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Abstract— We present an epidemiological compartment
model, SAIR(S), that explicitly captures the dynamics of asymp-
tomatic infected individuals in an epidemic spread process.
We first present a group model and then discuss networked
versions. We provide an investigation of equilibria and stability
properties for these models, and present simulation results
illustrating the effects of asymptomatic-infected individuals on
the spread of the disease. We also discuss local isolation effects
on the epidemic dynamics in terms of the networked models.
Finally, we provide initial parameter estimation results based
on simple least-squares approaches and local test-site data.

Keywords: Epidemic dynamics, networks, data-informed
modeling, stability analysis, parameter estimation

I. INTRODUCTION

Modeling, analysis and control of epidemic spread pro-
cesses over networks have received increasing attention over
the two past decades, owing not only to the recent COVID-19
pandemic and other viral outbreaks, but also to the plethora
of computer network viruses. Conducting experiments to
analyze infectious disease spread processes and response
policies are prohibitive for many reasons, and effectively
impossible over large human contact networks. As a result,
mathematical modeling and simulation, informed by up-to-
date data, provides an essential alternative for estimating and
predicting when and how an epidemic will spread over a
network. Moreover, simulations of strategic control policies
over validated epidemic models can provide insights into
approaches for mitigating spread.

Mathematical models for epidemics, or spread processes,
have been proposed, analyzed and studied for over 200 years
[1]. Models used for most studies today derive from the
so-called compartment models proposed by Kermack and
McKendrick in 1932 [2]. These models assume every subject
lies in some segment or compartment of the population at
any given time, with these compartments possibly including
susceptible (S), infected (1), exposed (E) and/or recovered
(R) groups, leading to the classical epidemiological models:
SI, SIS, SIR and SEIR models; e.g., the SIS model is

S) = —BSWI(0)+81() 0

1(t) = BSO)I(t)—81(),
where S(¢), I(r), resp., are the susceptible (healthy) and
infected segment of the population, B represents the rate
of infection or contact amongst infected and susceptible
subgroups, and & represents the healing or curing rate. This
model assumes: (1) a homogeneous population with no vital
dynamics (birth and death processes), implying infection
and healing are assumed to occur at faster rates than with
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vital dynamics and the population size remains constant; and
(2) the population mixes over a trivial network, i.e., over
a complete graph structure. These assumptions have led to
errors in previous epidemic forecasts [3].

We note that similar models to that given in (1) have
been derived for SI, SIR(S) and SEIR(S) processes; SI
models simply have 6 = 0; SIR(S) models include a recov-
ered segment of the population and a recovery parameter
and SEIR(S) models include an exposed segment of the
population, which is assumed to be non-infectious, and a
corresponding parameter that captures the transition rate
from the exposed state to the infected state, effectively
capturing the disease incubation period. There are numerous
variants of these models, including recent models in which
human awareness is taken into account [4], [5], [6], [7], and
in which multiple epidemic processes may be propagating
simultaneously [8], [9], [10].

Over the past two decades, to address discrepancies found
in prior epidemic forecasts and to better model spreading
processes of computer viruses over communication networks,
there has been extensive work on epidemic processes evolv-
ing over complex network structures; see for example [11],
[12], [13], [14], and from a controls perspective [15].! To
account for network structure, an agent-based perspective of
epidemic processes is taken where each agent (an individual
or subgroup in the population) is represented by a node,
and the edges in the network between nodes represent the
strength of the interaction between agents. Given a total of n
nodes, epidemic processes can be described by large Markov
process models (e.g., of dimension 2" for SIS models and 3"
for SIR models), which capture the probability of each node
transitioning from susceptible to infected, and/or to recovered
states, and back. These probabilities are determined by the in-
fection rate(s), healing rate(s) and/or recovery rate(s), and the
network interconnection structure, and capture the stochastic
evolution of such epidemic processes. These models become
intractable to analyze as the number of nodes, n, increases;
once n is large enough mean-field approximation (MFA)
models become appropriate. MFA models are derived by
taking expectations over infection transition rates of agents,
and rely on the results of Feller [16] and Kurtz [17].

For agents interconnected via a graph with adjacency
matrix W = [Wj;], where W;; represents the strength of
connection from node i to node j, under the previous assump-
tions along with additional independence assumptions, deter-
ministic networked MFA models are now widely applied (see

I'The literature in this area is vast, thus we cannot provide an overview of
all prior research due to space constraints. However, we note that the cited
papers provide extensive summaries of existing results.
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[18], [19] for analysis, discussions and perspectives). Again
using an SIS process example, if we denote the probability
of node i being infected at time ¢ by p;(r) € [0,1], the
following differential equation provides a MFA model for
the probability of infection of node i

pilt) = ﬂZWuPJ

This model provides a lower complexity deterministic
approximation to the full dimension Markov process model
of a SIS spread process evolving over a static network [15],
[20], [21]. Discrete time versions of these approximation
models have also been proposed and studied [22], [23]. Pri-
mary goals in most analyses of epidemic process dynamics
include computing the system equilibria, and determining the
convergence behavior of these processes near the equilibria.
Specifically, conditions for the existence of and convergence
to “disease-free” or “endemic” equilibria are sought.

In this paper we consider a compartment model structure
that specifically accounts for infectious but asymptomatic
subgroups or individuals, namely a SAIR(S) model structure,
incorporating Susceptible (S), Asymptomatic-infected (A),
Infected-symptomatic (I), and Recovered (R) subsets of the
population. We note the asymptomatic subset we consider
may include those individuals who do not experience symp-
toms through the course of their infection, as well as pre-
symptomatic individuals. This structure may be used to
directly capture the dynamics of COVID-19 and the role
asymptomatic individuals play in the disease spread.?

In Section II, we present our SAIR(S) group and net-
worked models and discuss their equilibria and stability
properties. We present a series of simulation studies in
Section III that illustrate our stability results as well as
highlighting the role the asymptomatic subgroup plays in
disease spread under various quarantine policies. In Section
IV we apply a simple least squares estimation approach to
compute the SAIR(S) model parameters from data, using
local data (Champaign County Public Health District) for
initial estimations. We note the challenges that currently
available data present and our ongoing work in Section V.

II. THE SAIRS MODEL

(1= pi(e “opi). @

In order to investigate the effects of asymptomatic individ-
uals on the spread of the epidemic, we consider the fraction
and effect of asymptomatic carriers directly. We evaluate
both single group models as well as networked models.

A. Single-Group and Networked Models

Let S(¢),A(r),I(r),R(t), resp., represent the proportion of
susceptible, asymptomatic-infected, symptomatic-infected,
and recovered individuals at time #. Our Group SAIR(S)
model is characterized as:

2This model was first introduced in online seminars and panel discussions
[24], [25], and in the literature in [26]. Compartment models with different
structures but including explicit asymptomatic population segments were
previously proposed for dengue fever [27] and rumor spreading over online
social networks [28].

S(t) = —BS(1)(A(e) +1(1)) + 8R(r)

A(t) = gBS(t)(A(r) +1(¢)) — 0A(r) — KA(t) 3)
I(t) = (1-q)BS(t)(A(1) +1(t)) + oA(t) — VI(t)
R(t) = kA(t) +yI(r) — 6R(t)

Here [ is the transmission rate amongst susceptible and
infected groups, which includes both asymptomatic and
symptomatic; kK and 7, resp., are the recovery rates for
asymptomatic and symptomatic-infected groups. Addition-
ally, g captures the proportion of individuals who are asymp-
tomatic (and/or pre-symptomatic) but still infectious; corre-
spondingly, (1 —g) represents the proportion of symptomatic
individuals. Further, ¢ is the progression rate from asymp-
tomatic to symptomatic, and & represents the rate at which
immunity recedes; when 6 = 0, individuals gain permanent
immunity to the infection upon recovery. We assume these
relations hold for all # > 0.

We also study the SAIR(S) model dynamics of n-
subpopulations interconnected over an arbitrary network
structure, with adjacency matrix denoted by W. De-
fine s;,a;,pi,ri, resp., as the proportion of the subpop-
ulation i that is susceptible (or healthy), asymptomatic-
infected, symptomatic-infected, or recovered. The Networked
SAIR(S) model (N-SAIR(S)) capturing the spread process
over an arbitrary interconnection network is given by:

= —Pisi(t) ZWU aj(t)+pj(t)) + 6ri(t)
= qPisi(t) Zvvz] a/ er]( )) — Giai(t) — Kiai(t)  (4)
pi( ) = ﬁlsl ZVVI] aj +pj( ))+Giai(t)_%pi(t)

oiri(t)

where for a subpopulation i, the parameters f;, k;, ¥;, 0; and
0; are defined as for the Group model. Since all individuals
in a subgroup i will reside in one of these subsets, we have
si(t)+ai(t)+ pi(t)+ri(t) = 1, over all i,j and relative to the
population size, N; of group i.

Remark: The Group Model (3) can be viewed as the Net-
worked Model (4) in the case where we have homogeneous
spread parameters and the underlying network topology is
complete with evenly distributed interconnection weights;
that is, when W;; = 1 /n for all i, j € [n], and (B;, &;, %, G, 0;) =
(B,x,v,0,0) for all i € [n].

Prior to discussing analysis of equilibria and stability for
these models, we note the following result which establishes
that the N-SAIR(S) model is well-defined. This result was
first presented in [26] for the discrete-time case using an
induction argument; it is straightforward to adapt to the
continuous-time model given in (4).

Assumption 1: For all i € [n], B;,%,0;, ki, 0; and W;; >0

Lemma 1: Consider the model in (4) under Assumption
1. Suppose s;(0),a;(0), pi(0), r;(0) € [0,1], 5;(0) +a;(0) +
pi(0)+r;(0) =1 for all i € [n]. Then, for all # >0 and i €
[n], we have s;(),a;(t), pi(t),ri(t) € [0,1] and s;(t) +a;(t) +
pi(l) +Vi(l) =1.

7i(t) = wa;(t) + Yipi(t )—
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B. Equilibria and stability

To quantitatively and qualitatively evaluate the propagation
of the virus, the basic reproduction number, Ry, is a critical
threshold quantity used widely in epidemiological studies.
This number indicates how rapidly infected individuals trans-
mit the virus to healthy individuals. In order to stop the
virus from spreading exponentially, we require Ry < 1. In
this section, we evaluate the SAIR(S) system equilibria and
conduct stability analysis around the equilibria, allowing us

to determine a stabilizing Ry threshold.
1) Group Model SAIRS:
Noting that S(t) = 1 —A(¢) —I(¢) — R(¢), the nonlinear system
(3) can be written as:
A(t) = gB(1—A(1) —1(1) = R(1))(A() +1(1)) — 0A(r) — KA(r)
1(t)=(1—=q)B(1—A(t) —1(t) = R(1))(A(1) +1()) + CA() = ¥I(t)  (5)
R(t) = kA(t) +vI(t) — 8R(¢)

By setting A(¢),1(t),R(t) to 0, we see that one equilibrium
state of system (5) is given by (A¢,I¢,R¢) = (0,0,0) with
S¢ = 1. This is the disease-free equlibrium (DFE) in the case
of non-permanent immunity. Linearizing system (5) around
(A°,I¢,R®), we obtain the system Jacobian matrix,

[ gf—Kk—o ap 0 ]
J=] (I-g)p+o (1-g)p—yv 0 |. (©6)
K Y )

This system will be globally asymptotically stable (GAS)
around the DFE if all eigenvalues of J¢ have negative
real parts, as per Theorem 4.7 from [29]. Computing the
characteristic polynomial for J¢, and applying the Routh-
Hurwitz criterion gives the following.

Proposition 1: For the system given by (5), the DFE
(S¢,A¢,1°,R) = (1,0,0,0) is GAS when

. B Blgr+(1-g)k+o0)
Ry .—max<K_H/+G, Hx+0) ) <1. (7)

Further, in the case where 6 = 0, that is when immunity
following recovery from infection is permanent, the DFE will
be any points (S¢,A° I¢,R¢) = (cs,0,0,cg), where constants
CRr,cs satisfy cs+cg = 1. Analyzing the Jacobian for (5)
in this case gives us that the equilibria (S¢ A° I¢,R%) =
(cs,0,0,cg) are GAS again when (7) is satisfied. That is,
this reproduction number expression provides an appropriate
threshold for determining when the spread process for the
SAIR(S) model will or will not spread exponentially in either
of the scenarios of permanent or non-permanent immunity.

We further consider the case where the asymptomatic-
and symptomatic-infected individuals have different infection
transmission rates. In the case of COVID-19, this difference
could be partly due to the inability to conduct large-scale
population testing in order to identify and isolate asymp-
tomatic individuals. We denote the infection transmission
rates for in-person contact from the two groups, resp., as

Ba, Br. Similar to the analysis above, we obtain the DFE at
(S¢,A¢,1°,R) = (1,0,0,0) and the corresponding Jacobian,

[ gfa—x—o aBr 0
el

l=q)Ba+o (1-q)f—-v O ] ®)
K Y -0

Following a similar approach as before yields:

,_ aBa+(1=q)Br qBay+Bi(1 —g)k+0)
RO'*maX( K+yto y(k+0) ) ©)

For GAS, again it is required that Ry < 1. We further
compute the endemic equilibrium for (5), assuming non-
permanent immunity, that is, 6 > 0. Setting A(¢),1(r),R(¢)
to 0, we obtain the endemic equilibrium,

Y(x+0)
Blgr+(1—g)x+0)

98y( Blqr+(1-g)x+0)—y(x+0)

Blar1-gr+o) (rxto13(ari(1-grto))

5((1-0)x+0) (Blar+(1-)xt0) rix+o)) (10)

B(qr+(1-g)x+0) (7(K+G)+5(q7+(lfq)7€+0))

¥(x+0) (ﬁ(q7+( 1-g)k+0)-( K+U))

| Blari-gxo) (sicto)ralar(1-axto))

A complete analysis of this equilibrium is given in a longer
version of this paper [30].

2) Networked Model N-SAIR(S):
We first consider the case with permanent immunity, im-
plying 6 = 0. Given s;(t) = 1 —a;(¢) — pi(t) — ri(¢) for all
t > 0,i € [n], system (4) can be represented in matrix form
as:

a(t) = lg(I—A(t)— Pt) ~ R(t))BW — X — Kla(1)
+lq(I—A(r) — P(t) —R(1))BW]p(1)

p) = [(1-q)I—A)—P()— RW)BW+Zla() . (1)
+[(1—q)(I —A(t) = P(1) = R(1))BW —T|p(1)

i) = Ka(r)+Tp(t)

Here,
ar (t) pi() r (1)

a)=1 =+ [p0)=1{ + |r@O=]
an(1) pa(t) ra(t)

with n x n  matrices A(t) = diag(a;i(t)), P(t) =

)
diag(pi(t)), R(1) = diag(ri(t)), B = diag(B;), K =
diag(x;), T' = diag(y), ¥ = diag(o;), A = diag(5;),
and adjacency matrix W.

Setting a(t), p(t),7(t) to 0, we can compute the equilib-
rium state where a° = p® = 0,r° = 1, where r, is any non-
negative constant vector with elements 7., < 1. Linearizing
the system (11) at the equilibrium (a®, p¢,r¢), we obtain the
3n x 3n system Jacobian Matrix given by

g(I—R)BW —£—K q(I—R.)BW 0
JF=| (1-q)I—-R)BW+0 (1—q)I—-R.)BW—-T 0 |. (12)
K r —A

Analysis of this Jacobian matrix leads to a set of con-
straints on the spectrum of the weighting matrix W. An
alternative approach is to consider a Lyapunov stability
analysis approach. Using a standard quadratic Lyapunov
functional in the a(¢) and p(t) vectors leads to the following
sufficient condition for stability of the DFE:

} { B (Z+K)

1
W tw
~1p7'x

-1z
W (1—gqw

il PR CE)

where < denotes relative definiteness of the matrices. That

is, (13) provides a test that bounds the maximum eigenvalue
of the g-scaled adjacency matrix W in terms of the minimum
eigenvalue of a matrix consisting of block diagonal entries
of ratios of healing and transition rates (x;, ¥; and ©;) to
infection rates (f3;); this loosely generalizes the usual Ry
threshold.
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III. SIMULATIONS

We first simulate a baseline model for (4), for which
we assume homogeneous spread parameters and a five-
subpopulation network structure. We assume the total
population size is 10,000 and the respective subpopu-
lations denoted U, V, X, Y, and Z have populations
2000,2500, 1500,3500, and 500, resp.. We assume the cities
are fully connected with uniformly distributed edge weights,
thus this baseline model is equivalent to a single group
model. We use the estimation results from local data (dis-
cussed in IV) in addition to drawing on the literature
(e.g.,[31] [32]) to inform our parameter value selection:
(¢.B,0.,7,%,8) = (0.7,0.25,0.15,0.11,0.08,0.0001). We set the
initial proportions of the A I R compartments as

a(0) = (ay(0),ay (0),ax (0), ay (0),az(0))
0.006,0.004,0.012,0.004,0.004)

(a
=

P(0) = (pu(0),pv(0), px(0), py (0), pz(0))
= (0.005,0.002,0.008,0.003,0.002)
(r

v (0),rv(0),7x(0),rv(0),72(0))
= (0.007,0.003,0.010,0.008, 0.005).

r(0) =

Simulating the SAIRS model over 60 days results in the
disease progression shown in Fig.1. Note that peak active

09

— Asymptomatic
08 Infected
07 Recovered

06
05
04
03
02
01

00

[ 1 0 E) a0 50 &

Fig. 1: Group/Network SAIRS Simulation: Baseline Model

infection occurs on day 33, that is p(¢) + a(r) attains a
maximum of approx. 28% on day ¢t = 33. By day 60,
approx. 87% of the entire population has been or is infected;
assuming a mortality rate of 4%, that would correspond to
348 deaths in the two month time span. Again we note
this model assumes homogeneous mixing within the entire
population with no mitigation policies enacted.

A. Asymptomatic Effects

One obstacle in the control of COVID-19 is the chal-
lenge of identifying and monitoring individuals in the
asymptomatic-infected subgroup. Herein we explore the im-
pact of this subgroup on the epidemic. We first assume there
are no control policies imposed on either the asymptomatic
or symptomatic infected subgroups. We use the group model
(3) with parameters as given previously, which results in
a basic reproduction number Ry ~ 2.5 using (7). We then
impose different isolation policies on the asymptomatic and
symptomatic (A and [I) subgroups, which we implement
by changing the respective effective transmission rate. We
consider the resulting effective Ry (denoted by R), peak
infection levels (Peak Infection) and the corresponding day
of peaks (Peak Day), and the percentage of population that
is or has been infected by Day 80 (%-AIR) as measures for
the extent of the epidemic spread. By setting initial propor-
tions for the A,I,R compartments for each subpopulation as
(A(0),1(0),R(0)) = (0.004,0.002,0.003), we obtained simu-
lation results as shown in the table below.

Simulation results: Varying isolation policies on A and I

Isolation Ba B R Peak In- | Peak| %-AIR
Level fection Day

No isolation | 0.25 0.25 2.5 25% 35 87%
on A or I

Moderate iso- | 0.25 0.11 1.5 | 9% 60 49%
lation on I, no

isolation on A

Strict  isola- | 0.25 0.06 1.2 | 25% 75 17%
tion on I, no

isolation A

Moderate iso- | 0.11 0.11 1.09 | 1% 87 7.7%
lation A and I

Strict  isola- | 0.0125] 0.0125]| 0.89 | 0.5% 4 1%
tion A and I

We note that with isolation measures on only the 7
subgroup, the epidemic progresses more slowly and mildly.
With moderate and strict isolation policies in effect on the
I subgroup, and with a population base of 10000 and a
mortality rate of 4%, approx. 152 and 280, resp., fewer
deaths occur over the 80 days than with no isolation. In the
scenario where asymptomatic individuals are also identified
and isolated, under both moderate and stringent policies, the
spread is mitigated by a significant amount.

In particular, with only moderate isolation on both the
A and [ subgroups (Fig.2), the epidemic is controlled within
three months. At a 4% mortality rate, approx. 37 fewer deaths
occur as compared to applying stringent control policies on
only the I group.

—— Asymptomatic
Infected

] b 0 60 80

Fig. 2: Moderate isolation of both Symptomatic and Asymp-
tomatic Infected subgroups

An additional measure to consider is the effective re-
production number under the different isolation policies.
Moderate isolation of both A and I subgroups gives R == 1.09,
while stringent isolation on just the / subgroup gives R ~
1.2. These results confirm the expected, that identification
and isolation of both the asymptomatic and symptomatic
infected individuals is more effective in curbing the spread
of the epidemic than identification and isolation of only the
symptomatic subgroup.

B. Network Effects

We now consider the effects that a more realistic interac-
tion structure has on epidemic spread over a population. We
consider the 5-node network introduced earlier, and consider
the removal of some edges between nodes. We first consider
an interconnection network structure with adjacency matrix

(14)

S O WI—wI—wI—
D= O O wil—wl—
O == O W=
Ovl—w—= O O
N—= O Ow— O
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Using the same parameters and initial conditions as in the

baseline model, simulations show that, with a less strongly
connected network, the epidemic spreads more slowly and
weakly. Among the total five cities, subpopulation X experi-
ences most rapid spread: a peak infection level of 21% occurs
at day 37; by day 60, approx. 87% of city X population is
or has been infected. However, in total, approx. 480 fewer
individuals over the five cities are infected as compared to
the fully connected (i.e., complete) baseline model.

To explore the impact of quarantines and stronger so-
cial distancing measures, we consider a population further
divided into 50 smaller subpopulations, and generate a
stochastic adjacency matrix with each node only connected
to 20 other randomly selected nodes out of the 50 possible.
Initial conditions a(0), p(0),r(0) are chosen randomly using
a;(0) ~ .A47(0.04,0.005), p;(0) ~ .4#7(0.02,0.005), r;(0) ~
A47(0.03, 0.005), but restricting all values to be non-negative.
Simulations for 3 of the 50 sub-populations (selected ran-
domly) are shown in Fig.3. Under this more extensive iso-
lation scenario, the epidemic decays much faster than under
the previous strongly connected network. Subpopulations
4, 22 and 34, resp., reach their peak infection levels at
days 21, 59 and day 0. Among the three subpopulations,
subpopulation 22 is the most highly infected group. However,
overall after 60 days, approx. only 13.6% of the population
has been or is infected, which is a reduction of 73.4% of the
population compared to the fully connected network (Fig.1),
and a reduction of 67.7% compared to the strongly connected
network. These simulations again demonstrate the expected,
that social distancing measures such as quarantining within
small communities or family units controls the spread of the
epidemic, as has been seen in practice in many communities.
From the perspective of the group model, extensive isolation
policies help reduce transmission rates for person-to-person
contact, which results in both faster flattening of the infection
curve and fewer infected individuals (asymptomatic and

symptomatic) in the whole population.
IV. PARAMETER ESTIMATION

In this section we briefly discuss results from a sim-
ple least-squares approach for parameter estimation for the
discrete-time N-SAIRS model given in (15) as applied to

local COVID-19 data. ) ) )

As our data results from sampling on a daily basis,
a discrete-time model is better suited for estimating and
evaluating model parameters. Applying a forward Euler’s
method to the continuous-time networked system (4), gives
us the discrete-time networked SAIRS model,

at = af +qBi(1 —df — pl— %)Y Wi(dh + ph) — idf — i

J
P = pf+ (1= )Bi(1 = — ph — %) Y Wi+ ph) + il — i
J
A =k 4wt + ypf - Sipf- (1s)

Since our simulation update will be daily and the sampling
rate is once-per-day, the sampling parameter will be 1 and
thus is not explictly noted above.

A. Asymptomatic Proportion Estimation

Due to the difficulties in identifying and monitoring in-
fected individuals without symptoms, explicit and unbiased

inf. for asymptomatic-infected estimations is not always
available. Applying the Next-Day Law approach proposed
by Nesterov in [33], we estimate asymptomatic numbers per
day, based on a latent period assumption, and use these to
estimate a proportion ¢ of the asymptomatic subpopulation as
a fraction of the total population. We note that this approach
more accurately gives us a pre-symptomatic subpopulation
proportion. From these estimated daily asymptomatic counts,
we are able to estimate the proportions g and 1 —¢g of
asymptomatic and symptomatic-infected subgroups. Using
the first two expressions in (15), we have

a].(Jrl — al.‘ q

1 1]
l—q

k+1 K~
P —P;

—ak

i i
k+1 ¢ k+1 .
(”i+ *a{'\)JF(PiJr 7P{'()

Hence, we can simply estimate g by

B. Least squares estimation of model parameters

With ¢ known (or estimated), we can apply the least-
squares estimation approach first outlined in [34], and de-
scribed explicitly for SAIRS models in [26] to estimate the
model parameters f3;, 0;, K;, ¥, and &;.

We consider local COVID-19 testing-site data from Cham-
paign County, Illinois, dating from April to August, 2020, to
compute parameter estimations for different phases of the
state restore plans, scheduled as:

Phase 1 : Rapid Spread (04/01/2020 —05/01/2020)
Phase 2 : Flattening (05/01/2020 — 05/29/2020)
Phase 3 : Recovery (05/29/2020 — 06/26/2020)
Phase 4 : Revitalization (06/26/2020 —09/26/2020)

We assume a latent period of A = 6 days, resulting in the
parameter estimates shown in the table below:

Phases q B c Y K Ry

Phase 2 0.7 0.06 | 0.22 | 0.15 | -0.10 1.004
Phase 3 0.6 0.07 | 0.15 | 0.15 | -0.05 1.156
Phase 4 0.6 0.07 | 0.08 | 0.11 | 0.02 1.104

We note that, as the epidemic progresses, the basic re-
production number Ry first rises, and then decreases with
the implementation of consistent quarantine and other social
distancing measures.

These preliminary results expose issues with real data
based estimation and analysis. For example, due to the
reduced availability of tests and test-sites in the early stages
of the epidemic, as well as non-random samples, the testing
population presented in the data is skewed by the symp-
tomatic individuals. This hinders accurately capturing the
true proportion of the asymptomatic subgroup, as well as an
accurate prevalence rate of infection in the total population.
In addition, our assumption of a constant latent period is not
consistent with the nature of COVID-19; the latent period
value we have used is an average value [31], [32]. These
issues lead to estimation errors, such as the negative recovery
rate values for k in Phase 1 and Phase 2.

3168

Authorized licensed use limited to: Purdue University. Downloaded on September 30,2021 at 20:25:05 UTC from IEEE Xplore. Restrictions apply.



Subpop 4

Subpop 22

Subpop 34

........

(a) Subpopulation 4

(b) Subpopulation 22

(c) Subpopulation 34

Fig. 3: Weakly Connected Network Simulation Results

V. FUTURE WORK

Our ongoing efforts include pursuing approaches for
model parameter estimation under non-random and missing-
sample data sets, and investigating Bayesian statistical ap-
proaches for estimating true prevalence of epidemics under
biased information.
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