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1. Introduction

In many statistical settings, vector-valued estimators naturally arise and determining their statistical rates is essential.
s an example, assume that X = (X1, . . . , Xn) corresponds to a random sample drawn from a product measure ν⊗n

θ ,
enoted by X ∼ ν⊗n

θ , where θ is a parameter vector taking values in a compact set Θ ⊂ Rk with a fixed dimension
independent of n. In this case, θ̂n = f (X) is a candidate vector-valued estimator of θ , where f is a measurable

unction with respect to X . In such settings, we are interested in knowing how close f (X) is to its expectation Eν[f (X)].
oncentration inequalities for f (X) when the deviation from Eν[f (X)] is measured in terms of a metric, often norm-induced,
re important.
The derivation of concentration bounds relies on imposing smoothness conditions on f , which guarantee that f is not

ery sensitive to any particular coordinate variable (Boucheron et al., 2013; Raginsky and Sason, 2014; Van Handel, 2016).
his sensitivity is quantified either locally via gradients or globally via Lipschitz properties of f . Marton introduced the
ransportation method to establish concentration of measure for product measures and Markov chains (Marton, 1986, 1996)
y showing that transportation cost inequalities can be used to deduce concentration. In Bobkov and Götze (1999), Bobkov
nd Götze extended Marton’s argument into an equivalence by showing that Wasserstein distances and relative entropies

are comparable only when the moment-generating functions of real-valued Lipschitz functions defined with respect to the
nderlying metric can be controlled and vice versa. The connection between moment-generating functions and the two
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aforementioned indices of closeness of probability measures is established via the Gibbs variational principle (Van Handel,
2016, Lemma 4.10), (Dembo and Zeitouni, 1998) or alternatively, via the Donsker–Varadhan lemma (Rezakhanlou, 2015).

A key example in showing the connection between concentration of measure and Lipschitz functions is McDiarmid’s or
ounded-difference inequality (McDiarmid, 1997), traditionally viewed as a result of the martingale approach in establishing
oncentration (Boucheron et al., 2013; Raginsky and Sason, 2014; Van Handel, 2016). Let each Xi take values in a
measurable space Xi and equip the product space X = X1 × · × Xn with the weighted Hamming metric dc(x, y) =∑n

i=1 ci1{xi ̸= yi}, where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X. For X ∈ X with independent entries, f (X) is a sub-
Gaussian random variable with parameter σ 2

=
∑n

i=1 c
2
i /4 for every f : X → R which is 1-Lipschitz with respect to dc by

McDiarmid’s inequality. Motivated by this example, a question of interest is for which measures ν on a metric space (X, d)
such that X ∼ ν, the random variable f (X) is σ 2-sub-Gaussian for every real-valued 1-Lipschitz function f : X → R. The
answer to this question is given by the aforementioned theorem of Bobkov and Götze (1999). In this paper, we focus on
Lipschitz mappings f : X → Y between metric spaces (X, dX) and (Y, dY), where Y ⊆ Rk and dY is any ℓp-metric for p ≥ 1.
In the spirit of Marton (1986, 1996), Bobkov and Götze (1999), we prove a concentration inequality when a transportation
cost inequality can be shown to hold. We then provide a simple stationary measure estimation example for Markov chains
demonstrating that the derived inequality gives better results than directly applying the theorem of Bobkov and Götze or
by combining the aforementioned theorem with Boole’s inequality. An interesting observation regarding the role of the
particular ℓp-norm is also highlighted via this example.

2. Preliminaries and main result

Let (X, dX) be a Polish space and ρ be a (Borel) probability measure on (X, dX). The triplet (X, dX, ρ) defines a metric
probability space in the sense of Gromov (Raginsky and Sason, 2014, p. 103), (Gromov, 2007). Given two metric spaces
(X, dX) and (Y, dY), let f : X → Y be a Lipschitz mapping with Lipschitz constant ∥f ∥Lip, i.e., dY(f (x), f (x̃)) ≤ ∥f ∥LipdX(x, x̃),
∀x, x̃ ∈ X. In the following, the set of all such mappings will be denoted by Lip(X,Y, dX, dY). Moreover, let P1(X) denote
the set of all probability measures ρ on X such that Eρ[dX(X, x0)] < ∞ holds for an arbitrary (and therefore for all) x0 ∈ X.
The L1 Wasserstein distance between ρ, ρ̃ ∈ P1(X) is defined as

W1(ρ, ρ̃) = inf
X∼ρ,X̃∼ρ̃

E[dX(X, X̃)] = inf
γ∈Π (ρ,ρ̃)

∫
X×X

dX(x, x̃)γ (dx, dx̃). (1)

The infimum in the first part is taken over all jointly distributed pairs (X, X̃) on the product space X2
= X × X with

marginals ρ, ρ̃, respectively. In the last part, Π (ρ, ρ̃) denotes the set of all possible couplings of ρ, ρ̃. An optimal coupling
γ ∗

∈ Π (ρ, ρ̃) achieving the infimum exists (Raginsky and Sason, 2014, p. 109), (Villani, 2008, Ch. 6). Additionally, a
different measure gauging the dissimilarity between two probability measures ρ, ρ̃ is the relative entropy or Kullback–
Leibler divergence D(ρ̃ ∥ ρ) = Eρ̃

[
log dρ̃

dρ

]
= Eρ

[
dρ̃
dρ log dρ̃

dρ

]
for ρ̃ ≪ ρ and D(ρ̃ ∥ ρ) = ∞ otherwise, where dρ̃/dρ is the

Radon–Nikodym derivative of ρ̃ with respect to ρ and ρ̃ ≪ ρ denotes that ρ̃ is absolutely continuous with respect to ρ.
The following theorem provides a concentration inequality for f (X) when the deviation from Eν[f (X)] is measured in

erms of the ℓ2-metric.

heorem 1. Let (X, dX) and (Y, dY) be two Polish spaces, where Y ⊆ Rk and dY(y, ỹ) = ∥y−ỹ∥2 with ∥·∥2 being the Euclidean
orm. Let X be a random variable taking values in X and assume that X ∼ ν, where ν is a probability measure on (X, dX).

Then, the inequality W1(µ, ν) ≤

√
2σ 2D(µ ∥ ν), ∀µ implies that ∀ϵ > 0, ∀ε ∈ (0, 1] and for any f ∈ Lip(X,Y, dX, ∥ · ∥2)

such that ∥Eν[f ]∥∞ < ∞,

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ min

⎧⎨⎩
(
1 +

2
ε

)k

e
−

ϵ2(1−ε)2

2σ2∥f ∥2Lip , 2
k
2 e

−
ϵ2

4σ2∥f ∥2Lip

⎫⎬⎭ . (2)

The proof of this theorem is provided in Section 3. This result can be straightforwardly extended to any ℓp-metric for
≥ 1, p ̸= 2. Define

τp = sup
y∈f (X)

∥y − Eν[f (X)]∥p

∥y − Eν[f (X)]∥2
. (3)

ere, y is assumed different from Eν[f (X)] if Eν[f (X)] ∈ f (X), since for y = Eν[f (X)] (if Eν[f (X)] ∈ f (X)) the inequality
y − Eν[f (X)]∥p ≤ τp∥y − Eν[f (X)]∥2 trivially holds for any τp > 0. Then, (2) can be replaced by

P(∥f (X) − Eν[f (X)]∥p ≥ ϵ) ≤ min

⎧⎨⎩
(
1 +

2
ε

)k

e
−

ϵ2(1−ε)2

2τ2p σ2∥f ∥2Lip , 2
k
2 e

−
ϵ2

4σ2τ2p ∥f ∥2Lip

⎫⎬⎭ (4)

due to {∥f (X) − E [f (X)]∥ ≥ ϵ} ⊆ {∥f (X) − E [f (X)]∥ ≥ ϵ/τ } by (3).
ν p ν 2 p

2
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3. Proof of Theorem 1 and Additional Results

Proof of the first bound in (2). The proof of the first bound relies on covering arguments; see Vershynin (2018),
Wainwright (2019), Lattimore and Szepesvári (2020) and references therein for results based on such arguments. For
some ε in the interval (0, 1], let N (ε) be an ε-net of the unit Euclidean sphere Sk−1 in Rk with cardinality |N (ε)| ≤(
1 +

2
ε

)k
(Vershynin, 2018, Corollary 4.2.13). Additionally, by Exercise 4.4.2 in Vershynin (2018),

∥f (X) − Eν[f (X)]∥2 ≤
1

1 − ε
sup

w∈N (ε)
⟨w, f (X) − Eν[f (X)]⟩ a.s. (5)

y (5) and by Boole’s inequality (union bound) we have that

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ P
(

sup
w∈N (ε)

⟨w, f (X) − Eν[f (X)]⟩ ≥ ϵ(1 − ε)
)

≤

∑
w∈N (ε)

P (⟨w, f (X) − Eν[f (X)]⟩ ≥ ϵ(1 − ε))

≤ |N (ε)| inf
λ>0

e−λϵ(1−ε)Eν

[
eλ⟨w∗,f (X)−Eν [f (X)]⟩] , (6)

here the last inequality follows from the Chernoff bound (Raginsky and Sason, 2014, p. 14) and

w∗ = arg max
w∈N (ε)

P (⟨w, f (X) − Eν[f (X)]⟩ ≥ ϵ(1 − ε)) .

e now note that the function ⟨w∗, f (x)−Eν[f (X)]⟩ is ∥f ∥Lip-Lipschitz by the Cauchy—Schwarz inequality and ⟨w∗, f (X)−
Eν[f (X)]⟩ is mean zero. Assuming that W1(µ, ν) ≤

√
2σ 2D(µ ∥ ν), ∀µ holds, an application of the theorem of Bobkov and

ötze implies that

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ |N (ε)| inf
λ>0

e−λϵ(1−ε)+
λ2σ2

∥f ∥2Lip
2 . (7)

The exponent in the right-hand side of (7) is minimized for λ∗ =
ϵ(1−ε)

σ2∥f ∥2Lip
> 0 leading to

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ |N (ε)|e
−

ϵ2(1−ε)2

2σ2∥f ∥2Lip . (8)

By employing the bound on |N (ε)| the desired result follows.

Proof of the second bound in (2). Using a similar argument as in Hsu et al. (2012, Theorem 2.1), let Z ∼ N (0, Ik) be

standard Gaussian random vector, which is independent of X . Recall that E[e⟨Z,q⟩
] = e

∥q∥22
2 , ∀q ∈ Rk. For any λ ∈ R we

note that

E
[
eλ⟨Z,f (X)−Eν [f ]⟩]

≥

E
[
eλ⟨Z,f (X)−Eν [f ]⟩

⏐⏐ ∥f (X) − Eν[f (X)]∥2 ≥ ϵ
]
P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) =

Eν

[
EZ
[
eλ⟨Z,f (X)−Eν [f ]⟩]⏐⏐ ∥f (X) − Eν[f (X)]∥2 ≥ ϵ

]
P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) =

Eν

[
e

λ2∥f (X)−Eν [f ]∥22
2

⏐⏐⏐⏐ ∥f (X) − Eν[f (X)]∥2 ≥ ϵ

]
P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≥

e
λ2ϵ2
2 P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ)

r

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ e−
λ2ϵ2
2 E

[
eλ⟨Z,f (X)−Eν [f ]⟩] . (9)

We now note that the function ⟨Z, f (x) − Eν[f (X)]⟩ is ∥Z∥2∥f ∥Lip-Lipschitz when Z is fixed (by the Cauchy—Schwarz
inequality) and ⟨Z, f (X) − Eν[f (X)]⟩ is mean zero. Assuming that W1(µ, ν) ≤

√
2σ 2D(µ ∥ ν), ∀µ holds, an application

f the theorem of Bobkov and Götze implies that

E
[
eλ⟨Z,f (X)−Eν [f ]⟩]

= EZ
[
Eν

[
eλ⟨Z,f (X)−Eν [f ]⟩]]

≤ EZ

[
e

λ2∥Z∥
2
2σ2

∥f ∥2Lip
2

]
.

3
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Moreover, ∥Z∥
2
2 is a chi-squared random variable with k degrees of freedom and for such a random variable E

[
et∥Z∥

2
2

]
=

1
(1−2t)k/2

, t < 1
2 . Therefore, we conclude that

E
[
eλ⟨Z,f (X)−Eν [f ]⟩]

≤ EZ

[
e

λ2∥Z∥
2
2σ2

∥f ∥2Lip
2

]
=

1(
1 − λ2σ 2∥f ∥2

Lip

)k/2 , (10)

where the last equality holds for any λ ∈ R such that λ2σ 2
∥f ∥2

Lip < 1. By combining (9) and (10) we obtain

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤
e−

λ2ϵ2
2(

1 − λ2σ 2∥f ∥2
Lip

)k/2 , |λ| <
1

σ∥f ∥Lip
. (11)

hoosing λ =
1

√
2σ∥f ∥Lip

, we conclude that

P(∥f (X) − Eν[f (X)]∥2 ≥ ϵ) ≤ 2
k
2 e

−
ϵ2

4σ2∥f ∥2Lip . □ (12)

In the previous proof and more specifically in (7) and (10), the theorem of Bobkov and Götze for the mean zero, vector-
valued function f (X) − Eν[f (X)] has been applied via a real-valued function of the form ⟨g, f (X) − Eν[f (X)]⟩ with g = w∗

and g = Z , respectively. This suggests the following extension of the theorem of Bobkov and Götze for vector-valued
Lipschitz functions:

Proposition 1 (Theorem of Bobkov and Götze for Vector-Valued Functions). Let (X, dX) and (Y, dY) be two Polish spaces, where
Y ⊆ Rk and dY is an ℓp-metric for some p ≥ 1. Let X be a random variable taking values in X and assume that X ∼ ν, where
ν is a probability measure on (X, dX). Then, the following statements are equivalent:

1. W1(µ, ν) ≤

√
2σ 2D(µ ∥ ν), ∀µ

2. f (X) − Eν[f (X)], for every function f ∈ Lip(X,Y, dX, dY) such that ∥Eν[f ]∥∞ < ∞, is a sub-Gaussian vector with
σ 2

∥h∥2
q∥f ∥

2
Lip-sub-Gaussian one-dimensional marginals ⟨h, f (X) − Eν[f (X)]⟩, i.e.,

Eν

[
eλ⟨h,f (X)−Eν [f (X)]⟩]

≤ e
λ2∥h∥2qσ2

∥f ∥2Lip
2 , ∀h ∈ Rk, ∀λ ∈ R. (13)

Here, ∥ · ∥q corresponds to the dual norm of ∥ · ∥p.

The direction ‘‘1. implies 2.’’ can be obtained by the theorem of Bobkov and Götze for the real-valued function
⟨h, f (x)−Eν[f (X)]⟩ by invoking Hölder’s inequality to show that the corresponding Lipschitz constant is at most ∥h∥q∥f ∥Lip.
The direction ‘‘2. implies 1.’’ is a direct consequence of the theorem of Bobkov and Götze by choosing f to have only one
nonzero coordinate, e.g., f = f̃ e1 and h = e1. Here, f̃ : X → R is any real-valued ∥f ∥Lip-Lipschitz function and e1 is the
first element of the canonical basis in Rk.

4. Example

Consider a sample X0:n−1 = {X0, X1, . . . , Xn−1} of size n drawn from an ergodic, discrete-time, finite-state Markov
chain (Xk)k≥0 with state space E = [K ] = {1, 2, . . . , K }, transition matrix P = [Pij] and X0 ∼ ϱ, where ϱ denotes the
initial measure of the chain. We denote such a Markov chain by (P, ϱ) and the corresponding stationary chain by (P, π ),
where π is the underlying invariant measure. Let the chain be r-contractive with Dobrushin coefficient r < 1. Consider
he natural plug-in estimators for the stationary probabilities:

π̂i(X0:n−1) =
1
n

n−1∑
k=0

1(Xk = i).

By the Ergodic Theorem for Markov chains (Brémaud, 2013), π̂i → πi, ∀i ∈ E with probability 1 as n → ∞ for any initial
easure ϱ.
The distance of (P, ϱ) from stationarity can be quantified by the (nonstationarity) index (Paulin, 2015, p. 11) ϱ

π

2
2,π

= Eπ

[(
dϱ
dπ

)2
]

=

∑
i∈E

[
ϱ(i)

√
π (i)

]2
, (14)

here the first equality corresponds to the general definition of the index for ϱ ≪ π and the second equality is the
pecialization of this definition to our setting. Furthermore, 1 ≤ ∥ϱ/π∥2,π ≤ ∞ and ∥ · ∥2,π is the norm induced by the
inner product ⟨f , g⟩π =

∑
i∈E f (i)g(i)π (i) in ℓ2(π ) (Levin and Peres, 2017). Due to ergodicity, mini∈E π (i) > 0 and also

ϱ/π∥2,π ≤ 1/
√
mini∈E π (i). Additionally, ∥ϱ/π∥2,π = 1 for ϱ = π and ∥ϱ/π∥2,π = ∞ if ϱ is not absolutely continuous

ith respect to π .
4
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The index in (14) is useful in our context due to the following theorem (Paulin, 2015, Proposition 3.10):

heorem 2. Let X0:n−1 be a sample drawn from a time-homogeneous Markov chain (P, ϱ) with state space E and stationary
easure π . Then for any measurable function g : En

→ R and ∀ϵ > 0,

Pϱ (g(X0:n−1) ≥ ϵ) ≤

 ϱ

π


2,π

√
Pπ (g(X0:n−1) ≥ ϵ),

here Pϱ is the law of (P, ϱ) and Pπ is the law of (P, π ).

Our goal is to bound Pϱ(∥π̂ − π∥p ≥ ϵ) = Pϱ(∥π̂ − Eπ [π̂ ]∥p ≥ ϵ) for p ≥ 1. To tackle the problem within the
transportation method framework, we will use the following theorem due to Marton (Marton, 1996, Proposition 1)
adapted to our setting:

Theorem 3. Consider a Markov chain (Xk)k≥0 with a finite state space X , transition matrix P = [Pij] and Dobrushin coefficient
r < 1. For x0:n−1, x̃0:n−1 ∈ X n let d̃1,X n (x0:n−1, x̃0:n−1) =

∑n−1
k=0 1(xk ̸= x̃k). Then,

W1 (µ, ν) ≤

[
n

2(1 − r)2
D(µ ∥ ν)

]1/2
,

here ν = Pϱ is the measure on (X = X n, dX = d̃1,X n ) due to the Markov chain starting at some arbitrary initial measure ϱ
nd µ is any measure on (X, dX).

We now compare different approaches for bounding Pϱ(∥π̂−π∥p ≥ ϵ) and show that the bound obtained in Theorem 1
ives better results than other, more direct applications of the theorem of Bobkov and Götze.

pproach 1: Direct application of the theorem of Bobkov and Götze. Let f (x) = f (x0:n−1) = ∥π̂ (x0:n−1) − π∥p. Assume
hat x = x0:n−1 and x̃ = x̃0:n−1 are two realizations of the random sequence X0:n−1, which differ at a single element. By
employing the reverse triangle inequality for the ℓp-norm we obtain⏐⏐f (x) − f (x̃)

⏐⏐ ≤ ∥π̂ (x0:n−1) − π̂ (x̃0:n−1)∥p

≤

p√2
n

=

p√2
n

d̃1,En (x0:n−1, x̃0:n−1) =

p√2
n

n−1∑
k=0

1(xk ̸= x̃k). (15)

learly, (15) implies that ∥f ∥Lip =
p√2/n for any x0:n−1, x̃0:n−1 (not necessarily different at a single element). This can be

asily seen by expressing π̂ (x0:n−1) = (1/n)
∑n−1

k=0
∑K

i=1 1(xk = i)ei, where {e1, . . . , eK } is the canonical basis in RK .
Consider the stationary chain (P, π ). An application of the theorem of Bobkov and Götze (one-sided version) combined

with Theorem 3 gives

Pπ (∥π̂ (X0:n−1) − π∥p ≥ Eπ [∥π̂ (X0:n−1) − π∥p] + ϵ) ≤ e−21−2/pnϵ2(1−r)2 , ∀ϵ > 0

r equivalently, ∀ϵ > Eπ [∥π̂ (X0:n−1) − π∥p],

Pπ (∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤ e−21−2/pn(ϵ−Eπ [∥π̂ (X0:n−1)−π∥p])
2(1−r)2 .

Theorem 2 now implies that ∀ϵ > Eπ [∥π̂ (X0:n−1) − π∥p],

Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤

 ϱ

π


2,π

e−2−2/pn(ϵ−Eπ [∥π̂ (X0:n−1)−π∥p])
2(1−r)2 . (16)

Finally, for any δ ∈ (0, 1) and any ϵ > Eπ [∥π̂ (X0:n−1) − π∥p], Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤ δ for any n such that

n ≥

2
2
p log

(
∥

ϱ
π ∥2,π

δ

)
(
ϵ − Eπ [∥π̂ (X0:n−1) − π∥p]

)2 (1 − r)2
. (17)

pproach 2: A union bound approach
We may try to eliminate the problem of ϵ being bounded away from zero by using the observation that any ℓp-norm

s separable in the corresponding coordinates. We have

Pπ (∥π̂ − π∥p ≥ ϵ) = Pπ

(
K∑

i=1

|π̂i − πi|
p

≥ ϵp

)
≤

K∑
i=1

Pπ

(
|π̂i − Eπ [π̂i]| ≥

ϵ
p√K

)
,

here the union bound and the fact that π̂i are unbiased estimators ∀i have been used. In this case f (x) = f (x0:n−1) =

π̂i(x0:n−1), therefore

|f (x) − f (x̃)| ≤
1
d̃1,En (x0:n−1, x̃0:n−1), ∀x0:n−1, x̃0:n−1 ∈ En.
n
5
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By combining the theorem of Bobkov and Götze with Theorems 2 and 3 we obtain:

Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤
√
2K
 ϱ

π


2,π

e−K−2/pnϵ2(1−r)2 . (18)

Finally, for any δ ∈ (0, 1) and any ϵ > 0, Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤ δ for any n such that

n ≥

K
2
p log

(√
2K∥ ϱ

π ∥2,π
δ

)
ϵ2(1 − r)2

. (19)

pproach 3: Application of Theorem 1
For simplicity, we will work with the first bound in (2). Note that by working with both bounds in (2) we can only

btain an improvement of the derived sample complexity.
We observe that by the usual norm equivalence constants, the definition of τp in (3) and the hierarchy of ℓp-norms

n Rk we have that τ1 ≤
√
k, τ2 = 1, τp ≤ 1 for any p > 2 and τp1 ≤ τp2 for p1 ≥ p2. By Theorems 1–3 we obtain that

ϵ > 0 and ∀ε ∈ (0, 1],

Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤

 ϱ

π


2,π

(
1 +

2
ε

) K
2

e
−

nϵ2(1−ε)2(1−r)2

2τ2p . (20)

herefore, for any δ ∈ (0, 1), any ϵ > 0 and any ε ∈ (0, 1], Pϱ(∥π̂ (X0:n−1) − π∥p ≥ ϵ) ≤ δ for any n such that

n ≥
2τ 2

p

ϵ2(1 − ε)2(1 − r)2

[
K
2
log
(
1 +

2
ε

)
+ log

( ϱ

π


2,π

)
+ log

(
1
δ

)]
. (21)

ample Complexity Comparisons
We first note that ∥ϱ/π∥2,π ≤ 1/

√
mini∈E π (i) and often mini∈E π (i) ≍ 1/Km for some m ≥ 1. For a rough complexity

omparison between (17) and (21) consider for simplicity the special case of i.i.d. random variables and p = 1. In this
etting, we correspondingly work with Pπ (·) only (only Pπ (·) is meaningful). It turns out that Eπ [∥π̂ −π∥1] ≲ K/

√
n. Then,

17) and (21) are orderwise the same, but without the problem of ϵ being bounded away from zero in (21). Further, (21)
s better by a logarithmic in K factor over (19) for p ∈ {1, 2}. For chains such that mini∈E π (i) ≍ 1/eK , (21) is better by
K factor over (19) for p ∈ {1, 2}. We also note that depending on the geometry of f (X), f and ν, τp may or may not
ave a favorable value for a particular p. More specifically, it might be possible that the last approach is orderwise better
han the union bound approach for some choices of p, primarily for p ∈ {1, 2}, while it is worse for other values of p,
epending on the particular problem at hand.
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