢))

weN ()
< |N(8)] ;ng e he(1= S)Ev [e)»(uu,f(x)*Eu[f(X)D] , (6)

where the last inequality follows from the Chernoff bound (Raginsky and Sason, 2014, p. 14) and
w, = arg max P ((w, f(X) — E,[f(X)]) > €(1 —¢)).
weN(¢)
We now note that the function (w., f(x)—E,[f(X)]) is |If lLi;-Lipschitz by the Cauchy—Schwarz inequality and (w., f(X)—

E,[f(X)]) is mean zero. Assuming that W;(u, v) < +/202D(u || v), Vi holds, an application of the theorem of Bobkov and
Gotze implies that

222111,

PUF(X) = Ef(X)]ll2 = €) < IN(e)] inf e (= =20, (7)
The exponent in the right-hand side of (7) is minimized for A, = ;ﬁf”‘g) > 0 leading to
Lip
_ 52(1—8)2
2 2
PUIFCO) = EIF OOl = €) < IV (e)le ™7 Mie. 8)

By employing the bound on |NV(¢)| the desired result follows.

Proof of the second bound in (2). Using a similar argument as in Hsu et al. (2012, Theorem 2.1), let Z ~ N(0, I;) be

llgl3
a standard Gaussian random vector, which is independent of X. Recall that E[e%?] = ez ,Vq € R¥. For any A € R we

note that
E[ uz.f(X)—EuLfD]
E [@I00-BAD| (X [f(x)]||2 > €] PUIF(X) — EIFX)ll2 = €) =
[eH@SX0-E LD ]| IF(X) = ELFCONII2 = €] PAFX) = ELfF(X)Nll2 = €) =

[E
22 1F) Ev[f]HZ
[6’ IF(X) = E,IfX)1ll2 = 6] P(If(X) = E[f (X)]ll2 = €) =

V

E,

222

e 2 P(If(X) — E,f(X)]llz = €)

or

PUFX) — EF (X0l = €) < e 7 E [ 0RI], ©)

We now note that the function (Z, f(x) — E,[f(X)]) is [IZ||2lf lluip-Lipschitz when Z is fixed (by the Cauchy—Schwarz

inequality) and (Z, f(X) — E,[f(X)]) is mean zero. Assuming that Wi(u, v) < +/202D(u || v), Y holds, an application
of the theorem of Bobkov and Gotze implies that

1221302171,
E [/ OBID] = E, [E, [F@/OBI]] < By e 7 |.
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Moreover, || Z||3 is a chi-squared random variable with k degrees of freedom and for such a random variable E [e‘”z ”5] =

m, t < 5. Therefore, we conclude that
32121302112,
E [euz,f(x)—fu[f])] <E |:622L9j| _ 1 o (10)
(12202 I,)
where the last equality holds for any A € R such that )»202||f||fip < 1. By combining (9) and (10) we obtain
A252
e~ 2
P(IfF(X) = ELFX)] 2 = €) < RARTII (11)
(12202 I2,) o [If lip
: _ 1
Choosing A = NEETS we conclude that
e
. k4023
P(If(X) = E,[f (X)]ll2 = €) < 22e p. O (12)

In the previous proof and more specifically in (7) and (10), the theorem of Bobkov and Gotze for the mean zero, vector-
valued function f(X) — E,[f(X)] has been applied via a real-valued function of the form (g, f(X) — E,[f(X)]) with g = w,
and g = Z, respectively. This suggests the following extension of the theorem of Bobkov and Gétze for vector-valued
Lipschitz functions:

Proposition 1 (Theorem of Bobkov and Gétze for Vector-Valued Functions). Let (X, dx) and (Y, dy) be two Polish spaces, where
Y € R¥ and dy is an £p-metric for some p > 1. Let X be a random variable taking values in X and assume that X ~ v, where
v is a probability measure on (X, dx). Then, the following statements are equivalent:

1. Wiu, v) < /202D(u || v), Ve
2. f(X) — E,[f(X)], for every function f € Lip(X,Y,dx, dy) such that ||E,[f]llcc < 00, iS a sub-Gaussian vector with
02||h||§||f||fip-sub—Gaussian one-dimensional marginals (h, f(X) — E,[f(X)]), ie.,
22 n1Go2 171,
E, [e“h’f(x)_EVWXm] <e ) ,Vh e R* Vo € R. (13)

Here, || - |Iq corresponds to the dual norm of || - ||.

The direction “1. implies 2.” can be obtained by the theorem of Bobkov and Gotze for the real-valued function
(h, f(x)—E,[f(X)]) by invoking Hélder’s inequality to show that the corresponding Lipschitz constant is at most [[hl|qlIf [|Lip.
The direction “2. implies 1.” is a direct consequence of the theorem of Bobkov and Gétze by choosing f to have only one
nonzero coordinate, e.g., f = fe; and h = ey. Here, f : X — R is any real-valued ||f||uip-Lipschitz function and e, is the
first element of the canonical basis in R,

4. Example
Consider a sample Xo.,_1 = {Xo,X1,...,Xs_1} of size n drawn from an ergodic, discrete-time, finite-state Markov
chain (Xi)k=0 with state space E = [K] = {1, 2, ..., K}, transition matrix P = [P;] and X, ~ o, where ¢ denotes the

initial measure of the chain. We denote such a Markov chain by (P, ¢) and the corresponding stationary chain by (P, 7),
where 7 is the underlying invariant measure. Let the chain be r-contractive with Dobrushin coefficient r < 1. Consider
the natural plug-in estimators for the stationary probabilities:

|
-

1 n
7i(Xom—1) = - 1(X = i).
0

=
Il

By the Ergodic Theorem for Markov chains (Brémaud, 2013), 7#; — m;, Vi € E with probability 1 as n — oo for any initial
measure Q.
The distance of (P, o) from stationarity can be quantified by the (nonstationarity) index (Paulin, 2015, p. 11)

2 . 2
I [(35) } = ZE[ Q:()i)] ’ (14)

where the first equality corresponds to the general definition of the index for ¢ <« 7 and the second equality is the
specialization of this definition to our setting. Furthermore, 1 < |l¢/7 ||, , < oo and | - [l2,» is the norm induced by the
inner product (f,g), = Y ;. f(i)g(i)x(i) in £2(m) (Levin and Peres, 2017). Due to ergodicity, min;eg (i) > 0 and also
lo/mlly, < 1/4/minieg 7(i). Additionally, |lo/m|l,, = 1for ¢ = 7 and |l¢/7|l,, = oo if ¢ is not absolutely continuous
with respect to 7.
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The index in (14) is useful in our context due to the following theorem (Paulin, 2015, Proposition 3.10):

Theorem 2. Let Xy.,_1 be a sample drawn from a time-homogeneous Markov chain (P, o) with state space E and stationary
measure 7. Then for any measurable function g : E" — R and Ve > 0,

P (gea1)z ) = | 2] V/Pr(glou) = €)

where P, is the law of (P, o) and Py is the law of (P, ).

Our goal is to bound P,(||# — 7|l, > €) = P,(||l# — Ex[#]ll, > €) for p > 1. To tackle the problem within the
transportation method framework, we will use the following theorem due to Marton (Marton, 1996, Proposition 1)
adapted to our setting:

Theorem 3. Consider a Markov chain (Xi)k>o with a finite state space X, transition matrix P = [P;] and Dobrushin coefficient
r < 1. For Xg.n—1, Xo.n—1 € X" let dy xn(Xo:n—1, Xo:n—1) = Zz;é 1(xx # Xi). Then,

1/2
D( || v)} ,

where v = P, is the measure on (X = X", dx = aw{n) due to the Markov chain starting at some arbitrary initial measure o
and p is any measure on (X, dx).

n
Wi (u, v) < [m

We now compare different approaches for bounding P, (|| —7 ||, > €) and show that the bound obtained in Theorem 1
gives better results than other, more direct applications of the theorem of Bobkov and Gotze.

Approach 1: Direct application of the theorem of Bobkov and Gotze. Let f(x) = f(Xo.n—1) = |7 (Xo:n—1) — 7 ||. Assume
that x = xp.,_1 and X = Xp.,_1 are two realizations of the random sequence Xy.,_1, which differ at a single element. By
employing the reverse triangle inequality for the £,-norm we obtain

[F(x) = FR)] < 1% (Xon-1) — 7 (Ron—1)lp
V2 Y2 U2

— = —dj g (Xo:n— 1, Xon—1) = —
n n n

._;

=

Il(Xk ;ﬁ;(k) (15)
0

=
Il

Clearly, (15) implies that ||f ||, = \”fZ/n for any Xg.,—1, Xo.n—1 (nOt necessarily different at a single element). This can be
easily seen by expressing 7 (xp.,_1) = (1/n) Z;(]) Zf< 1 L(x, = i)e;, where {eq, ..., ex} is the canonical basis in RX.

Consider the stationary chain (P, r). An application of the theorem of Bobkov and Gétze (one-sided version) combined
with Theorem 3 gives

~ N _o1=2/p 2012
Pn(||7T(X0:n71)_7T”p ZET[[”T[(XOIH*‘I)_JTHP]—’_E)fe 275 Pnes (1) , Ye>0
or equivalently, Ve > E;[||7(Xo:m—1) — 7 llp],

Pr(lA(Xomor) = llp = €) < @72/ e ErlliGon1)mlp)) (1-r),

Theorem 2 now implies that Ve > E[[|7(Xo:n—1) — 7 lIp],

Pl (Xon1) =l 2 €) < | 2] e Pnletalitann-mip) -7, (16)

Finally, for any 8 € (0, 1) and any € > E,[[7(Xo:n—1) — 7 Ip], Po(I7 (Xo:n—1) — 7w llp = €) < & for any n such that

Q
2% log ( ||,,6||2,ﬂ)
n>

T (e — ExllA(Xon1) — wllp])” (1 = 12

(17)

Approach 2: A union bound approach
We may try to eliminate the problem of € being bounded away from zero by using the observation that any £,-norm
is separable in the corresponding coordinates. We have

Pr(ll = 7llp > €) <Z|m —milf > ep> < ZP (w%i — E[l] = }K) ,

where the union bound and the fact that 7; are unbiased estimators Vi have been used. In this case f(x) = f(xgn_1) =
7i(Xo.n_1), therefore

- 1- - -
[f(x) = f(X) < Edl,]E”(XO:n—l’XO:n—l)’ VX0:n—1, Xon—1 € E".

5
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By combining the theorem of Bobkov and Gétze with Theorems 2 and 3 we obtain:

Po(l#(Xon-1) = 7llp = €) < V2K | &| e nior?, (18)

e
2,

Finally, for any § € (0, 1) and any € > 0, P,(||7(Xo:n—1) — 7|l > €) < é for any n such that

I
I{IZ’ lOg (m”; ||2,7r)

n> 21 =1 . (19)

Approach 3: Application of Theorem 1

For simplicity, we will work with the first bound in (2). Note that by working with both bounds in (2) we can only
obtain an improvement of the derived sample complexity.

We observe that by the usual norm equivalence constants, the definition of , in (3) and the hierarchy of £,-norms
in R¥ we have that t; < vk, 1, = 1, 7, < 1forany p > 2 and 7, < 7, for p; > p,. By Theorems 1-3 we obtain that

Ve > 0 and Ve € (0, 1],
K 2 2 2
o\ 5 —na—er-n
i (1 + 8) e W . (20)
T

Therefore, for any § € (0, 1), any € > 0 and any ¢ € (0, 1], Po(|7(Xo:n—1) — 7|l > €) < & for any n such that

212 K 2 0 1
= e e 12 22 (1 2) wes ([ 2],) +res (5) ] Y

Sample Complexity Comparisons

We first note that |lo/7 |, , < 1/+/Minicg (i) and often min;cg 77 (i) < 1/K™ for some m > 1. For a rough complexity
comparison between (17) and (21) consider for simplicity the special case of i.i.d. random variables and p = 1. In this
setting, we correspondingly work with P, (-) only (only P, (-) is meaningful). It turns out that E, [||7 —||1] < K/+/n. Then,
(17) and (21) are orderwise the same, but without the problem of ¢ being bounded away from zero in (21). Further, (21)
is better by a logarithmic in K factor over (19) for p € {1, 2}. For chains such that min;cg 7(i) =< 1/€X, (21) is better by
a K factor over (19) for p € {1, 2}. We also note that depending on the geometry of f(X), f and v, T, may or may not
have a favorable value for a particular p. More specifically, it might be possible that the last approach is orderwise better
than the union bound approach for some choices of p, primarily for p € {1, 2}, while it is worse for other values of p,
depending on the particular problem at hand.

~ o
%Wﬂ%wﬂ—ﬂMZOSH;
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